551
|
Li R, Zou X, Zhu T, Xu H, Li X, Zhu L. Destruction of Neutrophil Extracellular Traps Promotes the Apoptosis and Inhibits the Invasion of Gastric Cancer Cells by Regulating the Expression of Bcl-2, Bax and NF-κB. Onco Targets Ther 2020; 13:5271-5281. [PMID: 32606746 PMCID: PMC7293391 DOI: 10.2147/ott.s227331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction This study aimed to investigate the effects of Neutrophil extracellular traps (NETs) destruction on the apoptosis and invasion of gastric cancer cells and the involved mechanisms. Methods Primary human neutrophils were isolated and co-cultured with three gastric cancer cells (BGC-823, SGC7901 and MKN28), and phorbol-12-myristate-13-acetate was added to generate NETs. Expression of NETs (SPINK5/LEKTI) and Cit Histone H3 were examined by immunofluorescent analysis and Western blot. Cancer cells were then divided into five groups: Control, NETs, Neutrophil, Amidine and DNase I. Cell apoptosis and invasion were examined by Transwell assay and flow cytometry, respectively. Expression of NF-κB p65, Bcl-2 and Bax was determined by RT-PCR, immunofluorescent analysis and Western blot. Results The expression of NETs (SPINK5/LEKTI) and Cit Histone H3 after co-culture increased significantly (P < 0.05), suggesting that gastric cancer cells could promote NETs generation. The Control, NETs and Neutrophil groups exhibited similar apoptosis and invasion of gastric cancer cells and similar mRNA and protein levels of NF-κB p65, Bcl-2 and Bax. However, compared with the Control group, the apoptosis and invasion of gastric cancer cells in both Amidine and DNase I groups were enhanced and weakened, respectively (P < 0.05). Moreover, both Amidine and DNase I groups showed much higher mRNA and protein levels of NF-κB p65 and Bax and lower mRNA and protein levels of Bcl-2 than the Control group (P < 0.05). Conclusion NETs destruction promoted the apoptosis and inhibited the invasion of gastric cancer cells by regulating the expression of Bcl-2, Bax and NF-κB.
Collapse
Affiliation(s)
- Rong Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| | - Xiaoming Zou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| | - Tong Zhu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| | - Haiyan Xu
- Department of Medicine, Central Hospital of Prison Administration Bureau of Heilongjiang Province, Harbin, Heilongjiang 150000, People's Republic of China
| | - Xiaolin Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| | - Lei Zhu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| |
Collapse
|
552
|
Li F, Huangyang P, Burrows M, Guo K, Riscal R, Godfrey J, Lee KE, Lin N, Lee P, Blair IA, Keith B, Li B, Simon MC. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat Cell Biol 2020; 22:728-739. [PMID: 32367049 PMCID: PMC7286794 DOI: 10.1038/s41556-020-0511-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
The crosstalk between deregulated hepatocyte metabolism and cells within the tumour microenvironment, as well as the consequent effects on liver tumorigenesis, are not completely understood. We show here that hepatocyte-specific loss of the gluconeogenic enzyme fructose 1,6-bisphosphatase 1 (FBP1) disrupts liver metabolic homeostasis and promotes tumour progression. FBP1 is universally silenced in both human and murine liver tumours. Hepatocyte-specific Fbp1 deletion results in steatosis, concomitant with activation and senescence of hepatic stellate cells (HSCs), exhibiting a senescence-associated secretory phenotype. Depleting senescent HSCs by 'senolytic' treatment with dasatinib/quercetin or ABT-263 inhibits tumour progression. We further demonstrate that FBP1-deficient hepatocytes promote HSC activation by releasing HMGB1; blocking its release with the small molecule inflachromene limits FBP1-dependent HSC activation, the subsequent development of the senescence-associated secretory phenotype and tumour progression. Collectively, these findings provide genetic evidence for FBP1 as a metabolic tumour suppressor in liver cancer and establish a critical crosstalk between hepatocyte metabolism and HSC senescence that promotes tumour growth.
Collapse
Affiliation(s)
- Fuming Li
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peiwei Huangyang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Helen Diller Cancer Center, UCSF, San Francisco, CA, USA
| | - Michelle Burrows
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathy Guo
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Romain Riscal
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Godfrey
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyoung Eun Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nan Lin
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Trinity Partners, LLC, Waltham, MA, USA
| | - Pearl Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Blair
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Keith
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
553
|
Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer 2020; 6:838-857. [PMID: 32482536 DOI: 10.1016/j.trecan.2020.05.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
Abstract
Several cancer interventions induce DNA damage and promote senescence in cancer and nonmalignant cells. Senescent cells secrete a collection of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP). SASP factors are able to potentiate various aspects of tumorigenesis, including proliferation, metastasis, and immunosuppression. Moreover, the accumulation and persistence of therapy-induced senescent cells can promote tissue dysfunction and the early onset of various age-related symptoms in treated cancer patients. Here, we review in detail the mechanisms by which cellular senescence contributes to cancer development and the side effects of cancer therapies. We also review how pharmacological interventions to eliminate senescent cells or inhibit SASP production can mitigate these negative effects and propose therapeutic strategies based on the age of the patient.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Jaskaren Kohli
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands.
| |
Collapse
|
554
|
BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death Differ 2020; 27:3097-3116. [PMID: 32457483 DOI: 10.1038/s41418-020-0564-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
TP53 wild-type breast tumors rarely undergo a complete pathological response after chemotherapy treatment. These patients have an extremely poor survival rate and studies show these tumors preferentially undergo senescence instead of apoptosis. These senescent cells persist after chemotherapy and secrete cytokines and chemokines comprising the senescence associated secretory phenotype, which promotes survival, proliferation, and metastasis. We hypothesized that eliminating senescent tumor cells would improve chemotherapy response and extend survival. Previous studies have shown "senolytic" agents selectively kill senescent normal cells, but their efficacy in killing chemotherapy-induced senescent cancer cells is unknown. We show that ABT-263, a BH3 mimetic that targets antiapoptotic proteins BCL2/BCL-XL/BCL-W, had no effect on proliferating cells, but rapidly and selectively induced apoptosis in a subset of chemotherapy-treated cancer cells, though sensitivity required days to develop. Low NOXA expression conferred resistance to ABT-263 in some cells, necessitating additional MCL1 inhibition. Gene editing confirmed breast cancer cells relied on BCL-XL or BCL-XL/MCL1 for survival in senescence. In a mouse model of breast cancer, ABT-263 treatment following chemotherapy led to apoptosis, greater tumor regression, and longer survival. Our results reveal cancer cells that have survived chemotherapy by entering senescence can be eliminated using BH3 mimetic drugs that target BCL-XL or BCL-XL/MCL1. These drugs could help minimize residual disease and extend survival in breast cancer patients that otherwise have a poor prognosis and are most in need of improved therapies.
Collapse
|
555
|
Ma X, Zheng Q, Zhao G, Yuan W, Liu W. Regulation of cellular senescence by microRNAs. Mech Ageing Dev 2020; 189:111264. [PMID: 32450085 DOI: 10.1016/j.mad.2020.111264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/26/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
Abstract
Cellular senescence is mainly characterized as a stable proliferation arrest and a senescence associated secretory phenotype (SASP). Senescence is triggered by diverse stimuli such as telomere shortening, oxidative stress, oncogene activation and DNA damage, and consequently contributes to multiple physiology and pathology outcomes, including embryonic development, wound healing and tumor suppression as well as aging or age-associated diseases. Interestingly, therapeutic clearance of senescent cells in tissues has recently been demonstrated to be beneficial for extending a healthy lifespan and for improving numerous age-related disorders. However the molecular mechanisms of senescence regulation remain partially understood. Theoretically, senescence is tightly regulated by a vast number of molecules, among which the p16 and p53 pathways are the most classical. In addition, intracellular cellular calcium signaling has emerged as a key regulator of senescence. In the last few decades, a growing number of studies have demonstrated that microRNAs (miRNAs, small non-coding RNAs) are strongly implicated in controlling senescence, especially at the transcriptional and post-transcriptional levels. In this review we will discuss the involvement of miRNAs in modulating senescence through the major p16, p53, SASP and calcium signaling pathways, thus aiming to reveal the mechanisms of how miRNAs regulate cellular senescence.
Collapse
Affiliation(s)
- Xingjie Ma
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Qingbin Zheng
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guangming Zhao
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenjie Yuan
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
556
|
Liang X, Xu W. miR-181a-5p regulates the proliferation and apoptosis of glomerular mesangial cells by targeting KLF6. Exp Ther Med 2020; 20:1121-1128. [PMID: 32742352 DOI: 10.3892/etm.2020.8780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic loss of kidney function that frequently occurs in patients with diabetes mellitus and is characterized by abnormal glomerular mesangial cell (GMC) proliferation and apoptosis. By using microarray analysis, microRNA (miR)-181a-5p has previously been identified to be dysregulated in DN. The present study aimed to determine the underlying molecular mechanisms and function of miR-181a-5p in GMCs under DN conditions. First, reverse transcription-quantitative PCR was performed to detect miR-181a-5p and kruppel-like factor 6 (KLF6) expression in GMCs following high-glucose treatment. Subsequently, MTT and flow cytometric assays were performed in order to determine the effect of miR-181a-5p and KLF6 on high-glucose-driven GMC proliferation and apoptosis. After confirming that KLF6 was a target gene of miR-181a-5p via a bioinformatics analysis and luciferase reporter assay, the mRNA and protein expression levels of associated factors in different treatment groups were measured. The results demonstrated that miR-181a-5p was significantly downregulated, while KLF6 was significantly upregulated in GMCs following treatment with high glucose. Furthermore, overexpression of miR-181a led to suppression of cell proliferation and promoted apoptosis of GMCs induced by high glucose, while these effects were inhibited by co-transfection with KLF6. Finally, miR-181-5p was demonstrated to inhibit the expression of KLF6, Bcl-2, Wnt1 and β-catenin, while increasing the expression levels of Bax and caspase-3. In conclusion, the expression levels of miR-181a-5p were downregulated in GMCs following treatment with high glucose and overexpression of miR-181a-5p may inhibit GMC proliferation and promote apoptosis, at least partially through targeting KLF6 via the Wnt/β-catenin signaling pathway. Overall, the results of the present study suggest that miR-181a-5p may have a crucial role in the occurrence and development of DN and may be a valuable diagnostic marker and therapeutic target for DN.
