551
|
Claverie JM, Ogata H, Audic S, Abergel C, Suhre K, Fournier PE. Mimivirus and the emerging concept of "giant" virus. Virus Res 2006; 117:133-44. [PMID: 16469402 DOI: 10.1016/j.virusres.2006.01.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/06/2006] [Accepted: 01/09/2006] [Indexed: 11/15/2022]
Abstract
The recently discovered Acanthamoeba polyphaga Mimivirus is the largest known DNA virus. Its particle size (750 nm), genome length (1.2 million bp) and large gene repertoire (911 protein coding genes) blur the established boundaries between viruses and parasitic cellular organisms. In addition, the analysis of its genome sequence identified many types of genes never before encountered in a virus, including aminoacyl-tRNA synthetases and other central components of the translation machinery previously thought to be the signature of cellular organisms. In this article, we examine how the finding of such a giant virus might durably influence the way we look at microbial biodiversity, and lead us to revise the classification of microbial domains and life forms. We propose to introduce the word "girus" to recognize the intermediate status of these giant DNA viruses, the genome complexity of which makes them closer to small parasitic prokaryotes than to regular viruses.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Information Génomique et Structurale, CNRS UPR 2589, IBSM, Parc Scientifique de Luminy, 163 Avenue de Luminy, Case 934, 13288 Marseille Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
552
|
Forterre P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 2006; 117:5-16. [PMID: 16476498 DOI: 10.1016/j.virusres.2006.01.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 01/04/2006] [Accepted: 01/09/2006] [Indexed: 01/29/2023]
Abstract
Viruses infecting cells from the three domains of life, Archaea, Bacteria and Eukarya, share homologous features, suggesting that viruses originated very early in the evolution of life. The three current hypotheses for virus origin, e.g. the virus first, the escape and the reduction hypotheses are revisited in this new framework. Theoretical considerations suggest that RNA viruses may have originated in the nucleoprotein world by escape or reduction from RNA-cells, whereas DNA viruses (at least some of them) might have evolved directly from RNA viruses. The antiquity of viruses can explain why most viral proteins have no cellular homologues or only distantly related ones. Viral proteins have replaced the ancestral bacterial RNA/DNA polymerases and primase during mitochondrial evolution. It has been suggested that replacement of cellular proteins by viral ones also occurred in early evolution of the DNA replication apparatus and/or that some DNA replication proteins originated directly in the virosphere and were later on transferred to cellular organisms. According to these new hypotheses, viruses played a critical role in major evolutionary transitions, such as the invention of DNA and DNA replication mechanisms, the formation of the three domains of life, or else, the origin of the eukaryotic nucleus.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, 91405 Orsay Cedex, France.
| |
Collapse
|
553
|
Abstract
Gene duplication is key to molecular evolution in all three domains of life and may be the first step in the emergence of new gene function. It is a well-recognized feature in large DNA viruses but has not been studied extensively in the largest known virus to date, the recently discovered Acanthamoeba polyphaga Mimivirus. Here, I present a systematic analysis of gene and genome duplication events in the mimivirus genome. I found that one-third of the mimivirus genes are related to at least one other gene in the mimivirus genome, either through a large segmental genome duplication event that occurred in the more remote past or through more recent gene duplication events, which often occur in tandem. This shows that gene and genome duplication played a major role in shaping the mimivirus genome. Using multiple alignments, together with remote-homology detection methods based on Hidden Markov Model comparison, I assign putative functions to some of the paralogous gene families. I suggest that a large part of the duplicated mimivirus gene families are likely to interfere with important host cell processes, such as transcription control, protein degradation, and cell regulatory processes. My findings support the view that large DNA viruses are complex evolving organisms, possibly deeply rooted within the tree of life, and oppose the paradigm that viral evolution is dominated by lateral gene acquisition, at least in regard to large DNA viruses.
Collapse
Affiliation(s)
- Karsten Suhre
- Information Génomique et Structurale, UPR CNRS 2589, 31 Chemin Joseph-Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
554
|
Xiao C, Chipman PR, Battisti AJ, Bowman VD, Renesto P, Raoult D, Rossmann MG. Cryo-electron microscopy of the giant Mimivirus. J Mol Biol 2006; 353:493-6. [PMID: 16185710 DOI: 10.1016/j.jmb.2005.08.060] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/23/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Mimivirus is the largest known virus. Using cryo-electron microscopy, the virus was shown to be icosahedral, covered by long fibers, and appears to have at least two lipid membranes within its protein capsid. A unique vertex, presumably for attachment and infection of the host, can be seen for particles that have a suitable orientation on the micrographs.
Collapse
Affiliation(s)
- Chuan Xiao
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | |
Collapse
|
555
|
|
556
|
Suhre K, Audic S, Claverie JM. Mimivirus gene promoters exhibit an unprecedented conservation among all eukaryotes. Proc Natl Acad Sci U S A 2005; 102:14689-93. [PMID: 16203998 PMCID: PMC1239944 DOI: 10.1073/pnas.0506465102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Indexed: 11/18/2022] Open
Abstract
The initial analysis of the recently sequenced genome of Acanthamoeba polyphaga Mimivirus, the largest known double-stranded DNA virus, predicted a proteome of size and complexity more akin to small parasitic bacteria than to other nucleocytoplasmic large DNA viruses and identified numerous functions never before described in a virus. It has been proposed that the Mimivirus lineage could have emerged before the individualization of cellular organisms from the three domains of life. An exhaustive in silico analysis of the noncoding moiety of all known viral genomes now uncovers the unprecedented perfect conservation of an AAAATTGA motif in close to 50% of the Mimivirus genes. This motif preferentially occurs in genes transcribed from the predicted leading strand and is associated with functions required early in the viral infectious cycle, such as transcription and protein translation. A comparison with the known promoter of unicellular eukaryotes, amoebal protists in particular, strongly suggests that the AAAATTGA motif is the structural equivalent of the TATA box core promoter element. This element is specific to the Mimivirus lineage and may correspond to an ancestral promoter structure predating the radiation of the eukaryotic kingdoms. This unprecedented conservation of core promoter regions is another exceptional feature of Mimivirus that again raises the question of its evolutionary origin.
