601
|
Zeitouni S, Krause U, Clough BH, Halderman H, Falster A, Blalock DT, Chaput CD, Sampson HW, Gregory CA. Human mesenchymal stem cell-derived matrices for enhanced osteoregeneration. Sci Transl Med 2012; 4:132ra55. [PMID: 22553253 PMCID: PMC11034748 DOI: 10.1126/scitranslmed.3003396] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
The methodology for the repair of critical-sized or non-union bone lesions has unpredictable efficacy due in part to our incomplete knowledge of bone repair and the biocompatibility of bone substitutes. Although human mesenchymal stem cells (hMSCs) differentiate into osteoblasts, which promote bone growth, their ability to repair bone in vivo has been variable. We hypothesized that given the multistage process of osteogenesis, hMSC-mediated repair might be maximal at a specific time point of healing. Using a mouse model of calvarial healing, we demonstrate that the osteo-repair capacity of hMSCs can be substantially augmented by treatment with an inhibitor of peroxisome proliferator-activated receptor γ, but efficacy is confined to the rapid osteogenic phase. Upon entry into the bone-remodeling phase, hMSC retention signals are lost, resulting in truncation of healing. To solve this limitation, we prepared a scaffold consisting of hMSC-derived extracellular matrix (ECM) containing the necessary biomolecules for extended site-specific hMSC retention. When inhibitor-treated hMSCs were coadministered with ECM, they remained at the injury, well into the remodeling phase of healing, which resulted in reproducible and complete repair of critical-sized bone defects in mice in 3 weeks. These data suggest that hMSC-derived ECM and inhibitor-treated hMSCs could be used at optimal times to substantially and reproducibly improve bone repair.
Collapse
Affiliation(s)
- Suzanne Zeitouni
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
- Systems Biology and Translational Medicine, Texas A&M Health Science Center, 701 Southwest H.K. Dodgen Loop, Temple, TX 76504
| | - Ulf Krause
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| | - Bret H. Clough
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| | - Hillary Halderman
- Systems Biology and Translational Medicine, Texas A&M Health Science Center, 701 Southwest H.K. Dodgen Loop, Temple, TX 76504
| | - Alexander Falster
- Department of Earth and Environmental Sciences, University of New Orleans, New Orleans, LA 70148
| | - Darryl T. Blalock
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| | - Christopher D. Chaput
- Department of Orthopedic Surgery, Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st Street, Temple, TX 76508
| | - H. Wayne Sampson
- Systems Biology and Translational Medicine, Texas A&M Health Science Center, 701 Southwest H.K. Dodgen Loop, Temple, TX 76504
| | - Carl A. Gregory
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| |
Collapse
|
602
|
Chalfant JS, Smith ML, Hu HH, Dorey FJ, Goodarzian F, Fu CH, Gilsanz V. Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy. Am J Clin Nutr 2012; 95:1144-9. [PMID: 22456659 PMCID: PMC3325837 DOI: 10.3945/ajcn.111.030650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although the accumulation of white adipose tissue (WAT) is a risk factor for disease, brown adipose tissue (BAT) has been suggested to have a protective role against obesity. OBJECTIVE We studied whether changes in BAT were related to changes in the amounts of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in children treated for malignancy. DESIGN We examined the effect of BAT activity on weight, SAT, and VAT in 32 pediatric patients with cancer whose positron emission tomography-computed tomography (PET-CT) scans at diagnosis showed no BAT activity. Changes in weight, SAT, and VAT from diagnosis to remission for children with metabolically active BAT at disease-free follow-up (BAT+) were compared with those in children without visualized BAT when free of disease (BAT-). RESULTS Follow-up PET-CT studies (4.7 ± 2.4 mo later) after successful treatment of the cancer showed BAT+ in 19 patients but no active BAT (BAT-) in 13 patients. BAT+ patients, in comparison with BAT- patients, gained significantly less weight (3.3 ± 6.6% compared with 11.0 ± 11.6%; P = 0.02) and had significantly less SAT (18.2 ± 26.5% compared with 67.4 ± 71.7%; P = 0.01) and VAT (22.6 ± 33.5% compared with 131.6 ± 171.8%; P = 0.01) during treatment. Multiple regression analysis indicated that the inverse relations between BAT activation and measures of weight, SAT, and VAT persisted even after age, glucocorticoid treatment, and the season when the PET-CT scans were obtained were accounted for. CONCLUSION The activation of BAT in pediatric patients undergoing treatment of malignancy is associated with significantly less adipose accumulation. This trial was registered at clinicaltrials.gov as NCT01517581.
Collapse
Affiliation(s)
- James S Chalfant
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
603
|
Otranto M, Sarrazy V, Bonté F, Hinz B, Gabbiani G, Desmoulière A. The role of the myofibroblast in tumor stroma remodeling. Cell Adh Migr 2012; 6:203-19. [PMID: 22568985 PMCID: PMC3427235 DOI: 10.4161/cam.20377] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since its first description in wound granulation tissue, the myofibroblast has been recognized to be a key actor in the epithelial-mesenchymal cross-talk that plays a crucial role in many physiological and pathological situations, such as regulation of prostate development, ventilation-perfusion in lung alveoli or organ fibrosis. The presence of myofibroblasts in the stroma reaction to epithelial tumors is well established and many data are accumulating which suggest that the stroma compartment is an active participant in tumor onset and/or evolution. In this review we summarize the evidence in favor of this concept, the main mechanisms that regulate myofibroblast differentiation and function, as well as the biophysical and biochemical factors possibly involved in epithelial-stroma interactions, using liver carcinoma as main model, in view of achieving a better understanding of tumor progression mechanisms and of tools directed toward stroma as eventual therapeutic target.
Collapse
Affiliation(s)
- Marcela Otranto
- Department of Physiology, Faculty of Pharmacy, University of Limoges, Limoges, France
| | | | | | | | | | | |
Collapse
|
604
|
Tay CY, Sathiyanathan P, Chu SWL, Stanton LW, Wong TT. Identification and characterization of mesenchymal stem cells derived from the trabecular meshwork of the human eye. Stem Cells Dev 2012; 21:1381-90. [PMID: 22364584 DOI: 10.1089/scd.2011.0655] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSC) have been isolated from several adult human tissues. Their propensity to differentiate into cell types of connective tissue, such as osteocytes, chondrocytes, and adipocytes, suggests that MSC may function as a reserve of progenitor cells that repair and maintain healthy adult tissues. Dysfunction of the trabecular meshwork (TM), a connective tissue at the anterior region of the human eye that regulates intraocular pressure, plays a major role in the pathogenesis of glaucoma. The mechanobiology and pharmacological aspects of the TM tissue have been relatively well studied in disease states. Less well understood is if there are progenitor cells within the TM that contribute to maintenance of this tissue. In this study, we have identified and characterized an expandable population of cells that have stem cell-like properties. In particular, these cells express the markers CD73, CD90, and CD105, which are typically associated with MSC. Thus, we have named these cells TM-MSC. As further evidence that these cells are MSC, they were differentiated in vitro into adipocytes, osteocytes, and chondrocytes. Through genomic characterization, we show that TM-MSC have gene expression patterns most similar to MSC derived from other tissues. TM-MSC express genes found on adult TM tissue, suggesting that TM-MSC are progenitor cells that serve to maintain a healthy TM.
Collapse
Affiliation(s)
- Cheryl Y Tay
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | | | | | | |
Collapse
|
605
|
Carmen J, Burger SR, McCaman M, Rowley JA. Developing assays to address identity, potency, purity and safety: cell characterization in cell therapy process development. Regen Med 2012; 7:85-100. [PMID: 22168500 DOI: 10.2217/rme.11.105] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major challenge to commercializing cell-based therapies is developing scalable manufacturing processes while maintaining the critical quality parameters (identity, potency, purity, safety) of the final live cell product. Process development activities such as extended passaging and serum reduction/elimination can facilitate the streamlining of cell manufacturing process as long as the biological functions of the product remain intact. Best practices in process development will be dependent on cell characterization; a thorough understanding of the cell-based product. Unique biological properties associated with different types of cell-based products are discussed. Cell characterization may be used as a tool for successful process development activities, which can promote a candidate cell therapy product through clinical development and ultimately to a commercialized product.
