551
|
Li ZJ, Wang CY, Xu L, Zhang ZY, Tang YH, Qin TY, Wang YL. Recent Progress of Activity-Based Fluorescent Probes for Imaging Leucine Aminopeptidase. BIOSENSORS 2023; 13:752. [PMID: 37504150 PMCID: PMC10377407 DOI: 10.3390/bios13070752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Leucine aminopeptidase (LAP) is an important protease that can specifically hydrolyze Leucine residues. LAP occurs in microorganisms, plants, animals, and humans and is involved in a variety of physiological processes in the human body. In the physiological system, abnormal levels of LAP are associated with a variety of diseases and pathological processes, such as cancer and drug-induced liver injury; thus, LAP was chosen as the early biochemical marker for many physiological processes, including cancer. Considering the importance of LAP in physiological and pathological processes, it is critical that high-efficiency and dependable technology be developed to monitor LAP levels. Herein, we summarize the organic small molecule fluorescence/chemiluminescence probes used for LAP detection in recent years, which can image LAP in cancer, drug-induced liver injury (DILI), and bacteria. It can also reveal the role of LAP in tumors and differentiate the serum of cirrhotic, drug-induced liver injury and normal models.
Collapse
Affiliation(s)
- Ze-Jun Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Cai-Yun Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Liang Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Zhen-Yu Zhang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Ying-Hao Tang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Tian-Yi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
552
|
Kim KH, Yan H, Yun SH. Aggregation-Induced Stimulated Emission of 100% Dye Microspheres. ADVANCED OPTICAL MATERIALS 2023; 11:2202956. [PMID: 38107448 PMCID: PMC10723759 DOI: 10.1002/adom.202202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 12/19/2023]
Abstract
Dyes with aggregation-induced emission (AIE) properties have gained interests due to their bright luminescence in solid-state aggregates. While fluorescence from AIE dyes have been widely exploited, relatively little is known about aggregation-induced stimulated emission. Here, we investigated stimulated emission of tetraphenylethene (TPE)-based organoboron AIE dyes, TPEQBN, in thin films and in microcavity lasers. Using femtosecond pump-probe spectroscopy, gain coefficients up to 230 cm-1 at 500 nm were measured. Using rate equations, we analyzed concentration- and pump-dependent gain dynamics as well as laser build up dynamics. During laser oscillation, radiative stimulated emission allows high instantaneous quantum yield greater than 90% to be achieved. We fabricated solid-state microspheres made of 100% AIE dyes via microfluidic emulsion and solvent evaporation method. Coupled with high gain and high refractive index of 1.76, microspheres as small as 2 μm in diameter showed lasing by nanosecond pumping with a threshold of ~10 pJ μm-2. Polymer coated, but not bare, microspheres were internalized by live cells and generated narrowband cavity mode emission from within the cytoplasm. Our work shows the potential of AIE dyes as laser materials.
Collapse
Affiliation(s)
- Kwon-Hyeon Kim
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Hao Yan
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| |
Collapse
|
553
|
Ma F, Deng L, Wang T, Zhang A, Yang M, Li X, Chen X. Determination of 2, 6-dipicolinic acid as an Anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission. Mikrochim Acta 2023; 190:291. [PMID: 37458835 DOI: 10.1007/s00604-023-05910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
The weak fluorescence efficiency of copper nanoclusters (Cu NCs) limits their wide applications in biosensing and bioimaging areas, while the aggregation-induced emission (AIE) effect is anticipated to increase their luminescence intensity. Herein, the weak red emission of Cu NCs is increased considerably by the addition of lanthanide Tb3+, ascribed to the AIE effect. Monitoring of spores contamination can be carried out by determining the level of 2, 6-dipicolinic acid (DPA), which is a marker of spores. Due to the stronger synergy between DPA and Tb3+ for its clamped configuration of adjacent pyridine nitrogen group with the carboxylic acid group, the addition of DPA leads Tb3+ to be taken away from Cu NCs through a stronger coordination effect, causing Cu NCs to return to the dispersed state and weakened fluorescence. Based on this, an "off-on-off" fluorescent probe for DPA sensing was built, in which Tb3+ was used as a bridge to achieve AIE enhanced fluorescence effect on Cu NCs as well as a specific recognizer of DPA. The detection range for DPA was 0.1-60 μM and the detection limit was 0.06 μM, which was much lower than the infectious dose of anthrax spores. Since DPA is a unique biomarker for bacterial spores, the method was applied to the detection of actual bacterial spores and satisfactory results were obtained with a detection limit of 4.9*103 CFU mL-1.
Collapse
Affiliation(s)
- Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tingting Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Aomei Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
| | - Xiaoqing Li
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| | - Xiang Chen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
554
|
Chen W, Qiu M, Tu R, Mu X, Fu F, Li MJ. Aggregation-Induced Near-Infrared Emission and Electrochemiluminescence of an Iridium(III) Complex for Ampicillin Sodium Sensing. Inorg Chem 2023. [PMID: 37441738 DOI: 10.1021/acs.inorgchem.3c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
A new iridium(III) complex was synthesized and characterized. Its photophysical properties and aggregation-induced emission and electrochemiluminescence in the near-infrared range were studied. The large conjugated cyclometallic ligand 1,2-phenylbenzoquinoline (pbq) was selected to form the Ir-C bond with the metal iridium(III) center and provide near-infrared emission of the complex. The auxiliary ligand 4,4'-diamino-2,2'-bipyridine (dabpy) can form hydrogen bonds, which was beneficial for the generation of aggregation-induced emission. The complex was aggregated into small spherical nanoparticles in 80% water and fascinating nanorings in 90% water. The sensing of ampicillin sodium (AMP) antibiotic by the iridium(III) complex were also investigated by photoluminescent and electrochemiluminescent methods. The complex showed a good selectivity toward AMP antibiotic compared to sodium phenylacetate and other eight antibiotics. The detection limits for AMP antibiotic was 0.76 μg/mL. This work provided a new strategy for the design of iridium(III) complex-based aggregation-induced emission and electrochemiluminescence probes for the sensing application.
Collapse
Affiliation(s)
- Weibin Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Meiling Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rui Tu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiangjun Mu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Fengfu Fu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Mei-Jin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
555
|
Turelli M, Ciofini I, Wang Q, Ottochian A, Labat F, Adamo C. Organic compounds for solid state luminescence enhancement/aggregation induced emission: a theoretical perspective. Phys Chem Chem Phys 2023; 25:17769-17786. [PMID: 37377211 DOI: 10.1039/d3cp02364h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Organic luminophores displaying one or more forms of luminescence enhancement in solid state are extremely promising for the development and performance optimization of functional materials essential to many modern key technologies. Yet, the effort to harness their huge potential is riddled with hurdles that ultimately come down to a limited understanding of the interactions that result in the diverse molecular environments responsible for the macroscopic response. In this context, the benefits of a theoretical framework able to provide mechanistic explanations to observations, supported by quantitative predictions of the phenomenon, are rather apparent. In this perspective, we review some of the established facts and recent developments about the current theoretical understanding of solid-state luminescence enhancement (SLE) with an accent on aggregation-induced emission (AIE). A description of the macroscopic phenomenon and the questions it raises is accompanied by a discussion of the approaches and quantum chemistry methods that are more apt to model these molecular systems with the inclusion of an accurate yet efficient simulation of the local environment. A sketch of a general framework, building from the current available knowledge, is then attempted via the analysis of a few varied SLE/AIE molecular systems from literature. A number of fundamental elements are identified offering the basis for outlining design rules for molecular architectures exhibiting SLE that involve specific structural features with the double role of modulating the optical response of the luminophores and defining the environment they experience in solid state.
Collapse
Affiliation(s)
- Michele Turelli
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Qinfan Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Alistar Ottochian
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Frédéric Labat
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
556
|
Gao F, Chang Y, Zhang J, Wang L, Liu L. Stimuli-responsive aggregation-induced emission of molecular probes by electrostatic and hydrophobic interactions: Effect of organic solvent content and application for probing of alkaline phosphatase activity. Talanta 2023; 265:124923. [PMID: 37433248 DOI: 10.1016/j.talanta.2023.124923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
We suggest that aggregation-induced emission (AIE) molecular probes with single charged/reactive group can exist in the formation of nanostructures but not monomers at extremely low organic solvent content. The nanoaggregates show good dispersivity and emit week emission. Stimuli-responsive assembly of nanoaggregates by electrostatic interactions can turn on the fluorescence, facilitating the design of biosensors with single-charged molecular probes as the AIE fluorogens. To prove the concept, tetraphenylethene-substituted pyridinium salt (TPE-Py) was used as the AIE fluorogen for probing of alkaline phosphatase (ALP) activity with pyrophosphate ion (PPi) as the enzyme substrate. The dynamic light scattering and transmission electron microscope experiments demonstrated that TPE-Py probes existed in aqueous solution at nanometer size and morphology. Stimuli such as the negatively charged PPi, citrate, ATP, ADP, NADP and DNA could trigger the aggregation of the positively charged TPE-Py nanoparticles, thus enhancing the fluorescence via AIE effect. ALP-enzymatic hydrolysis of PPi into two phosphate ions (Pi) limited the aggregation of TPE-Py nanoparticles. The strategy was used for the assay of ALP with a low detection limit (1 U/L) and wide linear range (1-200 U/L). We also investigated the effect of organic solvent content on the AIE process and found that high concentration of organic solvent can prevent the hydrophobic interaction between AIE molecules but show no essential influence on the electrostatic interaction-mediated assembly. The work should be evaluable for understanding AIE phenomenon and developing novel, simple and sensitive biosensors using a molecular probe with single charged/reactive group as the signal reporter.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China; School of Chemistry and Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jingyi Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Lingli Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China.
| |
Collapse
|
557
|
Neblik J, Kirupakaran A, Beuck C, Mieres-Perez J, Niemeyer F, Le MH, Telgheder U, Schmuck JF, Dudziak A, Bayer P, Sanchez-Garcia E, Westermann S, Schrader T. Multivalent Molecular Tweezers Disrupt the Essential NDC80 Interaction with Microtubules. J Am Chem Soc 2023. [PMID: 37392180 DOI: 10.1021/jacs.3c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.