Collapse
Affiliation(s)
- Karsten Suhre
- Information Génomique et Structurale, Centre National de la Recherche Scientifique, Institut de Biologie Structurale et Microbiologie, 13402 Marseille, France.
| | | | | |
Collapse
|
557
|
Ward N, Fraser CM. How genomics has affected the concept of microbiology. Curr Opin Microbiol 2005; 8:564-71. [PMID: 16125442 DOI: 10.1016/j.mib.2005.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 08/15/2005] [Indexed: 11/24/2022]
Abstract
Genomics influences multiple areas of microbiology, and thus affects key microbiological concepts. Recent reports that describe the large genome and unusual coding capacity of mimivirus, the minimized fungal genomes that contain elements of bacterial metabolism, and the 'signature' eukaryotic proteins in bacteria are introducing grey shades into the black-and-white distinctions between microbial domains. The concept of the 'universal' minimal genome is being challenged, and the ability of minimal genomes to support cellular complexity is under investigation. There have been intriguing insights into microbe-microbe relationships, for example conflict mediation in competing bacteriophages that rapidly evolve survival mechanisms when cooperation is experimentally enforced. Genomics has given birth to metagenomics, but has also stimulated the development of improved cultivation techniques. Lastly, the taxonomic potential of genomics is emerging, as studies of multiple strains allow us to revise and refine the bacterial species concept as well as the idea of a static genome.
Collapse
Affiliation(s)
- Naomi Ward
- The Institute for Genomic Research, Rockville, MD 20850, USA
| | | |
Collapse
|
558
|
Allen MJ, Schroeder DC, Wilson WH. Preliminary characterisation of repeat families in the genome of EhV-86, a giant algal virus that infects the marine microalga Emiliania huxleyi. Arch Virol 2005; 151:525-35. [PMID: 16195784 DOI: 10.1007/s00705-005-0647-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/08/2005] [Indexed: 11/29/2022]
Abstract
EhV-86 is a large double stranded DNA virus with a 407,339 base pair circular genome that infects the globally important microalga Emiliania huxleyi. It belongs to a new genus of viruses termed the Coccolithoviridae within the algal virus family Phycodnaviridae. By plotting the EhV-86 genome against itself in a dot-plot analysis we revealed three families of distinctly different repeat sequences throughout its genome, designated Family A, B and C. Family A repeats are non-coding, found immediately upstream of 86 predicted coding sequences (CDSs) and are likely to play a crucial role in controlling the expression of the associated CDSs. Family B repeats are GC rich, coding and correspond to possible calcium binding sites in 22 proline-rich domains found in the protein products of eight predicted EhV-86 CDSs. Family C repeats are AT-rich, non-coding and are likely to form part of the origin of replication. We suggest that these repeat regions are of fundamental importance during virus propagation being involved with transcriptional control (Family A), virus adsorption/release (Family B) and DNA replication (Family C).
Collapse
Affiliation(s)
- M J Allen
- Plymouth Marine Laboratory, Plymouth, UK
| | | | | |
Collapse
|
559
|
Suzan-Monti M, La Scola B, Raoult D. Genomic and evolutionary aspects of Mimivirus. Virus Res 2005; 117:145-55. [PMID: 16181700 DOI: 10.1016/j.virusres.2005.07.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/21/2005] [Accepted: 07/21/2005] [Indexed: 01/08/2023]
Abstract
We recently described a giant double stranded DNA virus called Mimivirus, isolated from amoebae, which might represent a new pneumonia-associated human pathogen. Its unique morphological and genomic characteristics allowed us to propose Mimivirus as a member of a new distinct Nucleocytoplasmic Large DNA viruses family, the Mimiviridae. Mimivirus-specific features, namely its size and its genomic complexity, ranged it between viruses and cellular organisms. This paper reviews our current knowledge on Mimivirus structure, life cycle and genome analysis and discusses its putative evolutionary origin in the tree of species of the three domains of life.
Collapse
Affiliation(s)
- M Suzan-Monti
- Unité des Rickettsies et Pathogènes Emergents, Faculté de Médecine, IFR 48, CNRS UMR 6020, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France.
| | | | | |
Collapse
|
560
|
Wilson WH, Schroeder DC, Allen MJ, Holden MTG, Parkhill J, Barrell BG, Churcher C, Hamlin N, Mungall K, Norbertczak H, Quail MA, Price C, Rabbinowitsch E, Walker D, Craigon M, Roy D, Ghazal P. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 2005; 309:1090-2. [PMID: 16099989 DOI: 10.1126/science.1113109] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The genus Coccolithovirus is a recently discovered group of viruses that infect the globally important marine calcifying microalga Emiliania huxleyi. Among the 472 predicted genes of the 407,339-base pair genome are a variety of unexpected genes, most notably those involved in biosynthesis of ceramide, a sphingolipid known to induce apoptosis. Uniquely for algal viruses, it also contains six RNA polymerase subunits and a novel promoter, suggesting this virus encodes its own transcription machinery. Microarray transcriptomic analysis reveals that 65% of the predicted virus-encoded genes are expressed during lytic infection of E. huxleyi.