Collapse
Affiliation(s)
- Xinyue Liang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200127, P.R. China
| |
Collapse
|
557
|
Sharma AK, Roberts RL, Benson RD, Pierce JL, Yu K, Hamrick MW, McGee-Lawrence ME. The Senolytic Drug Navitoclax (ABT-263) Causes Trabecular Bone Loss and Impaired Osteoprogenitor Function in Aged Mice. Front Cell Dev Biol 2020; 8:354. [PMID: 32509782 PMCID: PMC7252306 DOI: 10.3389/fcell.2020.00354] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/21/2020] [Indexed: 12/02/2022] Open
Abstract
Senescence is a cellular defense mechanism that helps cells prevent acquired damage, but chronic senescence, as in aging, can contribute to the development of age-related tissue dysfunction and disease. Previous studies clearly show that removal of senescent cells can help prevent tissue dysfunction and extend healthspan during aging. Senescence increases with age in the skeletal system, and selective depletion of senescent cells or inhibition of their senescence-associated secretory phenotype (SASP) has been reported to maintain or improve bone mass in aged mice. This suggests that promoting the selective removal of senescent cells, via the use of senolytic agents, can be beneficial in the treatment of aging-related bone loss and osteoporosis. Navitoclax (also known as ABT-263) is a chemotherapeutic drug reported to effectively clear senescent hematopoietic stem cells, muscle stem cells, and mesenchymal stromal cells in previous studies, but its in vivo effects on bone mass had not yet been reported. Therefore, the purpose of this study was to assess the effects of short-term navitoclax treatment on bone mass and osteoprogenitor function in old mice. Aged (24 month old) male and female mice were treated with navitoclax (50 mg/kg body mass daily) for 2 weeks. Surprisingly, despite decreasing senescent cell burden, navitoclax treatment decreased trabecular bone volume fraction in aged female and male mice (−60.1% females, −45.6% males), and BMSC-derived osteoblasts from the navitoclax treated mice were impaired in their ability to produce a mineralized matrix (−88% females, −83% males). Moreover, in vitro administration of navitoclax decreased BMSC colony formation and calcified matrix production by aged BMSC-derived osteoblasts, similar to effects seen with the primary BMSC from the animals treated in vivo. Navitoclax also significantly increased metrics of cytotoxicity in both male and female osteogenic cultures (+1.0 to +11.3 fold). Taken together, these results suggest a potentially harmful effect of navitoclax on skeletal-lineage cells that should be explored further to definitively assess navitoclax’s potential (or risk) as a therapeutic agent for combatting age-related musculoskeletal dysfunction and bone loss.
Collapse
Affiliation(s)
- Anuj K Sharma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rachel L Roberts
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Reginald D Benson
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jessica L Pierce
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
| |
Collapse
|
558
|
Cho HJ, Yang EJ, Park JT, Kim JR, Kim EC, Jung KJ, Park SC, Lee YS. Identification of SYK inhibitor, R406 as a novel senolytic agent. Aging (Albany NY) 2020; 12:8221-8240. [PMID: 32379705 PMCID: PMC7244031 DOI: 10.18632/aging.103135] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
The selective removal of senescent cells by senolytics is suggested as a potential approach to reverse aging and extend lifespan. Using high-throughput screening with replicative senescence of human diploid fibroblasts (HDFs), we identified a novel senolytic drug R406 that showed selective toxicity in senescent cells. Using flow cytometry and caspase expression analysis, we confirmed that R406 caused apoptotic cell death along with morphological changes in senescent cells. Interestingly, R406 altered the cell survival-related molecular processes including the inhibition of phosphorylation of the focal adhesion kinase (FAK) and p38 mitogen-activated protein kinase (MAPK) in senescent cells. This pattern was not observed in other known senolytic agent ABT263. Correspondingly, apoptotic cell death in senescent cells was induced by simultaneously blocking the FAK and p38 pathways. Taken together, we suggest that R406 acts as a senolytic drug by inducing apoptosis and reducing cell attachment capacity.
Collapse
Affiliation(s)
- Hyun-Ji Cho
- Well Aging Research Center, DGIST, Daegu 42988, Korea.,Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| | - Eun Jae Yang
- Department of New Biology, DGIST, Daegu 42988, Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Eok-Cheon Kim
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Kyong-Jin Jung
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Sang Chul Park
- Well Aging Research Center, DGIST, Daegu 42988, Korea.,Department of Molecular Medicine, Chonnam National University Medical School, Gwangju 58128, Korea.,The Future Life and Society Research Center, Chonnam National University, Gwangju 58128, Korea
| | - Young-Sam Lee
- Well Aging Research Center, DGIST, Daegu 42988, Korea.,Department of New Biology, DGIST, Daegu 42988, Korea
| |
Collapse
|
559
|
Galiana I, Lozano-Torres B, Sancho M, Alfonso M, Bernardos A, Bisbal V, Serrano M, Martínez-Máñez R, Orzáez M. Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. J Control Release 2020; 323:624-634. [PMID: 32376460 DOI: 10.1016/j.jconrel.2020.04.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023]
Abstract
The induction of senescence produces a stable cell cycle arrest in cancer cells, thereby inhibiting tumor growth; however, the incomplete immune cell-mediated clearance of senescent cells may favor tumor relapse, limiting the long-term anti-tumorigenic effect of such drugs. A combination of senescence induction and the elimination of senescent cells may, therefore, represent an efficient means to inhibit tumor relapse. In this study, we explored the antitumor efficacy of a combinatory senogenic and targeted senolytic therapy in an immunocompetent orthotopic mouse model of the aggressive triple negative breast cancer subtype. Following palbociclib-induced senogenesis and senolysis by treatment with nano-encapsulated senolytic agent navitoclax, we observed inhibited tumor growth, reduced metastases, and a reduction in the systemic toxicity of navitoclax. We believe that this combination treatment approach may have relevance to other senescence-inducing chemotherapeutic drugs and additional tumor types. SIGNIFICANCE: While the application of senescence inducers represents a successful treatment strategy in breast cancer patients, some patients still relapse, perhaps due to the subsequent accumulation of senescent cells in the body that can promote tumor recurrence. We now demonstrate that a combination treatment of a senescence inducer and a senolytic nanoparticle selectively eliminates senescent cells, delays tumor growth, and reduces metastases in a mouse model of aggressive breast cancer. Collectively, our results support targeted senolysis as a new therapeutic opportunity to improve outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Beatriz Lozano-Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Mónica Sancho
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Viviana Bisbal
- Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026, Valencia, Spain.
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| |
Collapse
|
560
|
Merkt W, Bueno M, Mora AL, Lagares D. Senotherapeutics: Targeting senescence in idiopathic pulmonary fibrosis. Semin Cell Dev Biol 2020; 101:104-110. [PMID: 31879264 PMCID: PMC7913053 DOI: 10.1016/j.semcdb.2019.12.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease characterized by progressive scarring of the lung tissue, leading to respiratory failure. There is no cure for IPF, and current anti-fibrotic treatments modestly arrest its further progression. IPF prevalence and incidence increase with age, which is a recognized risk factor. Intense clinical and basic research over the last fifteen years has shown that hallmarks of accelerated aging are present in the lungs of patients with IPF. Different cell types in IPF lungs exhibit premature hallmarks of aging, including telomere attrition and cellular senescence. In this Review, we discuss recent insights into the mechanisms behind these age-related alterations and their contribution to the development of lung fibrosis. We focus on the genetic and molecular basis of telomere attrition in alveolar type II epithelial cells, which promote cellular senescence and lung fibrosis. Mechanistically, senescent cells secrete pro-fibrotic factors that activate scar-forming myofibroblasts. Ultimately, senescent alveolar epithelial cells lose their regenerative capacity, impeding fibrosis resolution. In addition, mitochondrial dysfunction is strongly associated with the appearance of senescent epithelial cells and senescent myofibroblasts in IPF, which persist in the fibrotic tissue by adapting their metabolic pathways and becoming resistant to apoptosis. We discuss emerging novel therapeutic strategies to treat IPF by targeting cellular senescence with the so-called senotherapeutics.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany; Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Bueno
- Aging Institute. School of Medicine. University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Aging Institute. School of Medicine. University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
561
|
Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020; 16:263-275. [PMID: 32161396 PMCID: PMC7227781 DOI: 10.1038/s41574-020-0335-y] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
With the ageing of the global population, interest is growing in the 'geroscience hypothesis', which posits that manipulation of fundamental ageing mechanisms will delay (in parallel) the appearance or severity of multiple chronic, non-communicable diseases, as these diseases share the same underlying risk factor - namely, ageing. In this context, cellular senescence has received considerable attention as a potential target in preventing or treating multiple age-related diseases and increasing healthspan. Here we review mechanisms of cellular senescence and approaches to target this pathway therapeutically using 'senolytic' drugs that kill senescent cells or inhibitors of the senescence-associated secretory phenotype (SASP). Furthermore, we highlight the evidence that cellular senescence has a causative role in multiple diseases associated with ageing. Finally, we focus on the role of cellular senescence in a number of endocrine diseases, including osteoporosis, metabolic syndrome and type 2 diabetes mellitus, as well as other endocrine conditions. Although much remains to be done, considerable preclinical evidence is now leading to the initiation of proof-of-concept clinical trials using senolytics for several endocrine and non-endocrine diseases.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
562
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
563
|
Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol 2020; 20:669-679. [PMID: 32346095 DOI: 10.1038/s41577-020-0300-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Cell cycle proteins that are often dysregulated in malignant cells, such as cyclin-dependent kinase 4 (CDK4) and CDK6, have attracted considerable interest as potential targets for cancer therapy. In this context, multiple inhibitors of CDK4 and CDK6 have been developed, including three small molecules (palbociclib, abemaciclib and ribociclib) that are currently approved for the treatment of patients with breast cancer and are being extensively tested in individuals with other solid and haematological malignancies. Accumulating preclinical and clinical evidence indicates that the anticancer activity of CDK4/CDK6 inhibitors results not only from their ability to block the cell cycle in malignant cells but also from a range of immunostimulatory effects. In this Review, we discuss the ability of anticancer cell cycle inhibitors to modulate various immune functions in support of effective antitumour immunity.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Selina Chen-Kiang
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université de Paris, Paris, France.
