551
|
Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110 ( Pt 3):357-68. [PMID: 9057088 DOI: 10.1242/jcs.110.3.357] [Citation(s) in RCA: 531] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the contribution of the individual kinases of the MAP (mitogen-activated protein) kinase family, including ERK (extracellular-signal regulated kinase), JNK/SAPK (c-JUN NH2-terminal kinase/stress-activated protein kinase) and p38, to activation of the HSP27 (heat shock protein 27) kinase MAPKAP kinase-2/3 and to HSP27 phosphorylation in Chinese hamster CCL39 cells stimulated by either growth factors, cytokines or stressing agents. In vitro assays using fractionated cell extracts or immunoprecipitates indicated that only fractions containing ERK or p38, and not those containing JNK/SAPK, had the capacity to activate MAPKAP kinase-2/3. In vivo, however, it appeared that only p38 is an upstream activator of HSP27 phosphorylation after both stress or growth factor stimulation: expression of an interfering mutant of ras, which blocked the activation of ERK by both types of inducers, had no effect on HSP27 phosphorylation and p38 activation; and the cell-permeant specific inhibitor of 038, SB203580, blocked MAPKAP-kinase2/3 activation and HSP27 phosphorylation. HSP27 has been suggested to have a phosphorylation-activated homeostatic function at the actin cytoskeleton level. This raises the possibility that p38 might be directly involved in mediating actin responses to external stimuli. Accordingly, we observed that a prior activation of p38 increased the stability of the actin microfilaments in cells exposed to cytochalasin D. The effect was dependent on the expression of HSP27 and was totally annihilated by blocking the p38 activity with SB203580. The results provide strong support to the idea that activation of p38 during adverse environmental conditions serves a homeostatic function aimed at regulating actin dynamics that would otherwise be destabilized during stress. Its activation during normal agonist stimulation may constitute an additional actin signaling pathway, the importance of which depends on the level of expression of HSP27.
Collapse
Affiliation(s)
- J Guay
- Centre de recherche en cancérologie de l'Université Laval. L'Hôtel-Dieu de Québec, Canada
| | | | | | | | | | | |
Collapse
|
552
|
Read MA, Whitley MZ, Gupta S, Pierce JW, Best J, Davis RJ, Collins T. Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J Biol Chem 1997; 272:2753-61. [PMID: 9006914 DOI: 10.1074/jbc.272.5.2753] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
E-selectin expression by endothelium is crucial for leukocyte recruitment during inflammatory responses. Transcriptional regulation of the E-selectin promoter by tumor necrosis factor alpha (TNFalpha) requires multiple nuclear factor-kappaB (NF-kappaB) binding sites and a cAMP-responsive element/activating transcription factor-like binding site designated positive domain II (PDII). Here we characterize the role of the stress-activated family of mitogen-activated protein (MAP) kinases in induced expression of this adhesion molecule. By UV cross-linking and immunoprecipitation, we demonstrated that a heterodimer of transcription factors ATF-2 and c-JUN is constitutively bound to the PDII site. TNFalpha stimulation of endothelial cells induces transient phosphorylation of both ATF-2 and c-JUN and induces marked activation of the c-JUN N-terminal kinase (JNK1) and p38 but not extracellular signal-regulated kinase (ERK1). JNK and p38 are constitutively present in the nucleus, and DNA-bound c-JUN and ATF-2 are stably contacted by JNK and p38, respectively. MAP/ERK kinase kinase 1 (MEKK1), an upstream activator of MAP kinases, increases E-selectin promoter transcription and requires an intact PDII site for maximal induction. MEKK1 can also activate NF-kappaB -dependent gene expression. The effects of dominant interfering forms of the JNK/p38 signaling pathway demonstrate that activation of these kinases is critical for cytokine-induced E-selectin gene expression. Thus, TNFalpha activates two signaling pathways, NF-kappaB and JNK/p38, which are both required for maximal expression of E-selectin.
Collapse
Affiliation(s)
- M A Read
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
553
|
Krump E, Sanghera JS, Pelech SL, Furuya W, Grinstein S. Chemotactic peptide N-formyl-met-leu-phe activation of p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase-2 in human neutrophils. J Biol Chem 1997; 272:937-44. [PMID: 8995385 DOI: 10.1074/jbc.272.2.937] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Activation of polymorphonuclear leukocytes (PMN) by chemotactic peptides initiates a series of functional responses that serve to eliminate pathogens. The intermediate steps that link engagement of the chemoattractant receptor to the microbicidal responses involve protein kinases that have yet to be identified. In this study we detected in human PMN the presence of p38 mitogen-activated protein kinase (MAPK), which became rapidly tyrosine phosphorylated and activated in response to the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP). Pretreatment of PMN with wortmannin, a phosphatidylinositol 3-kinase inhibitor, or bis-indolylmaleimide, a protein kinase C antagonist, resulted in partial inhibition of p38 phosphorylation upon fMLP stimulation. Similarly, phosphorylation of p38 was only partially inhibited when the fMLP-induced cytosolic calcium transient was prevented. Stimulation of PMN by the chemoattractant also resulted in the rapid phosphorylation and activation of MAPK-activated protein kinase-2 (MAPKAPK-2), which was completely inhibited by the specific p38 inhibitor, SB203580. The physical interaction of p38 with MAPKAPK-2 was studied by coimmunoprecipitation. These two kinases were found to be associated in unstimulated PMN but dissociated upon activation of the cells by fMLP. Together these findings demonstrate the activation of p38 by chemotactic peptides in human PMN by a process involving phosphatidylinositol 3-kinase, protein kinase C, and calcium. p38, in turn, is an upstream activator of MAPKAPK-2.
Collapse
Affiliation(s)
- E Krump
- Division of Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
554
|
Huang CK, Zhan L, Ai Y, Jongstra J. LSP1 is the major substrate for mitogen-activated protein kinase-activated protein kinase 2 in human neutrophils. J Biol Chem 1997; 272:17-9. [PMID: 8995217 DOI: 10.1074/jbc.272.1.17] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In intact cells, mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 is rapidly activated by various cytokines, stresses, and chemotactic factors. The small heat shock protein p27 has been shown to be a substrate for MAPKAP kinase 2. Recently, we identified a novel substrate, designated p60, for MAPKAP kinase 2 in human neutrophils (Zu, Y.-L., Ai, Y., Gilchrist, A., Labadia, M. E., Sha'afi, R. I., and Huang, C.-K. (1996) Blood 87, 5287-5296). To further understand the signaling pathway of MAPKAP kinase 2, we have purified p60 from a heat-treated neutrophil lysate by DEAE-cellulose chromatography and SDS-polyacrylamide gel electrophoresis. Microsequencing of five peptides derived from purified p60 indicates that p60 is lymphocyte-specific protein 1 (LSP1). Furthermore antibodies specific for human and mouse LSP1 react with human and mouse p60. The sequence of human LSP1 indicates two serine residues at positions 204 and 252 as potential phosphorylation sites. The amino acid sequences surrounding these two sites are in agreement with the consensus sequence (Xaa-Xaa-Hyd-Xaa-Arg-Xaa-Xaa-Ser-Xaa-Xaa) for phosphorylation by MAPKAP kinase 2. Both serine residues in human LSP1 and the corresponding conserved serine residues in mouse LSP1 are in the basic C-terminal F-actin binding domain. Various fusion proteins of wild type and truncated mouse LSP1 with glutathione S-transferase were tested for their capacity to be phosphorylated by MAPKAP kinase 2. The results indicate that LSP1 is a substrate for MAPKAP kinase 2 in vitro and that the phosphorylation sites are located in the basic C-terminal domain of LSP1. Because both the small heat shock proteins and LSP1 are F-actin binding proteins, these results suggest a role for MAPKAP kinase 2 in the regulation of cytoskeletal structure or function.
Collapse
Affiliation(s)
- C K Huang
- Department of Pathology, University of Connecticut Health Center, Farmington 06030-3105, USA
| | | | | | | |
Collapse
|
555
|
Affiliation(s)
- E T Sawai
- Department of Medical Pathology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
556
|
Okazaki IJ, Kim HJ, Moss J. Molecular cloning and characterization of lymphocyte and muscle ADP-ribosyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 419:129-36. [PMID: 9193645 DOI: 10.1007/978-1-4419-8632-0_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mono-ADP-ribosylation, catalyzed by ADP-ribosyltransferases, is a posttranslational modification of proteins in which the ADP-ribose moiety of NAD is transferred to an acceptor protein(arginine). Several of the bacterial toxin ADP-ribosyltransferases have been well characterized in their ability to alter cellular metabolism. It has been postulated that these bacterial toxins mimic the actions of transferases from mammalian cells. We have cloned and characterized ADP-ribosyltransferases from rabbit and human skeletal muscle, and mouse lymphocytes. The muscle transferases are glycosylphosphatidylinositol (GPI)-anchored proteins that are conserved among species. Two distinct transferases, termed Yac-1 and Yac-2 were cloned from mouse lymphoma (Yac-1) cells. The Yac-1 transferase, like the muscle enzymes, is a GPI-linked exoenzyme. The Yac-2 transferase, on the other hand, is membrane-associated but appears not to be GPI-linked. In contrast to Yac-1, the Yac-2 enzyme had significant NAD glycohydrolase activity and may preferentially hydrolyze NAD. The bacterial toxin ADP-ribosyltransferases contain three noncontiguous regions of sequence similarity, which are involved in formation of the catalytic site. Alignment of the deduced amino acid sequences of the mammalian transferases and the rodent RT6 enzymes, along with results from site-directed mutagenesis of the muscle enzyme, are consistent with the notion of a common mechanism of NAD binding and catalysis among ADP-ribosyltransferases.