Collapse
Affiliation(s)
- Jessica Carmen
- Therapeutic Cell Solutions Research & Development, Lonza Bioscience, 8830 Biggs Ford Road, Walkersville, MD 21793, USA
| | | | | | | |
Collapse
|
606
|
Abstract
Since the replacement of the hematopoietic system became feasible through bone marrow (BM) transplantation, the idea of how to replace other organs of the body has been in the forefront of medical research. Scientists have been searching for the ideal stem cell that could be manipulated to differentiate into any tissue. Although the embryonal stem cells seemed to have the ability to do this, the difficulties surrounding their use prevented them from becoming therapeutically useful. Thus, the field turned to adult stem cells, particularly stem cells of BM origin. We have learnt a lot during the last decade about the potential of the BM-derived stromal (also called mesenchymal stem) cells (BMSCs). The first studies suggested them as cell replacement tools, but later it turned out that their usefulness is more likely due to paracrine effects due to a large variety of secreted factors that induce growth and differentiation of the tissue-specific stem cells as well as prevent injured cells from apoptotic death. Finally, a whole new field emerged when many groups confirmed that these cells are also capable of regulating immune function in a so far unknown, dynamic manner. When BMSCs are injected they seem to be able to sense the environment and respond according to the actual need of the organism in order to survive. This plasticity can never be done by the use of any drugs and such a "live" cell therapy could open a whole new chapter in clinical care in the future.
Collapse
Affiliation(s)
- Eva Mezey
- Adult Stem Cell Unit, NIDCR, NIH, Bldg., Bethesda, Maryland 20892, USA.
| |
Collapse
|
607
|
Jackson WM, Lozito TP, Djouad F, Kuhn NZ, Nesti LJ, Tuan RS. Differentiation and regeneration potential of mesenchymal progenitor cells derived from traumatized muscle tissue. J Cell Mol Med 2012; 15:2377-88. [PMID: 21129154 PMCID: PMC3131486 DOI: 10.1111/j.1582-4934.2010.01225.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising approach to promote tissue regeneration by either differentiating the MSCs into the desired cell type or by using their trophic functions to promote endogenous tissue repair. These strategies of regenerative medicine are limited by the availability of MSCs at the point of clinical care. Our laboratory has recently identified multipotent mesenchymal progenitor cells (MPCs) in traumatically injured muscle tissue, and the objective of this study was to compare these cells to a typical population of bone marrow derived MSCs. Our hypothesis was that the MPCs exhibit multilineage differentiation and expression of trophic properties that make functionally them equivalent to bone marrow derived MSCs for tissue regeneration therapies. Quantitative evaluation of their proliferation, metabolic activity, expression of characteristic cell-surface markers and baseline gene expression profile demonstrate substantial similarity between the two cell types. The MPCs were capable of differentiation into osteoblasts, adipocytes and chondrocytes, but they appeared to demonstrate limited lineage commitment compared to the bone marrow derived MSCs. The MPCs also exhibited trophic (i.e. immunoregulatory and pro-angiogenic) properties that were comparable to those of MSCs. These results suggest that the traumatized muscle derived MPCs may not be a direct substitute for bone marrow derived MSCs. However, because of their availability and abundance, particularly following orthopaedic injuries when traumatized muscle is available to harvest autologous cells, MPCs are a promising cell source for regenerative medicine therapies designed to take advantage of their trophic properties.
Collapse
Affiliation(s)
- Wesley M Jackson
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
608
|
Zhao X, Gong P, Lin Y, Wang J, Yang X, Cai X. Characterization of α-smooth muscle actin positive cells during multilineage differentiation of dental pulp stem cells. Cell Prolif 2012; 45:259-65. [PMID: 22487297 DOI: 10.1111/j.1365-2184.2012.00818.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/22/2012] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Dental pulp tissue contains stem cells that can differentiate into multiple lineages under specific culture conditions; the origin of these dental pulp stem cells, however, is still unknown. MATERIALS AND METHODS Here we have utilized an α-SMA-GFP transgenic mouse model to characterize expression of a-smooth muscle actin (SMA)-GFP in subpassages of pulp-tissue-derived dental pulp cells, as perivascular cells express α-SMA. RESULTS During subculturing, percentages of cells expressing a-SMA increased significantly from passage 1 to 3. α-SMA-GFP-positive cells expanded faster than α-SMA-GFP-negative cells. The dental pulp cells at passage 3 were induced towards osteogenic, adipogenic or chondrogenic differentiation. All three differentiated cell lines expressed high levels of α-SMA (mineralized nodules, lipid droplets and chondrocyte pellets). GFP expression colocalized with differentiated osteoblasts, adipocytes and chondrocytes. Co-culturing the α-SMA-GFP-positive cells with human endothelial cells promoted formation of tube-like structures and robust vascular networks, in 3-D culture. CONCLUSIONS Taken together, the a-SMA-GFP-positive cells were shown to have multilieange differentiation ability and to promote vascularization in a co-culture system with endothelial cells.
Collapse
Affiliation(s)
- X Zhao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
609
|
Baiguera S, Jungebluth P, Mazzanti B, Macchiarini P. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements. Transpl Int 2012; 25:369-82. [PMID: 22248229 DOI: 10.1111/j.1432-2277.2011.01426.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs), a rare heterogeneous subset of pluripotent stromal cells that can be easily isolated from different adult tissues, in vitro expanded and differentiated into multiple lineages, are immune privileged and, more important, display immunomodulatory capacities. Because of this, they are the preferred cell source in tissue-engineered replacements, not only in autogeneic conditions, where they do not evoke any immune response, but especially in the setting of allogeneic organ and tissue replacements. However, more preclinical and clinical studies are requested to completely understand MSC's immune biology and possible clinical applications. We herein review the immunogenicity and immunomodulatory properties of MSCs, their possible mechanisms and potential clinical use for tissue-engineered organ and tissue replacement.
Collapse
Affiliation(s)
- Silvia Baiguera
- BIOAIRlab, European Center of Thoracic Research (CERT), University Hospital Careggi, Florence, Italy
| | | | | | | |
Collapse
|
610
|
Gilsanz V, Smith ML, Goodarzian F, Kim M, Wren TAL, Hu HH. Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr 2012; 160:604-609.e1. [PMID: 22048045 PMCID: PMC3307823 DOI: 10.1016/j.jpeds.2011.09.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/08/2011] [Accepted: 09/21/2011] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To characterize the changes in brown adipose tissue (BAT) occurring during puberty in boys and girls. STUDY DESIGN We examined the prevalence and the volume of BAT at different stages of sexual development in 73 pediatric patients who underwent positron emission tomography (PET)/computed tomography (CT) studies. RESULTS Of the 73 patients studied, 43 (59%) had BAT depicted on PET/CT. The presence of BAT was detected significantly less frequently on PET/CT in prepubertal subjects (Tanner stage 1) than in pubertal subjects (Tanner stages 2-5) (15% vs 75%). BAT volume also increased during puberty, with a significantly greater magnitude of the increase in the final 2 stages of puberty (Tanner stages 4 and 5) than in earlier stages (Tanner stages 1-3) (boys: 499 ± 246 vs 50 ± 36, P < .0001; girls: 286 ± 139 vs 36 ± 29, P = .024). Changes in BAT volume were also significantly greater in boys than in girls (P = .004) and were closely related to muscle volume (r = 0.52, P < .01 for boys; r = 0.64, P < .01 for girls). CONCLUSION The presence and volume of BAT increase rapidly during puberty. Metabolic and hormonal events related to the achievement of sexual maturity are likely responsible for this increase.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| | - Michelle L. Smith
- Department of Radiology, Childrens Hospital Los Angeles, Keck School of Medicine
| | - Fariba Goodarzian
- Department of Radiology, Childrens Hospital Los Angeles, Keck School of Medicine
,Department of Pediatrics, Childrens Hospital Los Angeles, Keck School of Medicine
| | - Mimi Kim
- Department of Pediatrics, Childrens Hospital Los Angeles, Keck School of Medicine
,Division of Endocrinology and Metabolism, Childrens Hospital Los Angeles, Keck School of Medicine
| | - Tishya A. L. Wren
- Department of Radiology, Childrens Hospital Los Angeles, Keck School of Medicine
,Department of Orthopaedic Surgery, Childrens Hospital Los Angeles, Keck School of Medicine
| | - Houchun H. Hu
- Department of Radiology, Childrens Hospital Los Angeles, Keck School of Medicine
,Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90027
| |
Collapse
|
611
|
Köllmer M, Keskar V, Hauk TG, Collins JM, Russell B, Gemeinhart RA. Stem cell-derived extracellular matrix enables survival and multilineage differentiation within superporous hydrogels. Biomacromolecules 2012; 13:963-73. [PMID: 22404228 DOI: 10.1021/bm300332w] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrophilic poly(ethylene glycol) diacrylate (PEGDA) hydrogel surfaces resist protein adsorption and are generally thought to be unsuitable for anchorage-dependent cells to adhere. Intriguingly, our previous findings revealed that PEGDA superporous hydrogel scaffolds (SPHs) allow anchorage of bone marrow derived human mesenchymal stem cells (hMSCs) and support their long-term survival. Therefore, we hypothesized that the physicochemical characteristics of the scaffold impart properties that could foster cellular responses. We examined if hMSCs alter their microenvironment to allow cell attachment by synthesizing their own extracellular matrix (ECM) proteins. Immunofluorescence staining revealed extensive expression of collagen type I, collagen type IV, laminin, and fibronectin within hMSC-seeded SPHs by the end of the third week. Whether cultured in serum-free or serum-supplemented medium, hMSC ECM protein gene expression patterns exhibited no substantial changes. The presence of serum proteins is required for initial anchorage of hMSCs within the SPHs but not for the hMSC survival after 24 h. In contrast to 2D expansion on tissue culture plastic (TCP), hMSCs cultured within SPHs proliferate similarly in the presence or absence of serum. To test whether hMSCs retain their undifferentiated state within the SPHs, cell-seeded constructs were cultured for 3 weeks in stem cell maintenance medium and the expression of hMSC-specific cell surface markers were evaluated by flow cytometry. CD105, CD90, CD73, and CD44 were present to a similar extent in the SPH and in 2D monolayer culture. We further demonstrated multilineage potential of hMSCs grown in the PEGDA SPHs, whereby differentiation into osteoblasts, chondrocytes, and adipocytes could be induced. The present study demonstrates the potential of hMSCs to alter the "blank" PEGDA environment to a milieu conducive to cell growth and multilineage differentiation by secreting adhesive ECM proteins within the porous network of the SPH scaffolds.