| |
Collapse
|
564
|
Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, Wang Y, Chen W, Yu X, Wang L, Chen H, Li C, Luo T, Deng H. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res 2020; 30:574-589. [PMID: 32341413 PMCID: PMC7184167 DOI: 10.1038/s41422-020-0314-9] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence, a persistent state of cell cycle arrest, accumulates in aged organisms, contributes to tissue dysfunction, and drives age-related phenotypes. The clearance of senescent cells is expected to decrease chronic, low-grade inflammation and improve tissue repair capacity, thus attenuating the decline of physical function in aged organisms. However, selective and effective clearance of senescent cells of different cell types has proven challenging. Herein, we developed a prodrug strategy to design a new compound based on the increased activity of lysosomal β-galactosidase (β-gal), a primary characteristic of senescent cells. Our prodrug SSK1 is specifically activated by β-gal and eliminates mouse and human senescent cells independently of senescence inducers and cell types. In aged mice, our compound effectively cleared senescent cells in different tissues, decreased the senescence- and age-associated gene signatures, attenuated low-grade local and systemic inflammation, and restored physical function. Our results demonstrate that lysosomal β-gal can be effectively leveraged to selectively eliminate senescent cells, providing a novel strategy to develop anti-aging interventions.
Collapse
Affiliation(s)
- Yusheng Cai
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, and School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Huanhuan Zhou
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, and School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing, 100191, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Yinhua Zhu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Sun
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, and School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yin Ji
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, and School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Anqi Xue
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, and School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yuting Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, and School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Wenhan Chen
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, and School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Xiaojie Yu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, and School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Longteng Wang
- School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-NIBS, Peking University, Beijing, 100871, China
| | - Han Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Tuoping Luo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China. .,Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Hongkui Deng
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, and School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing, 100191, China. .,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
565
|
Pungsrinont T, Sutter MF, Ertingshausen MCCM, Lakshmana G, Kokal M, Khan AS, Baniahmad A. Senolytic compounds control a distinct fate of androgen receptor agonist- and antagonist-induced cellular senescent LNCaP prostate cancer cells. Cell Biosci 2020; 10:59. [PMID: 32351687 PMCID: PMC7183592 DOI: 10.1186/s13578-020-00422-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background The benefit of inducing cellular senescence as a tumor suppressive strategy remains questionable due to the senescence-associated secretory phenotype. Hence, studies and development of senolytic compounds that induce cell death in senescent cells have recently emerged. Senescent cells are hypothesized to exhibit different upregulated pro-survival/anti-apoptotic networks depending on the senescent inducers. This might limit the effect of a particular senolytic compound that targets rather only a specific pathway. Interestingly, cellular senescence in prostate cancer (PCa) cells can be induced by either androgen receptor (AR) agonists at supraphysiological androgen level (SAL) used in bipolar androgen therapy or by AR antagonists. This challenges to define ligand-specific senolytic compounds. Results Here, we first induced cellular senescence by treating androgen-sensitive PCa LNCaP cells with either SAL or the AR antagonist Enzalutamide (ENZ). Subsequently, cells were incubated with the HSP90 inhibitor Ganetespib (GT), the Bcl-2 family inhibitor ABT263, or the Akt inhibitor MK2206 to analyze senolysis. GT and ABT263 are known senolytic compounds. We observed that GT exhibits senolytic activity specifically in SAL-pretreated PCa cells. Mechanistically, GT treatment results in reduction of AR, Akt, and phospho-S6 (p-S6) protein levels. Surprisingly, ABT263 lacks senolytic effect in both AR agonist- and antagonist-pretreated cells. ABT263 treatment does not affect AR, Akt, or S6 protein levels. Treatment with MK2206 does not reduce AR protein level and, as expected, potently inhibits Akt phosphorylation. However, ENZ-induced cellular senescent cells undergo apoptosis by MK2206, whereas SAL-treated cells are resistant. In line with this, we reveal that the pro-survival p-S6 level is higher in SAL-induced cellular senescent PCa cells compared to ENZ-treated cells. These data indicate a difference in the agonist- or antagonist-induced cellular senescence and suggest a novel role of MK2206 as a senolytic agent preferentially for AR antagonist-treated cells. Conclusion Taken together, our data suggest that both AR agonist and antagonist induce cellular senescence but differentially upregulate a pro-survival signaling which preferentially sensitize androgen-sensitive PCa LNCaP cells to a specific senolytic compound.
Collapse
Affiliation(s)
- Thanakorn Pungsrinont
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| | - Malika Franziska Sutter
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany.,2Department of Hematology and Medical Oncology, Jena University Hospital, Jena, Germany
| | | | - Gopinath Lakshmana
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| | - Miriam Kokal
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| | - Amir Saeed Khan
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany.,3Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Aria Baniahmad
- 1Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| |
Collapse
|
566
|
He Y, Zhang X, Chang J, Kim HN, Zhang P, Wang Y, Khan S, Liu X, Zhang X, Lv D, Song L, Li W, Thummuri D, Yuan Y, Wiegand JS, Ortiz YT, Budamagunta V, Elisseeff JH, Campisi J, Almeida M, Zheng G, Zhou D. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun 2020; 11:1996. [PMID: 32332723 PMCID: PMC7181703 DOI: 10.1038/s41467-020-15838-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/27/2020] [Indexed: 01/10/2023] Open
Abstract
Small molecules that selectively kill senescent cells (SCs), termed senolytics, have the potential to prevent and treat various age-related diseases and extend healthspan. The use of Bcl-xl inhibitors as senolytics is largely limited by their on-target and dose-limiting platelet toxicity. Here, we report the use of proteolysis-targeting chimera (PROTAC) technology to reduce the platelet toxicity of navitoclax (also known as ABT263), a Bcl-2 and Bcl-xl dual inhibitor, by converting it into PZ15227 (PZ), a Bcl-xl PROTAC, which targets Bcl-xl to the cereblon (CRBN) E3 ligase for degradation. Compared to ABT263, PZ is less toxic to platelets, but equally or slightly more potent against SCs because CRBN is poorly expressed in platelets. PZ effectively clears SCs and rejuvenates tissue stem and progenitor cells in naturally aged mice without causing severe thrombocytopenia. With further improvement, Bcl-xl PROTACs have the potential to become safer and more potent senolytic agents than Bcl-xl inhibitors.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jianhui Chang
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yingying Wang
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sajid Khan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xingui Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xin Zhang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lin Song
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wen Li
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Dinesh Thummuri
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Janet S Wiegand
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yuma T Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Vivekananda Budamagunta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
567
|
Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL. Reducing Senescent Cell Burden in Aging and Disease. Trends Mol Med 2020; 26:630-638. [PMID: 32589933 DOI: 10.1016/j.molmed.2020.03.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Cellular senescence is a primary aging process and tumor suppressive mechanism characterized by irreversible growth arrest, apoptosis resistance, production of a senescence-associated secretory phenotype (SASP), mitochondrial dysfunction, and alterations in DNA and chromatin. In preclinical aging models, accumulation of senescent cells is associated with multiple chronic diseases and disorders, geriatric syndromes, multimorbidity, and accelerated aging phenotypes. In animals, genetic and pharmacologic reduction of senescent cell burden results in the prevention, delay, and/or alleviation of a variety of aging-related diseases and sequelae. Early clinical trials have thus far focused on safety and target engagement of senolytic agents that clear senescent cells. We hypothesize that these pharmacologic interventions may have transformative effects on geriatric medicine.
Collapse
Affiliation(s)
- Robert J Pignolo
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA.
| | - João F Passos
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| | - Sundeep Khosla
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| | - Tamara Tchkonia
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| | - James L Kirkland
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
568
|
Xu CL, Sang B, Liu GZ, Li JM, Zhang XD, Liu LX, Thorne RF, Wu M. SENEBLOC, a long non-coding RNA suppresses senescence via p53-dependent and independent mechanisms. Nucleic Acids Res 2020; 48:3089-3102. [PMID: 32030426 PMCID: PMC7102969 DOI: 10.1093/nar/gkaa063] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important biological tuners. Here, we reveal the role of an uncharacterized lncRNA we call SENEBLOC that is expressed by both normal and transformed cells under homeostatic conditions. SENEBLOC was shown to block the induction of cellular senescence through dual mechanisms that converge to repress the expression of p21. SENEBLOC facilitates the association of p53 with MDM2 by acting as a scaffold to promote p53 turnover and decrease p21 transactivation. Alternatively, SENEBLOC was shown to affect epigenetic silencing of the p21 gene promoter through regulation of HDAC5. Thus SENEBLOC drives both p53-dependent and p53-independent mechanisms that contribute to p21 repression. Moreover, SENEBLOC was shown to be involved in both oncogenic and replicative senescence, and from the perspective of senolytic agents we show that the antagonistic actions of rapamycin on senescence are dependent on SENEBLOC expression.