Collapse
Affiliation(s)
- I J Okazaki
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
557
|
Zheng Y, Fischer DJ, Santos MF, Tigyi G, Pasteris NG, Gorski JL, Xu Y. The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J Biol Chem 1996; 271:33169-72. [PMID: 8969170 DOI: 10.1074/jbc.271.52.33169] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Rho family of small GTP-binding proteins plays important roles in the regulation of actin cytoskeleton organization and cell growth. Activation of these GTPases involves the replacement of bound GDP with GTP, a process catalyzed by the Dbl-like guanine-nucleotide exchange factors, all of which seem to share a putative catalytic motif termed the Dbl homology (DH) domain, followed by a pleckstrin homology (PH) domain. Here we have examined the role of a Dbl-like molecule, the faciogenital dysplasia gene product (FGD1), which when mutated in its Dbl homology domain, cosegregates with the developmental disease Aarskog-Scott syndrome. We report that a polypeptide of FGD1 encompassing the DH and PH domains can bind specifically to the Rho family GTPase Cdc42Hs and stimulates the GDP-GTP exchange of the isoprenylated form of Cdc42Hs. Microinjection of this FGD1 polypeptide into Swiss 3T3 fibroblast cells induces the formation of peripheral actin microspikes, similar to that previously observed when cells were injected with a constitutively active form of Cdc42Hs. This effect of FGD1 on actin organization is readily inhibited by coinjection of a dominant-negative mutant of Cdc42Hs. Examination of NIH 3T3 cells expressing the FGD1 fragment revealed that similar to cells expressing Dbl, two independent elements downstream of Cdc42Hs, the Jun NH2-terminal kinase and the p70 S6 kinase, became activated. Hence, our results indicate that FGD1, through its DH and PH domains, acts as a Cdc42Hs-specific guanine-nucleotide exchange factor and suggest that the Cdc42Hs GTPase may have a role in mammalian development.
Collapse
Affiliation(s)
- Y Zheng
- Department of Biochemistry, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
558
|
Fleming IN, Elliott CM, Exton JH. Differential translocation of rho family GTPases by lysophosphatidic acid, endothelin-1, and platelet-derived growth factor. J Biol Chem 1996; 271:33067-73. [PMID: 8955154 DOI: 10.1074/jbc.271.51.33067] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The small GTPases of the Rho family play a key role in a number of signaling pathways activated by lysophosphatidic acid (LPA). However, little is known concerning the mechanism of regulation of these proteins. In this study we demonstrate that in Swiss 3T3 fibroblasts, LPA induces a sustained, time-dependent relocalization of RhoA to the Triton X-100-soluble low speed membrane fraction, which can be reversed by removal of LPA from the medium. Translocation was only observed with micromolar concentrations of LPA and was inhibited by pretreating the cells with pertussis toxin but not with tyrosine kinase inhibitors. LPA also induced translocation of CDC42Hs to the membranes but had no effect on the distribution of Rac1, RhoB, or Rho-GDI. Translocation of RhoA was also induced by endothelin-1. Conversely, platelet-derived growth factor did not cause the translocation of RhoA to any membrane fraction but stimulated relocalization of Rac1 to the high speed membrane fraction. Significantly, incubation of cell lysates with guanosine 5'-O-(thiotriphosphate) was sufficient to translocate RhoA, Rac1, and CDC42Hs from the cytosol to the membranes, whereas incubation with GDP had the opposite effect. These data suggest that the translocation of the Rho family proteins to the membrane fraction is controlled by their activation state and that agonists show selectivity in inducing the activation/translocation of these proteins.
Collapse
Affiliation(s)
- I N Fleming
- Howard Hughes Medical Institute and the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0295, USA
| | | | | |
Collapse
|
559
|
Lim L, Manser E, Leung T, Hall C. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:171-85. [PMID: 8973630 DOI: 10.1111/j.1432-1033.1996.0171r.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The oncogenic Ras p21 GTPases regulate phosphorylation pathways that underlie a wealth of activities, including growth and differentiation, in organisms ranging from yeast to human. In metazoa, growth factors trigger conversion of Ras from an inactive GDP-bound form to an active GTP-bound form. This activation of Ras leads to activation of Raf. Raf is one of the initial kinases in the cytoplasmic mitogen-activated protein kinase (MAPK) cascade, involving extracellular-signal-regulated kinases (ERK), which culminates in nuclear transcription. The Ras-related subfamily of Rho p21s, including Rho, Rac and Cdc42 are similarly active in their GTP-bound forms. These p21s mediate growth-factor-induced morphological changes involving actin-based cellular structures. For example, in mammalian fibroblasts, Rho mediates the formation of cytoskeletal stress fibres induced by lysophosphatidic acid, while Rac mediates the formation of membrane ruffles induced by platelet-derived growth factor, and Cdc42 mediates the formation of peripheral filopodia by bradykinin. In some cases, factor-induced Rac activation results in Rho activation, and factor-induced Cdc42 activation leads to Rac activation, as determined by specific morphological changes. Although separate Cdc42/Rac and Rac/Rho hierarchies exist, these might not extend into a linear form (i.e. Cdc42-->Rac-->Rho) since Cdc42 and Rho activities may be competitive or even antagonistic. Thus Cdc42-mediated formation of filopodia is accompanied by loss of stress fibres (whose formation is mediated by Rho). Recently, mammalian kinases that bind to the GTP-bound forms of Rho p21s have been isolated. These kinases include the p21-activated serine/threonine kinase (PAK), which is stimulated by binding to Cdc42 and Rac, and the Rho-binding serine/threonine kinase (ROK), which is not as strongly stimulated by binding. These kinases act as effectors for their p21 partners since they can directly affect the reorganization of the relevant actin-containing structures. ROK promotes the formation of Rho-induced actin-containing stress fibres and focal-adhesion complexes, to which the ends of the stress fibres attach. PAK stimulates the disassembly of stress fibres, which has been shown to accompany formation of Cdc42-induced peripheral-actin-containing structures, including filopodia, which with Rac-induced membrane ruffles play a role in cell movement. PAK also fosters loss of focal-adhesion complexes. Thus, there is cooperation between different Rho p21s as well as antagonism, with their associated kinases having a role in the integration of the reorganization of the actin cytoskeleton. The similarity of PAK to the Saccharomyces cerevisiae kinase Ste20p, which initiates the yeast mating/pheromone MAPK cascade, led to experiments showing that Cdc42 regulates Ste20p in this MAPK pathway. This similarity has also led to the demonstration that mammalian Cdc42 and Rac can signal to the nucleus through MAPK pathways. However, c-Jun N-terminal kinase (JNK, stress-activated protein kinase) rather than ERK, is involved. PAK have been implicated in the JNK pathway, but their exact roles are uncertain. Thus members of the Rho subfamily, and kinases that bind to these p21s are intimately involved in immediate morphological processes as well as long-term transcriptional events.
Collapse
Affiliation(s)
- L Lim
- Institute of Neurology, London, UK
| | | | | | | |
Collapse
|
560
|
Olson MF, Pasteris NG, Gorski JL, Hall A. Faciogenital dysplasia protein (FGD1) and Vav, two related proteins required for normal embryonic development, are upstream regulators of Rho GTPases. Curr Biol 1996; 6:1628-33. [PMID: 8994827 DOI: 10.1016/s0960-9822(02)70786-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Dbl, a guanine nucleotide exchange factor (GEF) for members of the Rho family of small GTPases, is the prototype of a family of 15 related proteins. The majority of proteins that contain a DH (Dbl homology) domain were isolated as oncogenes in transfection assays, but two members of the DH family, FGD1 (the product of the faciogenital dysplasia or Aarskog-Scott syndrome locus) and Vav, have been shown to be essential for normal embryonic development. Mutations to the FGD1 gene result in a human developmental disorder affecting specific skeletal structures, including elements of the face, cervical vertebrae and distal extremities. Homozygous Vav-/- knockout mice embryos are not viable past the blastocyst stage, indicating an essential role of Vav in embryonic implantation. RESULTS Here, we show that the microinjection of FGD1 and Vav into Swiss 3T3 fibroblasts induces the polymerization of actin and the assembly of clustered integrin complexes. FGD1 activates Cdc42, whereas Vav activates Rho, Rac and Cdc42. In addition, FGD1 and Vav stimulate the mitogen activated protein kinase cascade that leads to activation of the c-Jun kinase SAPK/JNK1. CONCLUSIONS We conclude that FGD1 and Vav are regulators of the Rho GTPase family. Along with their target proteins Cdc42, Rac and Rho, FGD1 and Vav control essential signals required during embryonic development.