Collapse
Affiliation(s)
- Jonas Neblik
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Abbna Kirupakaran
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Christine Beuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Joel Mieres-Perez
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Felix Niemeyer
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - My-Hue Le
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Ursula Telgheder
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Jessica Felice Schmuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Alexander Dudziak
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Peter Bayer
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Elsa Sanchez-Garcia
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Stefan Westermann
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| |
Collapse
|
558
|
Mathivanan M, Tharmalingam B, Anitha O, Thiruppathiraja T, Lakshmipathi S, Grzegorz Małecki J, Murugesapandian B. A unique methanol responsiveness, AIE, acidochromism and mechanofluorochromic features of flexible ethylenediamine bridged rhodamine B-diethylamino hydroxycoumarin conjugate. J Mol Liq 2023; 382:121845. [DOI: 10.1016/j.molliq.2023.121845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
559
|
Anni M. Investigation of the Origin of High Photoluminescence Quantum Yield in Thienyl-S,S-dioxide AIEgens Oligomers by Temperature Dependent Optical Spectroscopy. Molecules 2023; 28:5161. [PMID: 37446823 DOI: 10.3390/molecules28135161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The development of organic molecules showing high photoluminescence quantum yield (PLQY) in solid state is a fundamental step for the implementation of efficient light emitting devices. In this work the origin of the high PLQY of two trimers and two pentamers having one central thiophene-S,S-dioxide unit and two and four lateral thiophene or phenyl groups, respectively, is investigated by temperature dependent photoluminescence and time resolved photoluminescence measurements. The experimental results demonstrate that the molecules with lateral phenyl rings show higher PLQY due to a weaker coupling with intramolecular vibrations-related to variations in the radiative and non-radiative decay rates-and indicate different molecular rigidity as the main factors affecting the PLQY of this class of molecules.
Collapse
Affiliation(s)
- Marco Anni
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Via per Arnesano, 73100 Lecce, Italy
| |
Collapse
|
560
|
Ji YM, Hou M, Zhou W, Ning ZW, Zhang Y, Xing GW. An AIE-Active NIR Fluorescent Probe with Good Water Solubility for the Detection of Aβ 1-42 Aggregates in Alzheimer's Disease. Molecules 2023; 28:5110. [PMID: 37446772 DOI: 10.3390/molecules28135110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD), an amyloid-related disease, seriously endangers the health of elderly individuals. According to current research, its main pathogenic factor is the amyloid protein, which is a kind of fibrillar aggregate formed by noncovalent self-assembly of proteins. Based on the characteristics of aggregation-induced emission (AIE), a bislactosyl-decorated tetraphenylethylene (TPE) molecule TMNL (TPE + malononitrile + lactose), bearing two malononitrile substituents, was designed and synthesized in this work. The amphiphilic TMNL could self-assemble into fluorescent organic nanoparticles (FONs) with near-infrared (NIR) fluorescence emission in physiological PBS (phosphate buffered saline), achieving excellent fluorescent enhancement (47-fold) upon its combination with Aβ1-42 fibrils. TMNL was successfully applied to image Aβ1-42 plaques in the brain tissue of AD transgenic mice, and due to the AIE properties of TMNL, no additional rinsing process was necessary. It is believed that the probe reported in this work should be useful for the sensitive detection and accurate localization mapping of Aβ1-42 aggregates related to Alzheimer's disease.
Collapse
Affiliation(s)
- Yan-Ming Ji
- Center of Safety Production and Testing Technology, China Academy of Safety Science and Technology, Beijing 100012, China
| | - Min Hou
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhang-Wei Ning
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuan Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, China
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
561
|
Ru Z, Jia Y, Du Y, Han Y, Zhang N, Ren X, Wei Q. Intramolecular Enhancement of a Zirconium-Based Metal-Organic Framework for Coordination-Induced Electrochemiluminescence Bleomycin Analysis. Anal Chem 2023. [PMID: 37368510 DOI: 10.1021/acs.analchem.3c00137] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
It is significantly vital to develop a convenient assay method in clinical treatment due to an atypically low abundance (∼5 μM) of bleomycin (BLM) used in clinics. Herein, an electrochemiluminescence (ECL) biosensor using a zirconium-based metal-organic frameworks (Zr-MOFs) as an intramolecular coordination-induced electrochemiluminescence (CIECL) emitter was proposed for sensitive detection of BLM. Zr-MOFs were synthesized using Zr(IV) as metal ions and 4,4',4″-nitrilotribenzoic acid (H3NTB) as ligands for the first time. The H3NTB ligand not only acts as coordination units bonding with Zr(IV) but functions as a coreactant to enhance ECL efficiency rooted in its tertiary nitrogen atoms. Specifically, a long guanine-rich (G-rich) single-stranded DNA (ssDNA) was released by the target-BLM-controlled DNA machine that could perform π-π stacking with another G-quadruplex, ssDNA-rhodamine B (S-RB), by shearing DNA's fixed sites 5'-GC-3' and the auxiliary role of exonuclease III (Exo III). Finally, due to the quenching effect of rhodamine B, a negative correlation trend was obtained between ECL intensity and BLM concentration in the range from 5.0 nM to 50 μM and the limit of detection was 0.50 nM. We believe that it is a promising approach to guide the preparation of CIECL-based functional materials and establishment of analytical methods.
Collapse
Affiliation(s)
- Zhuangzhuang Ru
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Yujie Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
562
|
Zhang J, Tu Y, Shen H, Lam JWY, Sun J, Zhang H, Tang BZ. Regulating the proximity effect of heterocycle-containing AIEgens. Nat Commun 2023; 14:3772. [PMID: 37355670 PMCID: PMC10290688 DOI: 10.1038/s41467-023-39479-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Proximity effect, which refers to the low-lying (n,π*) and (π,π*) states with close energy levels, usually plays a negative role in the luminescent behaviors of heterocyclic luminogens. However, no systematic study attempts to reveal and manipulate proximity effect on luminescent properties. Here, we report a series of methylquinoxaline derivatives with different electron-donating groups, which show different photophysical properties and aggregation-induced emission behaviors. Experimental results and theoretical calculation reveal the gradually changed energy levels and different coupling effects of the closely related (n,π*) and (π,π*) states, which intrinsically regulate proximity effect and aggregation-induced emission behaviors of these luminogens. With the intrinsic nature of heterocycle-containing compounds, they are utilized for sensors and information encryption with dynamic responses to acid/base stimuli. This work reveals both positive and negative impacts of proximity effect in heterocyclic aggregation-induced emission systems and provides a perspective to develop functional and responsive luminogens with aggregation-induced emission properties.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yujie Tu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China.
| |
Collapse
|
563
|
Li Q, Zhou Y. Recent advances in fluorescent materials for mercury(ii) ion detection. RSC Adv 2023; 13:19429-19446. [PMID: 37383685 PMCID: PMC10294291 DOI: 10.1039/d3ra02410e] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Invading mercury would cause many serious health hazards such as kidney damage, genetic freak, and nerve injury to human body. Thus, developing highly efficient and convenient mercury detection methods is of great significance for environmental governance and protection of public health. Motivated by this problem, various testing technologies for detecting trace mercury in the environment, food, medicines or daily chemicals have been developed. Among them, the fluorescence sensing technology is a sensitive and efficient detection method for detecting Hg2+ ions due to its simple operation, rapid response and economic value. This review aims to discuss the recent advances in fluorescent materials for Hg2+ ion detection. We reviewed the Hg2+ sensing materials and divided them into seven categories according to the sensing mechanism: static quenching, photoinduced electron transfer, intramolecular charge transfer, aggregation-induced emission, metallophilic interaction, mercury-induced reactions and ligand-to-metal energy transfer. The challenges and prospects of fluorescent Hg2+ ion probes are briefly presented. We hope that this review can provide some new insights and guidance for the design and development of novel fluorescent Hg2+ ion probes to promote their applications.