Collapse
Affiliation(s)
- William H Wilson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
561
|
Abstract
The discovery and genome analysis of Acanthamoeba polyphaga Mimivirus, the largest known DNA virus, challenged much of the accepted dogma regarding viruses. Its particle size (>400 nm), genome length (1.2 million bp) and huge gene repertoire (911 protein coding genes) all contribute to blur the established boundaries between viruses and the smallest parasitic cellular organisms. Phylogenetic analyses also suggested that the Mimivirus lineage could have emerged prior to the individualization of cellular organisms from the three established domains, triggering a debate that can only be resolved by generating and analyzing more data. The next step is then to seek some evidence that Mimivirus is not the only representative of its kind and determine where to look for new Mimiviridae. An exhaustive similarity search of all Mimivirus predicted proteins against all publicly available sequences identified many of their closest homologues among the Sargasso Sea environmental sequences. Subsequent phylogenetic analyses suggested that unknown large viruses evolutionarily closer to Mimivirus than to any presently characterized species exist in abundance in the Sargasso Sea. Their isolation and genome sequencing could prove invaluable in understanding the origin and diversity of large DNA viruses, and shed some light on the role they eventually played in the emergence of eukaryotes.
Collapse
Affiliation(s)
- Elodie Ghedin
- Department of Parasite and Virus Genomics, The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
- Department of Microbiology and Tropical Medicine, George Washington University, Washington DC, USA
| | - Jean-Michel Claverie
- Structural and Genomics Information laboratory, CNRS-UPR2589, IBSM, 13402, Marseille, France; University of Mediterranee School of Medicine, 13385, Marseille, France
| |
Collapse
|
562
|
Yan X, Chipman PR, Castberg T, Bratbak G, Baker TS. The marine algal virus PpV01 has an icosahedral capsid with T=219 quasisymmetry. J Virol 2005; 79:9236-43. [PMID: 15994818 PMCID: PMC1168743 DOI: 10.1128/jvi.79.14.9236-9243.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phaeocystis pouchetii virus (PpV01) infects and lyses the haptophyte Phaeocystis pouchetii (Hariot) Lagerheim and was first isolated from Norwegian coastal waters. We have used electron cryomicroscopy and three-dimensional image reconstruction methods to examine the native morphology of PpV01 at a resolution of 3 nm. The icosahedral capsid of PpV01 has a maximum diameter of 220 nm and is composed of 2,192 capsomers arranged with T=219 quasisymmetry. One specific capsomer in each asymmetric unit contains a fiber-like protrusion. Density attributed to the presence of a lipid membrane appears just below (inside) the capsid. PpV01 is the largest icosahedral virus whose capsid structure has been determined in three dimensions from images of vitrified samples. Striking similarities in the structures of PpV01 and a number of other large double-stranded DNA viruses are consistent with a growing body of evidence that they share a common evolutionary origin.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
563
|
Strömsten NJ, Bamford DH, Bamford JKH. In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J Mol Biol 2005; 348:617-29. [PMID: 15826659 DOI: 10.1016/j.jmb.2005.03.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 03/01/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
PRD1 is the type virus of the Tectiviridae family. Its linear double-stranded DNA genome has covalently attached terminal proteins and is surrounded by a membrane, which is further enclosed within an icosahedral protein capsid. Similar to tailed bacteriophages, PRD1 packages its DNA into a preformed procapsid. The PRD1 putative packaging ATPase P9 is a structural protein located at a unique vertex of the capsid. An in vitro system for packaging DNA into preformed empty procapsids was developed. The system uses cell extracts of overexpressed P9 protein and empty procapsids from a P9-deficient mutant virus infection and PRD1 DNA containing a LacZalpha-insert. The in vitro packaged virions produce distinctly blue plaques when plated on a suitable host. This is the first time that a viral genome is packaged in vitro into a membrane vesicle. Comparison of PRD1 P9 with putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses revealed a new packaging ATPase-specific motif. Surprisingly the viruses having this packaging ATPase motif, and thus considered to be related, were the same as those recently grouped together using the coat protein fold and virion architecture. Our finding here strongly supports the idea that all these viruses infecting hosts in all domains of life had a common ancestor.
Collapse
Affiliation(s)
- Nelli J Strömsten
- Department of Biological and Environmental Sciences and Institute of Biotechnology, Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
564
|
Abstract
The discovery and genome sequencing of the mimivirus, a parasite of Acanthamoeba, blurs the boundary between viruses and cells: the 1.2 Mb genome of the mimivirus is predicted to contain 1262 genes and is much bigger than the genomes of many parasitic bacteria.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
565
|
Exner M, Kramer A, Lajoie L, Gebel J, Engelhart S, Hartemann P. Prevention and control of health care-associated waterborne infections in health care facilities. Am J Infect Control 2005; 33:S26-40. [PMID: 15940114 DOI: 10.1016/j.ajic.2005.04.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The current article is a review of the public health risks attributable to waterborne pathogens in health care. The consequences of health care-associated infections (HAIs) are discussed. Not only are Legionella spp involved in HAIs, but also Pseudomonas aeruginosa, other gram-negative microorganisms, fungi, and amoeba-associated bacteria. This is particularly noteworthy among immunocompromised patients. New prevention strategies and control measures brought about through advanced planning, facility remodelling and reconstruction, disinfection, and filtration have resulted in a significant reduction of the incidence of waterborne HAIs. The positive consequences of a comprehensive multibarrier approach including prevention and control programs in health care facilities are discussed. Environmental cultures are now integrated within the infection control program of some European countries. In high-risk areas, the application of disposable sterile point-of-use filters for faucets and shower heads appears to be the practice of choice to efficiently control waterborne pathogens and to prevent infections.
