601
|
Glucosinolates, Carotenoids, and Vitamins E and K Variation from Selected Kale and Collard Cultivars. J FOOD QUALITY 2017. [DOI: 10.1155/2017/5123572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glucosinolates, carotenoids, and fat-soluble vitamins E and K contents were analyzed from various kale and collard cultivars at mature stage. We found a significant difference in these phytonutrients among cultivars. Among kale cultivars, “Beira” and “Olympic Red” were the highest in the total glucosinolate and “Toscano” kale was the highest in total carotenoid content. “Scarlet” kale was highest in tocopherols. For collard, total glucosinolate was the highest in “Top Bunch” while carotenoids were the highest in “Green Glaze.” An accession PI261597 was the highest in phylloquinone. In addition to the total content of each phytonutrient class, their composition differed among cultivars, indicating that each cultivar may have differential regulatory mechanisms for biosynthesis of these phytonutrients. Our result indicates that cultivar selection may play an important role in consumption of kale and collard with greater nutritional benefit. Therefore, the result of this study will provide a more thorough profile of essential and nonessential phytonutrients of kale and collard cultivars for consumers’ choice and for future research on nutritional value of these crops.
Collapse
|
602
|
Heng Z, Sheng O, Yan S, Lu H, Motorykin I, Gao H, Li C, Yang Q, Hu C, Kuang R, Bi F, Dou T, Xie S, Deng G, Yi G. Carotenoid Profiling in the Peel and Pulp of 36 Selected Musa Varieties. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zhou Heng
- Department of Horticulture Hunan Agricultural University
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Ou Sheng
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Shijuan Yan
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Hongxian Lu
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | | | - Huijun Gao
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Chunyu Li
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Qiaosong Yang
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Chunhua Hu
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Ruibin Kuang
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Fangcheng Bi
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Tongxin Dou
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Shenxi Xie
- Department of Horticulture Hunan Agricultural University
| | - Guiming Deng
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| | - Ganjun Yi
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences
| |
Collapse
|
603
|
Kong Q, Yuan J, Gao L, Liu P, Cao L, Huang Y, Zhao L, Lv H, Bie Z. Transcriptional regulation of lycopene metabolism mediated by rootstock during the ripening of grafted watermelons. Food Chem 2017; 214:406-411. [DOI: 10.1016/j.foodchem.2016.07.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/13/2016] [Accepted: 07/14/2016] [Indexed: 11/15/2022]
|
604
|
Ji A, Jia J, Xu Z, Li Y, Bi W, Ren F, He C, Liu J, Hu K, Song J. Transcriptome-Guided Mining of Genes Involved in Crocin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:518. [PMID: 28443112 PMCID: PMC5387100 DOI: 10.3389/fpls.2017.00518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/23/2017] [Indexed: 05/11/2023]
Abstract
Gardenia jasminoides is used in traditional Chinese medicine and has drawn attention as a rich source of crocin, a compound with reported activity against various cancers, depression and cardiovascular disease. However, genetic information on the crocin biosynthetic pathway of G. jasminoides is scarce. In this study, we performed a transcriptome analysis of the leaves, green fruits, and red fruits of G. jasminoides to identify and predict the genes that encode key enzymes responsible for crocin production, compared with Crocus sativus. Twenty-seven putative pathway genes were specifically expressed in the fruits, consistent with the distribution of crocin in G. jasminoides. Twenty-four of these genes were reported for the first time, and a novel CCD4a gene was predicted that encodes carotenoid cleavage dioxygenase leading to crocin synthesis, in contrast to CCD2 of C. sativus. In addition, 6 other candidate genes (ALDH12, ALDH14, UGT94U1, UGT86D1, UGT71H4, and UGT85K18) were predicted to be involved in crocin biosynthesis following phylogenetic analysis and different gene expression profiles. Identifying the genes that encode key enzymes should help elucidate the crocin biosynthesis pathway.