Collapse
Affiliation(s)
- M F Olson
- CRC Oncogene and Signal Transduction Group, MRC Laboratory for Molecular Cell Biology, London, UK
| | | | | | | |
Collapse
|
561
|
Joneson T, McDonough M, Bar-Sagi D, Van Aelst L. RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 1996; 274:1374-6. [PMID: 8910277 DOI: 10.1126/science.274.5291.1374] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The RAC guanine nucleotide binding proteins regulate multiple biological activities, including actin polymerization, activation of the Jun kinase (JNK) cascade, and cell proliferation. RAC effector loop mutants were identified that separate the ability of RAC to interact with different downstream effectors. One mutant of activated human RAC protein, RACV12H40 (with valine and histidine substituted at position 12 and 40, respectively), was defective in binding to PAK3, a Ste20-related p21-activated kinase (PAK), but bound to POR1, a RAC-binding protein. This mutant failed to stimulate PAK and JNK activity but still induced membrane ruffling and mediated transformation. A second mutant, RACV12L37 (with leucine substituted at position 37), which bound PAK but not POR1, induced JNK activation but was defective in inducing membrane ruffling and transformation. These results indicate that the effects of RAC on the JNK cascade and on actin polymerization and cell proliferation are mediated by distinct effector pathways that diverge at the level of RAC itself.
Collapse
Affiliation(s)
- T Joneson
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
562
|
Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenström P, Bridges T, Chant J, Hall A. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 1996; 87:519-29. [PMID: 8898204 DOI: 10.1016/s0092-8674(00)81371-9] [Citation(s) in RCA: 502] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rac and Cdc42 regulate a variety of responses in mammalian cells including formation of lamellipodia and filopodia, activation of the JNK MAP kinase cascade, and induction of G1 cell cycle progression. Rac is also one of the downstream targets required for Ras-induced malignant transformation. Rac and Cdc42 containing a Y40C effector site substitution no longer intact with the Ser/Thr kinase p65PAK and are unable to activate the JNK MAP kinase pathway. However, they still induce cytoskeletal changes and G1 cell cycle progression. Rac containing an F37A effector site substitution, on the other hand, no longer interacts with the Ser/Thr kinase p160ROCK and is unable to induce lamellipodia or G1 progression. We conclude that Rac and Cdc42 control MAP kinase pathways and actin cytoskeleton organization independently through distinct downstream targets.
Collapse
Affiliation(s)
- N Lamarche
- Department of Biochemistry, University College London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
563
|
Sawai ET, Khan IH, Montbriand PM, Peterlin BM, Cheng-Mayer C, Luciw PA. Activation of PAK by HIV and SIV Nef: importance for AIDS in rhesus macaques. Curr Biol 1996; 6:1519-27. [PMID: 8939608 DOI: 10.1016/s0960-9822(96)00757-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The primate lentiviruses, human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and simian immunodeficiency virus (SIV), encode a conserved accessory gene product, Nef. In vivo, Nef is important for the maintenance of high virus loads and progression to AIDS in SIV-infected adult rhesus macaques. In tissue culture cells expressing Nef, this viral protein interacts with a cellular serine kinase, designated Nef-associated kinase. RESULTS This study identifies the Nef-associated kinase as a member of the p21-activated kinase (PAK) family of kinases and investigates the role of this Nef-associated kinase in vivo. Mutants of Nef that do not associate with the cellular kinase are unable to activate the PAK-related kinase in infected cells. To determine the role of cellular kinase association in viral pathogenesis, macaques were infected with SIV containing point-mutations in Nef that block PAK activation. Virus recovered at early time points after inoculation with mutant virus was found to have reverted to prototype Nef function and sequence. Reversion of the kinase-negative mutant to a kinase-positive genotype in macaques infected with the mutant virus preceded the induction of high virus loads and disease progression. CONCLUSIONS Nef associates with and activates a PAK-related kinase in lymphocytes infected in vitro. Moreover, the Nef-mediated activation of a PAK-related kinase correlates with the induction of high virus loads and the development of AIDS in the infected host. These findings reveal that there is a strong selective pressure in vivo for the interaction between Nef and the PAK-related kinase.
Collapse
Affiliation(s)
- E T Sawai
- Department of Medical Pathology, University of California, Davis 95616, USA.
| | | | | | | | | | | |
Collapse
|
564
|
Abstract
It is becoming clear that Ras proteins mediate their diverse biological functions by binding to, and participating in, the activation of multiple downstream targets. Recent work has identified nucleotide-exchange factors for Ral-GTPases as the newest members of the set of putative Ras 'effector molecules'. This new work has also detected two potential downstream targets of Ral proteins, a novel CDC42/Rac GTPase-activating protein and a phospholipase D.
Collapse
Affiliation(s)
- L A Feig
- Department of Biochemistry, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | |
Collapse
|
565
|
Glaven JA, Whitehead IP, Nomanbhoy T, Kay R, Cerione RA. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J Biol Chem 1996; 271:27374-81. [PMID: 8910315 DOI: 10.1074/jbc.271.44.27374] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Lfc and Lsc are two recently identified oncoproteins that contain a Dbl homology domain in tandem with a pleckstrin homology domain and thus share sequence similarity with a number of other growth regulatory proteins including Dbl, Tiam-1, and Lbc. We show here that Lfc and Lsc, like their closest relative Lbc, are highly specific guanine nucleotide exchange factors (GEFs) for Rho, causing a >10-fold stimulation of [3H]GDP dissociation from Rho and a marked stimulation of GDP-[35S]GTPgammas (guanosine 5'-O-(3-thiotriphosphate) exchange. All three proteins (Lbc, Lfc, and Lsc) are able to act catalytically in stimulating the guanine nucleotide exchange activity, such that a single molecule of each of these oncoproteins can activate a number of molecules of Rho. Neither Lfc nor Lsc shows any ability to stimulate GDP dissociation from other related GTP-binding proteins such as Rac, Cdc42, or Ras. Thus Lbc, Lfc, and Lsc appear to represent a subgroup of Dbl-related proteins that function as highly specific GEFs toward Rho and can be distinguished from Dbl, Ost, and Dbs which are less specific and show GEF activity toward both Rho and Cdc42. Consistent with these results, Lbc, Lfc, and Lsc each form tight complexes with the guanine nucleotide-depleted form of Rho and bind weakly to the GDP- and GTPgammaS-bound states. None of these oncoproteins are able to form complexes with Cdc42 or Ras. However, Lfc (but not Lbc nor Lsc) can bind to Rac, and this binding occurs equally well when Rac is nucleotide-depleted or is in the GDP- or GTPgammaS-bound state. These findings raise the possibility that in addition to acting directly as a GEF for Rho, Lfc may play other roles that influence the signaling activities of Rac and/or coordinate the activities of the Rac and Rho proteins.
Collapse
Affiliation(s)
- J A Glaven
- Department of Pharmacology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
566
|
Tao J, Sanghera JS, Pelech SL, Wong G, Levy JG. Stimulation of stress-activated protein kinase and p38 HOG1 kinase in murine keratinocytes following photodynamic therapy with benzoporphyrin derivative. J Biol Chem 1996; 271:27107-15. [PMID: 8900202 DOI: 10.1074/jbc.271.43.27107] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The activation state of the members of the mitogen-activated protein kinase family following photodynamic therapy (PDT) with benzoporphyrin derivative monoacid ring A was investigated using a naturally transformed murine keratinocyte cell line, Pam 212. PDT involves the use of photosensitizer molecules and a specific wavelength of visible light. The process of PDT generates singlet oxygen and other reactive oxygen intermediates (ROIs), and the cytotoxic effect of these ROIs is the basis for the use of PDT to treat cancer and psoriasis. PDT caused a strong dose- and time-dependent activation of both stress-activated protein kinase (SAPK) and p38 HOG1. The maximum activation of SAPK and p38 HOG1 occurred between 20 and 30 min following PDT treatment with 200 ng/ml benzoporphyrin derivative monoacid ring A and 2 J/cm2 of red light at 690 nm. In our system, PDT did not cause significant activation of extracellularly regulated kinase (ERK) 1 and ERK2. Under the same experimental conditions, ultraviolet light irradiation caused strong activation of SAPK and p38 HOG1 and minimum activation of ERK1 and ERK2 in Pam212 cells. A number of ROI scavengers were tested for their effect on PDT-induced SAPK and p38 HOG1 activation. Both L-histidine and N-acetyl-L-cysteine showed a significant inhibitory effect on PDT-induced SAPK and p38 HOG1 activation. This indicated that PDT-induced SAPK and p38 HOG1 activation may be partially mediated by ROI.
