601
|
Favero G, Franceschetti L, Buffoli B, Moghadasian MH, Reiter RJ, Rodella LF, Rezzani R. Melatonin: Protection against age-related cardiac pathology. Ageing Res Rev 2017; 35:336-349. [PMID: 27884595 DOI: 10.1016/j.arr.2016.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
Aging is a complex and progressive process that involves physiological and metabolic deterioration in every organ and system. Cardiovascular diseases are one of the most common causes of mortality and morbidity among elderly subjects worldwide. Most age-related cardiovascular disorders can be influenced by modifiable behaviours such as a healthy diet rich in fruit and vegetables, avoidance of smoking, increased physical activity and reduced stress. The role of diet in prevention of various disorders is a well-established factor, which has an even more important role in the geriatric population. Melatonin, an indoleamine with multiple actions including antioxidant properties, has been identified in a very large number of plant species, including edible plant products and medical herbs. Among products where melatonin has been identified include wine, olive oil, tomato, beer, and others. Interestingly, consumed melatonin in plant foods or melatonin supplementation may promote health benefits by virtue of its multiple properties and it may counteract pathological conditions also related to cardiovascular disorders, carcinogenesis, neurological diseases and aging. In the present review, we summarized melatonin effects against age-related cardiac alterations and abnormalities with a special focus on heart ischemia/reperfusion (IR) injury and myocardial infarction.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Mohammed H Moghadasian
- Department of Human Nutritional Sciences, University of Manitoba and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
602
|
Hu W, Deng C, Ma Z, Wang D, Fan C, Li T, Di S, Gong B, Reiter RJ, Yang Y. Utilizing melatonin to combat bacterial infections and septic injury. Br J Pharmacol 2017; 174:754-768. [PMID: 28213968 PMCID: PMC5387000 DOI: 10.1111/bph.13751] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
Melatonin, also known as N-acetyl-5-methoxytryptamine, is a ubiquitously acting molecule that is produced by the pineal gland and other organs of animals, including humans. As melatonin and its metabolites are potent antioxidants and free radical scavengers, they are protective against a variety of disorders. Moreover, multiple molecular targets of melatonin have been identified, and its actions are both receptor-mediated and receptor-independent. Recent studies have shown that melatonin may be useful in fighting against sepsis and septic injury due to its antioxidative and anti-inflammatory actions; the results generally indicate a promising therapeutic application for melatonin in the treatment of sepsis. To provide a comprehensive understanding regarding the protective effects of melatonin against septic injury, in the present review we have evaluated the published literature in which melatonin has been used to treat experimental and clinical sepsis. Firstly, we present the evidence from studies that have used melatonin to resist bacterial pathogens. Secondly, we illustrate the protective effect of melatonin against septic injury and discuss the possible mechanisms. Finally, the potential directions for future melatonin research against sepsis are summarized.
Collapse
Affiliation(s)
- Wei Hu
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing HospitalThe Fourth Military Medical UniversityXi'anChina
- Department of Thoracic Surgery, Tangdu HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Zhiqiang Ma
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chongxi Fan
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Tian Li
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Shouyin Di
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Bing Gong
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUT Health Science Center at San AntonioSan AntonioTXUSA
| | - Yang Yang
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
603
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
604
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
605
|
Pshenichnyuk SA, Modelli A, Jones D, Lazneva EF, Komolov AS. Low-Energy Electron Interaction with Melatonin and Related Compounds. J Phys Chem B 2017; 121:3965-3974. [PMID: 28394598 DOI: 10.1021/acs.jpcb.7b01408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The electron attaching properties and fragmentation of temporary negative ions of melatonin and its biosynthetic precursor tryptophan are studied in vacuo using dissociative electron attachment (DEA) spectroscopy. The experimental findings are interpreted in silico with the support of Hartree-Fock and density functional theory calculations of empty orbital energies and symmetries, and evaluation of the electron affinities of the indolic molecules under investigation. The only fragment anions formed by DEA to melatonin at incident electron energies below 2 eV are associated with the elimination of a hydrogen atom (energetically favored from the NH site of the pyrrole ring, leaving the ring intact) or a CH3· radical from the temporary molecular negative ion. Opening of the pyrrole ring of melatonin is not detected over the whole electron energy range of 0-14 eV. The DEA spectra of l- and d-tryptophan are almost identical under the present experimental conditions. The adiabatic electron affinity of melatonin is predicted to be -0.49 eV at the B3LYP/6-31+G(d) level, indicating that the DEA mechanism in melatonin is likely to be present in most life forms given the availability of low energy electrons in living systems in both plant and animal kingdoms. In particular, H atom donation usually associated with free-radical scavenging activity can be stimulated by electron attachment and N-H bond cleavage at electron energies around 1 eV.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences , Prospeκt Oktyabrya 151, 450075 Ufa, Russia.,St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alberto Modelli
- Dipartimento di Chimica "G. Ciamician″, Università di Bologna , via Selmi 2, 40126 Bologna, Italy.,Centro Interdipartimentale di Ricerca in Scienze Ambientali , via S. Alberto 163, 48123 Ravenna, Italy
| | - Derek Jones
- ISOF, Istituto per la Sintesi Organica e la Fotoreattività , C.N.R., via Gobetti 101, 40129 Bologna, Italy
| | - Eleonora F Lazneva
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alexei S Komolov
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
606
|
Melatonin protects rats from radiotherapy-induced small intestine toxicity. PLoS One 2017; 12:e0174474. [PMID: 28403142 PMCID: PMC5389624 DOI: 10.1371/journal.pone.0174474] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/09/2017] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy-induced gut toxicity is among the most prevalent dose-limiting toxicities following radiotherapy. Prevention of radiation enteropathy requires protection of the small intestine. However, despite the prevalence and burden of this pathology, there are currently no effective treatments for radiotherapy-induced gut toxicity, and this pathology remains unclear. The present study aimed to investigate the changes induced in the rat small intestine after external irradiation of the tongue, and to explore the potential radio-protective effects of melatonin gel. Male Wistar rats were subjected to irradiation of their tongues with an X-Ray YXLON Y.Tu 320-D03 irradiator, receiving a dose of 7.5 Gy/day for 5 days. For 21 days post-irradiation, rats were treated with 45 mg/day melatonin gel or vehicle, by local application into their mouths. Our results showed that mitochondrial oxidative stress, bioenergetic impairment, and subsequent NLRP3 inflammasome activation were involved in the development of radiotherapy-induced gut toxicity. Oral treatment with melatonin gel had a protective effect in the small intestine, which was associated with mitochondrial protection and, consequently, with a reduced inflammatory response, blunting the NF-κB/NLRP3 inflammasome signaling activation. Thus, rats treated with melatonin gel showed reduced intestinal apoptosis, relieving mucosal dysfunction and facilitating intestinal mucosa recovery. Our findings suggest that oral treatment with melatonin gel may be a potential preventive therapy for radiotherapy-induced gut toxicity in cancer patients.
Collapse
|
607
|
Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP, Li HB. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017; 9:E367. [PMID: 28387721 PMCID: PMC5409706 DOI: 10.3390/nu9040367] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
608
|
Mendoza-Figueroa H, Martínez-Gudiño G, Villanueva-Luna JE, Trujillo-Serrato JJ, Morales-Ríos MS. Pharmacophore modeling and conformational analysis in the gas phase and in aqueous solution of regioisomeric melatonin analogs. A theoretical and experimental study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
609
|
Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, Reiter RJ, Yin Y. Melatonin signaling in T cells: Functions and applications. J Pineal Res 2017; 62. [PMID: 28152213 DOI: 10.1111/jpi.12394] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
Melatonin affects a variety of physiological processes including circadian rhythms, cellular redox status, and immune function. Importantly, melatonin significantly influences T-cell-mediated immune responses, which are crucial to protect mammals against cancers and infections, but are associated with pathogenesis of many autoimmune diseases. This review focuses on our current understanding of the significance of melatonin in T-cell biology and the beneficial effects of melatonin in T-cell response-based diseases. In addition to expressing both membrane and nuclear receptors for melatonin, T cells have the four enzymes required for the synthesis of melatonin and produce high levels of melatonin. Meanwhile, melatonin is highly effective in modulating T-cell activation and differentiation, especially for Th17 and Treg cells, and also memory T cells. Mechanistically, the influence of melatonin in T-cell biology is associated with membrane and nuclear receptors as well as receptor-independent pathways, for example, via calcineurin. Several cell signaling pathways, including ERK1/2-C/EBPα, are involved in the regulatory roles of melatonin in T-cell biology. Through modulation in T-cell responses, melatonin exerts beneficial effects in various inflammatory diseases, such as type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis. These findings highlight the importance of melatonin signaling in T-cell fate determination, and T cell-based immune pathologies.
