6101
|
Chang JO. Development of Molecular Simulation Software for the Prediction of Thermodynamic Properties. KOREAN CHEMICAL ENGINEERING RESEARCH 2011. [DOI: 10.9713/kcer.2011.49.3.361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6102
|
Lee H, Pastor RW. Coarse-grained model for PEGylated lipids: effect of PEGylation on the size and shape of self-assembled structures. J Phys Chem B 2011; 115:7830-7. [PMID: 21618987 PMCID: PMC3462017 DOI: 10.1021/jp2020148] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembly of polyethylene glycol (PEG)-grafted lipids at different sizes and concentrations was simulated using the MARTINI coarse-grained (CG) force field. The interactions between CG PEG and CG dipalmitoylglycerophosphocholine (DPPC)-lipids were parametrized by matching densities of 19-mers of PEG and polyethylene oxide (PEO) grafted to the bilayer from all-atom simulations. Mixtures of lipids and PEG-grafted (M(w) = 550, 1250, and 2000) lipids in water self-assembled to liposomes, bicelles, and micelles at different ratios of lipids and PEGylated lipids. Average aggregate sizes decrease with increasing PEGylated-lipid concentration, in qualitative agreement with experiment. PEGylated lipids concentrate at the rims of bicelles, rather than at the planar surfaces; this also agrees with experiment, though the degree of segregation is less than that assumed in previous modeling of the experimental data. Charged lipids without PEG evenly distribute at the rim and planar surfaces of the bicelle. The average end-to-end distances of the PEG on the PEGylated lipids are comparable in liposomes, bicelles (edge or planar surface), and micelles and only slightly larger than for an isolated PEG in solution. The ability of PEGylated lipids to induce the membrane curvature by the bulky headgroup with larger PEG, and thereby modulate the phase behavior and size of lipid assemblies, arises from their relative concentration.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin, 448-701, South Korea.
| | | |
Collapse
|
6103
|
López-Mejías V, Knight JL, Brooks CL, Matzger AJ. On the mechanism of crystalline polymorph selection by polymer heteronuclei. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7575-9. [PMID: 21591791 PMCID: PMC3124555 DOI: 10.1021/la200689a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The phase-selective crystallization of acetaminophen (ACM) using insoluble polymers as heteronuclei was investigated in a combined experimental and computational effort to elucidate the mechanism of polymer-induced heteronucleation (PIHn). ACM heteronucleates from supersaturated aqueous solution in its most thermodynamically stable monoclinic form on poly(n-butyl methacrylate), whereas the metastable orthorhombic form is observed on poly(methyl methacrylate). When ACM crystals were grown through vapor deposition, only the monoclinic polymorph was observed on each polymer. Each crystallization condition leads to a unique powder X-ray diffraction pattern with the major preferred orientation corresponding to the crystallographic faces in which these crystal phases nucleate from surfaces of the polymers. The molecular recognition events leading to these outcomes are elucidated with the aid of computed polymer-crystal binding energies using docking simulations. This investigation illuminates the mechanism by which phase selection occurs during the crystallization of ACM using polymers as heteronuclei, paving the way for the improvement of methods for polymorph selection and discovery based on heterogeneous nucleation promoters.
Collapse
Affiliation(s)
- Vilmalí López-Mejías
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor MI 48109-1055
| | - Jennifer L. Knight
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor MI 48109-1055
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor MI 48109-1055
- Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor MI 48109-1055
| | - Adam J. Matzger
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor MI 48109-1055
- Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor MI 48109-1055
| |
Collapse
|
6104
|
Laine E, Chauvot de Beauchêne I, Perahia D, Auclair C, Tchertanov L. Mutation D816V alters the internal structure and dynamics of c-KIT receptor cytoplasmic region: implications for dimerization and activation mechanisms. PLoS Comput Biol 2011; 7:e1002068. [PMID: 21698178 PMCID: PMC3116893 DOI: 10.1371/journal.pcbi.1002068] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/11/2011] [Indexed: 12/02/2022] Open
Abstract
The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites. Protein kinases are involved in a huge amount of cellular processes through phosphorylation, a crucial mechanism in cell signaling, and their misregulation often results in disease. The deactivation of protein tyrosine kinases (PTKs) or their oncogenic activation arises from mutations which affect the protein primary structure and the configuration of the enzymatic site apparently by stabilizing the activation loop (A-loop) extended conformation. Particularly, mutation D816V of receptor tyrosine kinase (RTK) KIT, found in patients with pediatric mastocytosis, acute leukemia or germ cell tumors, can be considered as the archetype of mutation inducing a displacement of the population equilibrium toward the active conformation. We present a comprehensive computational study of the activating mechanism(s) of this mutation. Our multi-approach in silico procedure evidenced a local alteration of the A-loop structure, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. Our results provided a plausible conception of how the observed departure of JMR from kinase domain in the mutant promotes kinase mutant dimerization without requiring extra-cellular ligand binding. The pocket profiles we obtained suggested putative allosteric binding sites that could be targeted by ligands/modulators that trap the mutated enzyme.
Collapse
Affiliation(s)
- Elodie Laine
- LBPA, CNRS - ENS de Cachan, Cachan, France
- * E-mail: (EL); (LT)
| | | | | | | | - Luba Tchertanov
- LBPA, CNRS - ENS de Cachan, Cachan, France
- * E-mail: (EL); (LT)
| |
Collapse
|
6105
|
Huang D, Caflisch A. Small Molecule Binding to Proteins: Affinity and Binding/Unbinding Dynamics from Atomistic Simulations. ChemMedChem 2011; 6:1578-80. [DOI: 10.1002/cmdc.201100237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Indexed: 11/08/2022]
|
6106
|
Ovchinnikov V, Karplus M, Vanden-Eijnden E. Free energy of conformational transition paths in biomolecules: the string method and its application to myosin VI. J Chem Phys 2011; 134:085103. [PMID: 21361558 DOI: 10.1063/1.3544209] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A set of techniques developed under the umbrella of the string method is used in combination with all-atom molecular dynamics simulations to analyze the conformation change between the prepowerstroke (PPS) and rigor (R) structures of the converter domain of myosin VI. The challenges specific to the application of these techniques to such a large and complex biomolecule are addressed in detail. These challenges include (i) identifying a proper set of collective variables to apply the string method, (ii) finding a suitable initial string, (iii) obtaining converged profiles of the free energy along the transition path, (iv) validating and interpreting the free energy profiles, and (v) computing the mean first passage time of the transition. A detailed description of the PPS↔R transition in the converter domain of myosin VI is obtained, including the transition path, the free energy along the path, and the rates of interconversion. The methodology developed here is expected to be useful more generally in studies of conformational transitions in complex biomolecules.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
6107
|
Shim J, Coop A, MacKerell AD. Consensus 3D model of μ-opioid receptor ligand efficacy based on a quantitative Conformationally Sampled Pharmacophore. J Phys Chem B 2011; 115:7487-96. [PMID: 21563754 PMCID: PMC3113728 DOI: 10.1021/jp202542g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite being studied for over 30 years, a consensus structure-activity relationship (SAR) that encompasses the full range peptidic and nonpeptidic μ-opioid receptor ligands is still not available. To achieve a consensus SAR the Conformationally Sampled Pharmacophore (CSP) method was applied to develop a predictive model of the efficacy of μ-opioid receptor ligands. Emphasis was placed on predicting the efficacy of a wide range of agonists, partial agonists, and antagonists as well as understanding their mode of interaction with the receptor. Inclusion of all accessible conformations of each ligand, a central feature of the CSP method, enabled structural features between diverse μ-opioid receptor ligands that dictate efficacy to be identified. The models were validated against a diverse collection of peptidic and nonpeptidic ligands, including benzomorphans, fentanyl (4-anilinopiperidine), methadone (3,3-diphenylpropylamines), etonitazene (benzimidazole derivatives), funaltrexamine (C6-substituted 4,5-epoxymorphinan), and herkinorin. The model predicts (1) that interactions of ligands with the B site, as with the 19-alkyl substituents of oripavines, modulate the extent of agonism; (2) that agonists with long N-substituents, as with fentanyl and N-phenethylnormorphine, can bind in an orientation such that the N substitutent interacts with the B site that also allows the basic N-receptor Asp interaction essential for agonism; and (3) that the μ agonist herkinorin, that lacks a basic nitrogen, binds to the receptor in a manner similar to the traditional opioids via interactions mediated by water or a ion. Importantly, the proposed CSP model can be reconciled with previously published SAR models for the μ receptor.