Collapse
Affiliation(s)
- Qiuping Li
- Key Laboratory of Chronic Diseases, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - You Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| |
Collapse
|
564
|
Huang RW, Song X, Chen S, Yin J, Maity P, Wang J, Shao B, Zhu H, Dong C, Yuan P, Ahmad T, Mohammed OF, Bakr OM. Radioluminescent Cu-Au Metal Nanoclusters: Synthesis and Self-Assembly for Efficient X-ray Scintillation and Imaging. J Am Chem Soc 2023. [PMID: 37335564 DOI: 10.1021/jacs.3c02612] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Zero-dimensional (0D) scintillation materials have drawn tremendous attention due to their inherent advantages in the fabrication of flexible high-energy radiation scintillation screens by solution processes. Although considerable progress has been made in the development of 0D scintillators, such as the current leading lead-halide perovskite nanocrystals and quantum dots, challenges still persist, including potential issues with self-absorption, air stability, and eco-friendliness. Here, we present a strategy to overcome those limitations by synthesis and self-assembly of a new class of scintillators based on metal nanoclusters. We demonstrate the gram-scale synthesis of an atomically precise nanocluster with a Cu-Au alloy core exhibiting high phosphorescence quantum yield, aggregation-induced emission enhancement (AIEE) behavior, and intense radioluminescence. By controlling solvent interactions, the AIEE-active nanoclusters were self-assembled into submicron spherical superparticles in solution, which we exploited as a novel building block for flexible particle-deposited scintillation films with high-resolution X-ray imaging performance. This work reveals metal nanoclusters and their self-assembled superstructures as a promising class of scintillators for practical applications in high-energy radiation detection and imaging.
Collapse
Affiliation(s)
- Ren-Wu Huang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Song
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Shulin Chen
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Ploytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
| | - Partha Maity
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiayi Wang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bingyao Shao
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hongwei Zhu
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chunwei Dong
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Taimoor Ahmad
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
565
|
Wu Y, He Y, Luo H, Jin T, He F. AIEE-Active Flavones as a Promising Tool for the Real-Time Tracking of Uptake and Distribution in Live Zebrafish. Int J Mol Sci 2023; 24:10183. [PMID: 37373329 DOI: 10.3390/ijms241210183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, aggregation-induced emission enhancement (AIEE) molecules have shown great potential for applications in the fields of bio-detection, imaging, optoelectronic devices, and chemical sensing. Based on our previous studies, we investigated the fluorescence properties of six flavonoids and confirmed that compounds 1-3 have good aggregation-induced emission enhancement (AIEE) properties through a series of spectroscopic experiments. Compounds with AIEE properties have addressed the limitation imposed by the aggregation-caused quenching (ACQ) of classic organic dyes owing to their strong fluorescence emission and high quantum yield. Based on their excellent fluorescence properties, we evaluated their performance in the cell and we found that they could label mitochondria specifically by comparing their Pearson correlation coefficients (R) with Mito Tracker Red and Lyso-Tracker Red. This suggests their future application in mitochondrial imaging. Furthermore, studies of uptake and distribution characterization in 48 hpf zebrafish larvae revealed their potential for monitoring real-time drug behavior. The uptake of compounds by larvae varies significantly across different time cycles (between uptake and utilization in the tissue). This observation has important implications for the development of visualization techniques for pharmacokinetic processes and can enable real-time feedback. More interestingly, according to the data presented, tested compounds aggregated in the liver and intestine of 168 hpf larvae. This finding suggests that they could potentially be used for monitoring and diagnosing liver and intestinal diseases.
Collapse
Affiliation(s)
- Yi Wu
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying He
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huiqing Luo
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tingting Jin
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Feng He
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
566
|
Ye Y, Wei Y, Ke Y, Liu W, Wang Z, Tan Y, Chen N, Wu T, Zhou J, Zhang X, Wu X, Xie L. One-Step Transformations from ACQ Luminogens to DSEgens via the Boc Protection Process. ACS OMEGA 2023; 8:21008-21015. [PMID: 37323382 PMCID: PMC10268262 DOI: 10.1021/acsomega.3c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Dual-state emission luminogens (DSEgens), as a new type of luminescent materials that can effectively emit light in solution and solid state, have attracted tremendous attention due to their potential application in chemical sensing, biological imaging, organic electronic devices, etc. In this study, two new rofecoxib derivatives ROIN and ROIN-B have been synthesized, and their photophysical properties are fully investigated by experimental studies and theoretical calculations. The key intermediate ROIN, resulting from one-step conjugation of rofecoxib with an indole unit, shows the classical aggregation-caused quenching (ACQ) effect. Meanwhile, by introducing a tert-butoxycarbonyl (Boc) group on the basis of ROIN without enlarging the π conjugation system, ROIN-B was successfully developed with an obvious DSE property. In addition, both fluorescent behaviors and their transformation from ACQ to DSE were elucidated clearly by going through the analysis of their single X-ray data. Moreover, the target ROIN-B, as a new DSEgens, also displays reversible mechanofluorochromism and lipid droplet-specific imaging ability in HeLa cells. Taken together, this work proposes a precise molecular design strategy to afford a new DSEgens, which may provide guidance for the future exploration of new DSEgens.
Collapse
Affiliation(s)
- Yuqiu Ye
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
- Mycological
Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yongbo Wei
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Yanbing Ke
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Wei Liu
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Zexin Wang
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Yinfeng Tan
- Hainan
Key Laboratory for Research and Development of Tropical Herbs, School
of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Nannan Chen
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Tong Wu
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Jingming Zhou
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Xiaopo Zhang
- Hainan
Key Laboratory for Research and Development of Tropical Herbs, School
of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xiaoping Wu
- Mycological
Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lijun Xie
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| |
Collapse
|
567
|
Li W, Sun L, Zheng X, Li F, Zhang W, Li T, Guo Y, Tang D. Multifunctional Nanoprobe Based on Fluorescence Resonance Energy Transfer for Furin Detection and Drug Delivery. Anal Chem 2023. [PMID: 37307415 DOI: 10.1021/acs.analchem.3c01416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Triple-negative breast cancer is particularly difficult to treat because of its high degree of malignancy and poor prognosis. A fluorescence resonance energy transfer (FRET) nanoplatform plays a very important role in disease diagnosis and treatment due to its unique detection performance. Combining the properties of agglomeration-induced emission fluorophore and FRET pair, a FRET nanoprobe (HMSN/DOX/RVRR/PAMAM/TPE) induced by specific cleavage was designed. First, hollow mesoporous silica nanoparticles (HMSNs) were used as drug carriers to load doxorubicin (DOX). HMSN nanopores were coated with the RVRR peptide. Then, polyamylamine/phenylethane (PAMAM/TPE) was combined in the outermost layer. When Furin cut off the RVRR peptide, DOX was released and adhered to PAMAM/TPE. Finally, the TPE/DOX FRET pair was constituted. The overexpression of Furin in the triple-negative breast cancer cell line (MDA-MB-468 cell) can be quantitatively detected by FRET signal generation, so as to monitor cell physiology. In conclusion, the HMSN/DOX/RVRR/PAMAM/TPE nanoprobes were designed to provide a new idea for the quantitative detection of Furin and drug delivery, which is conducive to the early diagnosis and treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Wenxin Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Li Sun
- Linyi University, Linyi 276000, China
| | | | - Fen Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenyue Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tao Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
568
|
Jiang G, Liu J, Zhou P. Unraveling the Mechanism of ACQ-to-AIE Transformation of Fluorescein Derivatives. J Phys Chem A 2023. [PMID: 37294934 DOI: 10.1021/acs.jpca.3c02244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although fluorescein derivatives have excellent properties and strong practicability, they are typical aggregation-induced quenching (ACQ) molecules, which are not conducive to working in the solid state. Recently, the fluorescein derivative Fl-Me with aggregation-induced emission (AIE) property was synthesized, which brought a new dawn for the research and development of fluorescein-based materials. In this study, the AIE mechanism of Fl-Me was investigated based on time-dependent density functional theory and the ONIOM method. The results revealed that an effective dark-state deactivation pathway leads to the fluorescence quenching of Fl-Me in a solution environment. Accordingly, the AIE phenomenon originates from the closure of the dark-state quenching channel. It is worth emphasizing that we found that the carbonyl group of molecular Fl-Me has intermolecular hydrogen bonding interaction with the adjacent molecules, which caused the increase of the dark-state energy in the crystalline state. Moreover, the restriction of the rotational motion and the nonexistence of the π-π stacking interaction are beneficial to the enhancement of fluorescence upon aggregation. Finally, the ACQ-to-AIE transformation mechanisms of fluorescein derivatives have been discussed. This work provides deeper insight into the photophysical mechanism for the fluorescein derivatives Fl-Me with AIE feature and eventually is expected to help researchers to develop more fluorescein-based AIE materials with remarkable properties for various fields.