Collapse
Affiliation(s)
- Wenkai Ren
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jie Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tiejun Li
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- School of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
610
|
Mayo JC, Sainz RM, González Menéndez P, Cepas V, Tan DX, Reiter RJ. Melatonin and sirtuins: A "not-so unexpected" relationship. J Pineal Res 2017; 62. [PMID: 28109165 DOI: 10.1111/jpi.12391] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications, including methylation or acetylation as well as post-transcriptional modifications, are mechanisms used by eukaryotic cells to increase the genome diversity in terms of differential gene expression and protein diversity. Among these modifying enzymes, sirtuins, a class III histone deacetylase (HDAC) enzymes, are of particular importance. Sirtuins regulate the cell cycle, DNA repair, cell survival, and apoptosis, thus having important roles in normal and cancer cells. Sirtuins can also regulate metabolic pathways by changing preference for glycolysis under aerobic conditions as well as glutaminolysis. These actions make sirtuins a major target in numerous physiological processes as well as in other contexts such as calorie restriction-induced anti-aging, cancer, or neurodegenerative disease. Interestingly, melatonin, a nighttime-produced indole synthesized by pineal gland and many other organs, has important cytoprotective effects in many tissues including aging, neurodegenerative diseases, immunomodulation, and cancer. The pleiotropic actions of melatonin in different physiological and pathological conditions indicate that may be basic cellular targeted for the indole. Thus, much research has focused attention on the potential mechanisms of the indole in modulating expression and/or activity of sirtuins. Numerous findings report a rise in activity, especially on SIRT1, in a diversity of cells and animal models after melatonin treatment. This contrasts, however, with data reporting an inhibitory effect of melatonin on this sirtuin in some tumor cells. This review tabulates and discusses the recent findings relating melatonin with sirtuins, particularly SIRT1 and mitochondrial SIRT3, showing the apparent dichotomy with the differential actions documented in normal and in cancer cells.
Collapse
Affiliation(s)
- Juan C Mayo
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Pedro González Menéndez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Vanesa Cepas
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, USA
| |
Collapse
|
611
|
Pandi-Perumal SR, BaHammam AS, Ojike NI, Akinseye OA, Kendzerska T, Buttoo K, Dhandapany PS, Brown GM, Cardinali DP. Melatonin and Human Cardiovascular Disease. J Cardiovasc Pharmacol Ther 2017; 22:122-132. [DOI: 10.1177/1074248416660622] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The possible therapeutic role of melatonin in the pathophysiology of coronary artery disorder (CAD) is increasingly being recognized. In humans, exogenous melatonin has been shown to decrease nocturnal hypertension, improve systolic and diastolic blood pressure, reduce the pulsatility index in the internal carotid artery, decrease platelet aggregation, and reduce serum catecholamine levels. Low circulating levels of melatonin are reported in individuals with CAD, arterial hypertension, and congestive heart failure. This review assesses current literature on the cardiovascular effects of melatonin in humans. It can be concluded that melatonin deserves to be considered in clinical trials evaluating novel therapeutic interventions for cardiovascular disorders.
Collapse
Affiliation(s)
- Seithikurippu R. Pandi-Perumal
- Department of Medicine, College of Medicine, The University Sleep Disorders Center, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S. BaHammam
- Department of Medicine, College of Medicine, The University Sleep Disorders Center, King Saud University, Riyadh, Saudi Arabia
| | - Nwakile I. Ojike
- Division of Health and Behavior, Department of Population Health, New York University Medical Center, Center for Healthful Behavior Change, New York, NY, USA
| | - Oluwaseun A. Akinseye
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, NY, USA
- CUNY School of Public Health at Brooklyn College, New York, NY, USA
| | - Tetyana Kendzerska
- Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | | | - Perundurai S. Dhandapany
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Daniel P. Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
612
|
Kim YD, Hwang SL, Lee EJ, Kim HM, Chung MJ, Elfadl AK, Lee SE, Nedumaran B, Harris RA, Jeong KS. Melatonin ameliorates alcohol-induced bile acid synthesis by enhancing miR-497 expression. J Pineal Res 2017; 62. [PMID: 28095641 DOI: 10.1111/jpi.12386] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease is a major cause of chronic liver disease worldwide, and cannabinoid receptor type 1 (CB1R) is involved in a diverse metabolic diseases. B-cell translocation gene 2 (BTG2) and yin yang 1 (YY1) are a potent regulator of biological conditions. Melatonin plays a crucial role in regulating diverse physiological functions and metabolic homeostasis. MicroRNAs are key regulators of various biological processes. Herein, we demonstrate that melatonin improves bile acid synthesis in the liver of alcohol-fed mice by controlling miR-497 expression. The level of bile acid and the expression of Cb1r, Btg2, Yy1, and bile acid synthetic enzymes were significantly elevated in the livers of Lieber-DeCarli alcohol-fed mice. The overexpression of Btg2 enhanced Yy1 gene expression and bile acid production, whereas disrupting the CB1R-BTG2-YY1 cascade protected against the bile acid synthesis caused by alcohol challenge. We identified an alcohol-mediated YY1 binding site on the cholesterol 7α-hydroxylase (Cyp7a1) gene promoter using promoter deletion analysis and chromatin immunoprecipitation assays. Notably, melatonin attenuated the alcohol-stimulated induction of Btg2, Yy1 mRNA levels and bile acid production by promoting miR-497. Overexpression of a miR-497 mimic dramatically diminished the increase of Btg2 and Yy1 gene expression as well as bile acid production by alcohol, whereas this phenomenon was reversed by miR-497 inhibitor. These results demonstrate that the upregulation of miR-497 by melatonin represses alcohol-induced bile acid synthesis by attenuating the BTG2-YY1 signaling pathway. The melatonin-miR497 signaling network may provide novel therapeutic targets for the treatment of hepatic metabolic dysfunction caused by the alcohol-dependent pathway.
Collapse
Affiliation(s)
- Yong Deuk Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Seung-Lark Hwang
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Hyeong-Mi Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Ahmed K Elfadl
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Balachandar Nedumaran
- Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert A Harris
- Roudebush VA Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
613
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
614
|
Jumnongprakhon P, Sivasinprasasn S, Govitrapong P, Tocharus C, Tocharus J. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells. Toxicol In Vitro 2017; 41:42-48. [PMID: 28223141 DOI: 10.1016/j.tiv.2017.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 11/17/2022]
Abstract
Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH.