Collapse
Affiliation(s)
- Jihyun Shim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Andrew Coop
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
6108
|
Ingólfsson HI, Li Y, Vostrikov VV, Gu H, Hinton JF, Koeppe RE, Roux B, Andersen OS. Gramicidin A backbone and side chain dynamics evaluated by molecular dynamics simulations and nuclear magnetic resonance experiments. I: molecular dynamics simulations. J Phys Chem B 2011; 115:7417-26. [PMID: 21574563 PMCID: PMC3107394 DOI: 10.1021/jp200904d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gramicidin A (gA) channels provide an ideal system to test molecular dynamics (MD) simulations of membrane proteins. The peptide backbone lines a cation-selective pore, and due to the small channel size, the average structure and extent of fluctuations of all atoms in the peptide will influence ion permeation. This raises the question of how well molecular mechanical force fields used in MD simulations and potential of mean force (PMF) calculations can predict structure and dynamics as well as ion permeation. To address this question, we undertook a comparative study of nuclear magnetic resonance (NMR) observables predicted by fully atomistic MD simulations on a gA dimer embedded in a sodium dodecyl sulfate (SDS) micelle with measurements of the gA dimer backbone and tryptophan side chain dynamics using solution-state (15)N NMR on gA dimers in SDS micelles (Vostrikov, V. V.; Gu, H.; Ingólfsson, H. I.; Hinton, J. F.; Andersen, O. S.; Roux, B.; Koeppe, R. E., II. J. Phys. Chem. B2011, DOI 10.1021/jp200906y , accompanying article). This comparison enables us to examine the robustness of the MD simulations done using different force fields as well as their ability to predict important features of the gA channel. We find that MD is able to predict NMR observables, including the generalized order parameters (S(2)), the (15)N spin-lattice (T(1)) and spin-spin (T(2)) relaxation times, and the (1)H-(15)N nuclear Overhauser effect (NOE), with remarkable accuracy. To examine further how differences in the force fields can affect the channel conductance, we calculated the PMF for K(+) and Na(+) permeation through a gA channel in a dimyristoylphosphatidylcholine (DMPC) bilayer. In this case, we find that MD is less successful in quantitatively predicting the single-channel conductance.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, United States
| | | | | | | | | | | | | | | |
Collapse
|
6109
|
Glowacki DR, Orr-Ewing AJ, Harvey JN. Product energy deposition of CN + alkane H abstraction reactions in gas and solution phases. J Chem Phys 2011; 134:214508. [DOI: 10.1063/1.3595259] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6110
|
Abstract
Background: Molecular dynamics (MD) simulations are broadly used to reproduce protein motions at an atomic level of detail. Running MD simulations is generally considered an expert-driven task. Discussion: ClickMD provides an integrated web-oriented platform for processing and analyzing the time-dependent behavior of a biomolecular system in an MD workflow. ClickMD is freely available online and can be easily integrated into the drug-design process, in particular in combination with molecular docking simulations. Conclusion: ClickMD has the potential to reduce the shuffling among various software applications and to facilitate the seamless processing of the MD trajectories.
Collapse
|
6111
|
Kawate T, Robertson JL, Li M, Silberberg SD, Swartz KJ. Ion access pathway to the transmembrane pore in P2X receptor channels. J Gen Physiol 2011; 137:579-90. [PMID: 21624948 PMCID: PMC3105519 DOI: 10.1085/jgp.201010593] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 05/10/2011] [Indexed: 11/20/2022] Open
Abstract
P2X receptors are trimeric cation channels that open in response to the binding of adenosine triphosphate (ATP) to a large extracellular domain. The x-ray structure of the P2X4 receptor from zebrafish (zfP2X4) receptor reveals that the extracellular vestibule above the gate opens to the outside through lateral fenestrations, providing a potential pathway for ions to enter and exit the pore. The extracellular region also contains a void at the central axis, providing a second potential pathway. To investigate the energetics of each potential ion permeation pathway, we calculated the electrostatic free energy by solving the Poisson-Boltzmann equation along each of these pathways in the zfP2X4 crystal structure and a homology model of rat P2X2 (rP2X2). We found that the lateral fenestrations are energetically favorable for monovalent cations even in the closed-state structure, whereas the central pathway presents strong electrostatic barriers that would require structural rearrangements to allow for ion accessibility. To probe ion accessibility along these pathways in the rP2X2 receptor, we investigated the modification of introduced Cys residues by methanethiosulfonate (MTS) reagents and constrained structural changes by introducing disulfide bridges. Our results show that MTS reagents can permeate the lateral fenestrations, and that these become larger after ATP binding. Although relatively small MTS reagents can access residues in one of the vestibules within the central pathway, no reactive positions were identified in the upper region of this pathway, and disulfide bridges that constrain movements in that region do not prevent ion conduction. Collectively, these results suggest that ions access the pore using the lateral fenestrations, and that these breathe as the channel opens. The accessibility of ions to one of the chambers in the central pathway likely serves a regulatory function.
Collapse
Affiliation(s)
- Toshimitsu Kawate
- Porter Neuroscience Research Center, Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Janice L. Robertson
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454
| | - Mufeng Li
- Porter Neuroscience Research Center, Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Shai D. Silberberg
- Porter Neuroscience Research Center, Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kenton J. Swartz
- Porter Neuroscience Research Center, Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6112
|
Jaña G, Jiménez V, Villà-Freixa J, Prat-Resina X, Delgado E, Alderete JB. A QM/MM study on the last two steps of the catalytic cycle of acetohydroxyacid synthase. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.02.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6113
|
Wang F, Akin-Ojo O, Pinnick E, Song Y. Approaching post-Hartree–Fock quality potential energy surfaces with simple pair-wise expressions: parameterising point-charge-based force fields for liquid water using the adaptive force matching method. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.565759] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6114
|
Kote-Jarai Z, Amin Al Olama A, Leongamornlert D, Tymrakiewicz M, Saunders E, Guy M, Giles GG, Severi G, Southey M, Hopper JL, Sit KC, Harris JM, Batra J, Spurdle AB, Clements JA, Hamdy F, Neal D, Donovan J, Muir K, Pharoah PDP, Chanock SJ, Brown N, Benlloch S, Castro E, Mahmud N, O'Brien L, Hall A, Sawyer E, Wilkinson R, Easton DF, Eeles RA. Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript. Hum Genet 2011; 129:687-94. [PMID: 21465221 PMCID: PMC3092928 DOI: 10.1007/s00439-011-0981-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/14/2011] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies (GWAS) have identified more than 30 prostate cancer (PrCa) susceptibility loci. One of these (rs2735839) is located close to a plausible candidate susceptibility gene, KLK3, which encodes prostate-specific antigen (PSA). PSA is widely used as a biomarker for PrCa detection and disease monitoring. To refine the association between PrCa and variants in this region, we used genotyping data from a two-stage GWAS using samples from the UK and Australia, and the Cancer Genetic Markers of Susceptibility (CGEMS) study. Genotypes were imputed for 197 and 312 single nucleotide polymorphisms (SNPs) from HapMap2 and the 1000 Genome Project, respectively. The most significant association with PrCa was with a previously unidentified SNP, rs17632542 (combined P = 3.9 × 10(-22)). This association was confirmed by direct genotyping in three stages of the UK/Australian GWAS, involving 10,405 cases and 10,681 controls (combined P = 1.9 × 10(-34)). rs17632542 is also shown to be associated with PSA levels and it is a non-synonymous coding SNP (Ile179Thr) in KLK3. Using molecular dynamic simulation, we showed evidence that this variant has the potential to introduce alterations in the protein or affect RNA splicing. We propose that rs17632542 may directly influence PrCa risk.