Collapse
Affiliation(s)
- Aijia Ji
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Jing Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Wu Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Fengming Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
- Chongqing Institute of Medicinal Plant CultivationChongqing, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Jie Liu
- Chongqing Institute of Medicinal Plant CultivationChongqing, China
| | - Kaizhi Hu
- Chongqing Institute of Medicinal Plant CultivationChongqing, China
- *Correspondence: Kaizhi Hu
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
- Chongqing Institute of Medicinal Plant CultivationChongqing, China
- Jingyuan Song
| |
Collapse
|
605
|
García-Plazaola JI, Portillo-Estrada M, Fernández-Marín B, Kännaste A, Niinemets Ü. Emissions of carotenoid cleavage products upon heat shock and mechanical wounding from a foliose lichen. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2017; 133:87-97. [PMID: 29416188 PMCID: PMC5798582 DOI: 10.1016/j.envexpbot.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carotenoids constitute a major target of chloroplastic photooxidative reactions, leading to the formation of several oxidized derivatives and cleavage products, some of which are volatile (VCCPs). Among them, β-cyclocitral (β-CC), at least, is a retrograde signaling molecule that modulates the activity of many key physiological processes. In the present work, we aimed to study whether β-CC and other VCCPs are released into the atmosphere from photosynthetic tissues. To overcome stomatal limitations, the foliose chlorolichen Lobaria pulmonaria was used as the model system, and the emissions of biogenic volatiles, induced by heat and wounding stresses, were monitored by proton-transfer reaction time-of-flight mass-spectrometry (PTR-TOF-MS) and gas-chromatography (GC-MS). Prior to stress treatments, VCCPs were emitted constitutively, accounting for 1.3 % of the total volatile release, with β-CC being the most abundant VCCP. Heat and wounding stresses induced a burst of volatile release, including VCCPs, and a loss of carotenoids. Under heat stress, the production of β-CC correlated positively with temperature. However the enhancement of production of VCCPs was the lowest among all the groups of volatiles analyzed. Given that the rates of carotenoid loss were three orders of magnitude higher than the release rates of VCCPs and that these compounds only represent a minor fraction in the blend of volatiles, it seems unlikely that VCCPs might represent a global stress signal capable of diffusing through the atmosphere to different neighboring individuals.
Collapse
Affiliation(s)
- José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), apdo 644, 48080 Bilbao, Spain
| | - Miguel Portillo-Estrada
- Research Centre of Excellence on Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), apdo 644, 48080 Bilbao, Spain
- Institute of Botany, University of Innsbruck. Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Astrid Kännaste
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Ülo Niinemets
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
| |
Collapse
|
606
|
Carotenoids from microalgae: A review of recent developments. Biotechnol Adv 2016; 34:1396-1412. [DOI: 10.1016/j.biotechadv.2016.10.005] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
|
607
|
Bruno M, Koschmieder J, Wuest F, Schaub P, Fehling-Kaschek M, Timmer J, Beyer P, Al-Babili S. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5993-6005. [PMID: 27811075 PMCID: PMC5100015 DOI: 10.1093/jxb/erw356] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9-C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.
Collapse
Affiliation(s)
- Mark Bruno
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Julian Koschmieder
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Florian Wuest
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Patrick Schaub
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Mirjam Fehling-Kaschek
- Albert-Ludwigs University of Freiburg, Department of Physics, Hermann-Herder-Str. 3a, D-79104 Freiburg, Germany
| | - Jens Timmer
- Albert-Ludwigs University of Freiburg, Department of Physics, Hermann-Herder-Str. 3a, D-79104 Freiburg, Germany
- Albert-Ludwigs University of Freiburg, BIOSS Center for Biological Signalling Studies, Schaenzlestr. 18, D-79104 Freiburg, Germany
| | - Peter Beyer
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Salim Al-Babili
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
- King Abdullah University of Science and Technology (KAUST), BESE Division, Center for Desert Agriculture, 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
608
|
Ahrazem O, Gómez-Gómez L, Rodrigo MJ, Avalos J, Limón MC. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int J Mol Sci 2016; 17:E1781. [PMID: 27792173 PMCID: PMC5133782 DOI: 10.3390/ijms17111781] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/17/2022] Open
Abstract
Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon-carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María J Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento de Ciencia de los Alimentos, Calle Catedrático Agustín Escardino 7, 46980 Paterna, Spain.