Collapse
Affiliation(s)
- Melanie Köllmer
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, Illinois 60612-7231, United States
| | | | | | | | | | | |
Collapse
|
612
|
[Mesenchymal stem cells and their interaction with biomaterials: potential applications in tissue engineering]. DER PATHOLOGE 2012; 32 Suppl 2:296-303. [PMID: 21826499 DOI: 10.1007/s00292-011-1485-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSC) are an important cell type for regenerative medicine and tissue engineering. They are involved in tissue regeneration by means of: (a) differentiation into specialised mesodermal cells and (b) their biosynthetic activity that is both immunomodulatory and trophic. In recent studies we analysed MSC in contact with different biomaterials to identify suitable combinations for tissue engineering. METHODS A biomaterial test platform was established to analyse cell adhesion, viability, proliferation, cytotoxicity according to ISO 10993-5, apoptosis and differentiation to adipocytes and osteoblasts on a variety of polymers (degradable biopolymers, degradable synthetic polymers, non-degradable synthetic polymers, shape memory polymers, and ceramics). RESULTS Using this platform, biomaterials which support MSC growth by maintaining their stem cell characteristics and support the differentiation of MSC towards mature osteoblasts were identified. Furthermore, we showed that MSC possess fibrinolytic capacities and perform extracellular matrix remodelling. CONCLUSION The data support the theory that MSC are involved in tissue regeneration both via their differentiation capacity and their trophic characteristics. We identified different MSC/biomaterial combinations which are suitable for stem cell-based bone tissue engineering.
Collapse
|
613
|
Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol 2012; 91:1175-86. [PMID: 22395436 DOI: 10.1007/s00277-012-1438-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/22/2012] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) represent a promising cell-based therapy for a number of degenerative conditions. Many applications require cell expansion and involve the treatment of diseases and conditions found in an aging population. Therefore, the effects of donor age and long-term passage must be clarified. In this study, the effects of donor age and long-term passage on the morphology, proliferation potential, characteristics, mesodermal differentiation ability, and transdifferentiation potential of hMSCs towards neurogenic lineage were evaluated. Cells from child donors (0-12 years, n = 6) maintained their fibroblast-like morphology up to higher passages and proliferated in a greater number than those from adult (25-50 years, n = 6) and old (over 60 years, n = 6) donors. Adipogenic, osteogenic, and neurogenic differentiation potential decreased with age, while chondrogenic potential did not change. Long-term passage affected the morphology and proliferation of hMSCs from all ages. With increasing passage number, proliferation rate decreased and cells lost their typical morphology. Expression levels of neural markers (β III tubulin and NSE) and topo II isoforms in populations of nondifferentiated hMSCs were investigated by reverse transcription polymerase chain reaction analysis. While neural marker and topo IIβ expression levels increased due to increasing passage number in adult hMSCs compared to child hMSCs, topo IIα decreased in both. These results indicated that, even under highly standardized culture conditions, donor age and long-term passage have effects on hMSC characteristics, which should be taken into account prior to stem cell-based therapies.
Collapse
|
614
|
Minced umbilical cord fragments as a source of cells for orthopaedic tissue engineering: an in vitro study. Stem Cells Int 2012; 2012:326813. [PMID: 22550503 PMCID: PMC3328184 DOI: 10.1155/2012/326813] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/21/2011] [Accepted: 12/05/2011] [Indexed: 12/13/2022] Open
Abstract
A promising approach for musculoskeletal repair and regeneration is mesenchymal-stem-cell- (MSC-)based tissue engineering. The aim of the study was to apply a simple protocol based on mincing the umbilical cord (UC), without removing any blood vessels or using any enzymatic digestion, to rapidly obtain an adequate number of multipotent UC-MSCs. We obtained, at passage 1 (P1), a mean value of 4, 2 × 106 cells (SD 0,4) from each UC. At immunophenotypic characterization, cells were positive for CD73, CD90, CD105, CD44, CD29, and HLA-I and negative for CD34 and HLA-class II, with a subpopulation negative for both HLA-I and HLA-II. Newborn origin and multilineage potential toward bone, fat, cartilage, and muscle was demonstrated. Telomere length was similar to that of bone-marrow (BM) MSCs from young donors. The results suggest that simply collecting UC-MSCs at P1 from minced umbilical cord fragments allows to achieve a valuable population of cells suitable for orthopaedic tissue engineering.
Collapse
|
615
|
Sart S, Errachid A, Schneider YJ, Agathos SN. Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors. J Tissue Eng Regen Med 2012; 7:537-51. [DOI: 10.1002/term.545] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 08/31/2011] [Accepted: 11/14/2011] [Indexed: 12/28/2022]
|
616
|
Kamouchi M, Ago T, Kuroda J, Kitazono T. The possible roles of brain pericytes in brain ischemia and stroke. Cell Mol Neurobiol 2012; 32:159-65. [PMID: 21830084 DOI: 10.1007/s10571-011-9747-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023]
Abstract
Brain pericytes regulate a variety of functions, such as microcirculation, angiogenesis, and the blood brain barrier in the brain. Recent studies have also shown that they are pluripotent in a manner similar to mesenchymal stem cells. Since, brain pericytes actively control these functions, these cells probably play an important role not only during brain ischemia, but also in the post-stroke period.
Collapse
Affiliation(s)
- Masahiro Kamouchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
617
|
Ferrari C, Balandras F, Guedon E, Olmos E, Tran N, Chevalot I, Marc A. Study of expansion of porcine bone marrow mesenchymal stem cells on microcarriers using various operating conditions. BMC Proc 2012; 5 Suppl 8:P100. [PMID: 22373500 PMCID: PMC3284975 DOI: 10.1186/1753-6561-5-s8-p100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Caroline Ferrari
- Laboratoire Réactions et Génie des Procédés, UPR-CNRS 3349, Nancy-Université, Vandœuvre-lès-Nancy, France
| | - Frédérique Balandras
- Laboratoire Réactions et Génie des Procédés, UPR-CNRS 3349, Nancy-Université, Vandœuvre-lès-Nancy, France
| | - Emmanuel Guedon
- Laboratoire Réactions et Génie des Procédés, UPR-CNRS 3349, Nancy-Université, Vandœuvre-lès-Nancy, France
| | - Eric Olmos
- Laboratoire Réactions et Génie des Procédés, UPR-CNRS 3349, Nancy-Université, Vandœuvre-lès-Nancy, France
| | - Nguyen Tran
- École de Chirurgie, Faculté de Médecine, Vandœuvre-lès-Nancy, France
| | - Isabelle Chevalot
- Laboratoire Réactions et Génie des Procédés, UPR-CNRS 3349, Nancy-Université, Vandœuvre-lès-Nancy, France
| | - Annie Marc
- Laboratoire Réactions et Génie des Procédés, UPR-CNRS 3349, Nancy-Université, Vandœuvre-lès-Nancy, France
| |
Collapse
|
618
|
Ferrari C, Balandras F, Guedon E, Olmos E, Chevalot I, Marc A. Limiting cell aggregation during mesenchymal stem cell expansion on microcarriers. Biotechnol Prog 2012; 28:780-7. [PMID: 22374883 DOI: 10.1002/btpr.1527] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/25/2012] [Indexed: 11/07/2022]
Abstract
Mesenchymal stem cells (MSC) are known to be a valuable cell source for tissue engineering and regenerative medicine. However, one of the main limiting steps in their clinical use is the amplification step. MSC expansion on microcarriers has emerged during the last few years, fulfilling the lack of classical T-flasks expansion. Even if the therapeutic potential of MSC as aggregates has been recently highlighted, cell aggregation during expansion has to be avoided. Thus, MSC culture on microcarriers has still to be improved, notably concerning cell aggregation prevention. The aim of this study was to limit cell aggregation during MSC expansion on Cytodex-1®, by evaluating the impact of several culture parameters. First, MSC cultures were performed at different agitation rates (0, 25, and 75 rpm) and different initial cell densities (25 and 50×10(6) cell g(-1) Cytodex-1®). Then, the MSC aggregates were put into contact with additional available surfaces (T-flask, fresh and used Cytodex-1®) at different times (before and after cell aggregation). The results showed that cell aggregation was partly induced by agitation and prevented in static cultures. Moreover, cell aggregation was dependent on cell density and correlated with a decrease in the total cell number. It was however shown that the aggregated organization could be dissociated when in contact with additional surfaces such as T-flasks or fresh Cytodex-1® carriers. Finally, cell aggregation could be successfully limited in spinner flask by adding fresh Cytodex-1® carriers before its onset. Those results indicated that MSC expansion on agitated Cytodex-1® microcarriers could be performed without cell aggregation, avoiding a decrease in total cell number.