Collapse
Affiliation(s)
- Pichaya Jumnongprakhon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sivanan Sivasinprasasn
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Neuroscience, Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand; Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
615
|
Májovský M, Řezáčová L, Sumová A, Pospíšilová L, Netuka D, Bradáč O, Beneš V. Melatonin and cortisol secretion profile in patients with pineal cyst before and after pineal cyst resection. J Clin Neurosci 2017; 39:155-163. [PMID: 28209308 DOI: 10.1016/j.jocn.2017.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
Abstract
A pineal cyst is a benign affection of the human pineal gland on the borderline between pathology and normality. Only a small percentage of patients present with symptoms and a surgical treatment is indicated in highly selected cases. A melatonin secretion in patients with a pineal cyst before and after a pineal cyst resection has not been studied yet and the effect of surgery on human metabolism is unknown. The present study examined melatonin, cortisol and blood glucose secretion profiles perioperatively in a surgical group of 4 patients. The control group was represented by 3 asymptomatic patients with a pineal cyst. For each patient, 24-h circadian secretion curves of melatonin, cortisol and glycemia were acquired. An analysis of melatonin profiles showed an expected diurnal pattern with the night peak in patients before the surgery and in the control group. In contrast, melatonin levels in patients after the surgery were at their minimum throughout the whole 24-h period. The cortisol secretion was substantially increased in patients after the surgery. Blood glucose sampling showed no statistically significant differences. Clinical results demonstrated statistically significant headache relief measured by Visual Analogue Scale in patients after the surgery. Despite the small number of examined patients, we can conclude that patients with a pineal cyst preserved the physiological secretion of the hormone melatonin while patients who underwent the pineal cyst resection experienced a loss of endogenous pineal melatonin production, which equated with pinealectomy. Surprisingly, cortisol secretion substantially increased in patients after the surgery.
Collapse
Affiliation(s)
- Martin Májovský
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic.
| | - Lenka Řezáčová
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic; Department of Experimental Hypertension, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Pospíšilová
- Department of Clinical Biochemistry, Military University Hospital Prague, Czech Republic
| | - David Netuka
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic
| | - Ondřej Bradáč
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic
| | - Vladimír Beneš
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic
| |
Collapse
|
616
|
Luengtrakoon K, Wannakasemsuk W, Vichitrananda V, Klanrit P, Hormdee D, Noisombut R, Chaiyarit P. Increased melatonin in oral mucosal tissue of oral lichen planus (OLP) patients: A possible link between melatonin and its role in oral mucosal inflammation. Arch Oral Biol 2017; 78:13-19. [PMID: 28189880 DOI: 10.1016/j.archoralbio.2017.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The existence of extra-pineal melatonin has been observed in various tissues. No prior studies of melatonin in human oral mucosal tissue under the condition of chronic inflammation have been reported. The aim of this study was to investigate the presence of melatonin in oral mucosal tissue of patients with oral lichen planus (OLP) which was considered as a chronic inflammatory immune-mediated disease causing oral mucosal damage and ulcerations. MATERIALS AND METHODS Sections from formalin-fixed and paraffin-embedded oral mucosal tissue of OLP patients (n=30), and control subjects (n=30) were used in this study. Immunohistochemical staining was performed and the semiquantitative scoring system was used to assess the levels of arylalkylamine-N-acetyltransferase (AANAT: a rate-limiting enzyme in the biosynthesis pathway of melatonin), melatonin, and melatonin receptor 1 (MT1) in oral mucosa of OLP patients and normal oral mucosa of control subjects. RESULTS AANAT, melatonin, and MT1were detected in oral mucosal tissue of OLP patients and control subjects. Immunostaining scores of AANAT, melatonin, and MT1 in oral mucosal tissue of OLP patients were significantly higher than those in control subjects (p=0.002, p<0.001, and p=0.031, respectively). CONCLUSIONS Increased levels of AANAT, melatonin, and MT1 in the inflamed oral mucosal tissue of OLP patients imply that chronic inflammation may induce the local biosynthesis of melatonin via AANAT, and may enhance the action of melatonin via MT1.
Collapse
Affiliation(s)
- Kirawut Luengtrakoon
- Dental Hospital, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Poramaporn Klanrit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand; Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Doosadee Hormdee
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand; Department of Periodontology, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Rajda Noisombut
- Department of Community Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Ponlatham Chaiyarit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand; Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
617
|
Jehan S, Jean-Louis G, Zizi F, Auguste E, Pandi-Perumal SR, Gupta R, Attarian H, McFarlane SI, Hardeland R, Brzezinski A. Sleep, melatonin, and the menopausal transition: What are the links? Sleep Sci 2017. [DOI: 10.1016/j.slsci.2017.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
618
|
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF. Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res 2017; 62. [PMID: 27706852 DOI: 10.1111/jpi.12370] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is a naturally occurring molecule secreted by the pineal gland and known as a gatekeeper of circadian clocks. Mounting evidence indicates that melatonin, employing multiple and interrelated mechanisms, exhibits a variety of oncostatic properties in a myriad of tumors during different stages of their progression. Tumor metastasis, which commonly occurs at the late stage, is responsible for the majority of cancer deaths; metastases lead to the development of secondary tumors distant from a primary site. In reference to melatonin, the vast majority of investigations have focused on tumor development and progression at the primary site. Recently, however, interest has shifted toward the role of melatonin on tumor metastases. In this review, we highlight current advances in understanding the molecular mechanisms by which melatonin counteracts tumor metastases, including experimental and clinical observations; emphasis is placed on the impact of both cancer and non-neoplastic cells within the tumor microenvironment. Due to the broad range of melatonin's actions, the mechanisms underlying its ability to interfere with metastases are numerous. These include modulation of cell-cell and cell-matrix interaction, extracellular matrix remodeling by matrix metalloproteinases, cytoskeleton reorganization, epithelial-mesenchymal transition, and angiogenesis. The evidence discussed herein will serve as a solid foundation for urging basic and clinical studies on the use of melatonin to understand and control metastatic diseases.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
619
|
Gesmundo I, Villanova T, Banfi D, Gamba G, Granata R. Role of Melatonin, Galanin, and RFamide Neuropeptides QRFP26 and QRFP43 in the Neuroendocrine Control of Pancreatic β-Cell Function. Front Endocrinol (Lausanne) 2017; 8:143. [PMID: 28729853 PMCID: PMC5499649 DOI: 10.3389/fendo.2017.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Glucose homeostasis is finely regulated by a number of hormones and peptides released mainly from the brain, gastrointestinal tract, and muscle, regulating pancreatic secretion through cellular receptors and their signal transduction cascades. The endocrine function of the pancreas is controlled by islets within the exocrine pancreatic tissue that release hormones like insulin, glucagon, somatostatin, pancreatic polypeptide, and ghrelin. Moreover, both exocrine and endocrine pancreatic functions are regulated by a variety of hormonal and neural mechanisms, such as ghrelin, glucagon-like peptide, glucose-dependent insulinotropic polypeptide, or the inhibitory peptide somatostatin. In this review, we describe the role of neurohormones that have been less characterized compared to others, on the regulation of insulin secretion. In particular, we will focus on melatonin, galanin, and RFamide neuropeptides QRFP26 and QRFP43, which display either insulinotropic or insulinostatic effects. In fact, in addition to other hormones, amino acids, cytokines, and a variety of proteins, brain-derived hormones are now considered as key regulators of glucose homeostasis, representing potential therapeutic targets for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tania Villanova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Dana Banfi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giacomo Gamba
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
- *Correspondence: Riccarda Granata,
| |
Collapse
|
620
|
Hu J, Zhang L, Yang Y, Guo Y, Fan Y, Zhang M, Man W, Gao E, Hu W, Reiter RJ, Wang H, Sun D. Melatonin alleviates postinfarction cardiac remodeling and dysfunction by inhibiting Mst1. J Pineal Res 2017; 62. [PMID: 27696525 DOI: 10.1111/jpi.12368] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Melatonin reportedly protects against several cardiovascular diseases including ischemia/reperfusion (I/R), atherosclerosis, and hypertension. The present study investigated the effects and mechanisms of melatonin on cardiomyocyte autophagy, apoptosis, and mitochondrial injury in the context of myocardial infarction (MI). We demonstrated that melatonin significantly alleviated cardiac dysfunction after MI. Four weeks after MI, echocardiography and Masson staining indicated that melatonin notably mitigated adverse left ventricle remodeling. The mechanism may be associated with increased autophagy, reduced apoptosis, and alleviated mitochondrial dysfunction. Furthermore, melatonin significantly inhibited Mst1 phosphorylation while promoting Sirt1 expression after MI, which indicates that Mst1/Sirt1 signaling may serve as the downstream target of melatonin. We thus constructed a MI model using Mst1 transgenic (Mst1 Tg) and Mst1 knockout (Mst1-/- ) mice. The absence of Mst1 abolished the favorable effects of melatonin on cardiac injury after MI. Consistently, melatonin administration did not further increase autophagy, decrease apoptosis, or alleviate mitochondrial integrity and biogenesis in Mst1 knockout mice subjected to MI injury. These results suggest that melatonin alleviates postinfarction cardiac remodeling and dysfunction by upregulating autophagy, decreasing apoptosis, and modulating mitochondrial integrity and biogenesis. The attributed mechanism involved, at least in part, Mst1/Sirt1 signaling.