Collapse
Affiliation(s)
- M Exner
- Institute for Hygiene and Public Health, University of Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
566
|
Jeudy S, Coutard B, Lebrun R, Abergel C. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:569-72. [PMID: 16511098 PMCID: PMC1952325 DOI: 10.1107/s1744309105013904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 05/02/2005] [Indexed: 11/11/2022]
Abstract
The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004), Science, 306, 1344-1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005), Acta Cryst. F61, 212-215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2(1)3, with unit-cell parameter 99.425 A. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.
Collapse
Affiliation(s)
- Sandra Jeudy
- Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| | - Bruno Coutard
- Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| | - Régine Lebrun
- IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| | - Chantal Abergel
- Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20, France
| |
Collapse
|
567
|
Kang M, Dunigan DD, VAN Etten JL. Chlorovirus: a genus of Phycodnaviridae that infects certain chlorella-like green algae. MOLECULAR PLANT PATHOLOGY 2005; 6:213-224. [PMID: 20565652 DOI: 10.1111/j.1364-3703.2005.00281.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Taxonomy: Chlorella viruses are assigned to the family Phycodnaviridae, genus Chlorovirus, and are divided into three species: Chlorella NC64A viruses, Chlorella Pbi viruses and Hydra viridis Chlorella viruses. Chlorella viruses are large, icosahedral, plaque-forming, dsDNA viruses that infect certain unicellular, chlorella-like green algae. The type member is Paramecium bursaria chlorella virus 1 (PBCV-1). Physical properties: Chlorella virus particles are large (molecular weight approximately 1 x 10(9) Da) and complex. The virion of PBCV-1 contains more than 100 different proteins; the major capsid protein, Vp54, comprises approximately 40% of the virus protein. Cryoelectron microscopy and three-dimensional image reconstruction of PBCV-1 virions indicate that the outer glycoprotein-containing capsid shell is icosahedral and surrounds a lipid bilayered membrane. The diameter of the viral capsid ranges from 1650 A along the two- and three-fold axes to 1900 A along the five-fold axis. The virus contains 5040 copies of Vp54, and the triangulation number is 169. The PBCV-1 genome is a linear, 330 744-bp, non-permuted dsDNA with covalently closed hairpin ends. The PBCV-1 genome contains approximately 375 protein-encoding genes and 11 tRNA genes. About 50% of the protein-encoding genes match proteins in the databases. Hosts: Chlorella NC64A and Chlorella Pbi, the hosts for NC64A viruses and Pbi viruses, respectively, are endosymbionts of the protozoan Paramecium bursaria. However, they can be grown in the laboratory free of both the paramecium and the virus. These two chlorella species are hosts to viruses that have been isolated from fresh water collected around the world. The host for hydra chlorella virus, a symbiotic chlorella from Hydra viridis, has not been grown independently of its host; thus the virus can only be obtained from chlorella cells freshly released from hydra.
Collapse
Affiliation(s)
- Ming Kang
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, USA
| | | | | |
Collapse
|
568
|
Abstract
Mimivirus, the largest virus known to date, is an amebal pathogen like Legionella spp. When mimivirus was used as an antigen in a migration inhibition factor assay, seroconversion was found in patients with both community- and hospital-acquired pneumonia. Mimivirus DNA was found in respiratory samples of patients with hospital-acquired pneumonia.
Collapse
|
569
|
Affiliation(s)
- Elodie Ghedin
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
570
|
Abstract
The sequences of two giant viral genomes, Mimivirus and a polydnavirus, have revealed unusual features that challenge the way we view the evolution and definition of viruses. The sequences of two giant viral genomes, Mimivirus and a polydnavirus, have recently been published. Mimivirus has the largest known viral genome and encodes an unprecedented number of proteins, whereas the polydnavirus genome has an extremely low coding density and does not encode DNA-replication proteins. These and other unusual features challenge the way we view the evolution and definition of viruses.
Collapse
Affiliation(s)
| | - Jonathan A Eisen
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20854, USA
| | - Vishvanath Nene
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20854, USA
| |
Collapse
|
571
|
Ogata H, Raoult D, Claverie JM. A new example of viral intein in Mimivirus. Virol J 2005; 2:8. [PMID: 15707490 PMCID: PMC549080 DOI: 10.1186/1743-422x-2-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 02/11/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inteins are "protein introns" that remove themselves from their host proteins through an autocatalytic protein-splicing. After their discovery, inteins have been quickly identified in all domains of life, but only once to date in the genome of a eukaryote-infecting virus. RESULTS Here we report the identification and bioinformatics characterization of an intein in the DNA polymerase PolB gene of amoeba infecting Mimivirus, the largest known double-stranded DNA virus, the origin of which has been proposed to predate the emergence of eukaryotes. Mimivirus intein exhibits canonical sequence motifs and clearly belongs to a subclass of archaeal inteins always found in the same location of PolB genes. On the other hand, the Mimivirus PolB is most similar to eukaryotic Poldelta sequences. CONCLUSIONS The intriguing association of an extremophilic archaeal-type intein with a mesophilic eukaryotic-like PolB in Mimivirus is consistent with the hypothesis that DNA viruses might have been the central reservoir of inteins throughout the course of evolution.