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| | - María Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
609
|
Xiao Z, Sun X, Liu X, Li C, He L, Chen S, Su J. Selection of Reliable Reference Genes for Gene Expression Studies on Rhododendron molle G. Don. FRONTIERS IN PLANT SCIENCE 2016; 7:1547. [PMID: 27803707 PMCID: PMC5067439 DOI: 10.3389/fpls.2016.01547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/03/2016] [Indexed: 05/19/2023]
Abstract
The quantitative real-time polymerase chain reaction (qRT-PCR) approach has become a widely used method to analyze expression patterns of target genes. The selection of an optimal reference gene is a prerequisite for the accurate normalization of gene expression in qRT-PCR. The present study constitutes the first systematic evaluation of potential reference genes in Rhododendron molle G. Don. Eleven candidate reference genes in different tissues and flowers at different developmental stages of R. molle were assessed using the following three software packages: GeNorm, NormFinder, and BestKeeper. The results showed that EF1-α (elongation factor 1-alpha), 18S (18s ribosomal RNA), and RPL3 (ribosomal protein L3) were the most stable reference genes in developing rhododendron flowers and, thus, in all of the tested samples, while tublin (TUB) was the least stable. ACT5 (actin), RPL3, 18S, and EF1-α were found to be the top four choices for different tissues, whereas TUB was not found to favor qRT-PCR normalization in these tissues. Three stable reference genes are recommended for the normalization of qRT-PCR data in R. molle. Furthermore, the expression profiles of RmPSY (phytoene synthase) and RmPDS (phytoene dehydrogenase) were assessed using EF1-α, 18S, ACT5, RPL3, and their combination as internals. Similar trends were found, but these trends varied when the least stable reference gene TUB was used. The results further prove that it is necessary to validate the stability of reference genes prior to their use for normalization under different experimental conditions. This study provides useful information for reliable qRT-PCR data normalization in gene studies of R. molle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiale Su
- Institute of Horticulture, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural SciencesNanjing, China
| |
Collapse
|
610
|
Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino Vesuviano” tomatoes. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.08.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
611
|
Che P, Zhao ZY, Glassman K, Dolde D, Hu TX, Jones TJ, Gruis DF, Obukosia S, Wambugu F, Albertsen MC. Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. Proc Natl Acad Sci U S A 2016; 113:11040-5. [PMID: 27621466 PMCID: PMC5047201 DOI: 10.1073/pnas.1605689113] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Micronutrient deficiencies are common in locales where people must rely upon sorghum as their staple diet. Sorghum grain is seriously deficient in provitamin A (β-carotene) and in the bioavailability of iron and zinc. Biofortification is a process to improve crops for one or more micronutrient deficiencies. We have developed sorghum with increased β-carotene accumulation that will alleviate vitamin A deficiency among people who rely on sorghum as their dietary staple. However, subsequent β-carotene instability during storage negatively affects the full utilization of this essential micronutrient. We determined that oxidation is the main factor causing β-carotene degradation under ambient conditions. We further demonstrated that coexpression of homogentisate geranylgeranyl transferase (HGGT), stacked with carotenoid biosynthesis genes, can mitigate β-carotene oxidative degradation, resulting in increased β-carotene accumulation and stability. A kinetic study of β-carotene degradation showed that the half-life of β-carotene is extended from less than 4 wk to 10 wk on average with HGGT coexpression.
Collapse
Affiliation(s)
- Ping Che
- DuPont Pioneer, Johnston, IA 50131
| | | | | | | | | | | | | | - Silas Obukosia
- Africa Harvest Biotech Foundation International, Nairobi 00621, Kenya
| | - Florence Wambugu
- Africa Harvest Biotech Foundation International, Nairobi 00621, Kenya
| | | |
Collapse
|
612
|
Hou X, Rivers J, León P, McQuinn RP, Pogson BJ. Synthesis and Function of Apocarotenoid Signals in Plants. TRENDS IN PLANT SCIENCE 2016; 21:792-803. [PMID: 27344539 DOI: 10.1016/j.tplants.2016.06.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 05/17/2023]
Abstract
In plants, carotenoids are essential for photosynthesis and photoprotection. However, carotenoids are not the end products of the pathway; apocarotenoids are produced by carotenoid cleavage dioxygenases (CCDs) or non-enzymatic processes. Apocarotenoids are more soluble or volatile than carotenoids but they are not simply breakdown products, as there can be modifications post-cleavage and their functions include hormones, volatiles, and signals. Evidence is emerging for a class of apocarotenoids, here referred to as apocarotenoid signals (ACSs), that have regulatory roles throughout plant development beyond those ascribed to abscisic acid (ABA) and strigolactone (SL). In this context we review studies of carotenoid feedback regulation, chloroplast biogenesis, stress signaling, and leaf and root development providing evidence that apocarotenoids may fine-tune plant development and responses to environmental stimuli.