Collapse
Affiliation(s)
- Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yanjie Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wei Hu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
621
|
Jehan S, Jean-Louis G, Zizi F, Auguste E, Pandi-Perumal SR, Gupta R, Attarian H, McFarlane SI, Hardeland R, Brzezinski A. Sleep, Melatonin, and the Menopausal Transition: What Are the Links? Sleep Sci 2017; 10:11-18. [PMID: 28966733 PMCID: PMC5611767 DOI: 10.5935/1984-0063.20170003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/28/2016] [Indexed: 12/29/2022] Open
Abstract
The pineal hormone Melatonin plays an important role in the regulation of the circadian sleep/wake cycle, mood, and perhaps immune functions, carcinogensis and reproduction. The human circadian rhythm of melatonin release from the pineal gland is tightly synchronized with the habitual hours of sleep. Peri- and postmenopausal women often complain of difficulties initiating and/or maintaining sleep, with frequent nocturnal and early morning awakenings. In this review we discuss the pathophysiology of melatonin function as it relates to sleep disorders in menopausal women, highlighting the potential use of exogenous melatonin during the menopausal transition and beyond.
Collapse
Affiliation(s)
- Shazia Jehan
- Center for Healthful Behavior Change, New York University School of
Medicine, New York, USA
| | - Giardin Jean-Louis
- Center for Healthful Behavior Change, New York University School of
Medicine, New York, USA
| | - Ferdinand Zizi
- Center for Healthful Behavior Change, New York University School of
Medicine, New York, USA
| | - Evan Auguste
- Center for Healthful Behavior Change, New York University School of
Medicine, New York, USA
| | | | - Ravi Gupta
- Department of Psychiatry & Sleep Clinic, Himalayan Institute of
Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun-248016, INDIA
| | - Hrayr Attarian
- Circadian Rhythms and Sleep Research Lab, Department of Neurology,
Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Samy I. McFarlane
- Division of Endocrinology, Department of Medicine, SUNY Downstate
Medical Center, 11203 Brooklyn, NY, USA
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology,
University of Göttingen, D-37073 Göttingen, Germany
| | - Amnon Brzezinski
- Department of Obstetrics & Gynecology, the Hebrew
University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
622
|
Tan DX, Manchester LC, Qin L, Reiter RJ. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int J Mol Sci 2016; 17:ijms17122124. [PMID: 27999288 PMCID: PMC5187924 DOI: 10.3390/ijms17122124] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023] Open
Abstract
Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Lucien C Manchester
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Lilan Qin
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
623
|
Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats. PLoS One 2016; 11:e0168144. [PMID: 27942045 PMCID: PMC5152928 DOI: 10.1371/journal.pone.0168144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023] Open
Abstract
Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS) was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN), n = 8) or at 31 weeks of age (Conventional Neuter (CN), n = 7). Univariate and multivariate analyses were used to compare plasma metabolites (n = 370) from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR p<0.05). Pathway Enrichment Analysis also identified significant effects in 20 pathways, dominated by amino acid, sterol and fatty acid metabolism. Most changes were interpretable within the context of male sexual development, and changed following neutering in the CN group. Felinine metabolism in CN cats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion.
Collapse
|
624
|
Gupta S, Haldar C. Photoperiodic modulation of local melatonin synthesis and its role in regulation of thymic homeostasis in Funambulus pennanti. Gen Comp Endocrinol 2016; 239:40-49. [PMID: 26699203 DOI: 10.1016/j.ygcen.2015.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 12/08/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
Abstract
The effect of photo-neuroendocrine system on the thymic (immune) functions is mediated by gonadal steroid and the pineal hormone melatonin. The present study explored the effect of photoperiod on the thymic melatonergic system and its role in protection of thymic T-cells from the testosterone induced seasonal oxidative stress and apoptosis. Exposure to long day-length (LD) was noted to decrease local (thymic) melatonin content and induce oxidative stress and apoptosis in the thymus. Increased peripheral level of testosterone upregulated the androgen receptor expression and, consequently reduced proliferation response of the thymocytes. Short day conditions (SD) however, reversed the effect of LD on the thymic physiology. Low level of testosterone was concomitant with diminished nitro-oxidative stress and decreased expression of redox sensitive factors (NF-κB, p53 and Bax/Bcl-2 ratio) in the thymus. SD retarded activation of caspase-3 resulting in procaspase-3 accumulation. Further, in vitro treatment of thymocytes with AR antagonist flutamide impaired the sensitivity of thymocytes to androgen and reversed the deleterious effects of testosterone on the proliferative and apoptotic responses of thymocytes. Therefore, it can be suggested that thymus derived melatonin protects thymic T-cells from testosterone induced seasonal oxidative stress, apoptosis and also acts as a potent paracrine factor for maintenance of redox status to ensure thymocyte survival.
Collapse
Affiliation(s)
- Sameer Gupta
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | - Chandana Haldar
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
625
|
Fernstrom JD. A Perspective on the Safety of Supplemental Tryptophan Based on Its Metabolic Fates. J Nutr 2016; 146:2601S-2608S. [PMID: 27934651 DOI: 10.3945/jn.115.228643] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/12/2016] [Accepted: 03/04/2016] [Indexed: 11/14/2022] Open
Abstract
Over the past 50 y, tryptophan has been ingested in amounts well in excess of its dietary requirement. This use is based on extensive findings that ingesting tryptophan increases brain tryptophan concentrations, which stimulates the synthesis and release of the neurotransmitter serotonin, from which it is derived. Such increases in serotonin function may improve mood and sleep. However, tryptophan ingestion has other effects, such as increasing serotonin production in the gut, increasing serotonin concentrations in blood, stimulating the production of the hormone melatonin (a tryptophan metabolite), stimulating tryptophan metabolism via the kynurenine pathway, and possibly stimulating the production of tryptophan metabolites in the gut microbiome. Several of the kynurenine metabolites have actions on excitatory glutamate receptors in the gut and brain and on cells of the immune system. In addition, metabolites of tryptophan produced by colonic bacteria are reported to cause adverse effects in some species. This review examines each of these tryptophan pathways to determine if any of the metabolites increase after tryptophan ingestion, and if so, whether effects are seen on target body functions. In this regard, recent research suggests that it may be useful to examine kynurenine pathway metabolites and some microbial tryptophan metabolites to determine whether supplemental tryptophan consumption increases their concentrations in the body and amplifies their actions.