Collapse
Affiliation(s)
- Z Kote-Jarai
- The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6115
|
Hov JR, Kosmoliaptsis V, Traherne JA, Olsson M, Boberg KM, Bergquist A, Schrumpf E, Bradley JA, Taylor CJ, Lie BA, Trowsdale J, Karlsen TH. Electrostatic modifications of the human leukocyte antigen-DR P9 peptide-binding pocket and susceptibility to primary sclerosing cholangitis. Hepatology 2011; 53:1967-76. [PMID: 21413052 PMCID: PMC3128712 DOI: 10.1002/hep.24299] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/07/2010] [Indexed: 12/29/2022]
Abstract
UNLABELLED The strongest genetic risk factors for primary sclerosing cholangitis (PSC) are found in the human leukocyte antigen (HLA) complex at chromosome 6p21. Genes in the HLA class II region encode molecules that present antigen to T lymphocytes. Polymorphisms in these genes are associated with most autoimmune diseases, most likely because they contribute to the specificity of immune responses. The aim of this study was to analyze the structure and electrostatic properties of the peptide-binding groove of HLA-DR in relation to PSC. Thus, four-digit resolution HLA-DRB1 genotyping was performed in 356 PSC patients and 366 healthy controls. Sequence information was used to assign which amino acids were encoded at all polymorphic positions. In stepwise logistic regressions, variations at residues 37 and 86 were independently associated with PSC (P = 1.2 × 10(-32) and P = 1.8 × 10(-22) in single-residue models, respectively). Three-dimensional modeling was performed to explore the effect of these key residues on the HLA-DR molecule. This analysis indicated that residue 37 was a major determinant of the electrostatic properties of pocket P9 of the peptide-binding groove. Asparagine at residue 37, which was associated with PSC, induced a positive charge in pocket P9. Tyrosine, which protected against PSC, induced a negative charge in this pocket. Consistent with the statistical observations, variation at residue 86 also indirectly influenced the electrostatic properties of this pocket. DRB1*13:01, which was PSC-associated, had a positive P9 pocket and DRB1*13:02, protective against PSC, had a negative P9 pocket. CONCLUSION The results suggest that in patients with PSC, residues 37 and 86 of the HLA-DRβ chain critically influence the electrostatic properties of pocket P9 and thereby the range of peptides presented.
Collapse
Affiliation(s)
- Johannes R Hov
- Norwegian PSC Research Center, Clinic for Specialized Medicine and Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6116
|
Donaldson PT. Electrostatic modifications of the human leukocyte antigen DR P9 peptide-binding pocket in primary sclerosing cholangitis: back to the future with human leukocyte antigen DRβ. Hepatology 2011; 53:1798-800. [PMID: 21538433 DOI: 10.1002/hep.24389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Peter T. Donaldson
- Centre for Liver Research, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
6117
|
Pan Y, Nussinov R. The role of response elements organization in transcription factor selectivity: the IFN-β enhanceosome example. PLoS Comput Biol 2011; 7:e1002077. [PMID: 21698143 PMCID: PMC3116919 DOI: 10.1371/journal.pcbi.1002077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/19/2011] [Indexed: 12/04/2022] Open
Abstract
What is the mechanism through which transcription factors (TFs) assemble specifically along the enhancer DNA? The IFN-β enhanceosome provides a good model system: it is small; its components' crystal structures are available; and there are biochemical and cellular data. In the IFN-β enhanceosome, there are few protein-protein interactions even though consecutive DNA response elements (REs) overlap. Our molecular dynamics (MD) simulations on different motif combinations from the enhanceosome illustrate that cooperativity is achieved via unique organization of the REs: specific binding of one TF can enhance the binding of another TF to a neighboring RE and restrict others, through overlap of REs; the order of the REs can determine which complexes will form; and the alternation of consensus and non-consensus REs can regulate binding specificity by optimizing the interactions among partners. Our observations offer an explanation of how specificity and cooperativity can be attained despite the limited interactions between neighboring TFs on the enhancer DNA. To date, when addressing selective TF binding, attention has largely focused on RE sequences. Yet, the order of the REs on the DNA and the length of the spacers between them can be a key factor in specific combinatorial assembly of the TFs on the enhancer and thus in function. Our results emphasize cooperativity via RE binding sites organization.
Collapse
Affiliation(s)
- Yongping Pan
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6118
|
Hayashi R, Tanoue K, Durell SR, Chatterjee DK, Jenkins LMM, Appella DH, Appella E. Optimization of a cyclic peptide inhibitor of Ser/Thr phosphatase PPM1D (Wip1). Biochemistry 2011; 50:4537-49. [PMID: 21528848 PMCID: PMC3508689 DOI: 10.1021/bi101949t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PPM1D (PP2Cδ or Wip1) was identified as a wild-type p53-induced Ser/Thr phosphatase that accumulates after DNA damage and classified into the PP2C family. It dephosphorylates and inactivates several proteins critical for cellular stress responses, including p38 MAPK, p53, and ATM. Furthermore, PPM1D is amplified and/or overexpressed in a number of human cancers. Thus, inhibition of its activity could constitute an important new strategy for therapeutic intervention to halt the progression of several different cancers. Previously, we reported the development of a cyclic thioether peptide with low micromolar inhibitory activity toward PPM1D. Here, we describe important improvements in the inhibitory activity of this class of cyclic peptides and also present a binding model based upon the results. We found that specific interaction of an aromatic ring at the X1 position and negative charge at the X5 and X6 positions significantly increased the inhibitory activity of the cyclic peptide, with the optimized molecule having a K(i) of 110 nM. To the best of our knowledge, this represents the highest inhibitory activity reported for an inhibitor of PPM1D. We further developed an inhibitor selective for PPM1D over PPM1A with a K(i) of 2.9 μM. Optimization of the cyclic peptide and mutagenesis experiments suggest that a highly basic loop unique to PPM1D is related to substrate specificity. We propose a new model for the catalytic site of PPM1D and inhibition by the cyclic peptides that will be useful both for the subsequent design of PPM1D inhibitors and for identification of new substrates.
Collapse
Affiliation(s)
- Ryo Hayashi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
6119
|
Louet M, Perahia D, Martinez J, Floquet N. A concerted mechanism for opening the GDP binding pocket and release of the nucleotide in hetero-trimeric G-proteins. J Mol Biol 2011; 411:298-312. [PMID: 21663745 DOI: 10.1016/j.jmb.2011.05.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 11/26/2022]
Abstract
G-protein hetero-trimers play a fundamental role in cell function. Their dynamic behavior at the atomic level remains to be understood. We have studied the Gi hetero-trimer through a combination of molecular dynamics simulations and normal mode analyses. We showed that these big proteins could undergo large-amplitude conformational changes, without any energy penalty and with an intrinsic dynamics centered on their GDP binding pocket. Among the computed collective motions, one of the modes (mode 17) was particularly able to significantly open both the base and the phosphate sides of the GDP binding pocket. This mode describing mainly a motion between the Ras-like and the helical domains of G(α) was in close agreement with some available X-ray data and with many other biochemical/biophysical observations including the kink of helix α5. The use of a new protocol, which allows extraction of the GDP ligand along the computed normal modes, supported that the exit of GDP was largely coupled to an opening motion along mode 17. We propose for the first time a "concerted mechanism" model in which the opening of the GDP pocket and the kink of the α5 helix occur concomitantly and favor GDP release from G(αβγ) complexes. This model is discussed in the context of the G-protein-coupled receptor/G-protein interaction close to the cell membrane.
Collapse
Affiliation(s)
- Maxime Louet
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Université Montpellier 1-Université Montpellier 2, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
6120
|
Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 2011; 39:W270-7. [PMID: 21624888 PMCID: PMC3125772 DOI: 10.1093/nar/gkr366] [Citation(s) in RCA: 1270] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Most life science processes involve, at the atomic scale, recognition between two molecules. The prediction of such interactions at the molecular level, by so-called docking software, is a non-trivial task. Docking programs have a wide range of applications ranging from protein engineering to drug design. This article presents SwissDock, a web server dedicated to the docking of small molecules on target proteins. It is based on the EADock DSS engine, combined with setup scripts for curating common problems and for preparing both the target protein and the ligand input files. An efficient Ajax/HTML interface was designed and implemented so that scientists can easily submit dockings and retrieve the predicted complexes. For automated docking tasks, a programmatic SOAP interface has been set up and template programs can be downloaded in Perl, Python and PHP. The web site also provides an access to a database of manually curated complexes, based on the Ligand Protein Database. A wiki and a forum are available to the community to promote interactions between users. The SwissDock web site is available online at http://www.swissdock.ch. We believe it constitutes a step toward generalizing the use of docking tools beyond the traditional molecular modeling community.