Collapse
Affiliation(s)
- Gaoshang Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, P. R. China
| | - Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, P. R. China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
569
|
Jin T, Li N, Wu Y, He Y, Yang D, He F. Nobiletin with AIEE Characteristics for Targeting Mitochondria and Real-Time Dynamic Tracking in Zebrafish. Molecules 2023; 28:4592. [PMID: 37375147 DOI: 10.3390/molecules28124592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Nobiletin is a natural product with multiple physiological activities and is the main ingredient of Pericarpium Citri Reticulatae. We successfully discovered that nobiletin exhibits aggregation induced emission enhancement (AIEE) properties and it has significant advantages such as a large Stokes shift, good stability and excellent biocompatibility. The increase in methoxy groups endows nobiletin a greater fat-solubility, bioavailability and transport rate than the corresponding unmethoxylated flavones. Ulteriorly, cells and zebrafish were used to explore the application of nobiletin in biological imaging. It emits fluorescence in cells and is specifically targeted at mitochondria. Moreover, it has a noteworthy affinity for the digestive system and liver of zebrafish. Due to the unique AIEE phenomenon and stable optical properties of nobiletin, it paves the way for discovering, modifying and synthesizing more molecules with AIEE characteristics. Furthermore, it has a great prospect with regard to imaging cells and cellular substructures, such as mitochondria, which play crucial roles in cell metabolism and death. Indeed, three-dimensional real-time imaging in zebrafish provides a dynamic and visual tool for studying the absorption, distribution, metabolism and excretion of drugs. In this article, more directions and inspiration can be presented for the exploration of non-invasive pharmacokinetic research and intuitive drug pathways or mechanisms.
Collapse
Affiliation(s)
- Tingting Jin
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Na Li
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Wu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Depo Yang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
570
|
Assiri MA, Hussain S, Junaid HM, Waseem MT, Hamad A, Ajab H, Iqbal J, Rauf W, Shahzad SA. Highly sensitive fluorescent probes for selective detection of hypochlorite: Applications in blood serum and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122537. [PMID: 36827864 DOI: 10.1016/j.saa.2023.122537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Being one of the vital reactive oxygen species (ROS), abnormal level of hypochlorite ion (ClO-) may pose detrimental threats to living organisms. Therefore, highly selective, and rapid monitoring of ClO- in living system is of prime importance to protect living organisms from its harmful effects. In this regard, design of synthetic fluorescent probes for ClO- has garnered considerable attention. However less fluorescence emission in aggregated state and less photostability of several existing probes for ClO- inspired us to design aggregation induced emission (AIE) active fluorescent probes SH1 and SH2. Probes were rationally designed by introducing thiourea moiety that selectively reacted through desulfurization reaction and resulted in highly selective detection of ClO-. Hypochlorite induced desulfurization reaction was validated through 1H NMR titration and DFT studies. Fine tuning of probes SH1 and SH2 prompted highly sensitive nanoscale (55 nM and 77 nM) and rapid (15 and 35 sec) detection of ClO-. Probe SH1 displayed less cytotoxic effect to live cells before it was successfully applied for bioimaging of ClO- in live MCF-7 cells. Moreover, probes displayed excellent sensing potential for ClO- in blood serum and real water samples. Advantageously, probe coated portable fluorescent films were fabricated for the easy and fast monitoring of ClO-. Of note, this work offers excellent design strategy for highly selective detection of ClO- that may lead to clinical trials.
Collapse
Affiliation(s)
- Mohammed A Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61514, P. O. Box 9004, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saddam Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Hafiz Muhammad Junaid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Muhammad Tahir Waseem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Asad Hamad
- Faculty of Pharmacy, Grand Asian University Sialkot, 51310 Punjab, Pakistan
| | - Huma Ajab
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Waqar Rauf
- Pakistan Institute of Engineering and Applied Sciences, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
571
|
Zhang B, Wei L, Tang X, Jiang Z, Guo S, Zou L, Xie H, Gong Y, Liu Y. Preparation and Characterization of Carbazole-Based Luminogen with Efficient Emission in Solid and Solution States. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114193. [PMID: 37297328 DOI: 10.3390/ma16114193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Organic luminescent materials with high luminescence efficiency in both solution and solid states, namely dual-state emission (DSE), have attracted considerable attention due to their promising applications in various fields. In order to enrich the variety of DSE materials, carbazole, similar to triphenylamine (TPA), was utilized to construct a novel DSE luminogen named 2-(4-(9H-carbazol-9-yl)phenyl)benzo[d]thiazole (CZ-BT). CZ-BT exhibited DSE characteristics with fluorescence quantum yields of 70, 38 and 75% in solution, amorphous and crystalline states, respectively. CZ-BT shows thermochromic and mechanochromic properties in solution and solids, respectively. Theoretical calculations show that there is a small conformational difference between the ground state and the lowest singly excited state of CZ-BT and that it exhibits a low non-radiative transition characteristic. The oscillator strength during the transition from the single excited state to the ground state reaches 1.0442. CZ-BT adopts a distorted molecular conformation with intramolecular hindrance effects. The excellent DSE properties of CZ-BT can be explained well using theoretical calculations and experimental results. In terms of application, the CZ-BT has a detection limit for the hazardous substance picric acid of 2.81 × 10-7 mol/L.
Collapse
Affiliation(s)
- Beibei Zhang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lingzhong Wei
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xuansi Tang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zizhan Jiang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Song Guo
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Linmin Zou
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huihong Xie
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yongyang Gong
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yuanli Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
572
|
Wu B, Hu K, Wang X, Zhang G. Biomimetic Approach toward Kinetically Stable AIE-Gens under Physiological Conditions. J Phys Chem B 2023. [PMID: 37276365 DOI: 10.1021/acs.jpcb.3c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many AIE-gens suffer from excessive hydrophobicity, and their kinetic stability in aqueous condition is not warranted. Here, we introduce phosphorylcholine, a zwitterionic group ubiquitously found in biological membranes, onto the tetraphenylethene core structure to yield AIE nanoparticles stable in both PBS buffer and cell culture. We also find that the AIE efficiency is critically reliant on the delicate balance between the hydrophilic phosphorylcholine and hydrophobic moieties.
Collapse
Affiliation(s)
- Bingze Wu
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Kan Hu
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Guoqing Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
573
|
Wan Y, Wang D, Li B, Liu Y, Zhu L, Wan Y, Li Q, Yin H, Shi Y. Turning enol* emission of SBOH via restricting twisted intramolecular charge transfer behavior by pressure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122551. [PMID: 36878138 DOI: 10.1016/j.saa.2023.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive luminogens with aggregation-induced emission and excited state intramolecular proton transfer (ESIPT) properties have applications in storage devices, anti-counterfeiting, imaging, and sensors. Nevertheless, group rotation appears in twisted intramolecular charge transfer (TICT) state, resulting in decreased fluorescence intensity. Inhibiting TICT remains a challenge based on their intrinsic molecular configuration. Herein, we present a simple facile pressure-induced method to restrict the TICT behavior. Steady-state spectroscopy measurement shows that fluorescence enhancement and color shifts can be achieved under high pressure. Combined with in situ high-pressure ultrafast spectroscopy and theoretical calculations, the TICT behavior was restricted in two aspects. The ESIPT process was damaged, hence more particles stored in the E* state, and transferred to the TICT state hardly. Also, the rotation of (E)-dimethyl5-((4-(diethylamino)-2-hydroxybenzylidene)amino)isophthalate (SBOH) was restricted, significantly increasing the fluorescence intensity. This approach provides a new strategy for the development of stimulus-responsive materials.
Collapse
Affiliation(s)
- Yongfeng Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bo Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yuliang Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Lixia Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qi Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
574
|
Xu J, Hu J, Gao Y, Wang H, Li L, Zheng S. Crosslinking of poly(ethylene-co-vinyl alcohol) with diphenylboronic acid of tetraphenylethene enables reprocessing, shape recovery and photoluminescence. REACT FUNCT POLYM 2023. [DOI: 10.1016/j.reactfunctpolym.2023.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
575
|
Yang S, Zhang S, Hu F, Han J, Li F. Circularly polarized luminescence polymers: From design to applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
576
|
Ganguly T, Pal P, Maity D, Baitalik S. Synthesis, characterization and emission switching behaviors of styrylphenyl-conjugated Ru(II)-terpyridine complexes via aggregation and trans–cis photoisomerization. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
577
|
Gil D, Choi B, Lee JJ, Lee H, Kim KT, Kim C. A colorimetric/ratiometric chemosensor based on an aggregation-induced emission strategy for tracing hypochlorite in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114954. [PMID: 37105100 DOI: 10.1016/j.ecoenv.2023.114954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Excessive levels of hypochlorite (ClO-) negatively affect environmental and biological systems. Thus, it is essential to develop sensors that can identify ClO- in various systems such as the environment and living organisms. In this study, we report the development and evaluation of a novel aggregation-induced emission (AIE) strategy-based colorimetric and ratiometric fluorescent chemosensor 2,2'-(((1E,1'E)-[2,2'-bithiophene]- 5,5'-diylbis(methanylylidene))bis(hydrazin-1-yl-2-ylidene))bis(N,N,N-trimethyl-2-oxoethan-1-aminium) chloride (BMH-2∙Cl) for detecting ClO-. BMH-2∙Cl enabled highly selective ClO- detection through a color change from yellow to colorless and a fluorescence color change from turquoise to blue in a perfect aqueous solution. BMH-2∙Cl exhibited low limits of detection (2.4 ×10-6 M for colorimetry and 2.9 ×10-7 M for ratiometric fluorescence) for detecting ClO- with a rapid response within 5 s. The detection mechanism for ClO- and an AIE property change of BMH-2∙Cl were demonstrated by 1H NMR titration, ESI-MS, variation of water fraction (fw) and theoretical calculations. In particular, we confirmed not only the practicality of BMH-2∙Cl by using test strips, but also demonstrated the potential for efficient ClO- detection in biological and environmental systems such as real water samples, living zebrafish and bean sprouts.