Collapse
Affiliation(s)
- Caroline Ferrari
- Laboratoire Réactions et Génie des Procédés, UPR-CNRS 3349, INPL-ENSAIA, 2 avenue de la Forêt de Haye, 54505 Vandœuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
619
|
Lee RH, Oh JY, Choi H, Bazhanov N. Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J Cell Biochem 2012; 112:3073-8. [PMID: 21748781 DOI: 10.1002/jcb.23250] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic administration of MSCs resulted in remarkable functional improvements in injured tissues without either long-term engraftment or differentiation in many clinical and experimental situations. Emerging evidence suggest that most of the beneficial effects of MSCs could be explained by secretion of soluble factors that have multiple effects including modulation of inflammatory and immune reactions, protection from cell death, and stimulation of endogenous progenitor cells. In this review, we focus on the therapeutic factors that account for the beneficial effects of MSCs in animal models of human diseases.
Collapse
Affiliation(s)
- Ryang Hwa Lee
- Texas A&M Health Science Center, College of Medicine, Institute for Regenerative Medicine at Scott & White, Temple, Texas 76502, USA.
| | | | | | | |
Collapse
|
620
|
Ishitsuka K, Ago T, Arimura K, Nakamura K, Tokami H, Makihara N, Kuroda J, Kamouchi M, Kitazono T. Neurotrophin production in brain pericytes during hypoxia: a role of pericytes for neuroprotection. Microvasc Res 2012; 83:352-9. [PMID: 22387236 DOI: 10.1016/j.mvr.2012.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/29/2012] [Accepted: 02/15/2012] [Indexed: 12/12/2022]
Abstract
Neurotrophins are crucial regulators of neuronal survival and death. Evidence suggests that cells comprising the neurovascular unit (NVU) cooperatively mediate neuronal development, survival and regeneration. The aim of this study was to test whether cerebrovascular cells, endothelial cells and pericytes, produce neurotrophins and play neuroprotective roles during hypoxic insults. We examined the expression of neurotrophins and their receptors in cultured human cerebral microvascular endothelial cells and pericytes, astrocytes and the rat neuronal cell line PC12. Differentiated PC12 cells expressed TrkA, the NGF receptor, which was significantly upregulated by hypoxia at 1% O(2) and regulated neuronal survival. Both pericytes and astrocytes expressed three neurotrophins, i.e. NGF, BDNF and NT-3, while TrkB and TrkC, specific receptors for BDNF and NT-3, were expressed in astrocytes, but not pericytes. In response to hypoxia, among the neurotrophins expressed in pericytes and astrocytes only NT-3 expression was significantly upregulated in pericytes. Treatment of astrocytes with NT-3 significantly activated Erk1/2 and increased the expression of NGF both at mRNA and protein levels. The MEK1 inhibitor U0126 or siRNA-mediated knockdown of TrkC abolished the NT-3-induced upregulation of NGF in astrocytes. Taken together, cerebral microvascular pericytes and astrocytes are potent producers of neurotrophins in the NVU. In response to hypoxia, pericytes increase NT-3 production, which induces astrocytes to increase NGF production through the TrkC-Erk1/2 pathway. The interplay between pericytes and astrocytes through neurotrophins in the NVU may play an important role in neuronal survival under hypoxic conditions.
Collapse
Affiliation(s)
- Koji Ishitsuka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
621
|
Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res 2012; 347:521-44. [PMID: 22327483 DOI: 10.1007/s00441-011-1283-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
The musculoskeletal system is a tight network of many tissues. Coordinated interplay at a biochemical level between tissues is essential for development and repair. Traumatic injury usually affects several tissues and represents a large challenge in clinical settings. The current demand for potent growth factors in such applications thus accompanies the keen interest in molecular mechanisms and orchestration of tissue formation. Of special interest are multitasking growth factors that act as signals in a variety of cell types, both in a paracrine and in an autocrine manner, thereby inducing cell differentiation and coordinating not only tissue assembly at specific sites but also maturation and homeostasis. We concentrate here on bone morphogenetic proteins (BMPs), which are important crosstalk mediators known for their irreplaceable roles in vertebrate development. The molecular crosstalk during embryonic musculoskeletal tissue formation is recapitulated in adult repair. BMPs act at different levels from the initiation to maturation of newly formed tissue. Interestingly, this is influenced by the spatiotemporal expression of different BMPs, their receptors and co-factors at the site of repair. Thus, the regenerative potential of BMPs needs to be evaluated in the context of highly connected tissues such as muscle and bone and might indeed be different in more poorly connected tissues such as cartilage. This highlights the need for an understanding of BMP signaling across tissues in order to eventually improve BMP regenerative potential in clinical applications. In this review, the distinct members of the BMP family and their individual contribution to musculoskeletal tissue repair are summarized by focusing on their paracrine and autocrine functions.
Collapse
Affiliation(s)
- Karen Ruschke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
622
|
Abstract
Introduction Human mesenchymal stem cells (MSCs) have great plasticity and the potential for therapeutic applications1 Due to the fact that MSCs could reduce the incidence severity of graft versus host disease2 We have investigated the immunologic properties of human marrow-derived MSCs. Material & Methods Bone marrow was obtained from healthy human donors of bone marrow to a related patient at Bone Marrow Transplantation Center, Nemazi Hospital, after obtaining approval of the Ethics Committee and Written informed consent. The Mononuclear cells derived over the Ficoll-Paque density-gradient, and plated in tissue cultures dish. The adherent cells expanded rapidly and maintained with periodic passages until a relatively homogeneous population was established. The MSCs were characterized by immunophenotyping and differentiation into osteoblast and adipocytes. Alloreactivity was studied after adding the MSCs to allogeneic lymphocytes in mixed lymphocyte reaction cultures. Results Flow cytometric analysis, and the differentiation potential into osteoblast and adipocytes showed that more than 90% of human MSCs were positive by specific markers and functional tests. Indeed, The MSCs expressed CD90, and CD73. But not CD80, CD40, and HLA class II. They also were negative for the hematopoietic markers CD34, and CD45. The MSCs do not induced proliferation of allogenic lymphocytes and suppressed them. Conclusion The human marrow-derived MSCs do not elicit alloreactive lymphocyte proliferation. The results suggest that these cells have potentials for allogenic transplantation.
Collapse
|
623
|
Roddy GW, Oh JY, Lee RH, Bartosh TJ, Ylostalo J, Coble K, Rosa RH, Prockop DJ. Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells 2012; 29:1572-9. [PMID: 21837654 DOI: 10.1002/stem.708] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous reports demonstrated that the deleterious effects of chemical injury to the cornea were ameliorated by local or systemic administration of adult stem/progenitor cells from bone marrow referred to as mesenchymal stem or stromal cells (MSCs). However, the mechanisms for the beneficial effects of MSCs on the injured cornea were not clarified. Herein, we demonstrated that human MSCs (hMSCs) were effective in reducing corneal opacity and inflammation without engraftment after either intraperitoneal (i.p.) or intravenous (i.v.) administration following chemical injury to the rat cornea. A quantitative assay for human mRNA for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) demonstrated that less than 10 hMSCs were present in the corneas of rats 1-day and 3 days after i.v. or i.p. administration of 1 × 10(7) hMSCs. In vitro experiments using a transwell coculture system demonstrated that chemical injury to corneal epithelial cells activated hMSCs to secrete the multipotent anti-inflammatory protein TNF-α stimulated gene/protein 6 (TSG-6). In vivo, the effects of i.v. injection of hMSCs were largely abrogated by knockdown of TSG-6. Also, the effects of hMSCs were essentially duplicated by either i.v. or topical administration of TSG-6. Therefore, the results demonstrated that systemically administered hMSCs reduce inflammatory damage to the cornea without engraftment and primarily by secretion of the anti-inflammatory protein TSG-6 in response to injury signals from the cornea.