Collapse
Affiliation(s)
- Hiroyuki Ogata
- Information Génomique et Structurale, UPR2589 CNRS, IBSM, IFR88, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Didier Raoult
- Unité des Rickettsies, CNRS UPRESA 6020, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Jean-Michel Claverie
- Information Génomique et Structurale, UPR2589 CNRS, IBSM, IFR88, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
572
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
573
|
Abergel C, Chenivesse S, Byrne D, Suhre K, Arondel V, Claverie JM. Mimivirus TyrRS: preliminary structural and functional characterization of the first amino-acyl tRNA synthetase found in a virus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:212-5. [PMID: 16510997 PMCID: PMC1952258 DOI: 10.1107/s174430910500062x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 01/06/2005] [Indexed: 11/10/2022]
Abstract
The amoeba-infecting Mimivirus is the largest known double-stranded DNA virus, with a 400 nm particle size, comparable to that of mycoplasma. The complete sequence of its 1.2 Mbp genome has recently been determined [Raoult et al. (2004), Science, 306, 1344-1350] and revealed numerous genes that were not expected to be found in a virus, such as genes encoding translation components, including 4-amino-acyl tRNA synthetases and homologues to various translation initiation, elongation and termination factors. A comprehensive structural and functional study of these Mimivirus gene products was initiated, as they may hold important clues about the origin of DNA viruses. Here, the first preliminary crystallographic and functional results obtained on one of these targets, Mimivirus TyrRS, are reported. Preliminary phasing was obtained using an original combination of homology modelling and normal mode analysis. Experimental evidence that Mimivirus tyrosyl tRNA synthetase recombinant gene product does indeed activate tyrosine is also presented.
Collapse
Affiliation(s)
- Chantal Abergel
- Structural and Genomic Information Laboratory, CNRS UPR 2589, IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
574
|
|
575
|
Benson SD, Bamford JKH, Bamford DH, Burnett RM. Does common architecture reveal a viral lineage spanning all three domains of life? Mol Cell 2005; 16:673-85. [PMID: 15574324 DOI: 10.1016/j.molcel.2004.11.016] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our discovery that the major coat protein of bacteriophage PRD1 resembles that of human adenovirus raised the unexpected possibility that viruses infecting bacteria could be related by evolution to those infecting animal hosts. We first review the development of this idea. We then describe how we have used structure-based modeling to show that several other viruses with no detectable sequence similarity are likely to have coats constructed from similar proteins-the "double-barrel trimer." There is evidence that the group includes a diversity of viruses infecting very different hosts in all three domains of life: Eukarya; Bacteria; and Archaea that diverged billions of years ago. The current classification of viruses obscures such similarities. We propose that the occurrence of a double-barrel trimer coat protein in an icosahedral dsDNA virus with large facets, irrespective of its host, is a very strong indicator of its membership in a lineage of viruses with a common ancestor.
Collapse
Affiliation(s)
- Stacy D Benson
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
576
|
Schuster FL, Visvesvara GS. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 2004; 34:1001-27. [PMID: 15313128 DOI: 10.1016/j.ijpara.2004.06.004] [Citation(s) in RCA: 520] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/31/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
Knowledge that free-living amoebae are capable of causing human disease dates back some 50 years, prior to which time they were regarded as harmless soil organisms or, at most, commensals of mammals. First Naegleria fowleri, then Acanthamoeba spp. and Balamuthia mandrillaris, and finally Sappinia diploidea have been recognised as etiologic agents of encephalitis; Acanthamoeba spp. are also responsible for amoebic keratitis. Some of the infections are opportunistic, occurring mainly in immunocompromised hosts (Acanthamoeba and Balamuthia encephalitides), while others are non-opportunistic (Acanthamoeba keratitis, Naegleria meningoencephalitis, and cases of Balamuthia encephalitis occurring in immunocompetent humans). The amoebae have a cosmopolitan distribution in soil and water, providing multiple opportunities for contacts with humans and animals, as evidenced by antibody titers in surveyed human populations. Although, the numbers of infections caused by these amoebae are low in comparison to other protozoal parasitoses (trypanosomiasis, toxoplasmosis, malaria, etc.), the difficulty in diagnosing them, the challenge of finding optimal antimicrobial treatments and the morbidity and relatively high mortality associated with, in particular, the encephalitides have been a cause for concern for clinical and laboratory personnel and parasitologists. This review presents information about the individual amoebae: their morphologies and life-cycles, laboratory cultivation, ecology, epidemiology, nature of the infections and appropriate antimicrobial therapies, the immune response, and molecular diagnostic procedures that have been developed for identification of the amoebae in the environment and in clinical specimens.
Collapse
Affiliation(s)
- Frederick L Schuster
- Viral and Rickettsial Disease Laboratory, California Department Health Services, 850 Marina Bay Parkway, Richmond, CA 94804, USA.
| | | |
Collapse
|
577
|
Purohit PK, Inamdar MM, Grayson PD, Squires TM, Kondev J, Phillips R. Forces during bacteriophage DNA packaging and ejection. Biophys J 2004; 88:851-66. [PMID: 15556983 PMCID: PMC1305160 DOI: 10.1529/biophysj.104.047134] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conjunction of insights from structural biology, solution biochemistry, genetics, and single-molecule biophysics has provided a renewed impetus for the construction of quantitative models of biological processes. One area that has been a beneficiary of these experimental techniques is the study of viruses. In this article we describe how the insights obtained from such experiments can be utilized to construct physical models of processes in the viral life cycle. We focus on dsDNA bacteriophages and show that the bending elasticity of DNA and its electrostatics in solution can be combined to determine the forces experienced during packaging and ejection of the viral genome. Furthermore, we quantitatively analyze the effect of fluid viscosity and capsid expansion on the forces experienced during packaging. Finally, we present a model for DNA ejection from bacteriophages based on the hypothesis that the energy stored in the tightly packed genome within the capsid leads to its forceful ejection. The predictions of our model can be tested through experiments in vitro where DNA ejection is inhibited by the application of external osmotic pressure.