Collapse
Affiliation(s)
- Aurélien Grosdidier
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
6121
|
Nilsson L, Karshikoff A. Multiple pH regime molecular dynamics simulation for pK calculations. PLoS One 2011; 6:e20116. [PMID: 21647418 PMCID: PMC3103538 DOI: 10.1371/journal.pone.0020116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/25/2011] [Indexed: 11/25/2022] Open
Abstract
Ionisation equilibria in proteins are influenced by conformational flexibility, which can in principle be accounted for by molecular dynamics simulation. One problem in this method is the bias arising from the fixed protonation state during the simulation. Its effect is mostly exhibited when the ionisation behaviour of the titratable groups is extrapolated to pH regions where the predetermined protonation state of the protein may not be statistically relevant, leading to conformational sampling that is not representative of the true state. In this work we consider a simple approach which can essentially reduce this problem. Three molecular dynamics structure sets are generated, each with a different protonation state of the protein molecule expected to be relevant at three pH regions, and pK calculations from the three sets are combined to predict pK over the entire pH range of interest. This multiple pH molecular dynamics approach was tested on the GCN4 leucine zipper, a protein for which a full data set of experimental data is available. The pK values were predicted with a mean deviation from the experimental data of 0.29 pH units, and with a precision of 0.13 pH units, evaluated on the basis of equivalent sites in the dimeric GCN4 leucine zipper.
Collapse
Affiliation(s)
- Lennart Nilsson
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge, Sweden.
| | | |
Collapse
|
6122
|
Zhang Z, Norris J, Schwartz C, Alexov E. In silico and in vitro investigations of the mutability of disease-causing missense mutation sites in spermine synthase. PLoS One 2011; 6:e20373. [PMID: 21647366 PMCID: PMC3103547 DOI: 10.1371/journal.pone.0020373] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/30/2011] [Indexed: 01/17/2023] Open
Abstract
Background Spermine synthase (SMS) is a key enzyme controlling the concentration of spermidine and spermine in the cell. The importance of SMS is manifested by the fact that single missense mutations were found to cause Snyder-Robinson Syndrome (SRS). At the same time, currently there are no non-synonymous single nucleoside polymorphisms, nsSNPs (harmless mutations), found in SMS, which may imply that the SMS does not tolerate amino acid substitutions, i.e. is not mutable. Methodology/Principal Findings To investigate the mutability of the SMS, we carried out in silico analysis and in vitro experiments of the effects of amino acid substitutions at the missense mutation sites (G56, V132 and I150) that have been shown to cause SRS. Our investigation showed that the mutation sites have different degree of mutability depending on their structural micro-environment and involvement in the function and structural integrity of the SMS. It was found that the I150 site does not tolerate any mutation, while V132, despite its key position at the interface of SMS dimer, is quite mutable. The G56 site is in the middle of the spectra, but still quite sensitive to charge residue replacement. Conclusions/Significance The performed analysis showed that mutability depends on the detail of the structural and functional factors and cannot be predicted based on conservation of wild type properties alone. Also, harmless nsSNPs can be expected to occur even at sites at which missense mutations were found to cause diseases.
Collapse
Affiliation(s)
- Zhe Zhang
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, South Carolina, United States of America
| | - Joy Norris
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, United States of America
| | - Charles Schwartz
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, United States of America
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
6123
|
Horowitz S, Yesselman JD, Al-Hashimi HM, Trievel RC. Direct evidence for methyl group coordination by carbon-oxygen hydrogen bonds in the lysine methyltransferase SET7/9. J Biol Chem 2011; 286:18658-63. [PMID: 21454678 PMCID: PMC3099682 DOI: 10.1074/jbc.m111.232876] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/17/2011] [Indexed: 12/27/2022] Open
Abstract
SET domain lysine methyltransferases (KMTs) are S-adenosylmethionine (AdoMet)-dependent enzymes that catalyze the site-specific methylation of lysyl residues in histone and non-histone proteins. Based on crystallographic and cofactor binding studies, carbon-oxygen (CH · · · O) hydrogen bonds have been proposed to coordinate the methyl groups of AdoMet and methyllysine within the SET domain active site. However, the presence of these hydrogen bonds has only been inferred due to the uncertainty of hydrogen atom positions in x-ray crystal structures. To experimentally resolve the positions of the methyl hydrogen atoms, we used NMR (1)H chemical shift coupled with quantum mechanics calculations to examine the interactions of the AdoMet methyl group in the active site of the human KMT SET7/9. Our results indicated that at least two of the three hydrogens in the AdoMet methyl group engage in CH · · · O hydrogen bonding. These findings represent direct, quantitative evidence of CH · · · O hydrogen bond formation in the SET domain active site and suggest a role for these interactions in catalysis. Furthermore, thermodynamic analysis of AdoMet binding indicated that these interactions are important for cofactor binding across SET domain enzymes.
Collapse
Affiliation(s)
- Scott Horowitz
- Chemistry, and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Joseph D. Yesselman
- Chemistry, and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
6124
|
Goyal P, Elstner M, Cui Q. Application of the SCC-DFTB method to neutral and protonated water clusters and bulk water. J Phys Chem B 2011; 115:6790-805. [PMID: 21526802 PMCID: PMC3101025 DOI: 10.1021/jp202259c] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The self-consistent charge density functional tight-binding (SCC-DFTB) method has been actively employed to study proton-transfer processes in biological systems. Recent studies in the literature employing SCC-DFTB reported that the method favors the Zundel form of the hydrated proton over the Eigen form, both in gas-phase water clusters and in bulk water, in disagreement with both higher-level calculations and experimental data. In this work, we explore the performance of SCC-DFTB for protonated gas-phase water clusters and bulk water (the latter both with and without an excess proton) with a modified O-H repulsive potential reported in our earlier work and with on-site third-order expansion of the DFT energy. Our results show that, with the proper set of published parameters, SCC-DFTB does correctly favor the Eigen form of the hydrated proton as compared to the Zundel form, both in gas-phase clusters and in the bulk; the amphiphilic character of the hydrated proton discussed in the literature has also been observed. The analyses do, however, bring forth remaining limitations in terms of the solvation structure around the hydrated proton as well as the structure of bulk water, which can guide future improvements of the method.
Collapse
Affiliation(s)
- Puja Goyal
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Ave., Madison, WI 53706
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Ave., Madison, WI 53706
| |
Collapse
|
6125
|
Satpati P, Clavaguéra C, Ohanessian G, Simonson T. Free energy simulations of a GTPase: GTP and GDP binding to archaeal initiation factor 2. J Phys Chem B 2011; 115:6749-63. [PMID: 21534562 PMCID: PMC3097523 DOI: 10.1021/jp201934p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/13/2011] [Indexed: 12/16/2022]
Abstract
Archaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, "ON" conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free energies depends on the simulation model, including the force field and the boundary conditions, and on the extent of conformational sampling in the simulations. aIF2 and other GTPases present specific difficulties; in particular, the nucleotide ligand coordinates a divalent Mg(2+) ion, which can polarize the electronic distribution of its environment. Thus, a force field with an explicit treatment of electronic polarizability could be necessary, rather than a simpler, fixed charge force field. Here, we begin by comparing a fixed charge force field to quantum chemical calculations and experiment for Mg(2+):phosphate binding in solution, with the force field giving large errors. Next, we consider GTP and GDP bound to aIF2 and we compare two fixed charge force fields to the recent, polarizable, AMOEBA force field, extended here in a simple, approximate manner to include GTP. We focus on a quantity that approximates the free energy to change GTP into GDP. Despite the errors seen for Mg(2+):phosphate binding in solution, we observe a substantial cancellation of errors when we compare the free energy change in the protein to that in solution, or when we compare the protein ON and OFF states. Finally, we have used the fixed charge force field to perform MDFE simulations and alchemically transform GTP into GDP in the protein and in solution. With a total of about 200 ns of molecular dynamics, we obtain good convergence and a reasonable statistical uncertainty, comparable to the force field uncertainty, and somewhat lower than the predicted GTP/GDP binding free energy differences. The sign and magnitudes of the differences can thus be interpreted at a semiquantitative level, and are found to be consistent with the experimental binding preferences of ON- and OFF-aIF2.