Collapse
Affiliation(s)
- John D Fernstrom
- Departments of Psychiatry, and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
626
|
Hosseinzadeh A, Kamrava SK, Joghataei MT, Darabi R, Shakeri-Zadeh A, Shahriari M, Reiter RJ, Ghaznavi H, Mehrzadi S. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res 2016; 61:411-425. [PMID: 27555371 DOI: 10.1111/jpi.12362] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of articular cartilage. As chondrocytes are the only cell type forming the articular cartilage, their gradual loss is the main cause of OA. There is a substantial body of published research that suggests reactive oxygen species (ROS) are major causative factors for chondrocyte damage and OA development. Oxidative stress elicited by ROS is capable of oxidizing and subsequently disrupting cartilage homeostasis, promoting catabolism via induction of cell death and damaging numerous components of the joint. IL-1β and TNF-α are crucial inflammatory factors that play pivotal roles in the pathogenesis of OA. In this process, the mitochondria are the major source of ROS production in cells, suggesting a role of mitochondrial dysfunction in this type of arthritis. This may also be promoted by inflammatory cytokines such as IL-1β and TNF-α which contribute to chondrocyte death. In patients with OA, the expression of endoplasmic reticulum (ER) stress-associated molecules is positively correlated with cartilage degeneration. Melatonin and its metabolites are broad-spectrum antioxidants and free radical scavengers which regulate a variety of molecular pathways such as inflammation, proliferation, apoptosis, and metastasis in different pathophysiological situations. Herein, we review the effects of melatonin on OA, focusing on its ability to regulate apoptotic processes and ER and mitochondrial activity. We also evaluate likely protective effects of melatonin on OA pathogenesis.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Center, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), Brown Foundation Institute of Molecular Medicine (IMM), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Shahriari
- Ophthalmology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. ,
| |
Collapse
|
627
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
628
|
Colares JR, Schemitt EG, Hartmann RM, Licks F, Soares MDC, Bosco AD, Marroni NP. Antioxidant and anti-inflammatory action of melatonin in an experimental model of secondary biliary cirrhosis induced by bile duct ligation. World J Gastroenterol 2016; 22:8918-8928. [PMID: 27833383 PMCID: PMC5083797 DOI: 10.3748/wjg.v22.i40.8918] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/24/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effects of melatonin (Mel) on oxidative stress in an experimental model of bile duct ligation (BDL). METHODS Male Wistar rats (n = 32, weight ± 300 g) were allocated across four groups: CO (sham BDL), BDL (BDL surgery), CO + Mel (sham BDL and Mel administration) and BDL + Mel (BDL surgery and Mel administration). Mel was administered intraperitoneally for 2 wk, starting on postoperative day 15, at a dose of 20 mg/kg. RESULTS Mel was effective at the different standards, reestablishing normal liver enzyme levels, reducing the hepatosomatic and splenosomatic indices, restoring lipoperoxidation and antioxidant enzyme concentrations, reducing fibrosis and inflammation, and thereby reducing liver tissue injury in the treated animals. CONCLUSION The results of this study suggest a protective effect of Mel when administered to rats with secondary biliary cirrhosis induced by BDL.
Collapse
|
629
|
Coto-Montes A, Boga JA, Tan DX, Reiter RJ. Melatonin as a Potential Agent in the Treatment of Sarcopenia. Int J Mol Sci 2016; 17:ijms17101771. [PMID: 27783055 PMCID: PMC5085795 DOI: 10.3390/ijms17101771] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
Considering the increased speed at which the world population is aging, sarcopenia could become an epidemic in this century. This condition currently has no means of prevention or treatment. Melatonin is a highly effective and ubiquitously acting antioxidant and free radical scavenger that is normally produced in all organisms. This molecule has been implicated in a huge number of biological processes, from anticonvulsant properties in children to protective effects on the lung in chronic obstructive pulmonary disease. In this review, we summarize the data which suggest that melatonin may be beneficial in attenuating, reducing or preventing each of the symptoms that characterize sarcopenia. The findings are not limited to sarcopenia, but also apply to osteoporosis-related sarcopenia and to age-related neuromuscular junction dysfunction. Since melatonin has a high safety profile and is drastically reduced in advanced age, its potential utility in the treatment of sarcopenic patients and related dysfunctions should be considered.
Collapse
Affiliation(s)
- Ana Coto-Montes
- Department of Morphology and Cellular Biology, Medicine Faculty, University of Oviedo, Julian Claveria, s/n, Oviedo 33006, Spain.
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA.
| | - Jose A Boga
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA.
- Service of Microbiology, Hospital Universitario Central de Asturias, Avenida de Roma, s/n, Oviedo 33011, Spain.
| | - Dun X Tan
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA.
| |
Collapse
|
630
|
Melatoninergic System in Parkinson's Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3472032. [PMID: 27829983 PMCID: PMC5088323 DOI: 10.1155/2016/3472032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson's disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction.
Collapse
|
631
|
Wang C, Huo X, Tian X, Xu M, Dong P, Luan Z, Wang X, Zhang B, Zhang B, Huang S, Deng S, Ma X. Inhibition of melatonin metabolism in humans induced by chemical components from herbs and effective prediction of this risk using a computational model. Br J Pharmacol 2016; 173:3261-3275. [PMID: 27588415 DOI: 10.1111/bph.13612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/08/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Herbs which are widely used as food and medicine, are involved in many physiopathological processes. Melatonin is a human hormone, synthesized and secreted by the pineal gland, with a range of biological functions. Here, we have evaluated the potential influences of components extracted from common herbs on melatonin metabolism in humans. EXPERIMENTAL APPROACH An in vivo pharmacokinetic study involving 12 healthy subjects, in vitro incubations with human liver microsomes (HLMs) and recombinant human cytochrome P (CYP) isoenzymes and an in silico quantitative structure-activity relationship (QSAR) model analysis using comparative molecular field analysis and comparative molecular similarity indices analysis methods were employed to explore these interactions. KEY RESULTS After systematic screening of 66 common herbs, Angelica dahurica exhibited the most potent inhibition of melatonin metabolism in vitro. The in vivo pharmacokinetic study indicated inhibition of melatonin metabolism, with approximately 12- and 4-fold increases in the AUC and Cmax of melatonin in human subjects. Coumarins from A. dahurica, including imperatorin, isoimperatorin, phellopterin, 5-methoxypsoralen and 8-methoxypsoralen, markedly inhibited melatonin metabolism with Ki values of 14.5 nM, 38.8 nM, 6.34 nM, 5.34 nM and 18 nM respectively, through inhibition of CYP 1A2, 1A1 and 1B1 in HLMs. A QSAR model was established and satisfactorily predicted the potential risk of coumarins for inhibition of melatonin metabolism in vivo. CONCLUSION AND IMPLICATIONS Coumarins from A. dahurica inhibited melatonin metabolism in vivo and in vitro. Our findings provide vital guidance for the clinical use of melatonin.
Collapse
Affiliation(s)
- Chao Wang
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China.,Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Min Xu
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Peipei Dong
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Zhilin Luan
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy and Traditional Chinese Medicine, Chinese People's Liberation Army 210 Hospital, Dalian, China
| | - Baojing Zhang
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shanshan Huang
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Sa Deng
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China. .,Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
632
|
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. [PMID: 27500468 DOI: 10.1111/jpi.12360] [Citation(s) in RCA: 1052] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Juan C Mayo
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rosa M Sainz
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Moises Alatorre-Jimenez
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lilian Qin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
633
|
Quintana C, Cabrera J, Perdomo J, Estévez F, Loro JF, Reiter RJ, Quintana J. Melatonin enhances hyperthermia-induced apoptotic cell death in human leukemia cells. J Pineal Res 2016; 61:381-95. [PMID: 27465521 DOI: 10.1111/jpi.12356] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
Abstract
Melatonin is an endogenous indoleamine with a wide range of biological functions. In addition to modulating circadian rhythms, it plays important roles in the health as an antioxidant. Melatonin has also the ability to induce apoptosis in cancer cells and to enhance the antitumoral activity of chemotherapeutic agents. In this study, the effect of melatonin on hyperthermia-induced apoptosis was explored using human leukemia cells. The results demonstrate that melatonin greatly improved the cytotoxicity of hyperthermia in U937 cells. The potentiation of cell death was achieved with 1 mmol/L concentrations of the indoleamine but not with concentrations close to physiological levels in blood (1 nmol/L). This effect was associated to an enhancement of the apoptotic response, revealed by an increase in cells with hypodiploid DNA content and activation of multiple caspases (caspase-2, caspase-3, caspase-8, and caspase-9). Melatonin also increased hyperthermia-induced Bid activation as well as translocation of Bax from the cytosol to mitochondria and cytochrome c release. Hyperthermia-provoked apoptosis and potentiation by melatonin were abrogated by a broad-spectrum caspase inhibitor (z-VAD-fmk) as well as by specific inhibitors against caspase-8 or caspase-3. In contrast, blocking of the mitochondrial pathway of apoptosis either with a caspase-9 inhibitor or overexpressing the anti-apoptotic protein Bcl-2 (U937/Bcl-2) reduced the number of apoptotic cells in response to hyperthermia but it was unable to suppress melatonin enhancement. Melatonin appears to modulate the apoptotic response triggered by hyperthermia in a cell type-specific manner as similar results were observed in HL-60 but not in K562 or MOLT-3 cells.