Collapse
Affiliation(s)
- J Tao
- Department of Microbiology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
567
|
Erickson JW, Zhang CJ, Kahn RA, Evans T, Cerione RA. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J Biol Chem 1996; 271:26850-4. [PMID: 8900167 DOI: 10.1074/jbc.271.43.26850] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this study, we have used immunocytochemical and fractionation approaches to provide a description of the localization of the mammalian Cdc42 protein (designated Cdc42Hs) in vivo. A specific anti-peptide antibody was generated against the C-terminal region of Cdc42Hs. Using affinity-purified preparations of this antibody in indirect immunofluorescence experiments, Cdc42Hs was found to be localized to the Golgi apparatus. Similar to the well-characterized non-clathrin coat proteins ADP-ribosylation factor (ARF) and beta-COP, the perinuclear clustering of Cdc42Hs is rapidly dispersed upon exposure of the cells to the drug brefeldin A, suggesting that it too may play a role in the processes of intracellular lipid and protein transport. Employing cell lines possessing inducible forms of ARF, we demonstrate here a tight coupling of the nucleotide-bound state of ARF and the subcellular localization of Cdc42Hs. Specifically, the expression of wild-type ARF had no effect on the brefeldin A sensitivity of Cdc42Hs while, as is the case for ARF and beta-COP, expression of a GTPase-deficient form of ARF (ARF(Q71L)) renders these Golgi-localized proteins resistant to brefeldin A treatment (; ). Moreover, the induced expression of a mutant form of ARF with a low affinity for nucleotide resulted in constitutive redistribution of Cdc42Hs in the absence of brefeldin A treatment. These results suggest that Cdc42Hs may play a role in cell morphogenesis by acting on targets in the Golgi that direct polarized growth at the plasma membrane.
Collapse
Affiliation(s)
- J W Erickson
- Department of Pharmacology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, USA
| | | | | | | | | |
Collapse
|
568
|
Teramoto H, Crespo P, Coso OA, Igishi T, Xu N, Gutkind JS. The small GTP-binding protein rho activates c-Jun N-terminal kinases/stress-activated protein kinases in human kidney 293T cells. Evidence for a Pak-independent signaling pathway. J Biol Chem 1996; 271:25731-4. [PMID: 8824197 DOI: 10.1074/jbc.271.42.25731] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Work from a number of laboratories has established a role for certain small GTP-binding proteins in controlling the enzymatic activity of a family of serine-threonine kinases known as mitogen-activated protein kinases (MAPKs). MAPKs have been classified into three subfamilies: extracellular signal-regulated kinases (ERKs), also known as MAPKs; c-Jun N-terminal kinases (JNKs); and p38 kinase. Whereas Ras controls the activation of MAPKs, we and others have recently observed that in certain cells, the small GTP-binding proteins Rac1 and Cdc42 but not Rho regulate the activity of JNKs. Furthermore, because Rac1 and Cdc42 but not Rho bind and activate a kinase known as Pak1, it has been suggested that Pak1 is the most upstream component of the pathway linking these GTPases to JNK. However, in both yeast and mammalian cells, Rho1p, a Rho homologue, and RhoA, respectively, directly interact with a number of proteins, including kinases related to protein kinase C. In addition, in yeast, Rho1p controls the activity of a MAPK cascade involved in bud formation. Considering this diversity of target molecules for small GTP-binding proteins, their likely tissue specific distribution, and the potential role for Rho in signaling to a kinase cascade, we decided to extend our initial analysis, exploring the ability of Ras and Rho-related GTP-binding proteins to activate MAPK or JNK in a variety of cell lines. We found that in the human kidney epithelial cell line, 293T, Cdc42 and all Rho proteins, RhoA, RhoB, and RhoC, but not Rac or Ras can induce activation of JNK. Furthermore, we provide evidence that signaling from Rho proteins to JNK in 293T cells does not involve Pak1. Taken together these findings demonstrate that Rho signals to JNK in a cell type-specific manner and suggest the existence of a novel, Pak1-independent signaling route communicating the Rho family of small GTP-binding proteins to the JNK pathway.
Collapse
Affiliation(s)
- H Teramoto
- Laboratory of Cellular Development and Oncology, NIDR, National Institutes of Health, Bethesda, Maryland 20892-4330, USA
| | | | | | | | | | | |
Collapse
|
569
|
Bokoch GM, Wang Y, Bohl BP, Sells MA, Quilliam LA, Knaus UG. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J Biol Chem 1996; 271:25746-9. [PMID: 8824201 DOI: 10.1074/jbc.271.42.25746] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The p21-activated kinases (PAKs) link G protein-coupled receptors and growth factor receptors (S. Dharmawardhane, R. H. Daniels, and G. M. Bokoch, submitted for publication) to activation of MAP kinase cascades and to cytoskeletal reorganization (M. A. Sells, U. G. Knaus, D. Ambrose, S. Bagrodia, G. M. Bokoch, and J. Chernoff, submitted for publication). The proteins that interact with PAK to mediate its cellular effects and to couple it to upstream receptors are unknown. We describe here a specific interaction of the Nck adapter molecule with PAK1 both in vitro and in vivo. PAK1 and Nck associate in COS-7 and Swiss 3T3 cells constitutively, but this interaction is strengthened upon platelet-derived growth factor receptor stimulation. We show that Nck binds to PAK1 through its second Src homology 3 (SH3) domain, while PAK1 interacts with Nck via the first proline-rich SH3 binding motif at its amino terminus. The interaction of active PAK1 with Nck leads to the phosphorylation of Nck at multiple sites. Association of Nck with PAK1 may serve to link this important regulatory kinase to cell activation by growth factor receptors.
Collapse
Affiliation(s)
- G M Bokoch
- Department of Immunology and Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
570
|
Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 1996; 271:24313-6. [PMID: 8798679 DOI: 10.1074/jbc.271.40.24313] [Citation(s) in RCA: 865] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- J M Kyriakis
- Diabetes Unit, Medical Services, Massachusetts General Hospital and the Department of Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
571
|
Ding J, Knaus UG, Lian JP, Bokoch GM, Badwey JA. The renaturable 69- and 63-kDa protein kinases that undergo rapid activation in chemoattractant-stimulated guinea pig neutrophils are p21-activated kinases. J Biol Chem 1996; 271:24869-73. [PMID: 8798763 DOI: 10.1074/jbc.271.40.24869] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neutrophils stimulated with the chemoattractant fMet-Leu-Phe (fMLP) are known to exhibit rapid activation of four protein kinases with molecular masses of approximately 69, approximately 63, approximately 49, and approximately 40-kDa. Activation of these kinases is blocked by antagonists of phosphatidylinositol 3-kinase and type 1 and/or type 2A protein phosphatases. These enzymes can be detected by their ability to undergo renaturation and catalyze the phosphorylation of a peptide substrate that corresponds to amino acid residues 297-331 of the 47-kDa subunit of the NADPH-oxidase complex fixed within a gel. In this report, we demonstrate that an antibody generated to a fusion protein containing amino acid residues 175-306 of p21-activated protein kinase 1 (Pak1) reacts with three proteins in guinea pig neutrophils with molecular masses in the 60-70-kDa range during Western blotting. This antibody immunoprecipitates both the 69- and 63-kDa renaturable kinases from lysates of stimulated cells along with a minor 60-kDa kinase. No activities were observed for any of these enzymes in immunoprecipitates from unstimulated neutrophils. However, addition of ATP and activated Rac 1 or Cdc42 to immunoprecipitates from unstimulated cells resulted in the stimulation of two renaturable kinases with molecular masses in the 69- and 63-kDa range. These immunoprecipitates also contained two novel protein kinases with masses of approximately49 and 40 kDa that were selectively activated by Cdc42. In contrast, the 69- and 63-kDa kinases were not immunoprecipitated from lysates of stimulated neutrophils with an antibody to Pak2 or with nonimmune serum. These data indicate that the renaturable 69- and 63-kDa kinases are Paks and reveal some of the upstream events that are necessary for the rapid activation of this family of protein kinases in neutrophils.