Collapse
Affiliation(s)
- Gavin W Roddy
- Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine at Scott & White, Temple, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
624
|
Pirzad Jahromi G, Seidi S, Sadr SS, Shabanzadeh AP, Keshavarz M, Kaka GR, Hosseini SK, Sohanaki H, Charish J. Therapeutic Effects of a Combinatorial Treatment of Simvastatin and Bone Marrow Stromal Cells on Experimental Embolic Stroke. Basic Clin Pharmacol Toxicol 2012; 110:487-93. [DOI: 10.1111/j.1742-7843.2011.00848.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/05/2011] [Indexed: 12/29/2022]
Affiliation(s)
- G. Pirzad Jahromi
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | - S. Seidi
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | - S. S. Sadr
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | | | - M. Keshavarz
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | - G. R. Kaka
- Neuroscience Research Center of Baqiyatallah University of Medical Sciences
| | - S. K. Hosseini
- Tissue Bank & Preparation Research Center; Tehran University of Medical Sciences; Tehran; Iran
| | - H. Sohanaki
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | - J. Charish
- Department of Genetics and Development; University Health Network; Toronto Western Research Institute; University of Toronto; Toronto; Canada
| |
Collapse
|
625
|
Zhang ZY, Teoh SH, Hui JHP, Fisk NM, Choolani M, Chan JKY. The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials 2012; 33:2656-72. [PMID: 22217806 DOI: 10.1016/j.biomaterials.2011.12.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have become one of the most promising cell sources for bone tissue engineering (BTE) applications. In this review, we first highlight recent progress in the understanding of MSC biology, their in vivo niche, multi-faceted contribution to fracture healing and bone re-modelling, and their role in BTE. A literature review from clinicaltrials.gov and Pubmed on clinical usage of MSC for both orthopedic and non-orthopedic indications suggests that translational use of MSC for BTE indications is likely to bear fruit in the ensuing decade. Last, we disscuss the profound influence of ontological and antomical origins of MSC on their proliferation and osteogenesis and demonstrated human fetal MSC (hfMSC) as a superior cellular candidate for off-the-shelf BTE applications. This relates to their superior proliferation capacity, more robust osteogenic potential and lower immunogenecity, as compared to MSC from perinatal and postnatal sources. Furthermore, we discuss our experience in developing a hfMSC based BTE strategy with the integrated use of bioreactor-based dynamic priming within macroporous scaffolds, now ready for evaluation in clinical trials. In conclusion, hfMSC is likely the most promising cell source for allogeneic based BTE application, with proven advantages compared to other MSC based ones.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
626
|
Reply From the Authors. Ann Plast Surg 2012. [DOI: 10.1097/sap.0b013e31824459b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
627
|
Abstract
OBJECTIVE Articular cartilage injury is common after athletic injury and remains a difficult treatment conundrum both for the surgeon and athlete. Although recent treatments for damage to articular cartilage have been successful in alleviating symptoms, more durable and complete, long-term articular surface restoration remains the unattained goal. In this article, we look at both new ways to prevent damage to articular surfaces as well as new techniques to recreate biomechanically sound and biochemically true articular surfaces once an athlete injures this surface. This goal should include reproducing hyaline cartilage with a well-integrated and flexible subchondral base and the normal zonal variability in the articular matrix. RESULTS A number of nonoperative interventions have shown early promise in mitigating cartilage symptoms and in preclinical studies have shown evidence of chondroprotection. These include the use of glucosamine, chondroitin, and other neutraceuticals, viscosupplementation with hyaluronic acid, platelet-rich plasma, and pulsed electromagnetic fields. Newer surgical techniques, some already in clinical study, and others on the horizon offer opportunities to improve the surgical restoration of the hyaline matrix often disrupted in athletic injury. These include new scaffolds, single-stage cell techniques, the use of mesenchymal stem cells, and gene therapy. CONCLUSION Although many of these treatments are in the preclinical and early clinical study phase, they offer the promise of better options to mitigate the sequelae of athletically induced cartilage.
Collapse
Affiliation(s)
| | | | - Jason Scopp
- Peninsula Orthopedic Associates, Salisbury, MD, USA
| | | | | | | |
Collapse
|
628
|
Affiliation(s)
- Chelsea Shields Bahney
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, USA,Address for correspondence: Dr. Theodore Miclau, Orthopaedic Trauma Institute, San Francisco General Hospital, 2550 23rd Street, Building 9, 2nd Floor, San Francisco, CA 94119, USA. E-mail:
| |
Collapse
|
629
|
Genheimer CW, Ilagan RM, Spencer T, Kelley RW, Werdin E, Choudhury S, Jain D, Ludlow JW, Basu J. Molecular Characterization of the Regenerative Response Induced by Intrarenal Transplantation of Selected Renal Cells in a Rodent Model of Chronic Kidney Disease. Cells Tissues Organs 2012; 196:374-84. [DOI: 10.1159/000336028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2011] [Indexed: 12/27/2022] Open
|
630
|
Yarborough M, Tempkin T, Nolta J, Joyce N. The Complex Ethics of First In Human Stem Cell Clinical Trials. AJOB Neurosci 2012; 3:10.1080/21507740.2012.675010. [PMID: 24273680 PMCID: PMC3835337 DOI: 10.1080/21507740.2012.675010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
631
|
Jasmin, Jelicks LA, Koba W, Tanowitz HB, Mendez-Otero R, Campos de Carvalho AC, Spray DC. Mesenchymal bone marrow cell therapy in a mouse model of chagas disease. Where do the cells go? PLoS Negl Trop Dis 2012; 6:e1971. [PMID: 23272265 PMCID: PMC3521704 DOI: 10.1371/journal.pntd.0001971] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/02/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chagas disease, resulting from infection with the parasite Trypanosoma cruzi (T. cruzi), is a major cause of cardiomyopathy in Latin America. Drug therapy for acute and chronic disease is limited. Stem cell therapy with bone marrow mesenchymal cells (MSCs) has emerged as a novel therapeutic option for cell death-related heart diseases, but efficacy of MSC has not been tested in Chagas disease. METHODS AND RESULTS We now report the use of cell-tracking strategies with nanoparticle labeled MSC to investigate migration of transplanted MSC in a murine model of Chagas disease, and correlate MSC biodistribution with glucose metabolism and morphology of heart in chagasic mice by small animal positron emission tomography (microPET). Mice were infected intraperitoneally with trypomastigotes of the Brazil strain of T. cruzi and treated by tail vein injection with MSC one month after infection. MSCs were labeled with near infrared fluorescent nanoparticles and tracked by an in vivo imaging system (IVIS). Our IVIS results two days after transplant revealed that a small, but significant, number of cells migrated to chagasic hearts when compared with control animals, whereas the vast majority of labeled MSC migrated to liver, lungs and spleen. Additionally, the microPET technique demonstrated that therapy with MSC reduced right ventricular dilation, a phenotype of the chagasic mouse model. CONCLUSIONS We conclude that the beneficial effects of MSC therapy in chagasic mice arise from an indirect action of the cells in the heart rather than a direct action due to incorporation of large numbers of transplanted MSC into working myocardium.
Collapse
Affiliation(s)
- Jasmin
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Linda A. Jelicks
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wade Koba
- Department of Radiology (Nuclear Medicine), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio C. Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David C. Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
632
|
Asari T, Furukawa KI, Tanaka S, Kudo H, Mizukami H, Ono A, Numasawa T, Kumagai G, Motomura S, Yagihashi S, Toh S. Mesenchymal stem cell isolation and characterization from human spinal ligaments. Biochem Biophys Res Commun 2012; 417:1193-9. [DOI: 10.1016/j.bbrc.2011.12.106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 01/22/2023]
|
633
|
Pawitan JA. Prospect of cell therapy for Parkinson's disease. Anat Cell Biol 2011; 44:256-64. [PMID: 22254154 PMCID: PMC3254879 DOI: 10.5115/acb.2011.44.4.256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/05/2011] [Accepted: 09/27/2011] [Indexed: 01/01/2023] Open
Abstract
The hallmark of Parkinson's disease is on-going degeneration of dopaminergic neurons in the substantia nigra, which may be due to various etiologies. Various approaches to alleviate symptoms are available, such as life-long pharmacological intervention, deep brain stimulation, and transplantation of dopaminergic neuron-containing fetal tissue. However, each of these approaches has a disadvantage. Several studies have shown that various kinds of stem cells, induced pluripotent stem cells, and other cells can differentiate into dopaminergic neurons and may be promising for treating Parkinson's disease in the future. Therefore, this review addresses those cells in terms of their prospects in cell therapy for Parkinson's disease. In addition, the need for safety and efficacy studies, various cell delivery modes and sites, and possible side effects will be discussed.