Collapse
Affiliation(s)
- Xin Hou
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - John Rivers
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ryan P McQuinn
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
613
|
Pasoreck EK, Su J, Silverman IM, Gosai SJ, Gregory BD, Yuan JS, Daniell H. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1862-75. [PMID: 27507797 PMCID: PMC4980996 DOI: 10.1111/pbi.12548] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 05/09/2023]
Abstract
The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.
Collapse
Affiliation(s)
- Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Su
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian M Silverman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sager J Gosai
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
614
|
Nützmann HW, Huang A, Osbourn A. Plant metabolic clusters - from genetics to genomics. THE NEW PHYTOLOGIST 2016; 211:771-89. [PMID: 27112429 PMCID: PMC5449196 DOI: 10.1111/nph.13981] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ancheng Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
615
|
Fu CC, Han YC, Fan ZQ, Chen JY, Chen WX, Lu WJ, Kuang JF. The Papaya Transcription Factor CpNAC1 Modulates Carotenoid Biosynthesis through Activating Phytoene Desaturase Genes CpPDS2/4 during Fruit Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5454-63. [PMID: 27327494 DOI: 10.1021/acs.jafc.6b01020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Papaya fruits accumulate carotenoids during fruit ripening. Although many papaya carotenoid biosynthesis pathway genes have been identified, the transcriptional regulators of these genes have not been characterized. In this study, a NAC transcription factor, designated as CpNAC1, was characterized from papaya fruit. CpNAC1 was localized exclusively in nucleus and possessed transcriptional activation activity. Expression of carotenoid biosynthesis genes phytoene desaturases (CpPDSs) and CpNAC1 was increased during fruit ripening and by propylene treatment, which correlates well with the elevated carotenoid content in papaya. The gel mobility shift assays and transient expression analyses demonstrated that CpNAC1 directly binds to the NAC binding site (NACBS) motifs in CpPDS2/4 promoters and activates them. Collectively, these data suggest that CpNAC1 may act as a positive regulator of carotenoid biosynthesis during papaya fruit ripening possibly via transcriptional activation of CpPDSs such as CpPDS2/4.
Collapse
Affiliation(s)
- Chang-Chun Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University , Guangzhou 510642, China
| | - Yan-Chao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University , Guangzhou 510642, China
| | - Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University , Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University , Guangzhou 510642, China
| | - Wei-Xin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University , Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University , Guangzhou 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University , Guangzhou 510642, China
| |
Collapse
|
616
|
Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Food Chem 2016; 214:137-146. [PMID: 27507458 DOI: 10.1016/j.foodchem.2016.07.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Abstract
To understand better the regulatory mechanism of the carotenoid accumulation, the expression profile of relevant carotenoid genes and metabolites were compared between two peach cultivars with different colors during fruit development. Meanwhile, the change pattern of carotenoid content and expression of carotenoid metabolic genes in peaches after harvest in response to blue light were also investigated. As compared to the yellow fleshed-cultivar 'Jinli', lower carotenoid levels were observed in skin and pulp in white peach cultivar 'Hujing', which might be explained by differentially expression of PpCCD4 gene. With respect to 'Jinli', the carotenoid accumulation during fruit development in fruit skin was partially linked with the transcriptional regulation of PpFPPS, PpGGPS, PpLCYB and PpCHYB. However, in the pulp, the accumulation might be also associated with the increased transcriptions of PpPDS, along with the above four genes. Blue light treatment induced carotenoid accumulation in 'Jinli' peaches during storage. In addition, the treated-fruit displayed higher expression of all the eight genes analysed with a lesser extent on PpCCD4, which suggested that the much more increased carotenoid synthesis rate could result in the higher carotenoid content in blue light-treated fruit. The results presented herein contribute to further elucidating the regulatory mechanism of carotenoid accumulation in peach fruit.