Collapse
Affiliation(s)
- J Ding
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
572
|
Fan G, Merritt SE, Kortenjann M, Shaw PE, Holzman LB. Dual leucine zipper-bearing kinase (DLK) activates p46SAPK and p38mapk but not ERK2. J Biol Chem 1996; 271:24788-93. [PMID: 8798750 DOI: 10.1074/jbc.271.40.24788] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Because the catalytic domain of dual leucine zipper-bearing kinase (DLK) bears sequence similarity to members of the mitogen-activated protein (MAP) kinase kinase kinase subfamily, this protein kinase was investigated for its ability to activate MAP kinase pathways. When transiently transfected and overexpressed in either COS 7 cells or NIH3T3 cells, wild type DLK potently activated p46(SAPK) (SAPK/JNK) but had no detectable effect in activating p42/44(MAPK). DLK also activated p38(mapk) when overexpressed in NIH3T3 cells. A catalytically inactive point mutant of DLK had no effect in these experiments. Consistent with its specificity in activating SAPK, DLK activated Elk-1 but not Sap1a-mediated transcription. In NIH3T3 cells, activation of SAPK by v-Src was markedly attenuated by coexpression of K185A, a catalytically inactive mutant of DLK, suggesting that this mutant could function in a dominant negative fashion in a pathway that leads from v-Src to SAPKs. In a series of co-transfection experiments, activation of p46(SAPK) by DLK was not inhibited by dominant negative mutants of Rac1 and Cdc42Hs, PAK65-R, or PAK65-A, but was attenuated by MEKK1(K432M). DLK(K185A) did not inhibit the ability of constitutively active MEKK1 to activate SAPK. Moreover, K185A significantly inhibited the activation of SAPK by constitutively active V-12 Rac1 and V-12 Cdc42Hs. These results suggest that DLK lies distal to Rac1 and/or Cdc42Hs but proximal to MEKK1 in a pathway leading from v-Src to SAPKs activation.
Collapse
Affiliation(s)
- G Fan
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0676, USA
| | | | | | | | | |
Collapse
|
573
|
Communications. Br J Pharmacol 1996. [DOI: 10.1111/j.1476-5381.1996.tb17246.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
574
|
Abstract
In addition to their roles in organizing the actin cytoskeleton, members of the Rho family of GTP-binding proteins have recently been implicated in a plethora of other functions, including the activation of kinase cascades and transcription factors, and the control of endocytosis and secretion. Alongside this expansion is proposed functions has been the identification of multiple target proteins that interact directly with Rho, Rac or Cdc42. Molecular connections are now being made along the signalling pathways activated by members of the Rho family.
Collapse
Affiliation(s)
- A J Ridley
- Ludwig Institute for Cancer Research London, UK
| |
Collapse
|
575
|
Pandey P, Raingeaud J, Kaneki M, Weichselbaum R, Davis RJ, Kufe D, Kharbanda S. Activation of p38 mitogen-activated protein kinase by c-Abl-dependent and -independent mechanisms. J Biol Chem 1996; 271:23775-9. [PMID: 8798604 DOI: 10.1074/jbc.271.39.23775] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The p38 mitogen-activated protein (MAP) kinase defines a subgroup of the mammalian MAP kinases that are induced in response to lipopolysaccharide, hyperosmolarity, and interleukin 1. p38 MAP kinase appears to play a role in regulating inflammatory responses, including cytokine secretion and apoptosis. Here we show that diverse classes of DNA-damaging agents such as cisplatinum, 1-beta-D-arabinofuranosylcytosine, UV light, ionizing radiation, and methyl methanesulfonate activate p38 MAP kinase. We also demonstrate that cells deficient in c-Abl fail to activate p38 MAP kinase after treatment with cisplatinum and 1-beta-D-arabinofuranosylcytosine but not after exposure to UV and methyl methanesulfonate. Reconstitution of c-Abl in the Abl-/- cells restores that response. Similar results were obtained for induction of the Jun-NH2-kinase/stress-activated protein kinase. These findings indicate that p38 MAP and Jun-NH2-kinase/stress-activated protein kinases are differentially regulated in response to different classes of DNA-damaging agents.
Collapse
Affiliation(s)
- P Pandey
- Division of Cancer Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
576
|
Zheng Y, Glaven JA, Wu WJ, Cerione RA. Phosphatidylinositol 4,5-bisphosphate provides an alternative to guanine nucleotide exchange factors by stimulating the dissociation of GDP from Cdc42Hs. J Biol Chem 1996; 271:23815-9. [PMID: 8798610 DOI: 10.1074/jbc.271.39.23815] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Members of the Rho subfamily of Ras-related GTP-binding proteins play important roles in the organization of the actin cytoskeleton and in the regulation of cell growth. We have shown previously that the dbl oncogene product, which represents a prototype for a family of growth regulatory proteins, activates Rho subfamily GTP-binding proteins by catalyzing the dissociation of GDP from their nucleotide binding site. In the present study, we demonstrate that the acidic phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), provides an alternative mechanism for the activation of Cdc42Hs. Among a variety of lipids tested, only PIP2 was able to stimulate GDP release from Cdc42Hs in a dose-dependent manner, with a half-maximum effect at approximately 50 microM. Unlike the Dbl oncoprotein, which requires the presence of (free) guanine nucleotide in the medium to replace the GDP bound to Cdc42Hs, PIP2 stimulates GDP release from Cdc42Hs in the absence of free guanine nucleotide. PIP2, when incorporated into phosphatidylcholine carrier vesicles, binds tightly to the guanine nucleotide-depleted form of Cdc42Hs and weakly to the GDP-bound form of the GTP-binding protein but does not bind to GTP-bound Cdc42Hs, similar to what was observed for the Dbl oncoprotein. However, mutational analysis of Cdc42Hs indicates that the site that is essential for the functional interaction between PIP2 and Cdc42Hs is distinct from the Dbl-binding site and is located at the positively charged carboxyl-terminal end of the GTP-binding protein. The GDP-releasing activity of PIP2 is highly effective toward Cdc42Hs and Rho (and is similar to the reported effects of PIP2 on Arf (Terui, T., Kahn, R. A., and Randazzo, P. A., (1994) J. Biol. Chem. 269, 28130-28135)), is less effective with Rac, and is not observed with Ras, Rap1a, or Ran. The ability of PIP2 to activate Cdc42Hs (or Rho) and Arf provides a possible point of convergence for the biological pathways regulated by these different GTP-binding proteins and may be related to the synergism observed between Arf and Rho-subtype proteins in the stimulation of phospholipase D activity (Singer, W. D., Brown, H. A., Bokoch, G. M., and Sternweis, P. C. (1995) J. Biol. Chem. 270, 14944-14950).
Collapse
Affiliation(s)
- Y Zheng
- Department of Pharmacology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
577
|
Mukai H, Miyahara M, Sunakawa H, Shibata H, Toshimori M, Kitagawa M, Shimakawa M, Takanaga H, Ono Y. Translocation of PKN from the cytosol to the nucleus induced by stresses. Proc Natl Acad Sci U S A 1996; 93:10195-9. [PMID: 8816775 PMCID: PMC38360 DOI: 10.1073/pnas.93.19.10195] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Effects of environmental stresses on the subcellular localization of PKN were investigated in NIH 3T3, BALB/c 3T3, and Rat-1 cells. The immunofluorescence of PKN resided prominently in the cytoplasmic region in nonstressed cells. When these cells were treated at 42 degrees C, there was a time-dependent decrease of the immunofluorescence of PKN in the cytoplasmic region that correlated with an increase within the nucleus as observed by confocal microscope. After incubation at 37 degrees C following beat shock, the immunofluorescence of PKN returned to the perinuclear and cytoplasmic regions from the nucleus. The nuclear translocation of PKN by heat shock was supported by the biochemical subcellular fractionation and immunoblotting. The nuclear localization of PKN was also observed when the cells were exposed to other stresses such as sodium arsenite and serum starvation. These results raise the possibility that there is a pathway mediating stress signals from the cytosol to the nucleus through PKN.
Collapse
Affiliation(s)
- H Mukai
- Department of Biology, Faculty of Science, Kobe University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Hu MC, Qiu WR, Wang X, Meyer CF, Tan TH. Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes Dev 1996; 10:2251-64. [PMID: 8824585 DOI: 10.1101/gad.10.18.2251] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The c-Jun amino-terminal kinases (JNKs)/stress-activated protein kinases (SAPKs) play a crucial role in stress responses in mammalian cells. The mechanism underlying this pathway in the hematopoietic system is unclear, but it is a key in understanding the molecular basis of blood cell differentiation. We have cloned a novel protein kinase, termed hematopoietic progenitor kinase 1 (HPK1), that is expressed predominantly in hematopoietic cells, including early progenitor cells. HPK1 is related distantly to the p21(Cdc42/Rac1)-activated kinase (PAK) and yeast STE20 implicated in the mitogen-activated protein kinase (MAPK) cascade. Expression of HPK1 activates JNK1 specifically, and it elevates strongly AP-1-mediated transcriptional activity in vivo. HPK1 binds and phosphorylates MEKK1 directly, whereas JNK1 activation by HPK1 is inhibited by a dominant-negative MEKK1 or MKK4/SEK mutant. Interestingly, unlike PAK65, HPK1 does not contain the small GTPase Rac1/Cdc42-binding domain and does not bind to either Rac1 or Cdc42, suggesting that HPK1. activation is Rac1/Cdc42-independent. These results indicate that HPK1 is a novel functional activator of the JNK/SAPK signaling pathway.