Collapse
Affiliation(s)
- Dongkyun Gil
- Department of New and Renewable Energy Convergence and Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Boeun Choi
- Department of New and Renewable Energy Convergence and Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Jae Jun Lee
- Department of New and Renewable Energy Convergence and Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Hanseul Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea.
| | - Cheal Kim
- Department of New and Renewable Energy Convergence and Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea.
| |
Collapse
|
578
|
Chen S, Liu Y, Kuang K, Yin B, Wang X, Jiang L, Wang P, Pei Y, Zhu M. Impact of the metal core on the electrochemiluminescence of a pair of atomically precise Au 20 nanocluster isomers. Commun Chem 2023; 6:105. [PMID: 37258698 DOI: 10.1038/s42004-023-00907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Although the electrochemiluminescence (ECL) of metal nanoclusters has been reported, revealing the correlation between structure and ECL at an atomic level is highly challenging. Here, we reported the impact of the metal core of Au20(SAdm)12(CHT)4 (Au20-AC for short; SAdm = 1-adamantanethiolate; CHT= cyclohexanethiol) and its isomer Au20(TBBT)16 (TBBT = 4-tert-butylthiophenol) on their solution-state and solid-state electrochemiluminescence. In self-annihilation ECL experiments, Au20-AC showed a strong cathodic ECL but a weak anodic ECL, while the ECL signal of Au20(TBBT)16 was weak and barely detectable. Density functional theory (DFT) calculations showed that the Au7 kernel of [Au20-AC]- is metastable, weakening its anodic ECL. Au20-AC in solution-state displayed an intense co-reactant ECL in the near-infrared region, which is 7 times higher than that of standard Ru(bpy)32+. The strongest solid-state ECL emissions of Au20-AC and Au20(TBBT)16 were at 860 and 770 nm, respectively - 15 nm red-shifted for Au20-AC and 20 nm blue-shifted for Au20(TBBT)16, compared to their corresponding solid-state photoluminescence (PL) emissions. This work shows that ECL is significantly affected by the subtle differences of the metal core, and offers a potential basis for sensing and immunoassay platforms based on atomically precise emissive metal nanoclusters.
Collapse
Affiliation(s)
- Shuang Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China.
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China.
| | - Ying Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Kaiyang Kuang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Bing Yin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Xiaojian Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Lirong Jiang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Pu Wang
- Department of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, PR China.
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, PR China.
| | - Yong Pei
- Department of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, PR China.
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, PR China.
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China.
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
579
|
Ma C, Peng S, Chen L, Cao X, Sun Y, Chen L, Yang L, Ma C, Liu Q, Liu Z, Jiang S. Anisotropic Bi-Layer Hydrogel Actuator with pH-Responsive Color-Changing and Photothermal-Responsive Shape-Changing Bi-Functional Synergy. Gels 2023; 9:438. [PMID: 37367109 DOI: 10.3390/gels9060438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Stimuli-responsive color-changing and shape-changing hydrogels are promising intelligent materials for visual detections and bio-inspired actuations, respectively. However, it is still an early stage to integrate the color-changing performance and shape-changing performance together to provide bi-functional synergistic biomimetic devices, which are difficult to design but will greatly expand further applications of intelligent hydrogels. Herein, we present an anisotropic bi-layer hydrogel by combining a pH-responsive rhodamine-B (RhB)-functionalized fluorescent hydrogel layer and a photothermal-responsive shape-changing melanin-added poly (N-isopropylacrylamide) (PNIPAM) hydrogel layer with fluorescent color-changing and shape-changing bi-functional synergy. This bi-layer hydrogel can obtain fast and complex actuations under irradiation with 808 nm near-infrared (NIR) light due to both the melanin-composited PNIPAM hydrogel with high efficiency of photothermal conversion and the anisotropic structure of this bi-hydrogel. Furthermore, the RhB-functionalized fluorescent hydrogel layer can provide rapid pH-responsive fluorescent color change, which can be integrated with NIR-responsive shape change to achieve bi-functional synergy. As a result, this bi-layer hydrogel can be designed using various biomimetic devices, which can show the actuating process in the dark for real-time tracking and even mimetic starfish to synchronously change both the color and shape. This work provides a new bi-layer hydrogel biomimetic actuator with color-changing and shape-changing bi-functional synergy, which will inspire new strategies for other intelligent composite materials and high-level biomimetic devices.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Shenzhen Institute of Advanced Electronic Materials-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Shenzhen Institute of Advanced Electronic Materials-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chunming Ma
- Shenzhen Institute of Advanced Electronic Materials-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qijie Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou 318000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou 318000, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
580
|
Chen SS, Wang H, Wu B, Li Q, Gong J, Zhao YL, Zhao Y, Xiao X, Lam JWY, Zhao Z, Luo XD, Tang BZ. Natural Coumarin Isomers with Dramatically Different AIE Properties: Mechanism and Application. ACS CENTRAL SCIENCE 2023; 9:883-891. [PMID: 37252345 PMCID: PMC10214507 DOI: 10.1021/acscentsci.3c00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/31/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) are of great importance in optoelectronics and biomedical fields. However, the popular design philosophy by combining rotors with traditional fluorophores limits the imagination and structural diversity of AIEgens. Inspired by the fluorescent roots of the medicinal plant Toddalia asiatica, we discovered two unconventional rotor-free AIEgens, 5-methoxyseselin (5-MOS) and 6-methoxyseselin (6-MOS). Interestingly, a slight structural difference of the coumarin isomers leads to completely contrary fluorescent properties upon aggregation in aqueous media. Further mechanism investigation indicates that 5-MOS forms different extents of aggregates with the assistance of protonic solvents, leading to electron/energy transfer, which is responsible for its unique AIE feature, i.e., reduced emission in aqueous media but enhanced emission in crystal. Meanwhile, for 6-MOS, the conventional restriction of the intramolecular motion (RIM) mechanism is responsible for its AIE feature. More interestingly, the unique water-sensitive fluorescence property of 5-MOS enables its successful application for wash-free mitochondria imaging. This work not only demonstrates an ingenious tactic to seek new AIEgens from natural fluorescent species but also benefits the structure design and application exploration of next-generation AIEgens.
Collapse
Affiliation(s)
- Shan-Shan Chen
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education and Yunnan Province, Yunnan Characteristic Plant Extraction
Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
- Hong
Kong Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bo Wu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Junyi Gong
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Yun-Li Zhao
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education and Yunnan Province, Yunnan Characteristic Plant Extraction
Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Yun Zhao
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xia Xiao
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education and Yunnan Province, Yunnan Characteristic Plant Extraction
Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Jacky W. Y. Lam
- Hong
Kong Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xiao-Dong Luo
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education and Yunnan Province, Yunnan Characteristic Plant Extraction
Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
- Hong
Kong Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
581
|
Xie W, Jiang J, Shu D, Zhang Y, Yang S, Zhang K. Recent Progress in the Rational Design of Biothiol-Responsive Fluorescent Probes. Molecules 2023; 28:molecules28104252. [PMID: 37241992 DOI: 10.3390/molecules28104252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Biothiols such as cysteine, homocysteine, and glutathione play significant roles in important biological activities, and their abnormal concentrations have been found to be closely associated with certain diseases, making their detection a critical task. To this end, fluorescent probes have become increasingly popular due to their numerous advantages, including easy handling, desirable spatiotemporal resolution, high sensitivity, fast response, and favorable biocompatibility. As a result, intensive research has been conducted to create fluorescent probes for the detection and imaging of biothiols. This brief review summarizes recent advances in the field of biothiol-responsive fluorescent probes, with an emphasis on rational probe design, including the reaction mechanism, discriminating detection, reversible detection, and specific detection. Furthermore, the challenges and prospects of fluorescence probes for biothiols are also outlined.