Collapse
Affiliation(s)
- Prashant K Purohit
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | | |
Collapse
|
578
|
Tsai JM, Wang HC, Leu JH, Hsiao HH, Wang AHJ, Kou GH, Lo CF. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol 2004; 78:11360-70. [PMID: 15452257 PMCID: PMC521807 DOI: 10.1128/jvi.78.20.11360-11370.2004] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
White spot syndrome virus (WSSV) virions were purified from the hemolymph of experimentally infected crayfish Procambarus clarkii, and their proteins were separated by 8 to 18% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to give a protein profile. The visible bands were then excised from the gel, and following trypsin digestion of the reduced and alkylated WSSV proteins in the bands, the peptide sequence of each fragment was determined by liquid chromatography-nano-electrospray ionization tandem mass spectrometry (LC-nanoESI-MS/MS) using a quadrupole/time-of-flight mass spectrometer. Comparison of the resulting peptide sequence data against the nonredundant database at the National Center for Biotechnology Information identified 33 WSSV structural genes, 20 of which are reported here for the first time. Since there were six other known WSSV structural proteins that could not be identified from the SDS-PAGE bands, there must therefore be a total of at least 39 (33 + 6) WSSV structural protein genes. Only 61.5% of the WSSV structural genes have a polyadenylation signal, and preliminary analysis by 3' rapid amplification of cDNA ends suggested that some structural protein genes produced mRNA without a poly(A) tail. Microarray analysis showed that gene expression started at 2, 6, 8, 12, 18, 24, and 36 hpi for 7, 1, 4, 12, 9, 5, and 1 of the genes, respectively. Based on similarities in their time course expression patterns, a clustering algorithm was used to group the WSSV structural genes into four clusters. Genes that putatively had common or similar roles in the viral infection cycle tended to appear in the same cluster.
Collapse
Affiliation(s)
- Jyh-Ming Tsai
- Graduate Institute of Zoology, National Taiwan University, Taipei 106, Taiwan R.O.C
| | | | | | | | | | | | | |
Collapse
|
579
|
Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM. The 1.2-megabase genome sequence of Mimivirus. Science 2004; 306:1344-50. [PMID: 15486256 DOI: 10.1126/science.1101485] [Citation(s) in RCA: 740] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We recently reported the discovery and preliminary characterization of Mimivirus, the largest known virus, with a 400-nanometer particle size comparable to mycoplasma. Mimivirus is a double-stranded DNA virus growing in amoebae. We now present its 1,181,404-base pair genome sequence, consisting of 1262 putative open reading frames, 10% of which exhibit a similarity to proteins of known functions. In addition to exceptional genome size, Mimivirus exhibits many features that distinguish it from other nucleocytoplasmic large DNA viruses. The most unexpected is the presence of numerous genes encoding central protein-translation components, including four amino-acyl transfer RNA synthetases, peptide release factor 1, translation elongation factor EF-TU, and translation initiation factor 1. The genome also exhibits six tRNAs. Other notable features include the presence of both type I and type II topoisomerases, components of all DNA repair pathways, many polysaccharide synthesis enzymes, and one intein-containing gene. The size and complexity of the Mimivirus genome challenge the established frontier between viruses and parasitic cellular organisms. This new sequence data might help shed a new light on the origin of DNA viruses and their role in the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Didier Raoult
- Unité des Rickettsies, Faculté de Médecine, CNRS UMR6020, Université de la Méditerranée, 13385 Marseille Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
580
|
Iyer LM, Makarova KS, Koonin EV, Aravind L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 2004; 32:5260-79. [PMID: 15466593 PMCID: PMC521647 DOI: 10.1093/nar/gkh828] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, it has been shown that a predicted P-loop ATPase (the HerA or MlaA protein), which is highly conserved in archaea and also present in many bacteria but absent in eukaryotes, has a bidirectional helicase activity and forms hexameric rings similar to those described for the TrwB ATPase. In this study, the FtsK-HerA superfamily of P-loop ATPases, in which the HerA clade comprises one of the major branches, is analyzed in detail. We show that, in addition to the FtsK and HerA clades, this superfamily includes several families of characterized or predicted ATPases which are predominantly involved in extrusion of DNA and peptides through membrane pores. The DNA-packaging ATPases of various bacteriophages and eukaryotic double-stranded DNA viruses also belong to the FtsK-HerA superfamily. The FtsK protein is the essential bacterial ATPase that is responsible for the correct segregation of daughter chromosomes during cell division. The structural and evolutionary relationship between HerA and FtsK and the nearly perfect complementarity of their phyletic distributions suggest that HerA similarly mediates DNA pumping into the progeny cells during archaeal cell division. It appears likely that the HerA and FtsK families diverged concomitantly with the archaeal-bacterial division and that the last universal common ancestor of modern life forms had an ancestral DNA-pumping ATPase that gave rise to these families. Furthermore, the relationship of these cellular proteins with the packaging ATPases of diverse DNA viruses suggests that a common DNA pumping mechanism