Collapse
Affiliation(s)
- M C Hu
- Department of Experimental Hematology, Amgen, Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | |
Collapse
|
579
|
Denhardt DT. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J 1996; 318 ( Pt 3):729-47. [PMID: 8836113 PMCID: PMC1217680 DOI: 10.1042/bj3180729] [Citation(s) in RCA: 355] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families of closely related proteins. The potential for more than one signal to be conveyed down a pathway simultaneously (multiplex signalling) is discussed. The net effect of a given stimulus on the cell is the result of a complex intracellular integration of the intensity and duration of activation of the individual pathways. The specific outcome depends on the particular signalling molecules expressed by the target cells and on the dynamic balance among the pathways.
Collapse
Affiliation(s)
- D T Denhardt
- Department of Biological Sciences, Rutgers University, Piscataway, NJ 08855, USA
| |
Collapse
|
580
|
McCallum SJ, Wu WJ, Cerione RA. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2. J Biol Chem 1996; 271:21732-7. [PMID: 8702968 DOI: 10.1074/jbc.271.36.21732] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cdc42 is a Ras-related GTP-binding protein that has been implicated in the regulation of the actin cytoskeleton and cell morphology. In this study, we have identified a protein with a molecular mass approximately 180 kDa from rabbit liver cytosol (designated p180), which binds preferentially to the GTP- and guanosine 5'-3-O-(thio)triphosphate-bound forms of Cdc42. Binding of p180 to GTP-bound Cdc42 maintains it in the GTP-bound state. Another cytosolic protein, with an apparent molecular mass of 175 kDa (p175), was also found to interact with Cdc42, but this association showed less dependence on guanine nucleotides. Both p180 and p175 were capable of binding to Rac1 but not to RhoA or Ha-Ras. The limit functional domain of the Cdc42-GAP protein did not compete with p180 or p175 for binding to Cdc42. However, the Cdc42-binding domain from mPAK-3, a member of the PAK (p21 activated kinase) family of serine/threonine kinases, competed with both proteins. The binding of p180 or p175 was inhibited by mutations of the putative effector loop of Cdc42. p180 and p175 also bound less effectively to a Cdc42/Ras chimera in which loop 8 from Ras was substituted for the predicted loop 8 in Cdc42 that includes a 13-amino acid insert present in all Rho family members but absent in Ras. Microsequencing of a p180 peptide revealed 92% identity with the human IQGAP1 protein, while two peptides derived from p175 were 89 and 100% identical to human IQGAP2. These findings identify IQGAP1 and IQGAP2 as a new class of target/effectors that utilize both regions of the switch I domain and an insert region distinct to Rho proteins for binding to Cdc42.
Collapse
Affiliation(s)
- S J McCallum
- Department of Biochemistry, Veterinary Medical Center, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
581
|
Lander HM, Jacovina AT, Davis RJ, Tauras JM. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem 1996; 271:19705-9. [PMID: 8702674 DOI: 10.1074/jbc.271.33.19705] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Many studies have identified nitric oxide (NO) and related chemical species (NOx) as having critical roles in neurotransmission, vasoregulation, and cellular signaling. Previous work in this laboratory has focused on elucidating the mechanism of NOx signaling in cells. We have demonstrated that NOx-induced activation of the guanine nucleotide-binding protein p21(ras) leads to nuclear translocation of the transcription factor NFkappaB. Here, we investigated whether intermediary signaling elements, namely the mitogen-activated protein (MAP) kinases, are involved in mediating NOx signaling. We found that NOx activates the extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) subgroups of MAP kinases in human Jurkat T cells. JNK was found to be 100-fold more sensitive to NOx stimulation than p38 and ERK. In addition, the activation of JNK and p38 by NOx was more rapid than ERK activation. Depletion of intracellular glutathione augmented the NOx-induced increase in kinase activity. Furthermore, endogenous NO, generated from NO synthase, activated ERK, and NOx-induced MAP kinase activation was effectively blocked by the farnesyl transferase inhibitor alpha-hydroxyfarnesylphosphonic acid. These data support the hypothesis that critical signaling kinases, such as ERK, p38, and JNK, are activated by NO-related species and thus participate in NO signal transduction. These findings establish a role for multiple MAP kinase signaling pathways in the cellular response to NOx.
Collapse
Affiliation(s)
- H M Lander
- Department of Biochemistry, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
582
|
Tsakiridis T, Taha C, Grinstein S, Klip A. Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J Biol Chem 1996; 271:19664-7. [PMID: 8702668 DOI: 10.1074/jbc.271.33.19664] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Insulin activates rapidly a complex cascade of lipid and protein kinases leading to stimulation of mitogenic and metabolic events. Here we describe a renaturable kinase of 65 kDa (PK65) that becomes rapidly activated by insulin in differentiated L6 muscle cells (myotubes) and can phosphorylate histones immobilized in polyacrylamide gels. Insulin activation of PK65 was abolished by the tyrosine kinase inhibitor erbstatin and by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, but was unaffected by inhibitors of protein kinase C or of the activation of p70(S6K). Recently, a number of protein kinases have been described which become activated through interaction with the small GTP-binding proteins Rac and Cdc42 (21-ctivated inases, or PAKs) and lead to activation of the stress-induced mitogen-activated protein kinase (MAPK) p38 MAPK. Two different polyclonal antibodies recognizing the carboxyl-terminal or the Rac-binding domain of a 65-kDa PAK (PAK65) immunoprecipitated the myotube PK65. The insulin-induced activation of PK65 in myotubes was detectable following immunoprecipitation of the kinase. Furthermore, PK65 associated with and became activated by glutathione S-transferase-Cdc42Hs in the presence of GTPgammaS (guanosine 5'-3-O-(thio)triphosphate). In myotubes insulin also induced tyrosine phosphorylation of p38 MAPK. However, this phosphorylation was insensitive to wortmannin, indicating that p38 MAPK is not activated by PK65 in insulin-stimulated cells. The results suggest that insulin activates in muscle cells a renaturable kinase (PK65) closely related to PAK65. Tyrosine kinases and PI 3-kinase act upstream of PK65 in the insulin signaling cascade. Insulin activates p38 MAPK in myotubes, but this occurs by a pathway independent of PI 3-kinase and PK65.
Collapse
Affiliation(s)
- T Tsakiridis
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
583
|
Rana A, Gallo K, Godowski P, Hirai S, Ohno S, Zon L, Kyriakis JM, Avruch J. The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J Biol Chem 1996; 271:19025-8. [PMID: 8702571 DOI: 10.1074/jbc.271.32.19025] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SPRK (also called PTK-1 and MLK-3), a member of the mixed lineage kinase subfamily of (Ser/Thr) protein kinases, encodes an amino-terminal SH3 domain followed by a kinase catalytic domain, two leucine zippers interrupted by a short spacer, a Rac/Cdc42 binding domain, and a long carboxyl-terminal proline-rich region. We report herein that SPRK activates the stress-activated protein kinases (SAPKs) but not ERK-1 during transient expression in COS cells; the p38 kinase is activated modestly (1.3-2 fold) but consistently. SPRK also activates cotransfected SEK-1/MKK-4, a dual specificity kinase which phosphorylates and activates SAPK. Reciprocally, expression of mutant, inactive SEK-1 inhibits completely the basal and SPRK-activated SAPK activity. Immunoprecipitated recombinant SPRK is able to phosphorylate and activate recombinant SEK-1 in vitro to an extent comparable to that achieved by MEK kinase-1. These results identify SPRK as a candidate upstream activator of the stress-activated protein kinases, acting through the phosphorylation and activation of SEK-1.