Collapse
Affiliation(s)
- Cheng Lin Xu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences and First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Ben Sang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences and First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Guang Zhi Liu
- Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
| | - Jin Ming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Lian Xin Liu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences and First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
- School of Environmental & Life Sciences, University of Newcastle, NSW 2258, Australia
| | - Mian Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences and First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| |
Collapse
|
569
|
Guerrero A, Guiho R, Herranz N, Uren A, Withers DJ, Martínez‐Barbera JP, Tietze LF, Gil J. Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell 2020; 19:e13133. [PMID: 32175667 PMCID: PMC7189988 DOI: 10.1111/acel.13133] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/09/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022] Open
Abstract
Senescence is a stable growth arrest that impairs the replication of damaged, old or preneoplastic cells, therefore contributing to tissue homeostasis. Senescent cells accumulate during ageing and are associated with cancer, fibrosis and many age-related pathologies. Recent evidence suggests that the selective elimination of senescent cells can be effective on the treatment of many of these senescence-associated diseases. A universal characteristic of senescent cells is that they display elevated activity of the lysosomal β-galactosidase, and this has been exploited as a marker for senescence (senescence-associated β-galactosidase activity). Consequently, we hypothesized that galactose-modified cytotoxic prodrugs will be preferentially processed by senescent cells, resulting in their selective killing. Here, we show that different galactose-modified duocarmycin (GMD) derivatives preferentially kill senescent cells. GMD prodrugs induce selective apoptosis of senescent cells in a lysosomal β-galactosidase (GLB1)-dependent manner. GMD prodrugs can eliminate a broad range of senescent cells in culture, and treatment with a GMD prodrug enhances the elimination of bystander senescent cells that accumulate upon whole-body irradiation treatment of mice. Moreover, taking advantage of a mouse model of adamantinomatous craniopharyngioma (ACP), we show that treatment with a GMD prodrug selectively reduced the number of β-catenin-positive preneoplastic senescent cells. In summary, the above results make a case for testing the potential of galactose-modified duocarmycin prodrugs to treat senescence-related pathologies.
Collapse
Affiliation(s)
- Ana Guerrero
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Faculty of MedicineInstitute of Clinical Sciences (ICS)Imperial College LondonLondonUK
| | - Romain Guiho
- Developmental Biology and Cancer ProgrammeBirth Defects Research CentreGreat Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Nicolás Herranz
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Faculty of MedicineInstitute of Clinical Sciences (ICS)Imperial College LondonLondonUK
| | - Anthony Uren
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Faculty of MedicineInstitute of Clinical Sciences (ICS)Imperial College LondonLondonUK
| | - Dominic J. Withers
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Faculty of MedicineInstitute of Clinical Sciences (ICS)Imperial College LondonLondonUK
| | - Juan Pedro Martínez‐Barbera
- Developmental Biology and Cancer ProgrammeBirth Defects Research CentreGreat Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Lutz F. Tietze
- Institute of Organic and Biomolecular ChemistryGeorg‐August UniversityGöttingenGermany
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Faculty of MedicineInstitute of Clinical Sciences (ICS)Imperial College LondonLondonUK
| |
Collapse
|
570
|
Yabluchanskiy A, Tarantini S, Balasubramanian P, Kiss T, Csipo T, Fülöp GA, Lipecz A, Ahire C, DelFavero J, Nyul-Toth A, Sonntag WE, Schwartzman ML, Campisi J, Csiszar A, Ungvari Z. Pharmacological or genetic depletion of senescent astrocytes prevents whole brain irradiation-induced impairment of neurovascular coupling responses protecting cognitive function in mice. GeroScience 2020; 42:409-428. [PMID: 31960269 PMCID: PMC7205933 DOI: 10.1007/s11357-020-00154-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Whole brain irradiation (WBI, also known as whole brain radiation therapy or WBRT) is a mainstream therapy for patients with identifiable brain metastases and as a prophylaxis for microscopic malignancies. WBI accelerates brain aging, causing progressive cognitive dysfunction in ~ 50% of surviving patients, thus compromising quality of life. The mechanisms responsible for this WBI side effect remain obscure, and there are no effective treatments or prevention strategies. Here, we test the hypothesis that WBI induces astrocyte senescence, which contributes to impaired astrocytic neurovascular coupling (NVC) responses and the genesis of cognitive decline. To achieve this goal, we used transgenic p16-3MR mice, which allows the detection and selective elimination of senescent cells. We subjected these mice to a clinically relevant protocol of fractionated WBI (5 Gy twice weekly for 4 weeks). WBI-treated and control mice were tested for spatial memory performance (radial arm water maze), astrocyte-dependent NVC responses (whisker-stimulation-induced increases in cerebral blood flow, assessed by laser speckle contrast imaging), NVC-related gene expression, astrocytic release of eicosanoid gliotransmitters and the presence of senescent astrocytes (by flow cytometry, immunohistochemistry and gene expression profiling) at 6 months post-irradiation. WBI induced senescence in astrocytes, which associated with NVC dysfunction and impaired performance on cognitive tasks. To establish a causal relationship between WBI-induced senescence and NVC dysfunction, senescent cells were depleted from WBI-treated animals (at 3 months post-WBI) by genetic (ganciclovir treatment) or pharmacological (treatment with the BCL-2/BCL-xL inhibitor ABT263/Navitoclax, a known senolytic drug) means. In WBI-treated mice, both treatments effectively eliminated senescent astrocytes, rescued NVC responses, and improved cognitive performance. Our findings suggest that the use of senolytic drugs can be a promising strategy for preventing the cognitive impairment associated with WBI.
Collapse
Affiliation(s)
- Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/ Kalman Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor A Fülöp
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/ Kalman Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | | | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- Buck Institute for Research on Aging, Novato, CA, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
571
|
González‐Gualda E, Pàez‐Ribes M, Lozano‐Torres B, Macias D, Wilson JR, González‐López C, Ou H, Mirón‐Barroso S, Zhang Z, Lérida‐Viso A, Blandez JF, Bernardos A, Sancenón F, Rovira M, Fruk L, Martins CP, Serrano M, Doherty GJ, Martínez‐Máñez R, Muñoz‐Espín D. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell 2020; 19:e13142. [PMID: 32233024 PMCID: PMC7189993 DOI: 10.1111/acel.13142] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence-associated lysosomal β-galactosidase (SA-β-gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose-encapsulated nanoparticles within these cells. Here, we show that galacto-conjugation of the BCL-2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav-Gal), that can be preferentially activated by SA-β-gal activity in a wide range of cell types. Nav-Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav-Gal enhances the cytotoxicity of standard senescence-inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav-Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto-conjugation reduces Navitoclax-induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.
Collapse
Affiliation(s)
- Estela González‐Gualda
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Marta Pàez‐Ribes
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Beatriz Lozano‐Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaCentro de Investigación Príncipe FelipeUniversitat Politècnica de ValènciaValenciaSpain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresIIS La FeUniversitat Politècnica de ValènciaValenciaSpain
| | - David Macias
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Joseph R. Wilson
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Sofía Mirón‐Barroso
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Zhenguang Zhang
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Araceli Lérida‐Viso
- Unidad Mixta de Investigación en Nanomedicina y SensoresIIS La FeUniversitat Politècnica de ValènciaValenciaSpain
| | - Juan F. Blandez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaCentro de Investigación Príncipe FelipeUniversitat Politècnica de ValènciaValenciaSpain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- Senolytic Therapeutics S.L.Parc Científic de BarcelonaBarcelonaSpain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaCentro de Investigación Príncipe FelipeUniversitat Politècnica de ValènciaValenciaSpain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresIIS La FeUniversitat Politècnica de ValènciaValenciaSpain
| | - Miguel Rovira
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
| | | | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustAddenbrooke's HospitalCambridgeUK
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de ValènciaValenciaSpain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaCentro de Investigación Príncipe FelipeUniversitat Politècnica de ValènciaValenciaSpain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- Unidad Mixta de Investigación en Nanomedicina y SensoresIIS La FeUniversitat Politècnica de ValènciaValenciaSpain
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
572
|
Abstract
Life expectancy has increased substantially over the last few decades, leading to a worldwide increase in the prevalence and burden of aging-associated diseases. Recent evidence has proven that cellular senescence contributes substantially to the development of these disorders. Cellular senescence is a state of cell cycle arrest with suppressed apoptosis and concomitant secretion of multiple bioactive factors (the senescence-associated secretory phenotype-SASP) that plays a physiological role in embryonic development and healing processes. However, DNA damage and oxidative stress that occur during aging cause the accumulation of senescent cells, which through their SASP bring about deleterious effects on multiple organ and systemic functions. Ablation of senescent cells through genetic or pharmacological means leads to improved life span and health span in animal models, and preliminary evidence suggests it may also have a positive impact on human health. Thus, strategies to reduce or eliminate the burden of senescent cells or their products have the potential to impact multiple clinical outcomes with a single intervention. In this review, we touch upon the basics of cell senescence and summarize the current state of development of therapies against cell senescence for human use.