Collapse
Affiliation(s)
- Carlos Quintana
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Javier Cabrera
- Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Perdomo
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan F Loro
- Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
634
|
Melatonin in Retinal Physiology and Pathology: The Case of Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6819736. [PMID: 27688828 PMCID: PMC5027321 DOI: 10.1155/2016/6819736] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
Melatonin, an indoleamine, is synthesized mainly in the pineal gland in a circadian fashion, but it is produced in many other organs, including the retina, which seems to be especially important as the eye is a primary recipient of circadian signals. Melatonin displays strong antioxidative properties, which predispose it to play a protective role in many human pathologies associated with oxidative stress, including premature aging and degenerative disease. Therefore, melatonin may play a role in age-related macular degeneration (AMD), a disease affecting photoreceptors, and retinal pigment epithelium (RPE) with an established role of oxidative stress in its pathogenesis. Several studies have shown that melatonin could exert the protective effect against damage to RPE cells evoked by reactive oxygen species (ROS), but it has also been reported to increase ROS-induced damage to photoreceptors and RPE. Melatonin behaves like synthetic mitochondria-targeted antioxidants, which concentrate in mitochondria at relatively high levels; thus, melatonin may prevent mitochondrial damage in AMD. The retina contains telomerase, an enzyme implicated in maintaining the length of telomeres, and oxidative stress inhibits telomere synthesis, while melatonin overcomes this effect. These features support considering melatonin as a preventive and therapeutic agent in the treatment of AMD.
Collapse
|
635
|
Chen X, Hao A, Li X, Du Z, Li H, Wang H, Yang H, Fang Z. Melatonin inhibits tumorigenicity of glioblastoma stem-like cells via the AKT-EZH2-STAT3 signaling axis. J Pineal Res 2016; 61:208-17. [PMID: 27121240 DOI: 10.1111/jpi.12341] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 01/10/2023]
Abstract
Glioblastoma stem-like cells (GSCs) displaying self-renewing and tumor-propagating capacity play a particularly important role in maintaining tumor growth, therapeutic resistance, and tumor recurrence. Therefore, new therapeutic strategies focusing on impairing GSC maintenance are urgently needed. Here, we used GSCs isolated from surgical specimens from patients with glioblastoma multiforme (GBM) to study the roles and underlying mechanisms associated with melatonin in GSC biology. The results showed that melatonin directly targeted glioma tumor cells by altering GSC biology and inhibiting GSC proliferation. Additionally, melatonin altered profile of transcription factors to inhibit tumor initiation and propagation. Furthermore, EZH2 S21 phosphorylation and EZH2-STAT3 interaction in GSCs were impaired following melatonin treatment. These results suggested that melatonin attenuated multiple key signals involved in GSC self-renewal and survival, and further supported melatonin as a promising GBM therapeutic.
Collapse
Affiliation(s)
- Xueran Chen
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Aijun Hao
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xian Li
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhaoxia Du
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Hao Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongzhi Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Haoran Yang
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Zhiyou Fang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
636
|
Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells. Brain Res 2016; 1646:182-192. [DOI: 10.1016/j.brainres.2016.05.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
|
637
|
Jumnongprakhon P, Govitrapong P, Tocharus C, Tocharus J. Inhibitory effect of melatonin on cerebral endothelial cells dysfunction induced by methamphetamine via NADPH oxidase-2. Brain Res 2016; 1650:84-92. [PMID: 27590720 DOI: 10.1016/j.brainres.2016.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023]
Abstract
Melatonin is a hormone that mostly produced from the pineal gland, and it performs as a strong neuroprotectant to both neuron and glial cells against methamphetamine (METH)-induced neurotoxicity. Recently, it has been found that METH also damages the blood brain barrier (BBB) structure and function. However, the protective mechanism of melatonin on the BBB impairment caused by METH has not been investigated. In this study, the primary rat brain microvascular endothelium cells (BMVECs) isolated from neonatal rats was used to investigate the protective effect of melatonin on METH-induced BBB impairment and the underlying mechanism. The results demonstrated that melatonin decreased the level of reactive oxygen species (ROS), reactive nitrogen species (RNS), and apoptosis induced by METH via NADPH oxidase (NOX)-2 since apocynin, a NOX-2 inhibitor abolished those changes. In addition, melatonin was found to improve cell integrity by increasing the transendothelial electric resistance (TEER) values, and up-regulate the tight junction proteins ZO-1, occludin, and claudin-5, thereby decreasing the paracellular permeability caused by METH mediated by NOX-2. Our data suggest that METH induces BBB impairment by mediating NOX-2 activity, and then induces oxidative and nitrative stress, as well as apoptosis, which causes the impairment of cell integrity, and that melatonin reduces these negative effects of METH by mediating via MT1/2 receptors.
Collapse
Affiliation(s)
- Pichaya Jumnongprakhon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
638
|
Vitale SG, Rossetti P, Corrado F, Rapisarda AMC, La Vignera S, Condorelli RA, Valenti G, Sapia F, Laganà AS, Buscema M. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin. Int J Endocrinol 2016; 2016:4987436. [PMID: 27651794 PMCID: PMC5019888 DOI: 10.1155/2016/4987436] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022] Open
Abstract
Assisted reproductive technologies (ART) have experienced growing interest from infertile patients seeking to become pregnant. The quality of oocytes plays a pivotal role in determining ART outcomes. Although many authors have studied how supplementation therapy may affect this important parameter for both in vivo and in vitro models, data are not yet robust enough to support firm conclusions. Regarding this last point, in this review our objective has been to evaluate the state of the art regarding supplementation with melatonin and myo-inositol in order to improve oocyte quality during ART. On the one hand, the antioxidant effect of melatonin is well known as being useful during ovulation and oocyte incubation, two occasions with a high level of oxidative stress. On the other hand, myo-inositol is important in cellular structure and in cellular signaling pathways. Our analysis suggests that the use of these two molecules may significantly improve the quality of oocytes and the quality of embryos: melatonin seems to raise the fertilization rate, and myo-inositol improves the pregnancy rate, although all published studies do not fully agree with these conclusions. However, previous studies have demonstrated that cotreatment improves these results compared with melatonin alone or myo-inositol alone. We recommend that further studies be performed in order to confirm these positive outcomes in routine ART treatment.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | - Paola Rossetti
- Unit of Diabetology and Endocrino-Metabolic Diseases, Hospital for Emergency Cannizzaro, Catania, Italy
| | - Francesco Corrado
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | | | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, Research Centre of Motor Activity and Metabolic Rehabilitation in Diabetes (CRAMD), University of Catania, Catania, Italy
| | - Rosita Angela Condorelli
- Department of Clinical and Experimental Medicine, Research Centre of Motor Activity and Metabolic Rehabilitation in Diabetes (CRAMD), University of Catania, Catania, Italy
| | - Gaetano Valenti
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Sapia
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Antonio Simone Laganà
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | - Massimo Buscema
- Unit of Diabetology and Endocrino-Metabolic Diseases, Hospital for Emergency Cannizzaro, Catania, Italy
| |
Collapse
|
639
|