Collapse
Affiliation(s)
- Wenzhi Xie
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jinyu Jiang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Dunji Shu
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yanjun Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Kai Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
582
|
Xu C, Shen H, Liu TM, Kwok RT, Lam JW, Tang BZ. Restriction of molecular motion to a higher level: Towards bright AIE dots for biomedical applications. iScience 2023; 26:106568. [PMID: 37128609 PMCID: PMC10148129 DOI: 10.1016/j.isci.2023.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
In the late 19th century, scientists began to study the photophysical differences between chromophores in the solution and aggregate states, which breed the recognition of the prototypical processes of aggregation-caused quenching and aggregation-induced emission (AIE). In particular, the conceptual discovery of the AIE phenomenon has spawned the innovation of luminogenic materials with high emission in the aggregate state based on their unique working principle termed the restriction of intramolecular motion. As AIE luminogens have been practically fabricated into AIE dots for bioimaging, further improvement of their brightness is needed although this is technically challenging. In this review, we surveyed the recent advances in strategic molecular engineering of highly emissive AIE dots, including nanoscale crystallization and matrix-assisted rigidification. We hope that this timely summary can deepen the understanding about the root cause of the high emission of AIE dots and provide inspiration to the rational design of functional aggregates.
Collapse
Affiliation(s)
- Changhuo Xu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, China
| | - Ryan T.K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W.Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
583
|
Wang X, Chen P, Yang H, Liu J, Tu R, Feng HT, Dai H. In Situ Imaging and Anti-inflammation of 3D Printed Scaffolds Enabled by AIEgen. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37200267 DOI: 10.1021/acsami.3c03082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three-dimensional (3D) printed bioactive scaffolds have been widely used in the field of bone tissue engineering. However, its in vivo visualization and bacterial inflammation are intractable issues during the surgery and treatment. Herein, we first synthesized an aggregation-induced emission-active luminogen (AIEgen) named 4BC with efficient reactive oxygen species (ROS) generation. Then, a series of 3D bioactive scaffolds loaded with 4BC were fabricated by a precipitation adsorption method, namely 4BC@scaffolds, which showed good in situ imaging performance for the implanted scaffolds by using simple UV light irradiation. Among them, the 4BC@TMP scaffold composed of trimagnesium phosphate (TMP) had excellent bactericidal ability for Escherichia coli and Staphylococcus aureus in vitro and resisted bacterial inflammation in vivo through photodynamic action. H&E and immunofluorescence staining were performed to further evaluate the inhibitory effect of bacterial inflammation in vivo. This work verified that AIEgen-based 3D scaffolds are promising bioactive frameworks for bioimaging and antibacterial applications.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Pu Chen
- AIE Research Center, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - He Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Rong Tu
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Hai-Tao Feng
- AIE Research Center, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
584
|
Astruc D. From sandwich complexes to dendrimers: journey toward applications to sensing, molecular electronics, materials science, and biomedicine. Chem Commun (Camb) 2023. [PMID: 37191211 DOI: 10.1039/d3cc01175e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This review links various areas of inorganic chemistry around the themes developed by our research group during the last four decades. It is firstly based on the electronic structure of iron sandwich complexes, showing how the metal electron count dictates their reactivities, with various applications (via C-H activation, C-C bond formation) as reducing and oxidizing agents, redox and electrocatalysts and precursors of dendrimers and catalyst templates through bursting reactions. Various electron-transfer processes and consequences are explored, including the influence of the redox state on the acidity of robust ligands and the possibility to iterate in situ C-H activation and C-C bond formation to build arene-cored dendrimers. Examples of how these dendrimers are functionalized are illustrated using the cross olefin metathesis reactions, with application to the synthesis of soft nanomaterials and biomaterials. Mixed and average valence complexes give rise to remarkable subsequent organometallic reactions, including the salt influence on these reactions. The stereo-electronic aspect of these mixed valencies is pointed out in star-shaped multi-ferrocenes with a frustration effect and other multi-organoiron systems, with the perspective of understanding electron-transfer processes among dendrimer redox sites involving electrostatic effects and application to redox sensing and polymer metallocene batteries. Dendritic redox sensing is summarized for biologically relevant anions such as ATP2- with supramolecular exoreceptor interactions at the dendrimer periphery in parallel with the seminal work on metallocene-derived endoreceptors by Beer's group. This aspect includes the design of the first metallodendrimers that have applications in both redox sensing and micellar catalysis with nanoparticles. These properties provide the opportunity to summarize the biomedical (mostly anticancer) applications of ferrocenes, dendrimers and dendritic ferrocenes in biomedicine (in particular the contribution from our group, but not only). Finally, the use of dendrimers as templates for catalysis is illustrated with numerous reactions including C-C bond formation, click reactions and H2 production reactions.
Collapse
Affiliation(s)
- Didier Astruc
- Univ. Bordeaux, ISM, UMR CNRS No. 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| |
Collapse
|
585
|
Wang H, Yang J, Zheng X. Elucidation of the key role of isomerization in the self-assembly and luminescence properties of AIEgens. Phys Chem Chem Phys 2023; 25:14387-14399. [PMID: 37183990 DOI: 10.1039/d3cp00797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Due to the hierarchical nature of the self-assembly process, it is effective to control assembled nanostructures by tuning the spatial configurations of the building blocks through Z-/E-isomerization. A pair of AIE stereoisomers termed (Z)-/(E)-TPE-UPy was reported with different self-assembly mechanisms, morphologies and luminescence properties. In this study, we present a multiscale modeling combining MD simulations, hybrid QM/MM calculations and the PCM model, to systematically clarify the molecular configuration-molecular assembly-photophysical property relationship of (Z)-/(E)-TPE-UPy. Our study shows that (Z)-TPE-UPy follows a concentration-dependent ring-chain polymerization mechanism. At low concentration, (Z)-TPE-UPy tends to form ring-like (Z)-close-dimers with all H-bond sites occupied, while at high concentration, the H-bond backbone in the chain-like structures is more planar and stronger, making the zig-zag chain-like conformations more favorable. For the (E)-isomer, the H-bond backbone is quite planar and rigid, which makes it linearly elongate one-by-one at the whole range of concentrations via the isodesmic polymerization mechanism. (Z)-TPE-UPy oligomers exhibit large flexibility and diverse conformations, leading to sharply enhanced viscosity at high concentration in experiments. Moreover, the fluorescence spectrum of (Z)-/(E)-TPE-UPy aggregate is conformation-dependent and the enhanced emission in the aggregated state is attributed to the restriction of the low-frequency intramolecular rotations of the phenyl rings and the distortion of the CC plane, as well as the reduction of electron-vibration couplings. Our work not only offers valuable insights into the key role of stereoisomerism in assembled morphologies and luminescence properties, but also provides a theoretical basis for the rational design of new building blocks based on stereoisomers.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Junfang Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou, 510640, China
| |
Collapse
|
586
|
Wang Y, Zhuang W, Wu S, Duan Z, Li S, Chen J, Zhou L, Zhou Y, Li C, Chen M. Aggregation-induced bioprobe for plasma membrane-specific imaging and photodynamic cancer cell ablation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122486. [PMID: 36801737 DOI: 10.1016/j.saa.2023.122486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Selective labelling of the plasma membrane (PM) by fluorescence imaging techniques enables an intuitive analysis of cell status together with dynamic changes, and therefore is of great value. We herein disclose a novel carbazole-based probe, CPPPy, that shows aggregation-induced emission (AIE) property and is observed to selectively accumulate at the PM of living cells. Benefiting from its good biocompatibility and PM-targeted specificity, CPPPy can light up the PM of cells by high-resolution imaging even at a low concentration of 200 nM. Simultaneously, CPPPy is capable of generating both singlet oxygen and free radical-dominated species upon visible light irradiation, which further induces irreversible growth inhibition and necrocytosis of tumor cells. This study thus provides new insight into the construction of multifunctional fluorescence probes with PM-specific bioimaging and photodynamic therapy.
Collapse
Affiliation(s)
- Yinchan Wang
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Sisi Wu
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| | - Shufen Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Jingruo Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Linsen Zhou
- Institute of Materials, Chinese Academy of Engineering Physics, Jiangyou 621908, PR China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| | - Chengming Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| |
Collapse
|
587
|
Peng B, Zhou JF, Ding M, Shan BQ, Chen T, Zhang K. Structural water molecules dominated p band intermediate states as a unified model for the origin on the photoluminescence emission of noble metal nanoclusters: from monolayer protected clusters to cage confined nanoclusters. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2210723. [PMID: 37205011 PMCID: PMC10187113 DOI: 10.1080/14686996.2023.2210723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
In the past several decades, noble metal nanoclusters (NMNCs) have been developed as an emerging class of luminescent materials due to their superior photo-stability and biocompatibility, but their luminous quantum yield is relatively low and the physical origin of the bright photoluminescence (PL) of NMNCs remain elusive, which limited their practical application. As the well-defined structure and composition of NMNCs have been determined, in this mini-review, the effect of each component (metal core, ligand shell and interfacial water) on their PL properties and corresponded working mechanism were comprehensively introduced, and a model that structural water molecules dominated p band intermediate state was proposed to give a unified understanding on the PL mechanism of NMNCs and a further perspective to the future developments of NMNCs by revisiting the development of our studies on the PL mechanism of NMNCs in the past decade.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, Lyon, France
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, PR China
- Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
588
|
Roger M, Bretonnière Y, Trolez Y, Vacher A, Arbouch I, Cornil J, Félix G, De Winter J, Richeter S, Clément S, Gerbier P. Synthesis and Characterization of Tetraphenylethene AIEgen-Based Push-Pull Chromophores for Photothermal Applications: Could the Cycloaddition-Retroelectrocyclization Click Reaction Make Any Molecule Photothermally Active? Int J Mol Sci 2023; 24:ijms24108715. [PMID: 37240061 DOI: 10.3390/ijms24108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F4-TCNQ, no fluorescence was observed in any conditions. The main ICT bands that dominate the UV-Visible absorption spectra underwent a pronounced red-shift beyond the near-infrared (NIR) region for TPE-F4-TCNQ. Based on TD-DFT calculations, it was shown that the ICT character shown by the compounds exclusively originated from the clicked moieties independently of the nature of the central molecular platform. Photothermal (PT) studies conducted on both TPE-TCNQ and TPE-F4-TCNQ in the solid state revealed excellent properties, especially for TPE-F4-TCNQ. These results indicated that CA-RE reaction of TCNQ or F4-TCNQ with donor-substituted are promising candidates for PT applications.