Collapse
Affiliation(s)
- A Rana
- Diabetes Unit and Medical Service, Massachusetts General Hospital, Boston, Massachusetts 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
584
|
Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem 1996; 271:17920-6. [PMID: 8663524 DOI: 10.1074/jbc.271.30.17920] [Citation(s) in RCA: 571] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mitogen-activated protein (MAP) kinase cascades represent one of the major signal systems used by eukaryotic cells to transduce extracellular signals into cellular responses. Four MAP kinase subgroups have been identified in humans: ERK, JNK (SAPK), ERK5 (BMK), and p38. Here we characterize a new MAP kinase, p38beta. p38beta is a 372-amino acid protein most closely related to p38. It contains a TGY dual phosphorylation site, which is required for its kinase activity. Like p38, p38beta is activated by proinflammatory cytokines and environmental stress. A comparison of events associated with the activation of p38beta and p38 revealed differences, most notably in the preferred activation of p38beta by MAP kinase kinase 6 (MKK6), whereas p38 was activated nearly equally by MKK3, MKK4, and MKK6. Moreover, in vitro and in vivo experiments showed a strong substrate preference by p38beta for activating transcription factor 2 (ATF2). Enhancement of ATF2-dependent gene expression by p38beta was approximately20-fold greater than that of p38 and other MAP kinases tested. The data reported here suggest that while closely related, p38beta and p38 may be regulated by differing mechanisms and may exert their actions on separate downstream targets.
Collapse
Affiliation(s)
- Y Jiang
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
585
|
Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid SL. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 1996; 382:177-9. [PMID: 8700210 DOI: 10.1038/382177a0] [Citation(s) in RCA: 331] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pinocytosis and membrane ruffling are among the earliest and most dramatic cellular responses to stimulation by growth factors or other mitogens. The small Ras-related G proteins Rho and Rac have a regulatory role in membrane ruffling and activated Rho has been shown to stimulate pinocytosis when microinjected into Xenopus oocytes. In contrast to these well established effects of Rho and Rac on plasma membrane morphology and bulk pinocytosis, there has been no evidence for their involvement in the regulation of receptor-mediated endocytosis in clathrin-coated pits. Here we show that activated Rho and Rac inhibit transferrin-receptor-mediated endocytosis when expressed in intact cells. Furthermore, we have reconstituted these effects in a cell-free system and established that Rho and Rac can regulate clathrin-coated vesicle formation.
Collapse
Affiliation(s)
- C Lamaze
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
586
|
Frost JA, Xu S, Hutchison MR, Marcus S, Cobb MH. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol Cell Biol 1996; 16:3707-13. [PMID: 8668187 PMCID: PMC231366 DOI: 10.1128/mcb.16.7.3707] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway.
Collapse
Affiliation(s)
- J A Frost
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, 75235-9041, USA
| | | | | | | | | |
Collapse
|
587
|
Abstract
Signal transduction pathways constructed around a core module of three consecutive protein kinases, the most distal being a member of the extracellular signal-regulated kinase (ERK) family, are ubiquitous among eukaryotes. Recent work has defined two cascades activated preferentially by the inflammatory cytokines TNF-alpha and IL-1-beta, as well as by a wide variety of cellular stresses such as UV and ionizing radiation, hyperosmolarity, heat stress, oxidative stress, etc. One pathway converges on the ERK subfamily known as the "stress activated' protein kinases (SAPKs, also termed Jun N-terminal kinases, JNKs), whereas the second pathway recruits the p38 kinases. Upstream inputs are diverse, and include small GTPases (primarily Rac and Cdc42; secondarily Ras) acting through mammalian homologs of the yeast Ste20 kinase, other kinase subfamilies (e.g. GC kinase) and ceramide, a putative second messenger for certain TNF-alpha actions. These two cascades signal cell cycle delay, cellular repair or apoptosis in most cells, as well as activation of immune and reticuloendothelial cells.
Collapse
Affiliation(s)
- J M Kyriakis
- Diabetes Unit, Massachusetts General Hospital, Charlestown, USA
| | | |
Collapse
|
588
|
Force T, Pombo CM, Avruch JA, Bonventre JV, Kyriakis JM. Stress-activated protein kinases in cardiovascular disease. Circ Res 1996; 78:947-53. [PMID: 8635244 DOI: 10.1161/01.res.78.6.947] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- T Force
- Cardiac Unit, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | |
Collapse
|
589
|
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of serine/threonine specific, proline directed, protein kinases which are activated by a wide spectrum of extracellular stimuli. MAPK activation is achieved through kinase cascades, which include a MAPK kinase (MAPKK or MEK) and a MAPKK/MEK kinase (MAPKKK/MEKK). These cascades serve as information relays, connecting cell-surface receptors to specific transcription factors and other regulatory proteins, thus allowing extracellular signals to regulate the expression of specific genes. Genetic and biochemical analyses have revealed many tiers in the regulation of the activities of MAPKs, as well as different routes that lead to the activation of an individual MAPK. An emerging topic of great interest is the basis for specificity in the activation of individual MAPKs and their ability to recognize their substrates.
Collapse
Affiliation(s)
- B Su
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston 77030, USA.
| | | |
Collapse
|
590
|
Na S, Chuang TH, Cunningham A, Turi TG, Hanke JH, Bokoch GM, Danley DE. D4-GDI, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J Biol Chem 1996; 271:11209-13. [PMID: 8626669 DOI: 10.1074/jbc.271.19.11209] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Apoptosis (programmed cell death) is a fundamental process for normal development of multicellular organisms, and is involved in the regulation of the immune system, normal morphogenesis, and maintenance of homeostasis, ICE/CED-3 family cysteine proteases have been implicated directly in apoptosis, but relatively few of the substrates through which their action is mediated have been identified. Here we report that D4-GDI, an abundant hematopoietic cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, is a substrate of the apoptosis protease CPP32/Yama/Apopain. D4-GDI was rapidly truncated to a 23-kDa fragment in Jurkat cells with kinetics that parallel the onset of apoptosis following Fas cross-linking with agonistic antibody or treatment with staurosporine. Fas- and staurosporine-induced apoptosis as well as cleavage of D4-GDI were inhibited by the ICE inhibitor, YVAD-cmk. D4-GDI was cleaved in vitro by recombinant CPP32 expressed in Escherichia coli to form a 23-kDa fragment. The CPP32-mediated cleavage of D4-GDI was completely inhibited by 1 microM DEVD-CHO, a reported selective inhibitor of CPP32. In contrast, the ICE-selective inhibitors, YVAD-CHO or YVAD-cmk, did not inhibit CPP32-mediated D4-GDI cleavage at concentrations up to 50 microM. N-terminal sequencing of the 23-kDa D4-GDI fragment demonstrated that D4-GDI was cleaved between Asp19 and Ser20 of the poly(ADP-ribose) polymerase-like cleavage sequence DELD19S. These data suggest that regulation by D4-GDI of Rho family GTPases may be disrupted during apoptosis by CPP32-mediated cleavage of the GDI protein.
Collapse
Affiliation(s)
- S Na
- Department of Molecular Sciences, Pfizer Inc., Groton, Connecticut 06340, USA
| | | | | | | | | | | | | |
Collapse
|
591
|
Harden N, Lee J, Loh HY, Ong YM, Tan I, Leung T, Manser E, Lim L. A Drosophila homolog of the Rac- and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures. Mol Cell Biol 1996; 16:1896-908. [PMID: 8628256 PMCID: PMC231177 DOI: 10.1128/mcb.16.5.1896] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Changes in cell morphology are essential in the development of a multicellular organism. The regulation of the cytoskeleton by the Rho subfamily of small GTP-binding proteins is an important determinant of cell shape. The Rho subfamily has been shown to participate in a variety of morphogenetic processes during Drosophila melanogaster development. We describe here a Drosophila homolog, DPAK, of the serine/threonine kinase PAK, a protein which is a target of the Rho subfamily proteins Rac and Cdc42. Rac, Cdc42, and PAK have previously been implicated in signaling by c-Jun amino-terminal kinases. DPAK bound to activated (GTP-bound) Drosophila Rac (DRacA) and Drosophila Cdc42. Similarities in the distributions of DPAK, integrin, and phosphotyrosine suggested an association of DPAK with focal adhesions and Cdc42- and Rac-induced focal adhesion-like focal complexes. DPAK was elevated in the leading edge of epidermal cells, whose morphological changes drive dorsal closure of the embryo. We have previously shown that the accumulation of cytoskeletal elements initiating cell shape changes in these cells could be inhibited by expression of a dominant-negative DRacA transgene. We show that leading-edge epidermal cells flanking segment borders, which express particularly large amounts of DPAK, undergo transient losses of cytoskeletal structures during dorsal closure. We propose that DPAK may be regulating the cytoskeleton through its association with focal adhesions and focal complexes and may be participating with DRacA in a c-Jun amino-terminal kinase signaling pathway recently demonstrated to be required for dorsal closure.