Collapse
|
634
|
Kerkis I, Caplan AI. Stem cells in dental pulp of deciduous teeth. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:129-38. [PMID: 22032258 DOI: 10.1089/ten.teb.2011.0327] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dental pulp from deciduous (baby) teeth, which are discarded after exfoliation, represents an advantageous source of young stem cells. Herein, we discuss the methods of deciduous teeth stem cell (DTSC) isolation and cultivation. We show that based on these methods, at least three different stem cell populations can be identified: a population similar to bone marrow-derived mesenchymal stem cells, an epithelial stem-like cells, and/or a mixed population composed of both cell types. We analyzed the embryonic origin and stem cell niche of DTSCs with respect to the advantages they can provide for their future use in cell therapies and regenerative medicine. In vitro and in vivo differentiation of the DTSC populations, their developmental potential, immunological compatibility, tissue engineering, and transplantation use in studies in animal models are also the focus of the current report. We briefly describe the derivation of induced pluripotent stem (iPS) cells from DTSCs, which can be obtained more easily and efficiently in comparison with human fibroblasts. These iPS cells represent an interesting model for the investigation of pediatric diseases and disorders. The importance of DTSC banking is also discussed.
Collapse
Affiliation(s)
- Irina Kerkis
- Laboratory of Genetics, Butantan Institute, Sao Paulo, Brazil.
| | | |
Collapse
|
635
|
Ayatollahi M, Soleimani M, Tabei SZ, Kabir Salmani M. Hepatogenic differentiation of mesenchymal stem cells induced by insulin like growth factor-I. World J Stem Cells 2011; 3:113-21. [PMID: 22224170 PMCID: PMC3251745 DOI: 10.4252/wjsc.v3.i12.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/30/2011] [Accepted: 11/07/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To improve hepatic differentiation of human mesenchymal stem cell (MSC) using insulin growth factor 1 (IGF-I), which has important role in liver development, hepatocyte differentiation and function. METHODS Bone marrow of healthy donors was aspirated from the iliac crest. The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established. The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes. To effectively induce hepatic differentiation, we designed a protocol based on a combination of IGF-I and liver specific factors (hepatocyte growth factor, oncostatin M and dexamethasone). Morphological features, hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs. RESULTS Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specific markers and functional tests. Morphological assessment and evaluation of glycogen storage, albumin and α-feto protein expression, as well as albumin and urea secretion revealed a statistically significant difference between the experimental groups and control. CONCLUSION In vitro differentiated MSCs using IGF-I were able to display advanced liver metabolic functions, supporting the possibility of developing them as potential alternatives to primary hepatocytes.
Collapse
Affiliation(s)
- Maryam Ayatollahi
- Maryam Ayatollahi, Transplant Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | |
Collapse
|
636
|
Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:101-15. [PMID: 21995703 DOI: 10.1089/ten.teb.2011.0488] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the various types of cell-to-cell signaling, paracrine signaling comprises those signals that are transmitted over short distances between different cell types. In the human body, secreted growth factors and cytokines instruct, among others, proliferation, differentiation, and migration. In the hematopoietic stem cell (HSC) niche, stromal cells provide instructive cues to stem cells via paracrine signaling and one of these cell types, known to secrete a broad panel of growth factors and cytokines, is mesenchymal stromal cells (MSCs). The factors secreted by MSCs have trophic, immunomodulatory, antiapoptotic, and proangiogenic properties, and their paracrine profile varies according to their initial activation by various stimuli. MSCs are currently studied as treatment for inflammatory diseases such as graft-versus-host disease and Crohn's disease, but also as treatment for myocardial infarct and solid organ transplantation. In addition, MSCs are investigated for their use in tissue engineering applications, in which their differentiation plays an important role, but as we have recently demonstrated, their trophic factors may also be involved. Furthermore, a functional improvement of MSCs might be obtained after preconditioning or tailoring the cells themselves. Also, the way the cells are clinically administered may be specialized for specific therapeutic scenarios. In this review we will first discuss the HSC niche, in which MSCs were recently identified and are thought to play an instructive and supportive role. We will then evaluate therapeutic applications that currently try to utilize the trophic and/or immunomodulatory properties of MSCs, and we will also discuss new options to enhance their therapeutic effects.
Collapse
Affiliation(s)
- Joyce Doorn
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
637
|
Ishizaka R, Iohara K, Murakami M, Fukuta O, Nakashima M. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials 2011; 33:2109-18. [PMID: 22177838 DOI: 10.1016/j.biomaterials.2011.11.056] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 11/21/2011] [Indexed: 12/31/2022]
Abstract
Pulp stem/progenitor cells can induce complete pulp regeneration. However, due to the limited availability of pulp tissue with age, there is a need to examine other sources for fractions of side population (SP) cells. In the present investigation bone marrow and adipose tissues of the same individual were evaluated as alternate sources. Pulp CD31(-) SP cells have higher migration activity and higher expression of angiogenic/neurotrophic factors than bone marrow and adipose CD31(-) SP cells. Adipose tissue CD31(-) SP cell transplantation yielded the same amount of regenerated tissue as pulp derived cells. However, bone marrow CD31(-) SP cell transplantation yielded significantly less regenerated tissue in pulpectomized root canals in dogs. The rate of matrix formation was much higher in adipose CD31(-) SP cell transplantation compared to pulp CD31(-) SP cell transplantation on day 28. Microarray analysis demonstrated similar qualitative and quantitative patterns of mRNA expression characteristic of pulp in the regenerated tissues from all three cell sources. Expression of many angiogenic/neurotrophic factors in the transplanted cells demonstrated trophic effects. Our results demonstrate that bone marrow and adipose CD31(-) SP cells might be suitable alternative cell sources for pulp regeneration.
Collapse
Affiliation(s)
- Ryo Ishizaka
- Department of Dental Regenerative Medicine, Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Research Institute, 35 Gengo, Morioka, Obu, Aichi 474-8511, Japan
| | | | | | | | | |
Collapse
|
638
|
Kelm JM, Breitbach M, Fischer G, Odermatt B, Agarkova I, Fleischmann BK, Hoerstrup SP. 3D microtissue formation of undifferentiated bone marrow mesenchymal stem cells leads to elevated apoptosis. Tissue Eng Part A 2011; 18:692-702. [PMID: 21988679 DOI: 10.1089/ten.tea.2011.0281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current implantation formats to deliver bone marrow-derived mesenchymal stem cells (MSCs) to the site of myocardial injury resulted only in limited cell retention and integration. As an alternative concept to single cell transplantation, we investigated the fate of cell tracker-labeled syngenic rat MSC microtissue implants, injected into the scar area in a chronic rat myocardial infarction model. Analysis of the explants after 2 and 7 days revealed substantial amounts of the cell tracker within the infarct region. However, the signal was associated with the extracellular matrix rather than with viable implanted cells. Following these results, we systematically evaluated the behavior of MSCs derived from mouse, rat, and human origin in the microtissue format in vitro. We found that MSC-composed microtissues of all three species displayed highly elevated levels of apoptotic activity and cell death. This effect could be attenuated by initiating osteogenic differentiation during the tissue formation process. We conclude that MSCs used for tissue regeneration undergo apoptosis in their new environment unless they get appropriate signals for differentiation that permit sustained survival. These findings may explain the limited cellular regeneration potential in current MSC-based clinical trials and may change therapeutic strategies away from pure, unmodulated cell delivery concepts.