might be operational in both cellular and viral genome segregation. The herA gene forms a highly conserved operon with the gene for the NurA nuclease and, in many archaea, also with the orthologs of eukaryotic double-strand break repair proteins MRE11 and Rad50. HerA is predicted to function in a complex with these proteins in DNA pumping and repair of double-stranded breaks introduced during this process and, possibly, also during DNA replication. Extensive comparative analysis of the 'genomic context' combined with in-depth sequence analysis led to the prediction of numerous previously unnoticed nucleases of the NurA superfamily, including a specific version that is likely to be the endonuclease component of a novel restriction-modification system. This analysis also led to the identification of previously uncharacterized nucleases, such as a novel predicted nuclease of the Sir2-type Rossmann fold, and phosphatases of the HAD superfamily that are likely to function as partners of the FtsK-HerA superfamily ATPases.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
581
|
Li Y, Altman S. In search of RNase P RNA from microbial genomes. RNA (NEW YORK, N.Y.) 2004; 10:1533-40. [PMID: 15337843 PMCID: PMC1370640 DOI: 10.1261/rna.7970404] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 07/06/2004] [Indexed: 05/19/2023]
Abstract
A simple procedure has been developed to quickly retrieve and validate the DNA sequence encoding the RNA subunit of ribonuclease P (RNase P RNA) from microbial genomes. RNase P RNA sequences were identified from 94% of bacterial and archaeal complete genomes where previously no RNase P RNA was annotated. A sequence was found in camelpox virus, highly conserved in all orthopoxviruses (including smallpox virus), which could fold into a putative RNase P RNA in terms of conserved primary features and secondary structure. New structure features of RNase P RNA that enable one to distinguish bacteria from archaea and eukarya were found. This RNA is yet another RNA that can be a molecular criterion to divide the living world into three domains (bacteria, archaea, and eukarya). The catalytic center of this RNA, and its detection from some environmental whole genome shotgun sequences, is also discussed.
Collapse
Affiliation(s)
- Yong Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
582
|
Kho R, Newman JV, Jack RM, Villar HO, Hansen MR. Genome-wide profile of oxidoreductases in viruses, prokaryotes, and eukaryotes. J Proteome Res 2004; 2:626-32. [PMID: 14692456 DOI: 10.1021/pr034051h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes that utilize nicotinamide adenine dinucleotide (NAD) or its 2'-phosphate derivative (NADP) are found throughout the kingdoms of life. These enzymes are fundamental to many biochemical pathways, including central intermediary metabolism and mechanisms for cell survival and defense. The complete genomes of 25 organisms representing bacteria, protists, fungi, plants, and animals, and 811 viruses, were mined to identify and classify NAD(P)-dependent enzymes. An average of 3.4% of the proteins in these genomes was categorized as NAD(P)-utilizing proteins, with highest prevalence in the medium-chain oxidoreductase and short-chain oxidoreductase families. In general, the distribution of these enzymes by oxidoreductase family was correlated to the number of different catalytic mechanisms in each family. Organisms with smaller genomes encoded a larger proportion of NAD(P)-dependent enzymes in their proteome (approximately 6%) as compared to the larger genomes of eukaryotes (approximately 3%). Among viruses, those with large, double-strand DNA genomes were shown to encode oxidoreductases. Gram-positive and gram-negative bacteria showed some differences in the distribution of NAD(P)-dependent proteins. Several organisms such as M. tuberculosis, P. falciparum, and A. thaliana showed unique distributions of oxidoreductases corresponding to some phenotypic features.
Collapse
Affiliation(s)
- Richard Kho
- Triad Therapeutics, Inc., 9381 Judicial Drive, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
583
|
Hopkin M. Sperm donors courted for big cats. Nature 2004. [DOI: 10.1038/news040621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
584
|
Abstract
Free-living amoebae feed on bacteria, fungi, and algae. However, some microorganisms have evolved to become resistant to these protists. These amoeba-resistant microorganisms include established pathogens, such as Cryptococcus neoformans, Legionella spp., Chlamydophila pneumoniae, Mycobacterium avium, Listeria monocytogenes, Pseudomonas aeruginosa, and Francisella tularensis, and emerging pathogens, such as Bosea spp., Simkania negevensis, Parachlamydia acanthamoebae, and Legionella-like amoebal pathogens. Some of these amoeba-resistant bacteria (ARB) are lytic for their amoebal host, while others are considered endosymbionts, since a stable host-parasite ratio is maintained. Free-living amoebae represent an important reservoir of ARB and may, while encysted, protect the internalized bacteria from chlorine and other biocides. Free-living amoebae may act as a Trojan horse, bringing hidden ARB within the human "Troy," and may produce vesicles filled with ARB, increasing their transmission potential. Free-living amoebae may also play a role in the selection of virulence traits and in adaptation to survival in macrophages. Thus, intra-amoebal growth was found to enhance virulence, and similar mechanisms seem to be implicated in the survival of ARB in response to both amoebae and macrophages. Moreover, free-living amoebae represent a useful tool for the culture of some intracellular bacteria and new bacterial species that might be potential emerging pathogens.