Collapse
Affiliation(s)
- Priyadarshi Satpati
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)
| | - Carine Clavaguéra
- Laboratoire des Mécanismes Réactionnels (CNRS), Department of Chemistry, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)
| | - Gilles Ohanessian
- Laboratoire des Mécanismes Réactionnels (CNRS), Department of Chemistry, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)
| |
Collapse
|
6126
|
Parthasarathy S, Altuve A, Terzyan S, Zhang X, Kuczera K, Rivera M, Benson DR. Accommodating a nonconservative internal mutation by water-mediated hydrogen bonding between β-sheet strands: a comparison of human and rat type B (mitochondrial) cytochrome b5. Biochemistry 2011; 50:5544-54. [PMID: 21574570 DOI: 10.1021/bi2004729] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian type B (mitochondrial) b(5) cytochromes exhibit greater amino acid sequence diversity than their type A (microsomal) counterparts, as exemplified by the type B proteins from human (hCYB5B) and rat (rCYB5B). The comparison of X-ray crystal structures of hCYB5B and rCYB5B reported herein reveals a striking difference in packing involving the five-strand β-sheet, which can be attributed to fully buried residue 21 in strand β4. The greater bulk of Leu21 in hCYB5B in comparison to that of Thr21 in rCYB5B results in a substantial displacement of the first two residues in β5, and consequent loss of two of the three hydrogen bonds between β5 and β4. Hydrogen bonding between the residues is instead mediated by two well-ordered, fully buried water molecules. In a 10 ns molecular dynamics simulation, one of the buried water molecules in the hCYB5B structure exchanged readily with solvent via intermediates having three water molecules sandwiched between β4 and β5. When the buried water molecules were removed prior to a second 10 ns simulation, β4 and β5 formed persistent hydrogen bonds identical to those in rCYB5B, but the Leu21 side chain was forced to adopt a rarely observed conformation. Despite the apparently greater ease of access of water to the interior of hCYB5B than of rCYB5B suggested by these observations, the two proteins exhibit virtually identical stability, dynamic, and redox properties. The results provide new insight into the factors stabilizing the cytochrome b(5) fold.
Collapse
|
6127
|
Boresch S, Bruckner S. Avoiding the van der Waals endpoint problem using serial atomic insertion. J Comput Chem 2011; 32:2449-58. [PMID: 21607991 DOI: 10.1002/jcc.21829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/08/2011] [Accepted: 04/02/2011] [Indexed: 11/07/2022]
Abstract
In the past analyses of the so-called van der Waals end point problem focused on thermodynamic integration. Here we investigate which of the recommendations, such as the need for soft-core potentials, are still valid when Bennett's acceptance ratio method is used. We show that in combination with Bennett's acceptance ratio method intermediate states characterized by the coupling parameter λ can be replaced by intermediate states in which Lennard-Jones interactions are turned on or off on an "atom by atom" basis. By doing so, there is no necessity to use soft-core potentials. In fact, one can compute free energy differences without dedicated code, making it possible to use any molecular dynamics program to compute alchemical free energy differences. Such an approach, which we illustrate by several examples, makes it possible to exploit the tremendous computational power of the graphics processing unit.
Collapse
Affiliation(s)
- Stefan Boresch
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
6128
|
Bu L, Beckham GT, Shirts MR, Nimlos MR, Adney WS, Himmel ME, Crowley MF. Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods. J Biol Chem 2011; 286:18161-9. [PMID: 21454590 PMCID: PMC3093888 DOI: 10.1074/jbc.m110.212076] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/04/2011] [Indexed: 11/17/2022] Open
Abstract
Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, -14.4 kcal/mol using SMD and -11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are -13.1, -6.0, -11.5, -7.5, and -8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion.
Collapse
Affiliation(s)
- Lintao Bu
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA.
| | | | | | | | | | | | | |
Collapse
|
6129
|
Song KC, Livanec PW, Klauda JB, Kuczera K, Dunn RC, Im W. Orientation of fluorescent lipid analogue BODIPY-PC to probe lipid membrane properties: insights from molecular dynamics simulations. J Phys Chem B 2011; 115:6157-65. [PMID: 21513278 PMCID: PMC3100582 DOI: 10.1021/jp109629v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-molecule fluorescence measurements have been used to characterize membrane properties, and recently showed a linear evolution of the fluorescent lipid analogue BODIPY-PC toward small tilt angles in Langmuir-Blodgett monolayers as the lateral surface pressure is increased. In this work, we have performed comparative molecular dynamics (MD) simulations of BODIPY-PC in DPPC (dipalmitoylphosphatidylcholine) monolayers and bilayers at three surface pressures (3, 10, and 40 mN/m) to explore (1) the microscopic correspondence between monolayer and bilayer structures, (2) the fluorophore's position within the membrane, and (3) the microscopic driving forces governing the fluorophore's tilting. The MD simulations reveal very close agreement between the monolayer and bilayer systems in terms of the fluorophore's orientation and lipid chain order, suggesting that monolayer experiments can be used to approximate bilayer systems. The simulations capture the trend of reduced tilt angle of the fluorophore with increasing surface pressure, as seen in the experimental results, and provide detailed insights into fluorophore location and orientation, not obtainable in the experiments. The simulations also reveal that the enthalpic contribution is dominant at 40 mN/m, resulting in smaller tilt angles of the fluorophore, and the entropy contribution is dominant at lower pressures, resulting in larger tilt angles.
Collapse
Affiliation(s)
- Kevin C. Song
- Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
| | - Philip W. Livanec
- Ralph N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
- Department of Chemistry, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, The University of Maryland, 2113 Chemical and Nuclear Engineering, College Park MD 20742 USA
| | - Krzysztof Kuczera
- Ralph N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
- Department of Molecular Biosciences, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
| | - Robert C. Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
- Department of Chemistry, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
| | - Wonpil Im
- Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
- Department of Molecular Biosciences, The University of Kansas, 2030 Becker Drive, Lawrence KS 66047, USA
| |
Collapse
|
6130
|
Beckham GT, Peters B. Optimizing Nucleus Size Metrics for Liquid-Solid Nucleation from Transition Paths of Near-Nanosecond Duration. J Phys Chem Lett 2011; 2:1133-1138. [PMID: 26295315 DOI: 10.1021/jz2002887] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We determine the mechanism for the liquid-solid phase transition in the Lennard-Jones fluid close to coexistence with aimless shooting and likelihood maximization. The reaction coordinate for this process is a product of a structural descriptor and the size of the nascent solid nucleus and is quantitatively verified with the committor probability histogram test. This study identifies the first accurate scalar reaction coordinate for the liquid-solid nucleation process in Lennard-Jonesium, which will likely extend to nucleation processes in other spherically symmetric fluids. On the basis of our results, we propose a structural correction factor for the commonly cited nucleus size reaction coordinate from classical nucleation theory that enables connection of simulation data to stochastic models of nucleation kinetics. In addition, we show that aimless shooting is able to obtain reasonable acceptance rates for transitions with highly diffusive characteristics, which has been problematic for transition path sampling methods for diffusive processes such as nucleation and macromolecular transitions.
Collapse
Affiliation(s)
- Gregg T Beckham
- †National Bioenergy Center, National Renewable Energy Laboratory, Golden Colorado 80401, United States
- ‡Department of Chemical Engineering, Colorado School of Mines, Golden Colorado 80401, United States
| | | |
Collapse
|
6131
|
Rui H, Lee KI, Pastor RW, Im W. Molecular dynamics studies of ion permeation in VDAC. Biophys J 2011; 100:602-610. [PMID: 21281574 DOI: 10.1016/j.bpj.2010.12.3711] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/13/2010] [Accepted: 12/16/2010] [Indexed: 11/19/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) in the outer membrane of mitochondria serves an essential role in the transport of metabolites and electrolytes between the cell matrix and mitochondria. To examine its structure, dynamics, and the mechanisms underlying its electrophysiological properties, we performed a total of 1.77 μs molecular dynamics simulations of human VDAC isoform 1 in DOPE/DOPC mixed bilayers in 1 M KCl solution with transmembrane potentials of 0, ±25, ±50, ±75, and ±100 mV. The calculated conductance and ion selectivity are in good agreement with the experimental measurements. In addition, ion density distributions inside the channel reveal possible pathways for different ion species. Based on these observations, a mechanism underlying the anion selectivity is proposed; both ion species are transported across the channel, but the rate for K(+) is smaller than that for Cl(-) because of the attractive interactions between K(+) and residues on the channel wall. This difference leads to the anion selectivity of VDAC.