Agabiti-Rosei C, Favero G, De Ciuceis C, Rossini C, Porteri E, Rodella LF, Franceschetti L, Maria Sarkar A, Agabiti-Rosei E, Rizzoni D, Rezzani R. Effect of long-term treatment with melatonin on vascular markers of oxidative stress/inflammation and on the anticontractile activity of perivascular fat in aging mice. Hypertens Res 2016; 40:41-50. [PMID: 27534739 DOI: 10.1038/hr.2016.103] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022]
Abstract
Some reports have suggested that inflammation in perivascular adipose tissue (PVAT) may be implicated in vascular dysfunction by causing the disappearance of an anticontractile effect. The aim of this study was to investigate the effects of chronic melatonin treatment on the functional responses of the small mesenteric arteries and on the expression of markers of inflammation/oxidative stress in the aortas of senescence-accelerated prone mice (SAMP8), a model of age-related vascular dysfunction. We investigated seven SAMP8 and seven control senescence-accelerated resistant mice (SAMR1) treated for 10 months with melatonin, as well as equal numbers of age-matched untreated SAMP8 and SAMR1. The mesenteric small resistance arteries were dissected and mounted on a wire myograph, and the concentration-response to norepinephrine was evaluated in vessels with intact PVAT and after the removal of the PVAT. The expression of markers of oxidative stress, inflammation and aging in the aortas was evaluated by immunostaining. In addition, the adiponectin content and the expression of adiponectin receptor 1 were evaluated in the visceral adipose tissue. In untreated SAMP8 mice, we observed an overexpression of oxidative stress and inflammatory markers in the vasculature compared with the controls. No anticontractile effect of the PVAT was observed in untreated SAMP8 mice. Long-term treatment of SAMP8 mice with melatonin increased the expression of some markers of vasoprotection, decreased oxidative stress and inflammation and restored the anticontractile effect of the PVAT. Decreased expression of adiponectin and adiponectin receptor 1 was also observed in visceral fat of untreated SAMP8, whereas a significant increase was observed after melatonin treatment.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carolina De Ciuceis
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Claudia Rossini
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Enzo Porteri
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Anna Maria Sarkar
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Enrico Agabiti-Rosei
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy.,Istituto Clinico Città di Brescia, Division of Medicine, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
640
|
Shuai Y, Liao L, Su X, Yu Y, Shao B, Jing H, Zhang X, Deng Z, Jin Y. Melatonin Treatment Improves Mesenchymal Stem Cells Therapy by Preserving Stemness during Long-term In Vitro Expansion. Am J Cancer Res 2016; 6:1899-917. [PMID: 27570559 PMCID: PMC4997245 DOI: 10.7150/thno.15412] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of MSCs, resulting in failure of MSCs therapy. Here, we report a melatonin-based strategy to improve cell therapy of in vitro cultured MSCs. Among four small molecules with anti-aging and stem cell-protection properties (rapamycin, resveratrol, quercetin and melatonin), colony forming, proliferation, and osteogenic differentiation assay showed that melatonin was the most efficient to preserve self-renewal and differentiation properties of rat bone marrow MSCs (BMMSCs) after long-term passaging. Functional assays confirmed melatonin treatment did not affect the colony forming, proliferation and osteogenic differentiation of BMMSCs cultured for 1 or 4 passages, but largely prevented the decline of self-renew and differentiation capacity of BMMSCs cultured for 15 passages in vitro. Furthermore, heterotopic osteogenesis assay, critical size calvarial defects repair assay, osteoporosis treatment and experimental colitis therapy assay strongly certified that melatonin preserved the therapeutic effect of long-term passaged BMMSCs on bone regeneration and immunotherapy in vivo. Mechanistically, melatonin functioned by activating antioxidant defense system, inhibiting the pathway of cell senescence, and preserving the expression of gene governing the stemness. Taken together, our findings showed that melatonin treatment efficiently prevented the dysfunction and therapeutic failure of BMMSCs after long-term passaging, providing a practical strategy to improve the application of BMMSCs in tissue engineering and cytotherapy.
Collapse
|
641
|
Díaz-Casado ME, Lima E, García JA, Doerrier C, Aranda P, Sayed RK, Guerra-Librero A, Escames G, López LC, Acuña-Castroviejo D. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network. J Pineal Res 2016; 61:96-107. [PMID: 27064726 DOI: 10.1111/jpi.12332] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
Multiple studies reporting mitochondrial impairment in Parkinson's disease (PD) involve knockout or knockdown models to inhibit the expression of mitochondrial-related genes, including parkin, PINK1, and DJ-1 ones. Melatonin has significant neuroprotective properties, which have been related to its ability to boost mitochondrial bioenergetics. The meaning and molecular targets of melatonin in PD are yet unclear. Zebrafish are an outstanding model of PD because they are vertebrates, their dopaminergic system is comparable to the nigrostriatal system of humans, and their brains express the same genes as mammals. The exposure of 24 hpf zebrafish embryos to MPTP leads to a significant inhibition of the mitochondrial complex I and the induction of sncga gene, responsible for enhancing γ-synuclein accumulation, which is related to mitochondrial dysfunction. Moreover, MPTP inhibited the parkin/PINK1/DJ-1 expression, impeding the normal function of the parkin/PINK1/DJ-1/MUL1 network to remove the damaged mitochondria. This situation remains over time, and removing MPTP from the treatment did not stop the neurodegenerative process. On the contrary, mitochondria become worse during the next 2 days without MPTP, and the embryos developed a severe motor impairment that cannot be rescued because the mitochondrial-related gene expression remained inhibited. Melatonin, added together with MPTP or added once MPTP was removed, prevented and recovered, respectively, the parkinsonian phenotype once it was established, restoring gene expression and normal function of the parkin/PINK1/DJ-1/MUL1 loop and also the normal motor activity of the embryos. The results show, for the first time, that melatonin restores brain function in zebrafish suffering with Parkinson-like disease.
Collapse
Affiliation(s)
- María E Díaz-Casado
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Elena Lima
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - José A García
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Carolina Doerrier
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Paula Aranda
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Ramy Ka Sayed
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Ana Guerra-Librero
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Luis C López
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
642
|
Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Ramírez JM, Tan DX, García JJ, Reiter RJ. Melatonin role preventing steatohepatitis and improving liver transplantation results. Cell Mol Life Sci 2016; 73:2911-27. [PMID: 27022943 PMCID: PMC11108472 DOI: 10.1007/s00018-016-2185-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Liver steatosis is a prevalent process that is induced due to alcoholic or non-alcoholic intake. During the course of these diseases, the generation of reactive oxygen species, followed by molecular damage to lipids, protein and DMA occurs generating organ cell death. Transplantation is the last-resort treatment for the end stage of both acute and chronic hepatic diseases, but its success depends on ability to control ischemia-reperfusion injury, preservation fluids used, and graft quality. Melatonin is a powerful endogenous antioxidant produced by the pineal gland and a variety of other because of its efficacy in organs; melatonin has been investigated to improve the outcome of organ transplantation by reducing ischemia-reperfusion injury and due to its synergic effect with organ preservation fluids. Moreover, this indolamine also prevent liver steatosis. That is important because this disease may evolve leading to an organ transplantation. This review summarizes the observations related to melatonin beneficial actions in organ transplantation and ischemic-reperfusion models.