Collapse
|
573
|
Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, Azab B, Gewirtz DA. Therapy-Induced Senescence: An "Old" Friend Becomes the Enemy. Cancers (Basel) 2020; 12:cancers12040822. [PMID: 32235364 PMCID: PMC7226427 DOI: 10.3390/cancers12040822] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
For the past two decades, cellular senescence has been recognized as a central component of the tumor cell response to chemotherapy and radiation. Traditionally, this form of senescence, termed Therapy-Induced Senescence (TIS), was linked to extensive nuclear damage precipitated by classical genotoxic chemotherapy. However, a number of other forms of therapy have also been shown to induce senescence in tumor cells independently of direct genomic damage. This review attempts to provide a comprehensive summary of both conventional and targeted anticancer therapeutics that have been shown to induce senescence in vitro and in vivo. Still, the utility of promoting senescence as a therapeutic endpoint remains under debate. Since senescence represents a durable form of growth arrest, it might be argued that senescence is a desirable outcome of cancer therapy. However, accumulating evidence suggesting that cells have the capacity to escape from TIS would support an alternative conclusion, that senescence provides an avenue whereby tumor cells can evade the potentially lethal action of anticancer drugs, allowing the cells to enter a temporary state of dormancy that eventually facilitates disease recurrence, often in a more aggressive state. Furthermore, TIS is now strongly connected to tumor cell remodeling, potentially to tumor dormancy, acquiring more ominous malignant phenotypes and accounts for several untoward adverse effects of cancer therapy. Here, we argue that senescence represents a barrier to effective anticancer treatment, and discuss the emerging efforts to identify and exploit agents with senolytic properties as a strategy for elimination of the persistent residual surviving tumor cell population, with the goal of mitigating the tumor-promoting influence of the senescent cells and to thereby reduce the likelihood of cancer relapse.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Valerie J. Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Enas Alwohoush
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Jomana Bakeer
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Sarah Darwish
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Correspondence:
| |
Collapse
|
574
|
Zhu H, Blake S, Kusuma FK, Pearson RB, Kang J, Chan KT. Oncogene-induced senescence: From biology to therapy. Mech Ageing Dev 2020; 187:111229. [PMID: 32171687 DOI: 10.1016/j.mad.2020.111229] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Oncogene-induced senescence (OIS) is a powerful intrinsic tumor-suppressive mechanism, arresting cell cycle progression upon oncogene-activating genomic alterations. The discovery and characterization of the senescence-associated secretome unveiled a rich additional complexity to the senescence phenotype, including extrinsic impacts on the microenvironment and engagement of the immune response. Emerging evidence suggests that senescence phenotypes vary depending on the oncogenic stimulus. Therefore, understanding the mechanisms underlying OIS and how they are subverted in cancer will provide invaluable opportunities to identify alternative strategies for treating oncogene-driven cancers. In this review, we primarily discuss the key mechanisms governing OIS driven by the RAS/MAPK and PI3K/AKT pathways and how understanding the biology of senescent cells has uncovered new therapeutic possibilities to target cancer.
Collapse
Affiliation(s)
- Haoran Zhu
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Shaun Blake
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Frances K Kusuma
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Richard B Pearson
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3168, Australia.
| | - Jian Kang
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Keefe T Chan
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
575
|
Bierbrauer A, Jacob M, Vogler M, Fulda S. A direct comparison of selective BH3-mimetics reveals BCL-X L, BCL-2 and MCL-1 as promising therapeutic targets in neuroblastoma. Br J Cancer 2020; 122:1544-1551. [PMID: 32203216 PMCID: PMC7217842 DOI: 10.1038/s41416-020-0795-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Despite advances in the treatment of neuroblastoma, patients with high-risk disease still have dismal survival prognosis. Neuroblastoma cells display elevated expression of the antiapoptotic BCL-2 proteins, suggesting that BH3-mimetics may be a promising treatment option. Here, we investigated the role of BCL-2, BCL-XL and MCL-1 in neuroblastoma. Methods A panel of neuroblastoma cell lines and primary patient-derived cells were exposed to BH3-mimetics targeting BCL-2 (ABT-199), BCL-XL (A1331852) or MCL-1 (S63845). In addition, protein expression and interaction patterns were analysed using Western blotting and immunoprecipitation. Results All tested BH3-mimetics were able to induce apoptosis in neuroblastoma cell lines, indicating that not only BCL-2 but also BCL-XL and MCL-1 may be promising therapeutic targets. Primary patient-derived cells displayed highest sensitivity to A1331852, highlighting the important role of BCL-XL in neuroblastoma. Further analysis into the molecular mechanisms of apoptosis revealed that A1331852 and S63845 displaced proapoptotic proteins like BIM and BAK from their antiapoptotic targets, subsequently leading to the activation of BAX and BAK and caspase-dependent apoptosis. Conclusions By using selective BH3-mimetics, this study demonstrates that BCL-2, BCL-XL, and MCL-1 are all relevant therapeutic targets in neuroblastoma. A1331852 and S63845 induce rapid apoptosis that is initiated following a displacement of BAK from BCL-XL or MCL-1, respectively.
Collapse
Affiliation(s)
- Annika Bierbrauer
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Maureen Jacob
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
576
|
Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Discovery, development, and future application of senolytics: theories and predictions. FEBS J 2020; 287:2418-2427. [PMID: 32112672 PMCID: PMC7302972 DOI: 10.1111/febs.15264] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
Abstract
Senescent cells accumulate with aging and at etiological sites of multiple diseases, including those accounting for most morbidity, mortality, and health costs. Senescent cells do not replicate, can release factors that cause tissue dysfunction, and yet remain viable. The discovery of senolytic drugs, agents that selectively eliminate senescent cells, created a new route for alleviating age‐related dysfunction and diseases. As anticipated for agents targeting fundamental aging mechanisms that are ‘root cause’ contributors to multiple disorders, potential applications of senolytics are protean. We review the discovery of senolytics, strategies for translation into clinical application, and promising early signals from clinical trials.
Collapse
Affiliation(s)
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
577
|
Mikawa R, Sato T, Suzuki Y, Baskoro H, Kawaguchi K, Sugimoto M. p19 Arf Exacerbates Cigarette Smoke-Induced Pulmonary Dysfunction. Biomolecules 2020; 10:biom10030462. [PMID: 32192082 PMCID: PMC7175375 DOI: 10.3390/biom10030462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Senescent cells accumulate in tissues during aging or pathological settings. The semi-genetic or pharmacological targeting of senescent cells revealed that cellular senescence underlies many aspects of the aging-associated phenotype and diseases. We previously reported that cellular senescence contributes to aging- and disease-associated pulmonary dysfunction. We herein report that the elimination of Arf-expressing cells ameliorates cigarette smoke-induced lung pathologies in mice. Cigarette smoke induced the expression of Ink4a and Arf in lung tissue with concomitant increases in lung tissue compliance and alveolar airspace. The elimination of Arf-expressing cells prior to cigarette smoke exposure protected against these changes. Furthermore, the administration of cigarette smoke extract lead to pulmonary dysfunction, which was ameliorated by subsequent senescent cell elimination. Collectively, these results suggest that senescent cells are a potential therapeutic target for cigarette smoking-associated lung disease.
Collapse
Affiliation(s)
- Ryuta Mikawa
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yohei Suzuki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hario Baskoro
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Koichiro Kawaguchi
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Masataka Sugimoto
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
- Department of Molecular Aging Research, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| |
Collapse
|
578
|
Sasaki N, Itakura Y, Toyoda M. Rapamycin promotes endothelial-mesenchymal transition during stress-induced premature senescence through the activation of autophagy. Cell Commun Signal 2020; 18:43. [PMID: 32164764 PMCID: PMC7069020 DOI: 10.1186/s12964-020-00533-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rapamycin is known to be effective in suppressing senescence and the senescence-associated secretory phenotype (SASP). Therefore, it is highly expected to represent an anti-aging drug. Its anti-aging effect has been demonstrated at the mouse individual level. However, there are not many clinical findings with respect to its activity in humans. Here, we aimed to clarify the effect of rapamycin on human endothelial cells (ECs) as an in vitro model of human blood vessels. Methods Over the course of oxidative stress-induced senescence using hydrogen peroxide, we examined the effect of rapamycin on human coronary artery ECs (HCAECs). Senescence was evaluated by detecting senescence-associated β-galactosidase (SA-β-Gal) activity and the real-time PCR analysis of p16INK4a. Furthermore, expression levels of SASP factors were examined by real-time PCR and the expression of senescence-related antigens, such as intercellular adhesion molecule-1 (ICAM-1) and ganglioside GM1, were examined by fluorescence-activated cell sorting analysis and immunostaining. The inhibitory effect of rapamycin on mTOR signaling was examined by immunoblotting. The adhesion of leukocytes to HCAECs was evaluated by adhesion assays. Endothelial–mesenchymal transition (EndMT) induced by rapamycin treatment was evaluated by real-time PCR analysis and immunostaining for EndMT markers. Finally, we checked the activation of autophagy by immunoblotting and examined its contribution to EndMT by using a specific inhibitor. Furthermore, we examined how the activation of autophagy influences TGF-β signaling by immunoblotting for Smad2/3 and Smad7. Results A decrease in SA-β-Gal activity and the suppression of SASP factors were observed in HCAECs undergoing stress-induced premature senescence (SIPS) after rapamycin treatment. In contrast, ICAM-1 and ganglioside GM1 were upregulated by rapamycin treatment. In addition, leukocyte adhesion to HCAECs was promoted by this treatment. In rapamycin-treated HCAECs, morphological changes and the promotion of EndMT were also observed. Furthermore, we found that autophagy activation induced by rapamycin treatment, which led to activation of the TGF-β pathway, contributed to EndMT induction. Conclusions We revealed that although rapamycin functions to inhibit senescence and suppress SASP in HCAECs undergoing SIPS, EndMT is induced due to the activation of autophagy. Video abstract
Collapse
Affiliation(s)
- Norihiko Sasaki
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoko Itakura
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masashi Toyoda
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
579
|
The Emerging Role of Senescence in Ocular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2583601. [PMID: 32215170 PMCID: PMC7085400 DOI: 10.1155/2020/2583601] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest in response to an array of cellular stresses. An important role for senescence has been shown for a number of pathophysiological conditions that include cardiovascular disease, pulmonary fibrosis, and diseases of the skin. However, whether senescence contributes to the progression of age-related macular degeneration (AMD) has not been studied in detail so far and the present review describes the recent research on this topic. We present an overview of the types of senescence, pathways of senescence, senescence-associated secretory phenotype (SASP), the role of mitochondria, and their functional implications along with antisenescent therapies. As a central mechanism, senescent cells can impact the surrounding tissue microenvironment via the secretion of a pool of bioactive molecules, termed the SASP. An updated summary of a number of new members of the ever-growing SASP family is presented. Further, we introduce the significance of mechanisms by which mitochondria may participate in the development of cellular senescence. Emerging evidence shows that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Based on recent studies, there is reasonable evidence that senescence could be a modifiable factor, and hence, it may be possible to delay age-related diseases by modulating basic aging mechanisms using SASP inhibitors/senolytic drugs. Thus, antisenescent therapies in aging and age-related diseases appear to have a promising potential.