Collapse
|
617
|
Comparison of the nutritional as well as the volatile composition of in-season and off-season Hezuo 903 tomato at red stage. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2736-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
618
|
Huang W, Ye J, Zhang J, Lin Y, He M, Huang J. Transcriptome analysis of Chlorella zofingiensis to identify genes and their expressions involved in astaxanthin and triacylglycerol biosynthesis. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
619
|
Ma G, Zhang L, Yungyuen W, Tsukamoto I, Iijima N, Oikawa M, Yamawaki K, Yahata M, Kato M. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits. BMC PLANT BIOLOGY 2016; 16:148. [PMID: 27358074 PMCID: PMC4928310 DOI: 10.1186/s12870-016-0840-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/22/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Xanthophylls are oxygenated carotenoids and fulfill critical roles in plant growth and development. In plants, two different types of carotene hydroxylases, non-heme di-iron and heme-containing cytochrome P450, were reported to be involved in the biosynthesis of xanthophyll. Citrus fruits accumulate a high amount of xanthophylls, especially β,β-xanthophylls. To date, however, the roles of carotene hydroxylases in regulating xanthophyll content and composition have not been elucidated. RESULTS In the present study, the roles of four carotene hydroxylase genes (CitHYb, CitCYP97A, CitCYP97B, and CitCYP97C) in the biosynthesis of xanthophyll in citrus fruits were investigated. Phylogenetic analysis showed that the four citrus carotene hydroxylases presented in four distinct clusters which have been identified in higher plants. CitHYb was a non-heme di-iron carotene hydroxylase, while CitCYP97A, CitCYP97B, and CitCYP97C were heme-containing cytochrome P450-type carotene hydroxylases. Gene expression results showed that the expression of CitHYb increased in the flavedo and juice sacs during the ripening process, which was well consistent with the accumulation of β,β-xanthophyll in citrus fruits. The expression of CitCYP97A and CitCYP97C increased with a peak in November, which might lead to an increase of lutein in the juice sacs during the ripening process. The expression level of CitCYP97B was much lower than that of CitHYb, CitCYP97A, and CitCYP97C in the juice sacs during the ripening process. Functional analysis showed that the CitHYb was able to catalyze the hydroxylation of the β-rings of β-carotene and α-carotene in Escherichia coli BL21 (DE3) cells. Meanwhile, when CitHYb was co-expressed with CitCYP97C, α-carotene was hydroxylated on the β-ring and ε-ring sequentially to produce lutein. CONCLUSIONS CitHYb was a key gene for β,β-xanthophyll biosynthesis in citrus fruits. CitCYP97C functioned as an ε-ring hydroxylase to produce lutein using zeinoxanthin as a substrate. The results will contribute to elucidating xanthophyll biosynthesis in citrus fruits, and provide new strategies to improve the nutritional and commercial qualities of citrus fruits.