Collapse
Affiliation(s)
- Eduardo Esteban-Zubero
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain.
| | - Francisco Agustín García-Gil
- Department of Surgery, Gynaecology and Obstetrics, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Laura López-Pingarrón
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Moisés Alejandro Alatorre-Jiménez
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - José Manuel Ramírez
- Department of Surgery, Gynaecology and Obstetrics, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - José Joaquín García
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
643
|
Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 2016; 61:27-40. [PMID: 27112772 DOI: 10.1111/jpi.12336] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022]
Abstract
Melatonin is a phylogenetically ancient molecule. It is ubiquitously present in almost all organisms from primitive photosynthetic bacteria to humans. Its original primary function is presumable to be that of an antioxidant with other functions of this molecule having been acquired during evolution. The synthetic pathway of melatonin in vertebrates has been extensively studied. It is common knowledge that serotonin is acetylated to form N-acetylserotonin by arylalkylamine N-acetyltransferase (AANAT) or arylamine N-acetyltransferase (SNAT or NAT) and N-acetylserotonin is, subsequently, methylated to melatonin by N-acetylserotonin O-methyltransferase (ASMT; also known as hydroxyindole-O-methyltransferase, HIOMT). This is referred to as a classic melatonin synthetic pathway. Based on new evidence, we feel that this classic melatonin pathway is not generally the prevailing route of melatonin production. An alternate pathway is known to exist, in which serotonin is first O-methylated to 5-methoxytryptamine (5-MT) and, thereafter, 5-MT is N-acetylated to melatonin. Here, we hypothesize that the alternate melatonin synthetic pathway may be more important in certain organisms and under certain conditions. Evidence strongly supports that this alternate pathway prevails in some plants, bacteria, and, perhaps, yeast and may also occur in animals.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Lucien C Manchester
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Moises A Alatorre-Jimenez
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
644
|
Terao M, Barzago MM, Kurosaki M, Fratelli M, Bolis M, Borsotti A, Bigini P, Micotti E, Carli M, Invernizzi RW, Bagnati R, Passoni A, Pastorelli R, Brunelli L, Toschi I, Cesari V, Sanoh S, Garattini E. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity. Sci Rep 2016; 6:30343. [PMID: 27456060 PMCID: PMC4960552 DOI: 10.1038/srep30343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Andrea Borsotti
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Paolo Bigini
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Edoardo Micotti
- Laboratory of Neurodegenerative diseases, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mirjana Carli
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberto William Invernizzi
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Renzo Bagnati
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Alice Passoni
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Valentina Cesari
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Seigo Sanoh
- Graduate School of Biochemical and Health Sciences, Hiroshima University, Hiroshima Japan
| | - Enrico Garattini
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| |
Collapse
|
645
|
Kuklina EM. [Melatonin as an inducing factor for multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:102-105. [PMID: 27437545 DOI: 10.17116/jnevro201611651102-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Melatonin is one of the most multifunctional regulators in the organism. It plays a key role in the control of nerve, endocrine, and immune systems. Due to hormone neuroprotective activity, the possibility is now discussed on its clinical usage in treating neurodegenerative diseases, including multiple sclerosis. At the same time, melatonin is an effective regulator of immune reactions, in part, the reactions toward autoantigens. In this respect, the subset ofT lymphocytes producing IL-17 (Th17) is of special interest. As the Th17 subset plays a key role iri multiple sclerosis pathogenesis, the immunomodulating hormone effects toward Th17, may, in theory, nullify its positive neuroprotective activity.
Collapse
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
646
|
He Y, Deng H, Jiang Z, Li Q, Shi M, Chen H, Han Z. Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine. Mol Reprod Dev 2016; 83:692-700. [DOI: 10.1002/mrd.22676] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/27/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Yamei He
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Honghui Deng
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Zhongliang Jiang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Qingwang Li
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
- College of Environment and Chemistry Engineering; Yanshan University; Qinhuangdao Hebei China
| | - Meihong Shi
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Huali Chen
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Zengsheng Han
- College of Environment and Chemistry Engineering; Yanshan University; Qinhuangdao Hebei China
| |
Collapse
|
647
|
Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO. Melatonin Stimulates the SIRT1/Nrf2 Signaling Pathway Counteracting Lipopolysaccharide (LPS)-Induced Oxidative Stress to Rescue Postnatal Rat Brain. CNS Neurosci Ther 2016; 23:33-44. [PMID: 27421686 DOI: 10.1111/cns.12588] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Lipopolysaccharide (LPS) induces oxidative stress and neuroinflammation both in vivo and in vitro. Here, we provided the first detailed description of the mechanism of melatonin neuroprotection against LPS-induced oxidative stress, acute neuroinflammation, and neurodegeneration in the hippocampal dentate gyrus (DG) region of the postnatal day 7 (PND7) rat brain. METHODS The neuroprotective effects of melatonin against LPS-induced neurotoxicity were analyzed using multiple research techniques, including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays (ELISAs) in PND7 rat brain homogenates and BV2 cell lysates in vitro. We also used EX527 to inhibit silent information regulator transcript-1 (SIRT1). RESULTS A single intraperitoneal (i.p) injection of LPS to PND7 rats significantly induced glial cell activation, acute neuroinflammation, reactive oxygen species (ROS) production and apoptotic neurodegeneration in hippocampal DG region after 4 h. However, the coadministration of melatonin significantly inhibited both LPS-induced acute neuroinflammation and apoptotic neurodegeneration and improved synaptic dysfunction in the hippocampal DG region of PND7 rats. Most importantly, melatonin stimulated the SIRT1/Nrf2 (nuclear factor-erythroid 2-related factor 2) signaling pathway to reduce LPS-induced ROS generation. The beneficial effects of melatonin were further confirmed in LPS-stimulated BV2 microglia cell lines in vitro using EX527 as an inhibitor of SIRT1. LPS-induced oxidative stress, Nrf2 inhibition, and neuroinflammation are SIRT1-dependent in BV2 microglia cell lines. CONCLUSION These results demonstrated that melatonin treatment rescued the hippocampal DG region of PND7 rat brains against LPS-induced oxidative stress damage, acute neuroinflammation, and apoptotic neurodegeneration via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Shahid Ali Shah
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Mehtab Khan
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeung-Hoon Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Gi Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Faiz Ul Amin
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
648
|
Abstract
Circadian clocks are fundamental properties of all eukaryotic organisms and at least some prokaryotic organisms. Recent studies in our laboratory have shown that the gastrointestinal system contains a circadian clock that controls many, if not all, aspects of gastrointestinal function. We now report that at least one species of intestinal bacteria, Enterobacter aerogenes, responds to the pineal and gastrointestinal hormone melatonin by an increase in swarming activity. This swarming behavior is expressed rhythmically, with a period of approximately 24 hrs. Transformation of E. aerogenes to express luciferase with a MotA promoter reveals circadian patterns of bioluminescence that are synchronized by melatonin and whose periods are temperature compensated from 26°C to 40°C. Bioinformatics suggest similarities between the E. aerogenes and cyanobacterial clocks, suggesting the circadian clock may have evolved very early in the evolution of life. They also point to a coordination of host circadian clocks with those residing in the microbiota themselves.
Collapse
|
649
|
Melatonin protects female rats against steatosis and liver oxidative stress induced by oestrogen deficiency. Life Sci 2016; 157:178-186. [DOI: 10.1016/j.lfs.2016.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/22/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022]
|
650
|
Tao J, Lv J, Li W, Zhang P, Mao C, Xu Z. Exogenous melatonin reduced blood pressure in late-term ovine fetus via MT1/MT2 receptor pathways. Reprod Biol 2016; 16:212-217. [PMID: 27692363 DOI: 10.1016/j.repbio.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022]
Abstract
Melatonin is involved in the regulation of blood pressure through the receptor dependent or independent route. However, the effect of melatonin on fetal blood pressure is unknown. This study investigated the effect of melatonin on blood pressure of the late-term ovine fetus in utero. Melatonin and/or antagonists were intravenously administered into the fetuses. Mean arterial pressure and heart rate were recorded. Fetal blood samples were analyzed for biochemical parameters and hormones, including cortisol, angiotensin I, angiotensin II, aldosterone, atrial natriuretic peptide, corticotrophin-releasing hormone, adrenocorticotropic hormone, and endothelin. Fetal blood pressure was decreased following administration of melatonin, whereas it was increased following administration of luzindole, but not prazosin. Plasma level of endothelin was decreased by melatonin, which was blocked by luzindole. Our study suggested that melatonin reduced fetal blood pressure via MT1/MT2 receptors and possibly involving release of endothelin.
Collapse
Affiliation(s)
- Jianying Tao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China; Suzhou Municipal Hospital, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Weisheng Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Caiping Mao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China; Center for Perinatal Biology, Loma Linda University, CA, USA.
| |
Collapse
|