Collapse
Affiliation(s)
- Maxime Roger
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Yann Bretonnière
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, University of Lyon, 69364 Lyon, France
| | - Yann Trolez
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, University of Rennes, 35065 Rennes, France
| | - Antoine Vacher
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, University of Rennes, 35065 Rennes, France
| | - Imane Arbouch
- Laboratory for Chemistry of Novel Materials, University of Mons-UMONS, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons-UMONS, 7000 Mons, Belgium
| | - Gautier Félix
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons-UMONS, 7000 Mons, Belgium
| | - Sébastien Richeter
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Sébastien Clément
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Philippe Gerbier
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
589
|
Lian Z, He J, Liu L, Fan Y, Chen X, Jiang H. [2,2] Paracyclophanes-based double helicates for constructing artificial light-harvesting systems and white LED device. Nat Commun 2023; 14:2752. [PMID: 37173318 PMCID: PMC10182020 DOI: 10.1038/s41467-023-38405-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
The construction of efficient artificial light-harvesting systems (ALHSs) is of vital importance in utilizing solar energy. Herein, we report the non-covalent syntheses of double helicates PCP-TPy1/2 and Rp,Rp-PCP-TPy1/2 by metal-coordination interaction and their applications in ALHSs and white light-emitting diode (LED) device. All double helicates exhibit significant aggregation-induced emission in tetrahydrofuran/water (1:9, v/v) solvent. The aggregated double helicates can be used to construct one-step or sequential ALHSs with fluorescent dyes Eosin Y (EsY) and Nile red (NiR) with the energy transfer efficiency up to 89.3%. Impressively, the PMMA film of PCP-TPy1 shows white-light emission when doped 0.075% NiR, the solid of double helicates (Rp,Rp-) PCP-TPy2 can be used as the additive of a blue LED bulb to achieve white-light emission. In this work, we provided a general method for the preparation of novel double helicates and explored their applications in ALHSs and fluorescent materials, which will promote future construction and application of helicates as emissive devices.
Collapse
Affiliation(s)
- Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
590
|
Yang C, Xiao H, Luo Z, Tang L, Dai B, Zhou N, Liang E, Wang G, Tang J. A light-fueled dissipative aggregation-induced emission system for time-dependent information encryption. Chem Commun (Camb) 2023; 59:5910-5913. [PMID: 37170996 DOI: 10.1039/d3cc01092a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A light-fueled dissipative aggregation-induced emission (LDAIE) system is successfully fabricated based on reversible electrostatic interactions between cationic AIE luminogens (AIEgens) and anionic spiropyran (ASP) transformed from sulfonato-merocyanine photoacid (SMEH) upon 420 nm light irradiation. The novel LDAIE system can exhibit reversible and spontaneous AIE fluorescence on/off, showing potential in time-dependent information encryption with self-erasing ability. This work opens new opportunities to fabricate a unique fluorescent anti-counterfeiting platform with high-level security.
Collapse
Affiliation(s)
- Caixia Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China.
- College of Packaging and Material Engineering, Hunan University of Technology, Zhuzhou 412007, P. R. China
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
| | - Hangxiang Xiao
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
| | - Zichen Luo
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China.
| | - Bailin Dai
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China.
| | - Ningbo Zhou
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Enxiang Liang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Guoxiang Wang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang, Hunan Province 414006, P. R. China.
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, P. R. China.
| |
Collapse
|
591
|
Gong J, Liu L, Li C, He Y, Yu J, Zhang Y, Feng L, Jiang G, Wang J, Tang BZ. Oxidization enhances type I ROS generation of AIE-active zwitterionic photosensitizers for photodynamic killing of drug-resistant bacteria. Chem Sci 2023; 14:4863-4871. [PMID: 37181775 PMCID: PMC10171080 DOI: 10.1039/d3sc00980g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Type I photosensitizers (PSs) with an aggregation-induced emission (AIE) feature have received sustained attention for their excellent theranostic performance in the treatment of clinical diseases. However, the development of AIE-active type I PSs with strong reactive oxygen species (ROS) production capacity remains a challenge due to the lack of in-depth theoretical studies on the aggregate behavior of PSs and rational design strategies. Herein, we proposed a facile oxidization strategy to enhance the ROS generation efficiency of AIE-active type I PSs. Two AIE luminogens, MPD and its oxidized product MPD-O were synthesized. Compared with MPD, the zwitterionic MPD-O showed higher ROS generation efficiency. The introduction of electron-withdrawing oxygen atoms results in the formation of intermolecular hydrogen bonds in the molecular stacking of MPD-O, which endowed MPD-O with more tightly packed arrangement in the aggregate state. Theoretical calculations demonstrated that more accessible intersystem crossing (ISC) channels and larger spin-orbit coupling (SOC) constants provide further explanation for the superior ROS generation efficiency of MPD-O, which evidenced the effectiveness of enhancing the ROS production ability by the oxidization strategy. Moreover, DAPD-O, a cationic derivative of MPD-O, was further synthesized to improve the antibacterial activity of MPD-O, showing excellent photodynamic antibacterial performance against methicillin-resistant S. aureus both in vitro and in vivo. This work elucidates the mechanism of the oxidization strategy for enhancing the ROS production ability of PSs and offers a new guideline for the exploitation of AIE-active type I PSs.
Collapse
Affiliation(s)
- Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Yumao He
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Jia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Ying Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
592
|
Li X, Zhang T, Diao X, Li Y, Su Y, Yang J, Shang Z, Liu S, Zhou J, Li G, Chi H. Mitochondria-Targeted Fluorescent Nanoparticles with Large Stokes Shift for Long-Term BioImaging. Molecules 2023; 28:molecules28093962. [PMID: 37175369 PMCID: PMC10179964 DOI: 10.3390/molecules28093962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria (MITO) play a significant role in various physiological processes and are a key organelle associated with different human diseases including cancer, diabetes mellitus, atherosclerosis, Alzheimer's disease, etc. Thus, detecting the activity of MITO in real time is becoming more and more important. Herein, a novel class of amphiphilic aggregation-induced emission (AIE) active probe fluorescence (AC-QC nanoparticles) based on a quinoxalinone scaffold was developed for imaging MITO. AC-QC nanoparticles possess an excellent ability to monitor MITO in real-time. This probe demonstrated the following advantages: (1) lower cytotoxicity; (2) superior photostability; and (3) good performance in long-term imaging in vitro. Each result of these indicates that self-assembled AC-QC nanoparticles can be used as effective and promising MITO-targeted fluorescent probes.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Tao Zhang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Xuebo Diao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150081, China
| | - Yu Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zibo Shang
- Faculty of Science, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Shuai Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Jia Zhou
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Guolin Li
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
- Department of Stomatology, Shanghai Eighth Peoples Hospital, 8 Caobao Road, Shanghai 200000, China
| | - Huirong Chi
- Department of Stomatology, Shanghai Eighth Peoples Hospital, 8 Caobao Road, Shanghai 200000, China
| |
Collapse
|
593
|
Safronov NE, Minin AS, Slepukhin PA, Kostova IP, Benassi E, Belskaya NP. 5-Amino-2-aryl-2H-1,2,3-triazole-4-carboxamides: Unique AIEE-gens and selective Hg 2+ fluorosensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122419. [PMID: 36764140 DOI: 10.1016/j.saa.2023.122419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
A series of fluorescent sensors based on small molecule were designed and fully characterised, demonstrating AIEE effect and revealing an outstanding ability to selectively detect Hg2+ ions. The structural and electronic properties were studied through quantum chemical calculations at (Time-Dependent) Density Functional Theory ((TD)-DFT) level. Carboxamides of 2-Aryl-1,2,3-Triazoles (CATs) showed significant differences in their photophysical properties depending on the structure of the substituent at amino function on the C5-atom in the heterocycle. When the tert-cycloalkylamino group (pyrrolidine, piperidine, azepane) was attached, the triazoles exhibited highly intensive blue fluorescence, with quantum yields (QYs) up to 95 % and lifetime up to 6.9 ns in different solvents, whereas the QYs of congeners bearing secondary alkylaminogroups (viz., NHMe, NHC6H11-cyclo) indicate low QYs (1-10 %). Nevertheless, all types of the obtained fluorophores demonstrated excellent AIEE effect and formed fluorescent nanoparticles in a binary mixtures of organic solvents and water. The introduction of the carboxamide function enhances the sensing properties of 2-aryl-1,2,3-triazoles, providing a selective fluorescence quenching reaction in the presence of Hg2+. The fluorescence intensity of the CATs declines with the addition of 1.0 eq. of Hg2+ into DMSO-water (v/v, 1:9). The other cations used did not induce any appreciable changes in fluorescence intensity. The CATs form a complex with Hg2+ with highly specific detection for Hg2+ over other competitive metal ions: the detection limits were determined to be 0.23 and 0.15 μM for the CATs 1b and 2c. The reverse effect was registered with the addition of ethylene diamine sodium salt; meanwhile, the CATs demonstrated more effective coordination with Hg2+ in comparison with cysteine. This last finding, as well as the ability to detect Hg2+, is very valuable for application within biology and medicine.