Collapse
Affiliation(s)
- Huan Rui
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas
| | - Kyu Il Lee
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
6132
|
Floquet N, Hernandez JF, Boucher JL, Martinez J. L-arginine binding to human inducible nitric oxide synthase: an antisymmetric funnel route toward isoform-specific inhibitors? J Chem Inf Model 2011; 51:1325-35. [PMID: 21574590 DOI: 10.1021/ci100422v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule produced by a family of enzymes called nitric oxide synthases (NOS). Because NO is involved in various pathological conditions, the development of potent and isoform-selective NOS inhibitors is an important challenge. In the present study, the dimer of oxygenase domain of human iNOS (iNOSoxy) complexed to its natural substrate L-arginine (L-Arg) and both heme and tetrahydro-L-biopterin (BH4) cofactors was studied through multiple molecular dynamics simulations. Starting from the X-ray structure available for that complex (PDB: 1NSI ), a 16 ns equilibration trajectory was first obtained. Twelve dynamics of slow extraction of L-Arg out from the iNOSoxy active site were then performed. The steered molecular dynamics (SMD) approach was used starting from three different points of the reference trajectory for a total simulation time of 35 ns. A probable unbinding/binding pathway of L-Arg was characterized. It was suggested that a driving force directed the substrate toward the heme pocket. Key intermediate steps/residues along the access route to the active site were identified along this "funnel shape" pathway and compared to existing data. A quasi-normal mode analysis performed on the SMD data suggested that large collective motions of the protein may be involved in L-Arg binding and that opening the route to the active site in one monomer promoted an inverse, closing motion in the second monomer. Finally, our findings might help to rationalize the design of human iNOS isoform competitive inhibitors.
Collapse
Affiliation(s)
- Nicolas Floquet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 Université Montpellier 1, Université Montpellier 2, CNRS, Faculté de Pharmacie, Montpellier, France.
| | | | | | | |
Collapse
|
6133
|
Fritz KS, Galligan JJ, Smathers RL, Roede JR, Shearn CT, Reigan P, Petersen DR. 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem Res Toxicol 2011; 24:651-62. [PMID: 21449565 PMCID: PMC3113719 DOI: 10.1021/tx100355a] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
4-Hydroxynonenal (4-HNE) is an endogenous product of lipid peroxidation known to play a role in cellular signaling through protein modification and is a major precursor for protein carbonyl adducts found in alcoholic liver disease (ALD). In the present study, a greater than 2-fold increase in protein carbonylation of sirtuin 3 (SIRT3), a mitochondrial class III histone deacetylase, is reported in liver mitochondrial extracts of ethanol-consuming mice. The consequence of this in vivo carbonylation on SIRT3 deacetylase activity is unknown. Interestingly, mitochondrial protein hyperacetylation was observed in a time-dependent increase in a model of chronic ethanol consumption; however, the underlying mechanisms for this remain unknown. Tandem mass spectrometry was used to identify and characterize the in vitro covalent modification of rSIRT3 by 4-HNE at Cys(280), a critical zinc-binding residue, and the resulting inhibition of rSIRT3 activity via pathophysiologically relevant concentrations of 4-HNE. Computational-based molecular modeling simulations indicate that 4-HNE modification alters the conformation of the zinc-binding domain inducing minor changes within the active site, resulting in the allosteric inhibition of SIRT3 activity. These conformational data are supported by the calculated binding energies derived from molecular docking studies suggesting the substrate peptide of acetyl-CoA synthetase 2 (AceCS2-K(ac)) and display a greater affinity for native SIRT3 as compared with the 4-HNE adducted protein. The results of this study characterize altered mitochondrial protein acetylation in a mouse model of chronic ethanol ingestion and thiol-specific allosteric inhibition of rSIRT3 resulting from 4-HNE adduction.
Collapse
Affiliation(s)
- Kristofer S. Fritz
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| | - James J. Galligan
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Rebecca L. Smathers
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| | - James R. Roede
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA
| | - Colin T. Shearn
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO
| |
Collapse
|
6134
|
Singh MK, Streu K, McCrone AJ, Dominy BN. The evolution of catalytic function in the HIV-1 protease. J Mol Biol 2011; 408:792-805. [PMID: 21376058 DOI: 10.1016/j.jmb.2011.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 11/29/2022]
Abstract
The evolution of species is a complex phenomenon based on the optimization of a multidimensional function referred to as fitness. At the level of biomolecular evolution, the fitness function can be reduced to include physiochemical properties relevant to the biological function of a particular molecule. In this work, questions involving the physical-chemical mechanisms underlying the evolution of HIV-1 protease are addressed through molecular simulation and subsequent analysis of thermodynamic properties related to the activity of the enzyme. Specifically, the impact of 40 single amino acid mutations on the binding affinity toward the matrix/capsid (MA/CA) substrate and corresponding transition state intermediate has been characterized using a molecular mechanics Poisson-Boltzmann surface area approach. We demonstrate that this approach is capable of extracting statistically significant information relevant to experimentally determined catalytic activity. Further, no correlation was observed between the effect of mutations on substrate and transition state binding, suggesting independent evolutionary pathways toward optimizing substrate specificity and catalytic activity. In addition, a detailed analysis of calculated binding affinity data suggests that ground-state destabilization (reduced binding affinity for the substrate) could be a contributing factor in the evolutionary optimization of HIV-1 protease. A numerical model is developed to demonstrate that ground-state destabilization is a valid mechanism for activity optimization given the high concentrations of substrate experienced by the functional enzyme in vivo.
Collapse
|
6135
|
Huang D, Caflisch A. Fragment-Based Approaches in Virtual Screening. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1002/9783527633326.ch17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6136
|
Polydorides S, Amara N, Aubard C, Plateau P, Simonson T, Archontis G. Computational protein design with a generalized Born solvent model: application to Asparaginyl-tRNA synthetase. Proteins 2011; 79:3448-68. [PMID: 21563215 DOI: 10.1002/prot.23042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 12/13/2022]
Abstract
Computational Protein Design (CPD) is a promising method for high throughput protein and ligand mutagenesis. Recently, we developed a CPD method that used a polar-hydrogen energy function for protein interactions and a Coulomb/Accessible Surface Area (CASA) model for solvent effects. We applied this method to engineer aspartyl-adenylate (AspAMP) specificity into Asparaginyl-tRNA synthetase (AsnRS), whose substrate is asparaginyl-adenylate (AsnAMP). Here, we implement a more accurate function, with an all-atom energy for protein interactions and a residue-pairwise generalized Born model for solvent effects. As a first test, we compute aminoacid affinities for several point mutants of Aspartyl-tRNA synthetase (AspRS) and Tyrosyl-tRNA synthetase and stability changes for three helical peptides and compare with experiment. As a second test, we readdress the problem of AsnRS aminoacid engineering. We compare three design criteria, which optimize the folding free-energy, the absolute AspAMP affinity, and the relative (AspAMP-AsnAMP) affinity. The sequences and conformations are improved with respect to our previous, polar-hydrogen/CASA study: For several designed complexes, the AspAMP carboxylate forms three interactions with a conserved arginine and a designed lysine, as in the active site of the AspRS:AspAMP complex. The conformations and interactions are well maintained in molecular dynamics simulations and the sequences have an inverted specificity, favoring AspAMP over AsnAMP. The method is not fully successful, since experimental measurements with the seven most promising sequences show that they do not catalyze at a detectable level the adenylation of Asp (or Asn) with ATP. This may be due to weak AspAMP binding and/or disruption of transition-state stabilization.