Collapse
Affiliation(s)
- Jens M Kelm
- Swiss Center for Regenerative Medicine, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
639
|
Jackson WM, Nesti LJ, Tuan RS. Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 2011. [PMID: 23197639 DOI: 10.5966/sctm.2011-0024] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is enormous worldwide demand for therapies to promote the efficient resolution of hard-to-heal wounds with minimal appearance of scarring. Recent in vitro studies with mesenchymal stem cells (MSCs) have identified numerous mechanisms by which these cells can promote the process of wound healing, and there is significant interest in the clinical translation of an MSC-based therapy to promote dermal regeneration. This review provides a systematic analysis of recent preclinical and clinical research to evaluate the use of MSCs in wound healing applications. These in vivo studies provide overwhelming evidence that MSCs can accelerate wound closure by modulating the inflammatory environment, promoting the formation of a well-vascularized granulation matrix, encouraging the migration of keratinocytes, and inhibiting apoptosis of wound healing cells. The trophic effects of MSC therapy also appear to augment wound healing in diabetic tissues, thereby preventing the formation of nonhealing ulcers. Finally, a number of delivery systems have been evaluated and indicate that MSCs could be the basis of a versatile therapy to fulfill the clinical needs for dermal regeneration. However, despite the apparent advantages of MSC-based therapies, there have been only limited clinical investigations of this type of therapy in humans. Thus, our review concludes with a discussion of the translational barriers that are limiting the widespread clinical use of MSCs to enhance wound healing.
Collapse
Affiliation(s)
- Wesley M Jackson
- Clinical and Experimental Orthopaedics Laboratory, Department of Surgery, Uniformed Services University, Bethesda, Maryland, USA
| | | | | |
Collapse
|
640
|
Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, Maione S. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci 2011. [PMID: 22164136 DOI: 10.3389/fnint.2011.00079.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuropathic pain (NP) is an incurable disease caused by a primary lesion in the nervous system. NP is a progressive nervous system disease that results from poorly defined neurophysiological and neurochemical changes. Its treatment is very difficult. Current available therapeutic drugs have a generalized nature, sometime acting only on the temporal pain properties rather than targeting the several mechanisms underlying the generation and propagation of pain. METHODS Using biomolecular and immunohistochemical methods, we investigated the effect of the systemic injection of human mesenchymal stem cells (hMSCs) on NP relief. We used the spared nerve injury (SNI) model of NP in the mouse. hMSCs were injected into the tail vein of the mouse. Stem cell injection was performed 4 days after sciatic nerve surgery. Neuropathic mice were monitored every 10 days starting from day 11 until 90 days after surgery. RESULTS hMSCs were able to reduce pain-like behaviors, such as mechanical allodynia and thermal hyperalgesia, once injected into the tail vein. An anti-nociceptive effect was detectable from day 11 post surgery (7 days post cell injection). hMSCs were mainly able to home in the spinal cord and pre-frontal cortex of neuropathic mice. Injected hMSCs reduced the protein levels of the mouse pro-inflammatory interleukin IL-1β and IL-17 and increased protein levels of the mouse anti-inflammatory interleukin IL-10, and the marker of alternatively activated macrophages CD106 in the spinal cord of SNI mice. CONCLUSION As a potential mechanism of action of hMSCs in reducing pain, we suggest that they could exert their beneficial action through a restorative mechanism involving: (i) a cell-to-cell contact activation mechanism, through which spinal cord homed hMSCs are responsible for switching pro-inflammatory macrophages to anti-inflammatory macrophages; (ii) secretion of a broad spectrum of molecules to communicate with other cell types. This study could provide novel findings in MSC pre-clinical biology and their therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Dario Siniscalco
- Division of Pharmacology "L. Donatelli," Department of Experimental Medicine, Second University of Naples Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
641
|
Isolation of mesenchymal stem cells from the mandibular marrow aspirates. ACTA ACUST UNITED AC 2011; 112:e86-93. [DOI: 10.1016/j.tripleo.2011.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/24/2011] [Indexed: 01/11/2023]
|
642
|
Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, Maione S. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci 2011; 5:79. [PMID: 22164136 PMCID: PMC3230031 DOI: 10.3389/fnint.2011.00079] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/16/2011] [Indexed: 12/24/2022] Open
Abstract
Background: Neuropathic pain (NP) is an incurable disease caused by a primary lesion in the nervous system. NP is a progressive nervous system disease that results from poorly defined neurophysiological and neurochemical changes. Its treatment is very difficult. Current available therapeutic drugs have a generalized nature, sometime acting only on the temporal pain properties rather than targeting the several mechanisms underlying the generation and propagation of pain. Methods: Using biomolecular and immunohistochemical methods, we investigated the effect of the systemic injection of human mesenchymal stem cells (hMSCs) on NP relief. We used the spared nerve injury (SNI) model of NP in the mouse. hMSCs were injected into the tail vein of the mouse. Stem cell injection was performed 4 days after sciatic nerve surgery. Neuropathic mice were monitored every 10 days starting from day 11 until 90 days after surgery. Results: hMSCs were able to reduce pain-like behaviors, such as mechanical allodynia and thermal hyperalgesia, once injected into the tail vein. An anti-nociceptive effect was detectable from day 11 post surgery (7 days post cell injection). hMSCs were mainly able to home in the spinal cord and pre-frontal cortex of neuropathic mice. Injected hMSCs reduced the protein levels of the mouse pro-inflammatory interleukin IL-1β and IL-17 and increased protein levels of the mouse anti-inflammatory interleukin IL-10, and the marker of alternatively activated macrophages CD106 in the spinal cord of SNI mice. Conclusion: As a potential mechanism of action of hMSCs in reducing pain, we suggest that they could exert their beneficial action through a restorative mechanism involving: (i) a cell-to-cell contact activation mechanism, through which spinal cord homed hMSCs are responsible for switching pro-inflammatory macrophages to anti-inflammatory macrophages; (ii) secretion of a broad spectrum of molecules to communicate with other cell types. This study could provide novel findings in MSC pre-clinical biology and their therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Dario Siniscalco
- Division of Pharmacology "L. Donatelli," Department of Experimental Medicine, Second University of Naples Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
643
|
Higuera GA, Schop D, Spitters TWGM, van Dijkhuizen-Radersma R, Bracke M, de Bruijn JD, Martens D, Karperien M, van Boxtel A, van Blitterswijk CA. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells. Tissue Eng Part A 2011; 18:654-64. [PMID: 21943055 DOI: 10.1089/ten.tea.2011.0223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consumed and/or secreted by hMSCs and at what rates? To answer these questions, hMSCs were cultured on tissue culture plastic and in a bioreactor, and their amino acid profile was analyzed. The results showed that the kinetics of hMSCs growth and amino acid metabolism were significantly higher for hMSCs in tissue culture plastic than in the bioreactor. Despite differences in culture conditions, 8 essential and 6 nonessential amino acids were consumed by hMSCs in both tissue culture plastic and bioreactor cultures. Glutamine was the most consumed amino acid with significantly higher rates than for any other amino acid. The metabolism of nonessential amino acids by hMSCs deviated significantly from that of other cell lines. The secretion of alanine, glycine, glutamate, and ornithine by hMSCs showed that there is a strong overflow metabolism that can be due to the high concentrations of amino acids provided in the medium. In addition, the data showed that there is a metabolic pattern for proliferating hMSCs, which can contribute to the design of medium without animal serum for stem cells. Further, this study shows how to implement amino acid rates and metabolic principles in three-dimensional stem cell biology.
Collapse
Affiliation(s)
- Gustavo A Higuera
- Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
644
|
Kang EJ, Lee YH, Kim MJ, Lee YM, Kumar BM, Jeon BG, Ock SA, Kim HJ, Rho GJ. Transplantation of porcine umbilical cord matrix mesenchymal stem cells in a mouse model of Parkinson's disease. J Tissue Eng Regen Med 2011; 7:169-82. [PMID: 22081626 DOI: 10.1002/term.504] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 06/10/2011] [Accepted: 07/19/2011] [Indexed: 12/31/2022]
Abstract
The present study compared mesenchymal stem cells derived from umbilical cord matrix (UCM-MSCs) with bone marrow (BM-MSCs) of miniature pigs on their phenotypic profiles and ability to differentiate in vitro into osteocytes, adipocytes and neuron-like cells. This study further evaluated the therapeutic potential of UCM-MSCs in a mouse Parkinson's disease (PD) model. Differences in expression of some cell surface and cytoplasm specific markers were evident between UCM-MSCs and BM-MSCs. However, the expression profile indicated the primitive nature of UCM-MSCs, along with their less or non-immunogenic features, compared with BM-MSCs. In vitro differentiation results showed that BM-MSCs had a higher tendency to form osteocytes and adipocytes, whereas UCM-MSCs possessed an increased potential to transform into immature or mature neuron-like cells. Based on these findings, UCM-MSCs were transplanted into the right substantia nigra (SN) of a mouse PD model. Transplantation of UCM-MSCs partially recovered the mouse PD model by showing an improvement in basic motor behaviour, as assessed by rotarod and bridge tests. These observations were further supported by the expression of markers, including nestin, tyrosine hydroxylase (TH), neuronal growth factor (NGF), vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6), at the site of cell transplantation. Our findings of xenotransplantation have collectively suggested the potential utility of UCM-MSCs in developing viable therapeutic strategies for PD.