Collapse
|
580
|
Yousefzadeh MJ, Zhao J, Bukata C, Wade EA, McGowan SJ, Angelini LA, Bank MP, Gurkar AU, McGuckian CA, Calubag MF, Kato JI, Burd CE, Robbins PD, Niedernhofer LJ. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 2020; 19:e13094. [PMID: 31981461 PMCID: PMC7059165 DOI: 10.1111/acel.13094] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/11/2019] [Accepted: 12/07/2019] [Indexed: 12/27/2022] Open
Abstract
Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence‐associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1‐XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15‐fold in peripheral lymphocytes from 4‐ to 5‐month‐old Ercc1−/∆ and 2.5‐year‐old wild‐type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4‐ to 5‐month‐old Ercc1−/∆ mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence‐associated β–galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1−/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1−/∆ and aged WT mice support the conclusion that the DNA repair‐deficient mice accurately model the age‐related accumulation of senescent cells, albeit six‐times faster.
Collapse
Affiliation(s)
- Matthew J. Yousefzadeh
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Jing Zhao
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Christina Bukata
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic University Jupiter FL USA
| | - Erin A. Wade
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic University Jupiter FL USA
| | - Sara J. McGowan
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Luise A. Angelini
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Michael P. Bank
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Charles E. Schmidt College of Medicine Florida Atlantic University Boca Raton FL USA
| | - Aditi U. Gurkar
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Department of Medicine University of Pittsburgh Pittsburgh PA USA
| | - Collin A. McGuckian
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Mariah F. Calubag
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic University Jupiter FL USA
| | - Jonathan I. Kato
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic University Jupiter FL USA
| | - Christin E. Burd
- Departments of Molecular Genetics and Cancer Biology and Genetics The Ohio State University Columbus OH USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| |
Collapse
|
581
|
He Y, Li W, Lv D, Zhang X, Zhang X, Ortiz YT, Budamagunta V, Campisi J, Zheng G, Zhou D. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell 2020; 19:e13117. [PMID: 32064756 PMCID: PMC7059172 DOI: 10.1111/acel.13117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022] Open
Abstract
The accumulation of senescent cells (SnCs) is a causal factor of various age‐related diseases as well as some of the side effects of chemotherapy. Pharmacological elimination of SnCs (senolysis) has the potential to be developed into novel therapeutic strategies to treat these diseases and pathological conditions. Here we show that ubiquitin‐specific peptidase 7 (USP7) is a novel target for senolysis because inhibition of USP7 with an inhibitor or genetic depletion of USP7 by RNA interference induces apoptosis selectively in SnCs. The senolytic activity of USP7 inhibitors is likely attributable in part to the promotion of the human homolog of mouse double minute 2 (MDM2) ubiquitination and degradation by the ubiquitin–proteasome system. This degradation increases the levels of p53, which in turn induces the pro‐apoptotic proteins PUMA, NOXA, and FAS and inhibits the interaction of BCL‐XL and BAK to selectively induce apoptosis in SnCs. Further, we show that treatment with a USP7 inhibitor can effectively eliminate SnCs and suppress the senescence‐associated secretory phenotype (SASP) induced by doxorubicin in mice. These findings suggest that small molecule USP7 inhibitors are novel senolytics that can be exploited to reduce chemotherapy‐induced toxicities and treat age‐related diseases.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Wen Li
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Dongwen Lv
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Xin Zhang
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Xuan Zhang
- Department of Medicinal Chemistry College of Pharmacy University of Florida Gainesville FL USA
| | - Yuma T. Ortiz
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | | | - Judith Campisi
- The Buck Institute for Research on Aging Novato CA USA
- Lawrence Berkeley National Laboratory Berkeley CA USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry College of Pharmacy University of Florida Gainesville FL USA
| | - Daohong Zhou
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| |
Collapse
|
582
|
Discovery of PROTAC BCL-X L degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem 2020; 192:112186. [PMID: 32145645 DOI: 10.1016/j.ejmech.2020.112186] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
Anti-apoptotic protein BCL-XL plays a key role in tumorigenesis and cancer chemotherapy resistance, rendering it an attractive target for cancer treatment. However, BCL-XL inhibitors such as ABT-263 cannot be safely used in the clinic because platelets solely depend on BCL-XL to maintain their viability. To reduce the on-target platelet toxicity associated with the inhibition of BCL-XL, we designed and synthesized PROTAC BCL-XL degraders that recruit CRBN or VHL E3 ligase because both of these enzymes are poorly expressed in human platelets compared to various cancer cell lines. We confirmed that platelet-toxic BCL-XL/2 dual inhibitor ABT-263 can be converted into platelet-sparing CRBN/VHL-based BCL-XL specific degraders. A number of BCL-XL degraders are more potent in killing cancer cells than their parent compound ABT-263. Specifically, XZ739, a CRBN-dependent BCL-XL degrader, is 20-fold more potent than ABT-263 against MOLT-4 T-ALL cells and has >100-fold selectivity for MOLT-4 cells over human platelets. Our findings further demonstrated the utility of PROTAC technology to achieve tissue selectivity through recruiting differentially expressed E3 ligases.
Collapse
|
583
|
Brinkman JA, Liu Y, Kron SJ. Small-molecule drug repurposing to target DNA damage repair and response pathways. Semin Cancer Biol 2020; 68:230-241. [PMID: 32113999 DOI: 10.1016/j.semcancer.2020.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
For decades genotoxic therapy has been a mainstay in the treatment of cancer, based on the understanding that the deregulated growth and genomic instability that drive malignancy also confer a shared vulnerability. Although chemotherapy and radiation can be curative, only a fraction of patients benefit, while nearly all are subjected to the harmful side-effects. Drug repurposing, defined here as retooling existing drugs and compounds as chemo or radiosensitizers, offers an attractive route to identifying otherwise non-toxic agents that can potentiate the benefits of genotoxic cancer therapy to enhance the therapeutic ratio. This review seeks to highlight recent progress in defining cellular mechanisms of the DNA damage response including damage sensing, chromatin modification, DNA repair, checkpoint signaling, and downstream survival and death pathways, as a framework to determine which drugs and natural products may offer the most potential for repurposing as chemo- and/or radiosensitizers. We point to classical examples and recent progress that have identified drugs that disrupt cellular responses to DNA damage and may offer the greatest clinical potential. The most important next steps may be to initiate prospective clinical trials toward translating these laboratory discoveries to benefit patients.
Collapse
Affiliation(s)
- Jacqueline A Brinkman
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, United States
| | - Yue Liu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, United States
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
584
|
Hamsanathan S, Alder JK, Sellares J, Rojas M, Gurkar AU, Mora AL. Cellular Senescence: The Trojan Horse in Chronic Lung Diseases. Am J Respir Cell Mol Biol 2020; 61:21-30. [PMID: 30965013 DOI: 10.1165/rcmb.2018-0410tr] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Senescence is a cell fate decision characterized by irreversible arrest of proliferation accompanied by a senescence-associated secretory phenotype. Traditionally, cellular senescence has been recognized as a beneficial physiological mechanism during development and wound healing and in tumor suppression. However, in recent years, evidence of negative consequences of cellular senescence has emerged, illuminating its role in several chronic pathologies. In this context, senescent cells persist or accumulate and have detrimental consequences. In this review, we discuss the possibility that in chronic obstructive pulmonary disease, persistent senescence impairs wound healing in the lung caused by secretion of proinflammatory senescence-associated secretory phenotype factors and exhaustion of progenitor cells. In contrast, in idiopathic pulmonary fibrosis, chronic senescence in alveolar epithelial cells exacerbates the accumulation of senescent fibroblasts together with production of extracellular matrix. We review how cellular senescence may contribute to lung disease pathology.
Collapse
Affiliation(s)
| | - Jonathan K Alder
- 2 Division of Pulmonary Allergy and Critical Care Medicine, and.,3 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases
| | - Jacobo Sellares
- 4 Interstitial Lung Disease Program, Servei de Pneumologia, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,5 Centro de Investigaciones Biomedicas en Red-Enfermedades Respiratorias (CibeRes CB06/06/0028), Instituto de Salud Carlos III, Barcelona, Spain; and
| | - Mauricio Rojas
- 2 Division of Pulmonary Allergy and Critical Care Medicine, and.,3 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases.,6 McGowan Institute of Regenerative Medicine, and
| | - Aditi U Gurkar
- 1 Aging Institute.,7 Division of Geriatric Medicine, Department of Medicine.,8 Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Ana L Mora
- 1 Aging Institute.,2 Division of Pulmonary Allergy and Critical Care Medicine, and.,9 Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
585
|
Thoppil H, Riabowol K. Senolytics: A Translational Bridge Between Cellular Senescence and Organismal Aging. Front Cell Dev Biol 2020; 7:367. [PMID: 32039197 PMCID: PMC6987374 DOI: 10.3389/fcell.2019.00367] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022] Open
Abstract
Aging is defined as a progressive decrease in physiological function accompanied by a steady increase in mortality. The antagonistic pleiotropy theory proposes that aging is largely due to the natural selection of genes and pathways that increase fitness and decrease mortality early in life but contribute to deleterious effects and pathologies later in life. Cellular senescence is one such mechanism, which results in a permanent cell cycle arrest that has been described as a mechanism to limit cancer cell growth. However, recent studies have also suggested a dark side of senescence in which a build-up of senescent cells with age leads to increased inflammation due to a senescence-associated secretory phenotype (SASP). This phenotype that includes many cytokines promotes tumorigenesis and can exhaust the pool of immune cells in the body. Studies clearing senescent cells from mice using the p16-based transgene INK-ATTAC have shown that senescent cells can impact both organismal aging and lifespan. Here we discuss these advances that have resulted in the development of a whole new class of compounds known as senolytics, some of which are currently undergoing clinical trials in humans for treating a variety of age-related pathologies such as osteoarthritis.