Collapse
|
6137
|
Ohnuma S, Chufan E, Nandigama K, Miller Jenkins LM, Durell SR, Appella E, Sauna ZE, Ambudkar SV. Inhibition of multidrug resistance-linked P-glycoprotein (ABCB1) function by 5'-fluorosulfonylbenzoyl 5'-adenosine: evidence for an ATP analogue that interacts with both drug-substrate-and nucleotide-binding sites. Biochemistry 2011; 50:3724-35. [PMID: 21452853 PMCID: PMC3108491 DOI: 10.1021/bi200073f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5'-Fluorosulfonylbenzonyl 5'-adenosine (FSBA) is an ATP analogue that covalently modifies several residues in the nucleotide-binding domains (NBDs) of several ATPases, kinases, and other proteins. P-glycoprotein (P-gp, ABCB1) is a member of the ATP-binding cassette (ABC) transporter superfamily that utilizes energy from ATP hydrolysis for the efflux of amphipathic anticancer agents from cancer cells. We investigated the interactions of FSBA with P-gp to study the catalytic cycle of ATP hydrolysis. Incubation of P-gp with FSBA inhibited ATP hydrolysis (IC(50 )= 0.21 mM) and the binding of 8-azido[α-(32)P]ATP (IC(50) = 0.68 mM). In addition, (14)C-FSBA cross-links to P-gp, suggesting that FSBA-mediated inhibition of ATP hydrolysis is irreversible due to covalent modification of P-gp. However, when the NBDs were occupied with a saturating concentration of ATP prior to treatment, FSBA stimulated ATP hydrolysis by P-gp. Furthermore, FSBA inhibited the photo-cross-linking of P-gp with [(125)I]iodoarylazidoprazosin (IAAP; IC(50) = 0.17 mM). As IAAP is a transport substrate for P-gp, this suggests that FSBA affects not only the NBDs but also the transport-substrate site in the transmembrane domains. Consistent with these results, FSBA blocked efflux of rhodamine 123 from P-gp-expressing cells. Additionally, mass spectrometric analysis identified FSBA cross-links to residues within or nearby the NBDs but not in the transmembrane domains, and docking of FSBA in a homology model of human P-gp NBDs supports the biochemical studies. Thus, FSBA is an ATP analogue that interacts with both the drug-binding and ATP-binding sites of P-gp, but fluorosulfonyl-mediated cross-linking is observed only at the NBDs.
Collapse
Affiliation(s)
- Shinobu Ohnuma
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Eduardo Chufan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Krishnamachary Nandigama
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Lisa M. Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Stewart R. Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Zuben E. Sauna
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland 20892
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256
| |
Collapse
|
6138
|
Li DW, Brüschweiler R. Iterative Optimization of Molecular Mechanics Force Fields from NMR Data of Full-Length Proteins. J Chem Theory Comput 2011; 7:1773-82. [PMID: 26596440 DOI: 10.1021/ct200094b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High quality molecular mechanics force fields of proteins are key for the quantitative interpretation of experimental data and the predictive understanding of protein function based on computer simulations. A strategy is presented for the optimization of protein force fields based on full-length proteins in their native environment that is guided by experimental NMR chemical shifts and residual dipolar couplings (RDCs). An energy-based reweighting approach is applied to a long molecular dynamics trajectory, performed with a parent force field, to efficiently screen a large number of trial force fields. The force field that yields the best agreement with the experimental data is then used as the new parent force field, and the procedure is repeated until no further improvement is obtained. This method is demonstrated for the optimization of the backbone φ,ψ dihedral angle potential of the Amber ff99SB force field using six trial proteins and another 17 proteins for cross-validation using (13)C chemical shifts with and without backbone RDCs. The φ,ψ dihedral angle potential is systematically improved by the inclusion of correlation effects through the addition of up to 24 bivariate Gaussian functions of variable height, width, and tilt angle. The resulting force fields, termed ff99SB_φψ(g24;CS) and ff99SB_φψ(g8;CS,RDC), perform significantly better than their parent force field in terms of both NMR data reproduction and Cartesian coordinate root-mean-square deviations between the MD trajectories and the X-ray crystal structures. The strategy introduced here represents a powerful addition to force field optimization approaches by overcoming shortcomings of methods that are solely based on quantum-chemical calculations of small molecules and protein fragments in the gas phase.
Collapse
Affiliation(s)
- Da-Wei Li
- Chemical Sciences Laboratory, Department of Chemistry and Biochemistry and National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32306, United States
| | - Rafael Brüschweiler
- Chemical Sciences Laboratory, Department of Chemistry and Biochemistry and National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
6139
|
Wilkinson KA, Sherwood P, Guest MF, Naidoo KJ. Acceleration of the GAMESS-UK electronic structure package on graphical processing units. J Comput Chem 2011; 32:2313-8. [DOI: 10.1002/jcc.21815] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/06/2011] [Accepted: 03/20/2011] [Indexed: 11/11/2022]
|
6140
|
Grosdidier A, Zoete V, Michielin O. Fast docking using the CHARMM force field with EADock DSS. J Comput Chem 2011; 32:2149-59. [PMID: 21541955 DOI: 10.1002/jcc.21797] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/24/2011] [Accepted: 02/27/2011] [Indexed: 01/22/2023]
Abstract
The prediction of binding modes (BMs) occurring between a small molecule and a target protein of biological interest has become of great importance for drug development. The overwhelming diversity of needs leaves room for docking approaches addressing specific problems. Nowadays, the universe of docking software ranges from fast and user friendly programs to algorithmically flexible and accurate approaches. EADock2 is an example of the latter. Its multiobjective scoring function was designed around the CHARMM22 force field and the FACTS solvation model. However, the major drawback of such a software design lies in its computational cost. EADock dihedral space sampling (DSS) is built on the most efficient features of EADock2, namely its hybrid sampling engine and multiobjective scoring function. Its performance is equivalent to that of EADock2 for drug-like ligands, while the CPU time required has been reduced by several orders of magnitude. This huge improvement was achieved through a combination of several innovative features including an automatic bias of the sampling toward putative binding sites, and a very efficient tree-based DSS algorithm. When the top-scoring prediction is considered, 57% of BMs of a test set of 251 complexes were reproduced within 2 Å RMSD to the crystal structure. Up to 70% were reproduced when considering the five top scoring predictions. The success rate is lower in cross-docking assays but remains comparable with that of the latest version of AutoDock that accounts for the protein flexibility.
Collapse
Affiliation(s)
- Aurélien Grosdidier
- Swiss Institute of Bioinformatics (SIB), Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
6141
|
O’Connor JW, Klauda JB. Lipid Membranes with a Majority of Cholesterol: Applications to the Ocular Lens and Aquaporin 0. J Phys Chem B 2011; 115:6455-64. [DOI: 10.1021/jp108650u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph W. O’Connor
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6142
|
Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: A fast force field generation tool for small organic molecules. J Comput Chem 2011; 32:2359-68. [DOI: 10.1002/jcc.21816] [Citation(s) in RCA: 1435] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/10/2011] [Accepted: 03/20/2011] [Indexed: 11/08/2022]
|
6143
|
Reigan P, Siegel D, Guo W, Ross D. A mechanistic and structural analysis of the inhibition of the 90-kDa heat shock protein by the benzoquinone and hydroquinone ansamycins. Mol Pharmacol 2011; 79:823-32. [PMID: 21285336 PMCID: PMC3082934 DOI: 10.1124/mol.110.070086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/01/2011] [Indexed: 01/04/2023] Open
Abstract
The benzoquinone ansamycins inhibit the ATPase activity of the 90-kDa heat shock protein (Hsp90), disrupting the function of numerous client proteins involved in oncogenesis. In this study, we examine the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the metabolism of trans- and cis-amide isomers of the benzoquinone ansamycins and their mechanism of Hsp90 inhibition. Inhibition of purified human Hsp90 by a series of benzoquinone ansamycins was examined in the presence and absence of NQO1, and their relative rate of NQO1-mediated reduction was determined. Computational-based molecular docking simulations indicated that the trans- but not the cis-amide isomers of the benzoquinone ansamycins could be accommodated by the NQO1 active site, and the ranking order of binding energies correlated with the relative reduction rate using purified human NQO1. The trans-cis isomerization of the benzoquinone ansamycins in Hsp90 inhibition has been disputed in recent reports. Previous computational studies have used the closed or cocrystallized Hsp90 structures in an attempt to explore this isomerization step; however, we have successfully docked both the trans- and cis-amide isomers of the benzoquinone ansamycins into the open Hsp90 structure. The results of these studies indicate that both trans- and cis-amide isomers of the hydroquinone ansamycins exhibited increased binding affinity for Hsp90 relative to their parent quinones. Our data support a mechanism in which trans- rather than cis-amide forms of benzoquinone ansamycins are metabolized by NQO1 to hydroquinone ansamycins and that Hsp90-mediated trans-cis isomerization via tautomerization plays an important role in subsequent Hsp90 inhibition.