Collapse
Affiliation(s)
- N Harden
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, National University of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
592
|
|
593
|
Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J. Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr Biol 1996; 6:598-605. [PMID: 8805275 DOI: 10.1016/s0960-9822(02)00546-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Rho-related GTP-binding proteins Cdc42 and Rac1 have been shown to regulate signaling pathways involved in cytoskeletal reorganization and stress-responsive JNK (Jun N-terminal kinase) activation. However, to date, the GTPase targets that mediate these effects have not been identified. PAK defines a growing family of mammalian kinases that are related to yeast Ste20 and are activated in vitro through binding to Cdc42 and Rac1 (PAK: p21 Cdc42-/Rac-activated kinase). Clues to PAK function have come from studies of Ste20, which controls the activity of the yeast mating mitogen-activated protein (MAP) kinase cascade, in response to a heterotrimeric G protein and Cdc42. RESULTS To initiate studies of mammalian Ste20-related kinases, we identified a novel human PAK isoform, hPAK1. When expressed in yeast, hPAK1 was able to replace Ste20 in the pheromone response pathway. Chemical mutagenesis of a plasmid encoding hPAK1, followed by transformation into yeast, led to the identification of a potent constitutively active hPAK1 with a substitution of a highly conserved amino-acid residue (L107F) in the Cdc42-binding domain. Expression of the hPAK1(L107F) allele in mammalian cells led to specific activation of the Jun N-terminal kinase MAP kinase pathway, but not the mechanistically related extracellular signal-regulated MAP kinase pathway. CONCLUSIONS These results demonstrate that hPAK1 is a GTPase effector controlling a downstream MAP kinase pathway in mammalian cells, as Ste20 does in yeast. Thus, PAK and Ste20 kinases play key parts in linking extracellular signals from membrane components, such as receptor-associated G proteins and Rho-related GTPases, to nuclear responses, such as transcriptional activation.
Collapse
Affiliation(s)
- J L Brown
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
594
|
Abstract
Genetic screening and biochemical studies during the past few years have led to the discovery of a family of cell growth regulatory proteins and oncogene products for which the Dbl oncoprotein is a prototype. These putative guanine nucleotide exchange factors for Rho family small GTP-binding proteins (G proteins) all contain a Dbl homology domain in tandem with a pleckstrin homology domain, and seem to activate specific members of the Rho family of proteins to elicit various biological functions in cells. The Dbl homology domain is directly responsible for binding and activating the small G proteins to mediate downstream signaling events, whereas the pleckstrin homology domain may serve to target these positive regulators of G proteins to specific cellular locations to carry out the signaling task. Despite the increasing interest in the Dbl family of proteins, there is still a good deal to learn regarding the biochemical mechanisms that underlie their diverse biological functions.
Collapse
Affiliation(s)
- R A Cerione
- Department of Pharmacology, Cornell University, Ithaca, NY 14853-6401, USA
| | | |
Collapse
|
595
|
Abstract
Kinases belonging to the mitogen-activated protein kinase (MAPK) family are used throughout evolution to control the cellular responses to external signals such as growth factors, nutrient status, stress or inductive signals. Many important substrates for MAPKs are transcription factors, and both the genetic and the biochemical links between MAPKs and transcription factors are becoming increasingly well understood.
Collapse
Affiliation(s)
- R Treisman
- Transcription Laboratory, Imperial Cancer Research Fund, PO Box 123, Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
596
|
Raingeaud J, Whitmarsh AJ, Barrett T, Dérijard B, Davis RJ. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 1996; 16:1247-55. [PMID: 8622669 PMCID: PMC231107 DOI: 10.1128/mcb.16.3.1247] [Citation(s) in RCA: 1069] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The p38 mitogen-activated protein (MAP) kinase signal transduction pathway is activated by proinflammatory cytokines and environmental stress. The detection of p38 MAP kinase in the nucleus of activated cells suggests that p38 MAP kinase can mediate signaling to the nucleus. To test this hypothesis, we constructed expression vectors for activated MKK3 and MKK6, two MAP kinase kinases that phosphorylate and activate p38 MAP kinase. Expression of activated MKK3 and MKK6 in cultured cells caused a selective increase in p38 MAP kinase activity. Cotransfection experiments demonstrated that p38 MAP kinase activation causes increased reporter gene expression mediated by the transcription factors ATF2 and Elk-1. These data demonstrate that the nucleus is one target of the p38 MAP kinase signal transduction pathway.
Collapse
Affiliation(s)
- J Raingeaud
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester 01605 USA
| | | | | | | | | |
Collapse
|
597
|
Han J, Lee JD, Jiang Y, Li Z, Feng L, Ulevitch RJ. Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J Biol Chem 1996; 271:2886-91. [PMID: 8621675 DOI: 10.1074/jbc.271.6.2886] [Citation(s) in RCA: 430] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases require dual phosphorylation on threonine and tyrosine residues in order to gain enzymatic activity. This activation is carried out by a family of enzymes known as MAP kinase kinases (MKKs or MEKs). It appears that there are at least four subgroups in this family; MEK1/MEK2 subgroup that activates ERK1/ERK2, MEK5 that activates ERK5/BMK1, MKK3 that activates p38, and MKK4 that activates p38 and Jun kinase. Here we describe the characteristics of a new MKK termed MKK6. The clones we isolated encode two splice isoforms of human MKK6 comprised of 278 and 334 amino acids, respectively, and one murine MKK6 with 237 amino acids. Sequence information derived from cDNA cloning indicated that MKK6 is most closely related to MKK3. The functional data revealed from co-transfection assays suggests that MKK6, like MKK3, selectively phosphorylates p38. Unlike the previously described MKKs (or MEKs), MKK6 exists in a variety of alternatively spliced isoforms with distinct patterns of tissue expression. This suggests novel mechanisms regulating activation and/or function of various forms of MKK6.
Collapse
Affiliation(s)
- J Han
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
598
|
Chapter 29. The MAP Kinase Family: New “MAPs” for Signal Transduction Pathways and Novel Targets for Drug Discovery. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1996. [DOI: 10.1016/s0065-7743(08)60468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
599
|
Abstract
Rapamycin has potent immunosuppressive properties reflecting its ability to disrupt cytokine signaling that promotes lymphocyte growth and differentiation. In IL-2-stimulated T cells, rapamycin impedes progression through the G1/S transition of the proliferation cycle, resulting in a mid-to-late G1 arrest. Two major biochemical alterations underlie this mode of action. The first one affects the phosphorylation/activation of the p70 S6 kinase (p70s6k), an early event of cytokine-induced mitogenic response. By inhibiting this enzyme, whose major substrate is the 40S ribosomal subunit S6 protein, rapamycin reduces the translation of certain mRNA encoding for ribosomal proteins and elongation factors, thereby decreasing protein synthesis. A second, later effect of rapamycin in IL-2-stimulated T cells is an inhibition of the enzymatic activity of the cyclin-dependent kinase cdk2-cyclin E complex, which functions as a crucial regulator of G1/S transition. This inhibition results from a prevention of the decline of the p27 cdk inhibitor, that normally follows IL-2 stimulation. To mediate these biochemical alterations, rapamycin needs to bind to intracellular proteins, termed FKBP, thereby forming a unique effector molecular complex. However, neither(p70s6k) inhibition, nor p27-induced cdk2-cyclin E inhibition are directly caused by the FKBP-rapamycin complex. Instead, this complex physically interacts with a novel protein, designated "mammalian target of rapamycin" (mTOR), which has sequence homology with the catalytic domain of phosphatidylinositol kinases and may therefore be itself a kinase. mTOR may act upstream of (p70s6K) and cdk2-cyclin E in a linear or bifurcated pathway of growth regulation. Molecular dissection of this pathway should further unravel cytokine-mediated signaling processes and help devise new immunosuppressants.
Collapse
Affiliation(s)
- F J Dumont
- Department of Immunology, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | |
Collapse
|
600
|
Kramm CM, Sena-Esteves M, Barnett FH, Rainov NG, Schuback DE, Yu JS, Pechan PA, Paulus W, Chiocca EA, Breakefield XO. Gene therapy for brain tumors. Brain Pathol 1995; 5:345-81. [PMID: 8974620 DOI: 10.1111/j.1750-3639.1995.tb00615.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy has opened new doors for treatment of neoplastic diseases. This new approach seems very attractive, especially for glioblastomas, since treatment of these brain tumors has failed using conventional therapy regimens. Many different modes of gene therapy for brain tumors have been tested in culture and in vivo. Many of these approaches are based on previously established anti-neoplastic principles, like prodrug activating enzymes, inhibition of tumor neovascularization, and enhancement of the normally weak anti-tumor immune response. Delivery of genes to tumor cells has been mediated by a number of viral and synthetic vectors. The most widely used paradigm is based on the activation of ganciclovir to a cytotoxic compound by a viral enzyme, thymidine kinase, which is expressed by tumor cells, after the gene has been introduced by a retroviral vector. This paradigm has proven to be a potent therapy with minimal side effects in several rodent brain tumor models, and has proceeded to phase 1 clinical trials. In this review, current gene therapy strategies and vector systems for treatment of brain tumors will be described and discussed in light of further developments needed to make this new treatment modality clinically efficacious.
Collapse
Affiliation(s)
- C M Kramm
- Neuroscience Center, Massachusetts General Hospital, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|