Collapse
Affiliation(s)
- Harikrishnan Thoppil
- Arnie Charbonneau Cancer Institute, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Karl Riabowol
- Arnie Charbonneau Cancer Institute, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Department of Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
586
|
Borrás C, Mas-Bargues C, Román-Domínguez A, Sanz-Ros J, Gimeno-Mallench L, Inglés M, Gambini J, Viña J. BCL-xL, a Mitochondrial Protein Involved in Successful Aging: From C. elegans to Human Centenarians. Int J Mol Sci 2020; 21:ijms21020418. [PMID: 31936510 PMCID: PMC7014191 DOI: 10.3390/ijms21020418] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/01/2020] [Accepted: 01/04/2020] [Indexed: 01/07/2023] Open
Abstract
B-Cell Lymphoma-extra-large (BCL-xL) is involved in longevity and successful aging, which indicates a role for BCL-xL in cell survival pathway regulation. Beyond its well described role as an inhibitor of apoptosis by preventing cytochrome c release, BCL-xL has also been related, indirectly, to autophagy and senescence pathways. Although in these latter cases, BCL-xL has dual roles, either activating or inhibiting, depending on the cell type and the specific conditions. Taken together, all these findings suggest a precise mechanism of action for BCL-xL, able to regulate the crosstalk between apoptosis, autophagy, and senescence, thus promoting cell survival or cell death. All three pathways can be both beneficial or detrimental depending on the circumstances. Thus, targeting BCL-xL would in turn be a "double-edge sword" and therefore, additional studies are needed to better comprehend this dual and apparently contradictory role of BCL-XL in longevity.
Collapse
Affiliation(s)
- Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
- Correspondence:
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Lucia Gimeno-Mallench
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Marta Inglés
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain;
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| |
Collapse
|
587
|
Zhou B, Wan Y, Chen R, Zhang C, Li X, Meng F, Glaser S, Wu N, Zhou T, Li S, Francis H, Alpini G, Zou P. The emerging role of cellular senescence in renal diseases. J Cell Mol Med 2020; 24:2087-2097. [PMID: 31916698 PMCID: PMC7011136 DOI: 10.1111/jcmm.14952] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence represents the state of irreversible cell cycle arrest during cell division. Cellular senescence not only plays a role in diverse biological events such as embryogenesis, tissue regeneration and repair, ageing and tumour occurrence prevention, but it is also involved in many cardiovascular, renal and liver diseases through the senescence-associated secretory phenotype (SASP). This review summarizes the molecular mechanisms underlying cellular senescence and its possible effects on a variety of renal diseases. We will also discuss the therapeutic approaches based on the regulation of senescent and SASP blockade, which is considered as a promising strategy for the management of renal diseases.
Collapse
Affiliation(s)
- Bingru Zhou
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Ying Wan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Rong Chen
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Chunmei Zhang
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Xuesen Li
- School of Basic Medical Sciences, Institute for Cancer Medicine, Southwest Medical University, Luzhou, China
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology, Department of Medicine, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Siwen Li
- Department of Physiology, Southwest Medical University, Luzhou, China
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology, Department of Medicine, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology, Department of Medicine, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Zou
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
588
|
Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 2020; 16:11-31. [PMID: 31792399 PMCID: PMC7913072 DOI: 10.1038/s41584-019-0324-5] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Organ fibrosis is a lethal outcome of autoimmune rheumatic diseases such as systemic sclerosis. Myofibroblasts are scar-forming cells that are ultimately responsible for the excessive synthesis, deposition and remodelling of extracellular matrix proteins in fibrosis. Advances have been made in our understanding of the mechanisms that keep myofibroblasts in an activated state and control myofibroblast functions. However, the mechanisms that help myofibroblasts to persist in fibrotic tissues remain poorly understood. Myofibroblasts evade apoptosis by activating molecular mechanisms in response to pro-survival biomechanical and growth factor signals from the fibrotic microenvironment, which can ultimately lead to the acquisition of a senescent phenotype. Growing evidence suggests that myofibroblasts and senescent myofibroblasts, rather than being resistant to apoptosis, are actually primed for apoptosis owing to concomitant activation of cell death signalling pathways; these cells are poised to apoptose when survival pathways are inhibited. This knowledge of apoptotic priming has paved the way for new therapies that trigger apoptosis in myofibroblasts by blocking pro-survival mechanisms, target senescent myofibroblast for apoptosis or promote the reprogramming of myofibroblasts into scar-resolving cells. These novel strategies are not only poised to prevent progressive tissue scarring, but also have the potential to reverse established fibrosis and to regenerate chronically injured tissues.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
589
|
Kang C. Senolytics and Senostatics: A Two-Pronged Approach to Target Cellular Senescence for Delaying Aging and Age-Related Diseases. Mol Cells 2019; 42:821-827. [PMID: 31838837 PMCID: PMC6939651 DOI: 10.14348/molcells.2019.0298] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/11/2023] Open
Abstract
Aging is the most important single risk factor for many chronic diseases such as cancer, metabolic syndrome, and neurodegenerative disorders. Targeting aging itself might, therefore, be a better strategy than targeting each chronic disease individually for enhancing human health. Although much should be achieved for completely understanding the biological basis of aging, cellular senescence is now believed to mainly contribute to organismal aging via two independent, yet not mutually exclusive mechanisms: on the one hand, senescence of stem cells leads to exhaustion of stem cells and thus decreases tissue regeneration. On the other hand, senescent cells secrete many proinflammatory cytokines, chemokines, growth factors, and proteases, collectively termed as the senescence-associated secretory phenotype (SASP), which causes chronic inflammation and tissue dysfunction. Much effort has been recently made to therapeutically target detrimental effects of cellular senescence including selectively eliminating senescent cells (senolytics) and modulating a proinflammatory senescent secretome (senostatics). Here, we discuss current progress and limitations in understanding molecular mechanisms of senolytics and senostatics and therapeutic strategies for applying them. Furthermore, we propose how these novel interventions for aging treatment could be improved, based on lessons learned from cancer treatment.
Collapse
Affiliation(s)
- Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
590
|
|
591
|
Nakagami H. Cellular senescence and senescence‐associated T cells as a potential therapeutic target. Geriatr Gerontol Int 2019; 20:97-100. [DOI: 10.1111/ggi.13851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hironori Nakagami
- Department of Health Development and MedicineOsaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
592
|
Sasaki M, Sato Y, Nakanuma Y. Increased p16 INK4a-expressing senescent bile ductular cells are associated with inadequate response to ursodeoxycholic acid in primary biliary cholangitis. J Autoimmun 2019; 107:102377. [PMID: 31812332 DOI: 10.1016/j.jaut.2019.102377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Senescent biliary epithelial cells (BECs) may be involved in the pathophysiology of primary biliary cholangitis (PBC) by secreting senescence-associated secretory phenotypes. We examined an association of the extent of cellular senescence in BECs with clinicopathological features including response to ursodeoxycholic acid (UDCA) and a possibility of senolytic therapy in PBC. METHODS The expression of senescent markers (p21WAF1/Cip1, p16INK4a) and B-cell lymphoma-extra large (Bcl-xL), a key regulator of senescent cell anti-apoptotic pathway, was immunohistochemically examined in livers from patients with PBC (n = 145) and 103 control livers. Senolytic effect of Bcl-xL inhibitors (A-1331852 and Navitoclax) was examined in senescent murine BECs. RESULTS Senescent BECs were increased in small bile ducts in PBC, compared with control livers (p < 0.01). Senescent BECs were increased in ductular reactions in PBC, stage 3-4, compared with PBC, stage 1-2 and control livers (p < 0.01). The extent of senescent BECs in bile ductules was significantly correlated with stage and hepatitis activity (p < 0.01) and the expression of p16INK4a in bile ductules was significantly correlated to inadequate response to UDCA in PBC (p < 0.01). Double immunofluorescence revealed an increased expression of Bcl-xL in p16INK4a-positive senescent BECs in PBC. Bcl-xL inhibitors selectively induced apoptosis in senescent murine BECs (p < 0.01). CONCLUSION The extent of senescent BECs in small bile ducts and bile ductules was closely related to stage and activity of PBC and the increased expression of p16 INK4a in bile ductules was correlated with inadequate response to UDCA.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuni Nakanuma
- Department of Pathology, Fukui Saiseikai Hospital, Fukui, 918-8503, Japan
| |
Collapse
|
593
|
Brondello JM, Pers YM. Taking in consideration the bystander effects of articular senescence. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S386. [PMID: 32016104 PMCID: PMC6976455 DOI: 10.21037/atm.2019.12.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 07/30/2023]
Affiliation(s)
- Jean-Marc Brondello
- IRMB, University of Montpellier, Inserm U1183, CHU Montpellier, Montpellier, France
| | - Yves-Marie Pers
- IRMB, University of Montpellier, Inserm U1183, CHU Montpellier, Montpellier, France
| |
Collapse
|
594
|
Paez‐Ribes M, González‐Gualda E, Doherty GJ, Muñoz‐Espín D. Targeting senescent cells in translational medicine. EMBO Mol Med 2019; 11:e10234. [PMID: 31746100 PMCID: PMC6895604 DOI: 10.15252/emmm.201810234] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Organismal ageing is a complex process driving progressive impairment of functionality and regenerative potential of tissues. Cellular senescence is a state of stable cell cycle arrest occurring in response to damage and stress and is considered a hallmark of ageing. Senescent cells accumulate in multiple organs during ageing, contribute to tissue dysfunction and give rise to pathological manifestations. Senescence is therefore a defining feature of a variety of human age-related disorders, including cancer, and targeted elimination of these cells has recently emerged as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration. In addition, in vivo identification of senescent cells has significant potential for early diagnosis of multiple pathologies. Here, we review existing senolytics, small molecules and drug delivery tools used in preclinical therapeutic strategies involving cellular senescence, as well as probes to trace senescent cells. We also review the clinical research landscape in senescence and discuss how identifying and targeting cellular senescence might positively affect pathological and ageing processes.