Collapse
Affiliation(s)
- Philip Reigan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Denver, Colorado, USA
| | | | | | | |
Collapse
|
6144
|
Rosen BP, Ajees AA, McDermott TR. Life and death with arsenic. Arsenic life: an analysis of the recent report "A bacterium that can grow by using arsenic instead of phosphorus". Bioessays 2011; 33:350-7. [PMID: 21387349 PMCID: PMC3801090 DOI: 10.1002/bies.201100012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arsenic and phosphorus are group 15 elements with similar chemical properties. Is it possible that arsenate could replace phosphate in some of the chemicals that are required for life? Phosphate esters are ubiquitous in biomolecules and are essential for life, from the sugar phosphates of intermediary metabolism to ATP to phospholipids to the phosphate backbone of DNA and RNA. Some enzymes that form phosphate esters catalyze the formation of arsenate esters. Arsenate esters hydrolyze very rapidly in aqueous solution, which makes it improbable that phosphorous could be completely replaced with arsenic to support life. Studies of bacterial growth at high arsenic:phosphorus ratios demonstrate that relatively high arsenic concentrations can be tolerated, and that arsenic can become involved in vital functions in the cell, though likely much less efficiently than phosphorus. Recently Wolfe-Simon et al. [1 ] reported the isolation of a microorganism that they maintain uses arsenic in place of phosphorus for growth. Here, we examine and evaluate their data and conclusions.
Collapse
Affiliation(s)
- Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | | | | |
Collapse
|
6145
|
Shim J, MacKerell AD. Computational ligand-based rational design: Role of conformational sampling and force fields in model development. MEDCHEMCOMM 2011; 2:356-370. [PMID: 21716805 PMCID: PMC3123535 DOI: 10.1039/c1md00044f] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more detailed presentation of issues and limitations associated with empirical energy functions and conformational sampling methods.
Collapse
|
6146
|
Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei. Carbohydr Res 2011; 346:839-46. [DOI: 10.1016/j.carres.2011.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 11/22/2022]
|
6147
|
Darian E, Guvench O, Yu B, Qu CK, MacKerell AD. Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase. Proteins 2011; 79:1573-88. [PMID: 21365683 PMCID: PMC3076527 DOI: 10.1002/prot.22984] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/01/2010] [Accepted: 12/14/2010] [Indexed: 01/29/2023]
Abstract
The SHP2 phosphatase plays a central role in a number of signaling pathways were it dephosphorylates various substrate proteins. Regulation of SHP2 activity is, in part, achieved by an intramolecular interaction between the PTP domain of the protein, which contains the catalytic site, and the N-SH2 domain leading to a "closed" protein conformation and autoinhibition. Accordingly, "opening" of the N-SH2 and PTP domains is required for the protein to become active. Binding of phosphopeptides to the N-SH2 domain is known to induce the opening event, while a number of gain-of-function (GOF) mutants, implicated in Noonan's Syndrome and childhood leukemias, are thought to facilitate opening. In the present study, a combination of computational and experimental methods are used to investigate the structural mechanism of opening of SHP2 and the impact of three GOF mutants, D61G, E76K, and N308D, on the opening mechanism. Calculated free energies of opening indicate that opening must be facilitated by effector molecules, possibly the protein substrates themselves, as the calculated free energies preclude spontaneous opening. Simulations of both wild type (WT) SHP2 and GOF mutants in the closed state indicate GOF activity to involve increased solvent exposure of selected residues, most notably Arg362, which in turn may enhance interactions of SHP2 with its substrate proteins and thereby aid opening. In addition, GOF mutations cause structural changes in the phosphopeptide-binding region of the N-SH2 domain leading to conformations that mimic the bound state. Such conformational changes are suggested to enhance binding of phosphopeptides and/or decrease interactions between the PTP and N-SH2 domains thereby facilitating opening. Experimental assays of the impact of effector molecules on SHP2 phosphatase activity against both small molecule and peptide substrates support the hypothesized mechanism of GOF mutant action. The present calculations also suggest a role for the C-SH2 domain of SHP2 in stabilizing the overall conformation of the protein in the open state, thereby aiding conformational switching between the open active and closed inactive states.
Collapse
Affiliation(s)
- Eva Darian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201, USA
| | - Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Ave., Portland, ME 04103
| | - Bing Yu
- Department of Medicine, Division of Hematology/Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Cheng-Kui Qu
- Department of Medicine, Division of Hematology/Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201, USA
| |
Collapse
|
6148
|
Levine BG, Stone JE, Kohlmeyer A. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units-Radial Distribution Function Histogramming. JOURNAL OF COMPUTATIONAL PHYSICS 2011; 230:3556-3569. [PMID: 21547007 PMCID: PMC3085256 DOI: 10.1016/j.jcp.2011.01.048] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.
Collapse
Affiliation(s)
- Benjamin G Levine
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA
| | | | | |
Collapse
|
6149
|
Seeber M, Felline A, Raimondi F, Muff S, Friedman R, Rao F, Caflisch A, Fanelli F. Wordom: a user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. J Comput Chem 2011; 32:1183-94. [PMID: 21387345 PMCID: PMC3151548 DOI: 10.1002/jcc.21688] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/20/2010] [Accepted: 09/05/2010] [Indexed: 11/30/2022]
Abstract
Wordom is a versatile, user-friendly, and efficient program for manipulation and analysis of molecular structures and dynamics. The following new analysis modules have been added since the publication of the original Wordom paper in 2007: assignment of secondary structure, calculation of solvent accessible surfaces, elastic network model, motion cross correlations, protein structure network, shortest intra-molecular and inter-molecular communication paths, kinetic grouping analysis, and calculation of mincut-based free energy profiles. In addition, an interface with the Python scripting language has been built and the overall performance and user accessibility enhanced. The source code of Wordom (in the C programming language) as well as documentation for usage and further development are available as an open source package under the GNU General Purpose License from http://wordom.sf.net.
Collapse
Affiliation(s)
- Michele Seeber
- Dipartimento di Chimica, University of Modena and Reggio Emilia v. Campi 183, 41125 Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
6150
|
Lutz S, Tubert-Brohman I, Yang Y, Meuwly M. Water-assisted proton transfer in ferredoxin I. J Biol Chem 2011; 286:23679-87. [PMID: 21531725 DOI: 10.1074/jbc.m111.230003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of water molecules in assisting proton transfer (PT) is investigated for the proton-pumping protein ferredoxin I (FdI) from Azotobacter vinelandii. It was shown previously that individual water molecules can stabilize between Asp(15) and the buried [3Fe-4S](0) cluster and thus can potentially act as a proton relay in transferring H(+) from the protein to the μ(2) sulfur atom. Here, we generalize molecular mechanics with proton transfer to studying proton transfer reactions in the condensed phase. Both umbrella sampling simulations and electronic structure calculations suggest that the PT Asp(15)-COOH + H(2)O + [3Fe-4S](0) → Asp(15)-COO(-) + H(2)O + [3Fe-4S](0) H(+) is concerted, and no stable intermediate hydronium ion (H(3)O(+)) is expected. The free energy difference of 11.7 kcal/mol for the forward reaction is in good agreement with the experimental value (13.3 kcal/mol). For the reverse reaction (Asp(15)-COO(-) + H(2)O + [3Fe-4S](0)H(+) → Asp(15)-COOH + H(2)O + [3Fe-4S](0)), a larger barrier than for the forward reaction is correctly predicted, but it is quantitatively overestimated (23.1 kcal/mol from simulations versus 14.1 from experiment). Possible reasons for this discrepancy are discussed. Compared with the water-assisted process (ΔE ≈ 10 kcal/mol), water-unassisted proton transfer yields a considerably higher barrier of ΔE ≈ 35 kcal/mol.
Collapse
Affiliation(s)
- Stephan Lutz
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|