Collapse
Affiliation(s)
| | - Artem S Minin
- Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russia; M. N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Science, 18 S. Kovalevskaya Str., Yekaterinburg 620108, Russia
| | - Pavel A Slepukhin
- Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russia; I. Ya. Postovsky Institute of Organic Synthesis, 20 S. Kovalevskaya Str., Yekaterinburg 620219, Russia
| | - Irena P Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University - Sofia, 2 Dunav Str., Sofia, Bulgaria
| | - Enrico Benassi
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia.
| | | |
Collapse
|
594
|
Liu TY, Zhen ZC, Zang XL, Xu PY, Wang GX, Lu B, Li F, Wang PL, Huang D, Ji JH. Fluorescence tracing the degradation process of biodegradable PBAT: Visualization and high sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131572. [PMID: 37148790 DOI: 10.1016/j.jhazmat.2023.131572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Biodegradable plastics have emerged as a potential solution to the mounting plastic pollution crisis. However, current methods for evaluating the degradation of these plastics are limited in detecting structural changes rapidly and accurately, particularly for PBAT, which contains worrying benzene rings. Inspired by the fact that the aggregation of conjugated groups can endow polymers with intrinsic fluorescence, this work found that PBAT emits a bright blue-green fluoresces under UV irradiation. More importantly, we pioneered a degradation evaluation approach to track the degradation process of PBAT via fluorescence. A blue shift of fluorescence wavelength as the thickness and molecular weight of PBAT film decreased during degradation in an alkali solution was observed. Additionally, the fluorescence intensity of the degradation solution increased gradually as the degradation progressed, and was found to be exponentially correlated with the concentration of benzene ring-containing degradation products following filtration with the correlation coefficient is up to 0.999. This study proposes a promising new strategy for monitoring the degradation process with visualization and high sensitivity.
Collapse
Affiliation(s)
- Tian-Yuan Liu
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Chao Zhen
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Ling Zang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Peng-Yuan Xu
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge-Xia Wang
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Lu
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Li
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping-Li Wang
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dan Huang
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jun-Hui Ji
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
595
|
Qu WJ, Liu T, Chai Y, Ji D, Che YX, Hu JP, Yao H, Lin Q, Wei TB, Shi B. Efficient detection of L-aspartic acid and L-glutamic acid by self-assembled fluorescent microparticles with AIE and FRET activities. Org Biomol Chem 2023; 21:4022-4027. [PMID: 37128802 DOI: 10.1039/d2ob02297d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amino acids play an important role in the formation of proteins, enzymes, hormones and peptides in animals. Moreover, aspartic acid and glutamic acid have a critical impact on the central nervous system as excitatory neurotransmitters. Here, we report the highly selective detection of L-glutamic acid (L-Glu) and L-aspartic acid (L-Asp) using fluorescent microparticles constructed by the combination of aggregation-induced emission and self-assembly-induced Förster resonance energy transfer.
Collapse
Affiliation(s)
- Wen-Juan Qu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Tingting Liu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Yongping Chai
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Dongyan Ji
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Yu-Xin Che
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Jian-Peng Hu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Hong Yao
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Bingbing Shi
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
596
|
Guo Z, Zhu AT, Fang RH, Zhang L. Recent Developments in Nanoparticle-Based Photo-Immunotherapy for Cancer Treatment. SMALL METHODS 2023; 7:e2300252. [PMID: 36960932 PMCID: PMC10192221 DOI: 10.1002/smtd.202300252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Phototherapy is an emerging approach for cancer treatment that is effective at controlling the growth of primary tumors. In the presence of light irradiation, photothermal and photodynamic agents that are delivered to tumor sites can induce local hyperthermia and the production of reactive oxygen species, respectively, that directly eradicate cancer cells. Nanoparticles, characterized by their small size and tunable physiochemical properties, have been widely utilized as carriers for phototherapeutic agents to improve their biocompatibility and tumor-targeted delivery. Nanocarriers can also be used to implement various codelivery strategies for further enhancing phototherapeutic efficiency. More recently, there has been considerable interest in augmenting the immunological effects of nanoparticle-based phototherapies, which can yield durable and systemic antitumor responses. This review provides an overview of recent developments in using nanoparticle technology to achieve photo-immunotherapy.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Audrey T Zhu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
597
|
Li MY, Zhai S, Nong XM, Gu A, Li J, Lin GQ, Liu Y. Trisubstituted alkenes featuring aryl groups: stereoselective synthetic strategies and applications. Sci China Chem 2023; 66:1261-1287. [DOI: 10.1007/s11426-022-1515-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 03/07/2024]
|
598
|
Liu W, Wang Y, Wang T, Wang L, Hu S, Tian D. A versatile AIE probe with mitochondria targeting for dual-channel detection of superoxide anion and viscosity. Anal Chim Acta 2023; 1253:341099. [PMID: 36965989 DOI: 10.1016/j.aca.2023.341099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Abnormal viscosity and excessive superoxide anion (O2•-) levels in living cells often cause a series of biological dysfunction and oxidative damage. However, a great challenge remains in quickly and conveniently detecting the viscosity and O2•- levels in living cells. Herein, we fabricated a versatile aggregation-induced emission (AIE) probe with mitochondria targeting, DTPB, for dual-imaging of viscosity and O2•- level in living cells with two different channels. The obtained DTPB contained a diphenyl phosphinic acid unit responsive to O2•-, a unit with twisted intramolecular charge trans (TICT) function responsive to viscosity, and a pyridine cation unit with mitochondria targeting. The results showed that DTPB exhibited a remarkable response to viscosity with a near-infrared emission peak at 671 nm and was highly sensitive to O2•- levels with an emission peak at 587 nm. The dual-channel probe has great application prospects in the visual diagnosis of cancer and related diseases.
Collapse
Affiliation(s)
- Wei Liu
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Yan Wang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Tengfei Wang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Liwen Wang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Sheng Hu
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Dating Tian
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China.
| |
Collapse
|
599
|
Ma H, Li R, Meng H, Tian M, Zhang X, Liu Y, Li L, Yuan J, Wei Y. A Versatile Theranostic Nanoplatform with Aggregation-Induced Emission Properties: Fluorescence Monitoring, Cellular Organelle Targeting, and Image-Guided Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204778. [PMID: 36802107 DOI: 10.1002/smll.202204778] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Indexed: 05/25/2023]
Abstract
Photosensitizers (PSs) play a key role in the photodynamic therapy (PDT) of tumors. However, commonly used PSs are prone to intrinsic fluorescence aggregation-caused quenching and photobleaching; this drawback severely limits the clinical application of PDT, necessitating new phototheranostic agents. Herein, a multifunctional theranostic nanoplatform (named TTCBTA NP) is designed and constructed to achieve fluorescence monitoring, lysosome-specific targeting, and image-guided PDT. TTCBTA with a twisted conformation and D-A structure is encapsulated in amphiphilic Pluronic F127 to form nanoparticles (NPs) in ultrapure water. The NPs exhibit biocompatibility, high stability, strong near-infrared emission, and desirable reactive oxygen species (ROSs) production capacity. The TTCBTA NPs also show high-efficiency photo-damage, negligible dark toxicity, excellent fluorescent tracing, and high accumulation in lysosome for tumor cells. Furthermore, TTCBTA NPs are used to obtain fluorescence images with good resolution of MCF-7 tumors in xenografted BALB/c nude mice. Crucially, TTCBTA NPs present a strong tumor ablation ability and image-guided PDT effect by generating abundant ROSs upon laser irradiation. These results demonstrate that the TTCBTA NP theranostic nanoplatform may enable highly efficient near-infrared fluorescence image-guided PDT.
Collapse
Affiliation(s)
- Haijun Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, 750021, P. R. China
| | - Ruoxin Li
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haibing Meng
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 200235, P. R. China
| | - Xianhong Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, 750021, P. R. China
| | - Yanling Liu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, 750021, P. R. China
| | - Le Li
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, 750021, P. R. China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
600
|
Duo Y, Yang Y, Xu T, Zhou R, Wang R, Luo G, Zhong Tang B. Aggregation-induced emission: An illuminator in the brain. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215070] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|