Collapse
Affiliation(s)
- Marta Paez‐Ribes
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Estela González‐Gualda
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Gary J Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| | - Daniel Muñoz‐Espín
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
595
|
von Kobbe C. Targeting senescent cells: approaches, opportunities, challenges. Aging (Albany NY) 2019; 11:12844-12861. [PMID: 31789602 PMCID: PMC6949083 DOI: 10.18632/aging.102557] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a hallmark of aging, whose onset is linked to a series of both cell and non-cell autonomous processes, leading to several consequences for the organism. To date, several senescence routes have been identified, which play a fundamental role in development, tumor suppression and aging, among other processes. The positive and/or negative effects of senescent cells are directly related to the time that they remain in the organism. Short-term (acute) senescent cells are associated with positive effects; once they have executed their actions, immune cells are recruited to remove them. In contrast, long-term (chronic) senescent cells are associated with disease; they secrete pro-inflammatory and pro-tumorigenic factors in a state known as senescence-associated secretory phenotype (SASP). In recent years, cellular senescence has become the center of attention for the treatment of aging-related diseases. Current therapies are focused on elimination of senescent cell functions in three main ways: i) use of senolytics; ii) inhibition of SASP; and iii) improvement of immune system functions against senescent cells (immunosurveillance). In addition, some anti-cancer therapies are based on the induction of senescence in tumor cells. However, these senescent-like cancer cells must be subsequently cleared to avoid a chronic pro-tumorigenic state. Here is a summary of different scenarios, depending on the therapy used, with a discussion of the pros and cons of each scenario.
Collapse
Affiliation(s)
- Cayetano von Kobbe
- Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
596
|
Cytotoxic Constituents and Molecular Docking Study of the Active Triterpenoids from Tripleurospermum disciforme (C. A. Mey.) Schultz-Bip. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.65760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
597
|
Giuliani A, Cirilli I, Prattichizzo F, Mensà E, Fulgenzi G, Sabbatinelli J, Graciotti L, Olivieri F, Procopio AD, Tiano L, Rippo MR. The mitomiR/Bcl-2 axis affects mitochondrial function and autophagic vacuole formation in senescent endothelial cells. Aging (Albany NY) 2019; 10:2855-2873. [PMID: 30348904 PMCID: PMC6224225 DOI: 10.18632/aging.101591] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022]
Abstract
During senescence, cells undergo distinctive biochemical and morphological changes and become dysfunctional. MiRNAs are involved in the senescence process and specific miRNAs can localize to mitochondria (mitomiRs). We hypothesized that part of the typical alterations of senescence may depends on mitomiRs deregulation. Therefore, we thoroughly explored the phenotype of human endothelial cells undergoing replicative senescence (sHUVECs) and observed elongated/branched mitochondria, accumulation of autophagic vacuoles (AVs), increased ROS and IL-1β production and reduced expression of Bcl-2 compared to younger cells (yHUVECs). Despite these pro-apoptotic features, sHUVECs are more resistant to serum deprivation, conceivably due to development of pro-survival strategies such as upregulation of Bcl-xL and Survivin. We demonstrate that mitomiR-181a, -34a, and -146a, are overexpressed and localize to mitochondria in sHUVECs compared with yHUVECs and that they: i) down-regulate Bcl-2, ii) induce permeability transition pore opening and activation of caspase-1 and 3, iii) affect sensitivity to apoptosis and iv) promote the conversion of LC3-I to LC3-II. Overall, we document for the first time that some mitomiRs can act as mediators of the multiple but functionally linked biochemical and morphological changes that characterize aging cells and that they can promote different cellular outcomes according to the senescence status of the cell.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Emanuela Mensà
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD 21702, USA
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
598
|
Guerrero A, Herranz N, Sun B, Wagner V, Gallage S, Guiho R, Wolter K, Pombo J, Irvine EE, Innes AJ, Birch J, Glegola J, Manshaei S, Heide D, Dharmalingam G, Harbig J, Olona A, Behmoaras J, Dauch D, Uren AG, Zender L, Vernia S, Martínez-Barbera JP, Heikenwalder M, Withers DJ, Gil J. Cardiac glycosides are broad-spectrum senolytics. Nat Metab 2019; 1:1074-1088. [PMID: 31799499 PMCID: PMC6887543 DOI: 10.1038/s42255-019-0122-z] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Senescence is a cellular stress response that results in the stable arrest of old, damaged or preneoplastic cells. Oncogene-induced senescence is tumor suppressive but can also exacerbate tumorigenesis through the secretion of pro-inflammatory factors from senescent cells. Drugs that selectively kill senescent cells, termed senolytics, have proved beneficial in animal models of many age-associated diseases. Here, we show that the cardiac glycoside, ouabain, is a senolytic agent with broad activity. Senescent cells are sensitized to ouabain-induced apoptosis, a process mediated in part by induction of the pro-apoptotic Bcl2-family protein NOXA. We show that cardiac glycosides synergize with anti-cancer drugs to kill tumor cells and eliminate senescent cells that accumulate after irradiation or in old mice. Ouabain also eliminates senescent preneoplastic cells. Our findings suggest that cardiac glycosides may be effective anti-cancer drugs by acting through multiple mechanism. Given the broad range of senescent cells targeted by cardiac glycosides their use against age-related diseases warrants further exploration.
Collapse
Affiliation(s)
- Ana Guerrero
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Nicolás Herranz
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Bin Sun
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Verena Wagner
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Suchira Gallage
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Romain Guiho
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Katharina Wolter
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
- Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Joaquim Pombo
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Elaine E Irvine
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Andrew J Innes
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jodie Birch
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Justyna Glegola
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Saba Manshaei
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Gopuraja Dharmalingam
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jule Harbig
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
- Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Antoni Olona
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Daniel Dauch
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
- Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anthony G Uren
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Lars Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
- Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
- Translational Gastrointestinal Oncology Group, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Juan Pedro Martínez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
599
|
Bonelli M, La Monica S, Fumarola C, Alfieri R. Multiple effects of CDK4/6 inhibition in cancer: From cell cycle arrest to immunomodulation. Biochem Pharmacol 2019; 170:113676. [PMID: 31647925 DOI: 10.1016/j.bcp.2019.113676] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Dysregulation of the cell cycle is a hallmark of cancer that leads to aberrant cellular proliferation. CDK4/6 are cyclin-dependent kinases activated in response to proliferative signaling, which induce RB hyper-phosphorylation and hence activation of E2F transcription factors, thus promoting cell cycle progression through the S phase. Pharmacologic inhibition of CDK4/6 by palbociclib, ribociclib, or abemaciclib has been showing promising activity in multiple cancers with the best results achieved in combination with other agents. Indeed, CDK4/6 inhibitors are currently approved in combination with endocrine therapy for the treatment of estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced or metastatic breast cancer. Moreover, a number of clinical trials are currently underway to test the efficacy of combining CDK4/6 inhibitors with different drugs not only in breast but also in other types of cancer. Beyond the inhibition of cell proliferation, CDK4/6 inhibitors have recently revealed new effects on cancer cells and on tumor microenvironment. In particular, it has been reported that these agents induce a senescent-like phenotype, impact on cell metabolism and exert both immunomodulatory and immunogenic effects. Here we describe recent data on the anti-tumor effects of CDK4/6 inhibitors as single agents or in combined therapies, focusing in particular on their metabolic and immunomodulatory activities.
Collapse
Affiliation(s)
- Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
600
|
Lewinska A, Adamczyk-Grochala J, Bloniarz D, Olszowka J, Kulpa-Greszta M, Litwinienko G, Tomaszewska A, Wnuk M, Pazik R. AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Fe 3O 4 nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biol 2019; 28:101337. [PMID: 31622846 PMCID: PMC6812309 DOI: 10.1016/j.redox.2019.101337] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023] Open
Abstract
Cellular senescence may contribute to aging and age-related diseases and senolytic drugs that selectively kill senescent cells may delay aging and promote healthspan. More recently, several categories of senolytics have been established, namely HSP90 inhibitors, Bcl-2 family inhibitors and natural compounds such as quercetin and fisetin. However, senolytic and senostatic potential of nanoparticles and surface-modified nanoparticles has never been addressed. In the present study, quercetin surface functionalized Fe3O4 nanoparticles (MNPQ) were synthesized and their senolytic and senostatic activity was evaluated during oxidative stress-induced senescence in human fibroblasts in vitro. MNPQ promoted AMPK activity that was accompanied by non-apoptotic cell death and decreased number of stress-induced senescent cells (senolytic action) and the suppression of senescence-associated proinflammatory response (decreased levels of secreted IL-8 and IFN-β, senostatic action). In summary, we have shown for the first time that MNPQ may be considered as promising candidates for senolytic- and senostatic-based anti-aging therapies. Quercetin surface functionalized magnetite nanoparticles (MNPQ) were synthesized. MNPQ eliminated hydrogen peroxide-induced senescent human fibroblasts. MNPQ limited senescence-associated proinflammatory responses. Senotherapeutic action of MNPQ was accompanied by increased activity of AMPK. MNPQ may be useful for senolytic- and senostatic-based anti-aging therapies.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Dominika Bloniarz
- Department of Perinatology, Institute of Midwifery and Medical Emergency, Faculty of Medicine, University of Rzeszow, Pigonia 6, 35-310, Rzeszow, Poland
| | - Jakub Olszowka
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Magdalena Kulpa-Greszta
- Faculty of Chemistry, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959, Rzeszow, Poland
| | | | - Anna Tomaszewska
- Department of Medicinal Chemistry and Nanomaterials, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Robert Pazik
- Department of Medicinal Chemistry and Nanomaterials, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| |
Collapse
|