Collapse
Affiliation(s)
- Gilbert Greub
- Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | |
Collapse
|
585
|
Bothner B, Siuzdak G. Electrospray Ionization of a Whole Virus: Analyzing Mass, Structure, and Viability. Chembiochem 2004; 5:258-60. [PMID: 14997515 DOI: 10.1002/cbic.200300754] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brian Bothner
- The Scripps Research Institute, Department of Molecular Biology, and the Center for Mass Spectrometry, 10 550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
586
|
Chiura HX, Umitsu M. Isolation and Characterisation of Broad-Host Range Gene Transporter Particles from Geo-Thermal Vent of the Toyoha Mine. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiroshi Xavier Chiura
- Department of Biology, Division of Natural Sciences, International Christian University
| | - Masataka Umitsu
- Department of Biology, Division of Natural Sciences, International Christian University
- KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
587
|
Mills R, Rozanov M, Lomsadze A, Tatusova T, Borodovsky M. Improving gene annotation of complete viral genomes. Nucleic Acids Res 2003; 31:7041-55. [PMID: 14627837 PMCID: PMC290248 DOI: 10.1093/nar/gkg878] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 08/02/2003] [Accepted: 10/03/2003] [Indexed: 11/18/2022] Open
Abstract
Gene annotation in viruses often relies upon similarity search methods. These methods possess high specificity but some genes may be missed, either those unique to a particular genome or those highly divergent from known homologs. To identify potentially missing viral genes we have analyzed all complete viral genomes currently available in GenBank with a specialized and augmented version of the gene finding program GeneMarkS. In particular, by implementing genome-specific self-training protocols we have better adjusted the GeneMarkS statistical models to sequences of viral genomes. Hundreds of new genes were identified, some in well studied viral genomes. For example, a new gene predicted in the genome of the Epstein-Barr virus was shown to encode a protein similar to alpha-herpesvirus minor tegument protein UL14 with heat shock functions. Convincing evidence of this similarity was obtained after only 12 PSI-BLAST iterations. In another example, several iterations of PSI-BLAST were required to demonstrate that a gene predicted in the genome of Alcelaphine herpesvirus 1 encodes a BALF1-like protein which is thought to be involved in apoptosis regulation and, potentially, carcinogenesis. New predictions were used to refine annotations of viral genomes in the RefSeq collection curated by the National Center for Biotechnology Information. Importantly, even in those cases where no sequence similarities were detected, GeneMarkS significantly reduced the number of primary targets for experimental characterization by identifying the most probable candidate genes. The new genome annotations were stored in VIOLIN, an interactive database which provides access to similarity search tools for up-to-date analysis of predicted viral proteins.
Collapse
Affiliation(s)
- Ryan Mills
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | | | | | |
Collapse
|
588
|
Stasiak K, Renault S, Demattei MV, Bigot Y, Federici BA. Evidence for the evolution of ascoviruses from iridoviruses. J Gen Virol 2003; 84:2999-3009. [PMID: 14573805 DOI: 10.1099/vir.0.19290-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ascoviruses (family Ascoviridae) are large, enveloped, double-stranded (ds)DNA viruses that attack lepidopteran larvae and pupae, and are unusual in that they are transmitted by parasitic wasps during oviposition. Previous comparisons of DNA polymerase sequences from vertebrate and invertebrate viruses suggested that ascoviruses are closely related to iridoviruses. This relationship was unexpected because these viruses differ markedly in virion symmetry, genome configuration and cellular pathology. Here we present evidence based on sequence comparisons and phylogenetic analyses of a greater range of ascovirus proteins and their homologues in other large dsDNA viruses that ascoviruses evolved from iridoviruses. Consensus trees for the major capsid protein, DNA polymerase, thymidine kinase and ATPase III from representative ascoviruses, algal viruses (family Phycodnaviridae), vertebrate and invertebrate iridoviruses (family Iridoviridae) and African swine fever virus (ASFV; family Asfarviridae) showed that ascovirus proteins clustered most closely with those of the lepidopteran iridovirus Chilo iridescent virus (CIV) (Invertebrate iridescent virus 6). Moreover, analysis of the presence or absence of homologues of an additional 50 proteins encoded in the genome of Spodoptera frugiperda ascovirus (SfAV-1a) showed that about 40 % occurred in CIV, with lower percentages encoded by the genomes of, respectively, vertebrate iridoviruses, phycodnaviruses and ASFV. The occurrence of three of these genes in SfAV-1a but not CIV was indicative of the evolutionary differentiation of ascoviruses from invertebrate iridoviruses.
Collapse
Affiliation(s)
- Karine Stasiak
- Université François Rabelais, UFR des Sciences et Techniques, Laboratoire d'Etude des Parasites Génétiques, FRE-CNRS 2535, Parc Grandmont, 37200 Tours, France
| | - Sylvaine Renault
- Université François Rabelais, UFR des Sciences et Techniques, Laboratoire d'Etude des Parasites Génétiques, FRE-CNRS 2535, Parc Grandmont, 37200 Tours, France
| | - Marie-Véronique Demattei
- Université François Rabelais, UFR des Sciences et Techniques, Laboratoire d'Etude des Parasites Génétiques, FRE-CNRS 2535, Parc Grandmont, 37200 Tours, France
| | - Yves Bigot
- Department of Entomology and Interdepartmental Graduate Programs in Genetics and Microbiology, University of California, Riverside, CA 92507, USA
- Université François Rabelais, UFR des Sciences et Techniques, Laboratoire d'Etude des Parasites Génétiques, FRE-CNRS 2535, Parc Grandmont, 37200 Tours, France
| | - Brian A Federici
- Department of Entomology and Interdepartmental Graduate Programs in Genetics and Microbiology, University of California, Riverside, CA 92507, USA
| |
Collapse
|
589
|
Affiliation(s)
- Katja Aho
- Phone: 358 17 16 3078
Fax: 358 17 2811 510
E-mail:
| | | |
Collapse
|