Collapse
Affiliation(s)
- Eun-Ju Kang
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
645
|
Kang EJ, Lee YH, Kim MJ, Lee YM, Mohana Kumar B, Jeon BG, Ock SA, Kim HJ, Rho GJ. Transplantation of porcine umbilical cord matrix mesenchymal stem cells in a mouse model of Parkinson's disease. J Tissue Eng Regen Med 2011. [DOI: 10.1002/term.504 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Young-Hyurk Lee
- Department of Anatomy and Neurobiology, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | - Min-Jeong Kim
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | - Yeon-Mi Lee
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | | | - Byeong-Gyun Jeon
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | | | - Hyun-Joon Kim
- Department of Anatomy and Neurobiology, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | | |
Collapse
|
646
|
English K, Mahon BP. Allogeneic mesenchymal stem cells: agents of immune modulation. J Cell Biochem 2011; 112:1963-8. [PMID: 21445861 DOI: 10.1002/jcb.23119] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adult mesenchymal stem cells possess a remarkably diverse array of immunosuppressive characteristics. The capacity to suppress the regular processes of allogeneic rejection, have allowed the use of tissue mismatched cells as therapeutic approaches in regenerative medicine and as agents of immune deviation. This review describes recent advances in understanding the mechanistic basis of mesenchymal stromal or stem cells (MSC) interaction with innate immunity. Particular emphasis is placed on the effect of Toll-like receptor signalling on MSC and a hypothesis that innate immune signals induce a 'licensing switch' in MSC is put forward. The mechanisms underlying MSC suppression of T cell responses and induction of regulatory populations are surveyed. Conflicting data regarding the influence of MSC on B cell function are outlined and discussed. Finally the limits to MSC mediated immune modulation are discussed with reference to the future clinical application of novel cell therapies.
Collapse
Affiliation(s)
- Karen English
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
647
|
Ezquer M, Ezquer F, Ricca M, Allers C, Conget P. Intravenous administration of multipotent stromal cells prevents the onset of non-alcoholic steatohepatitis in obese mice with metabolic syndrome. J Hepatol 2011; 55:1112-20. [PMID: 21356258 DOI: 10.1016/j.jhep.2011.02.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 01/22/2011] [Accepted: 02/11/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Metabolic syndrome is secondary to obesity and characterized by dyslipidemia, insulin resistance, and hypertension. Non-alcoholic fatty liver disease is its hepatic manifestation, whose progression-limiting step is non-alcoholic steatohepatitis (NASH). The latter is characterized by lipid accumulation, hepatocyte damage, leukocyte infiltration, and fibrosis. NASH is a prodrome to cirrhosis and hepatocellular carcinoma. Multipotent stromal cells (MSCs) have been shown to be immunomodulatory and contribute to liver regeneration in acute failure conditions. Our aim was to evaluate whether MSC administration prevents the onset of NASH in obese mice with metabolic syndrome. METHODS C57BL/6 mice were chronically fed with high-fat diet. At week 33, mice received intravenously either the vehicle (obese untreated) or two doses of 0.5×10(6) syngeneic MSCs (obese MSC-treated). Four months later, liver function and structure, and metabolic syndrome markers were assessed. The persistence of donor MSCs(GFP) in obese mice was evaluated 17 weeks after their administration. RESULTS Obese untreated mice presented high plasma levels of hepatic enzyme, hepatomegaly, liver fibrosis, inflammatory cell infiltration, and hepatic triglyceride accumulation. Furthermore, they showed high expression levels of fibrosis markers and pro-inflammatory cytokines. By contrast, obese MSC-treated mice only presented steatosis. Mice kept obese, hypercholesterolemic, hyperglycemic, and insulin resistant irrespective of whether they received MSCs or not. Donor MSCs(GFP) were found in liver, bone marrow, heart, and kidney of obese mice. CONCLUSIONS MSC administration prevents the onset of NASH in obese mice. Observed hepatoprotection is not related to a reversion of the metabolic syndrome but to the preclusion of the inflammatory process.
Collapse
Affiliation(s)
- Marcelo Ezquer
- Instituto de Ciencias, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | | | | | | |
Collapse
|
648
|
Aapro M. SIOG (International Society of Geriatric Oncology) Recommendations for Anthracycline Use in the Elderly. Hematol Rep 2011; 3:e6. [PMID: 22586514 PMCID: PMC3269217 DOI: 10.4081/hr.2011.s3.e6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A taskforce of the International Society of Geriatric Oncology (SIOG) has recently submitted recommendations on the use of anthracyclines in elderly patients. Despite the aging of the population and the high proportion of elderly individuals in the population of patients with non-Hodgkin's lymphoma, the development of specialist expertise in the treatment of elderly patients with cancer is relatively recent. Treatment of the elderly is complex because they are a highly heterogeneous population, with large variations in health status, comorbidities and life expectancy. In addition, these patients are generally more susceptible than young patients to the cardiotoxic effects of anthracyclines. Strategies for assessing elderly patients with cancer, reducing the risk of congestive heart failure, and assessing the cardiotoxic effects of treatments are discussed. In addition, a summary of the SIOG recommendations is presented.
Collapse
|
649
|
Alves H, Dechering K, Van Blitterswijk C, De Boer J. High-throughput assay for the identification of compounds regulating osteogenic differentiation of human mesenchymal stromal cells. PLoS One 2011; 6:e26678. [PMID: 22046332 PMCID: PMC3202560 DOI: 10.1371/journal.pone.0026678] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 10/02/2011] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stromal cells are regarded as the golden standard for cell-based therapies. They present multilineage differentiation potential and trophic and immunosuppressive abilities, making them the best candidate for clinical applications. Several molecules have been described to increase bone formation and were mainly discovered by candidate approaches towards known signaling pathways controlling osteogenesis. However, their bone forming potential is still limited, making the search for novel molecules a necessity. High-throughput screening (HTS) not only allows the screening of a large number of diverse chemical compounds, but also allows the discovery of unexpected signaling pathways and molecular mechanisms for a certain application, even without the prior knowledge of the full molecular pathway. Typically HTS is performed in cell lines, however, in this manuscript we have performed a phenotypical screen on more clinically relevant human mesenchymal stromal cells, as a proof of principle that HTS can be performed in those cells and can be used to find small molecules that impact stem cell fate. From a library of pharmacologically active small molecules, we were able to identify novel compounds with increased osteogenic activity. These compounds allowed achieving levels of bone-specific alkaline phosphatase higher than any other combination previously known. By combining biochemical techniques, we were able to demonstrate that a medium to high-throughput phenotypic assay can be performed in academic research laboratories allowing the discovery of novel molecules able to enhance stem cell differentiation.
Collapse
Affiliation(s)
- Hugo Alves
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
650
|
Chamberlain MD, Gupta R, Sefton MV. Bone marrow-derived mesenchymal stromal cells enhance chimeric vessel development driven by endothelial cell-coated microtissues. Tissue Eng Part A 2011; 18:285-94. [PMID: 21861779 DOI: 10.1089/ten.tea.2011.0393] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adding bone marrow-derived mesenchymal stromal cells (bmMSCs) to endothelialized collagen gel modules resulted in mature vessel formation, presumably caused in part by the observed display of pericyte-like behavior for the transplanted GFP(+) bmMSCs. A previous study determined that rat aortic endothelial cells (RAECs) delivered on the surface of small (∼0.8 mm long×0.5 mm diameter) collagen gel cylinders (microtissues, modular tissue engineering) formed vessels after transplantation into immunosuppressed Sprague-Dawley (SD) rats. Although the RAECs formed vessels in this allogeneic transplant model, there was a robust inflammatory response and the vessels that formed were leaky as shown by microcomputed tomography (microCT) perfusion studies. In vitro assays showed that SD rat bmMSCs embedded into the collagen gel modules increased the extent of EC proliferation and enhanced EC sprouting. In vivo, although vessel number was not affected, the new vessels formed by the bmMSCs and RAECs were more stable and leaked less in the microCT perfusion analysis than vessels formed by implanted RAECs alone. Addition of the bmMSCs also decreased the total number of CD68(+) macrophages that infiltrated the implant and changed the distribution of CD163(+) (M2) macrophages so that they were found within the newly developed vascularized tissue. Most interestingly, the bmMSCs became smooth muscle actin positive and migrated to surround the EC layer of the vessel, which is the location typical of pericytes. The combination of these two effects was presumed to be the cause of improved vascularity when bmMSCs were embedded in the EC-coated modules. Further exploration of these observations is warranted to exploit modular tissue engineering as a means of forming large vascularized functional tissues using microtissue components.
Collapse
Affiliation(s)
- Michael Dean Chamberlain
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|