Collapse
Affiliation(s)
- Gang Ma
- />Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Suruga 422-8529 Japan
| | - Lancui Zhang
- />Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Suruga 422-8529 Japan
| | - Witchulada Yungyuen
- />Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Suruga 422-8529 Japan
- />The United Graduate school of Agricultural Science, Gifu University (Shizuoka University), Yanagido, Gifu, 501-1193 Japan
| | - Issei Tsukamoto
- />Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Suruga 422-8529 Japan
| | - Natsumi Iijima
- />Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Suruga 422-8529 Japan
| | - Michiru Oikawa
- />Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Suruga 422-8529 Japan
| | - Kazuki Yamawaki
- />Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Suruga 422-8529 Japan
| | - Masaki Yahata
- />Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Suruga 422-8529 Japan
| | - Masaya Kato
- />Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Suruga 422-8529 Japan
| |
Collapse
|
620
|
Bruno M, Al-Babili S. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. PLANTA 2016; 243:1429-40. [PMID: 26945857 DOI: 10.1007/s00425-016-2487-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/10/2016] [Indexed: 05/18/2023]
Abstract
The β-carotene isomerase OsDWARF27 is stereo- and double bond-specific. It converts bicyclic carotenoids with at least one unsubstituted β-ionone ring. OsDWARF27 may contribute to the formation of α-carotene-based strigolactone-like compounds. Strigolactones (SLs) are synthesized from all-trans-β-carotene via a pathway involving the β-carotene isomerase DWARF27, the carotenoid cleavage dioxygenases 7 and 8 (CCD7, CCD8), and cytochrome P450 enzymes from the 711 clade (MAX1 in Arabidopsis). The rice enzyme DWARF27 was shown to catalyze the reversible isomerization of all-trans- into 9-cis-β-carotene in vitro. β-carotene occurs in different cis-isomeric forms, and plants accumulate other carotenoids, which may be substrates of DWARF27. Here, we investigated the stereo and substrate specificity of the rice enzyme DWARF27 in carotenoid-accumulating E. coli strains and in in vitro assays performed with heterologously expressed and purified enzyme. Our results suggest that OsDWARF27 is strictly double bond-specific, solely targeting the C9-C10 double bond. OsDWARF27 did not introduce a 9-cis-double bond in 13-cis- or 15-cis-β-carotene. Substrates isomerized by OsDWARF27 are bicyclic carotenoids, including β-, α-carotene and β,β-cryptoxanthin, that contain at least one unsubstituted β-ionone ring. Accordingly, OsDWARF27 did not produce the abscisic acid precursors 9-cis-violaxanthin or -neoxanthin from the corresponding all-trans-isomers, excluding a direct role in the formation of this carotenoid derived hormone. The conversion of all-trans-α-carotene yielded two different isomers, including 9'-cis-α-carotene that might be the precursor of strigolactones with an ε-ionone ring, such as the recently identified heliolactone.
Collapse
Affiliation(s)
- Mark Bruno
- Faculty of Biology, Albert-Ludwigs University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Salim Al-Babili
- BESE Division, King Abdullah University of Science and Technology (KAUST), 4700, 23955-6900, Thuwal, Kingdom of Saudi Arabia.
- Faculty of Biology, Albert-Ludwigs University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
| |
Collapse
|
621
|
Rivera Vélez SM. Guide for Carotenoid Identification in Biological Samples. JOURNAL OF NATURAL PRODUCTS 2016; 79:1473-1484. [PMID: 27158746 DOI: 10.1021/acs.jnatprod.5b00756] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years there has been considerable interest in carotenoids with respect to their biological roles in animals, microorganisms, and plants, in addition to their use in the chemical, cosmetics, food, pharmaceutical, poultry, and other industries. However, the structural diversity, the different range of concentration, and the presence of cis/trans-isomers complicate the identification of carotenoids. This review provides updated information on their physical and chemical properties as well as spectroscopic and chromatographic data for the unambiguous determination of carotenoids in biological samples.
Collapse
Affiliation(s)
- Sol Maiam Rivera Vélez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
622
|
Pattanayak GK, Tripathy BC. Modulation of biosynthesis of photosynthetic pigments and light-harvesting complex in wild-type and gun5 mutant of Arabidopsis thaliana during impaired chloroplast development. PROTOPLASMA 2016; 253:747-752. [PMID: 27001427 DOI: 10.1007/s00709-016-0958-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/29/2016] [Indexed: 05/26/2023]
Abstract
Plants in response to different environmental cues need to modulate the expression of nuclear and chloroplast genomes that are in constant communication. To understand the signals that are responsible for inter-organellar communication, levulinic acid (LA), an inhibitor of 5-aminolevulinic acid dehydratase, was used to suppress the synthesis of pyrrole-derived tetrapyrroles chlorophylls. Although, it does not specifically inhibit carotenoid biosynthesis enzymes, LA reduced the carotenoid contents during photomorphogenesis of etiolated Arabidopsis seedlings. The expression of nuclear genes involved in carotenoid biosynthesis, i.e., geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, was downregulated in LA-treated seedlings. Similarly, the transcript abundance of nuclear genes, i.e., Lhcb1, PsbO, and RcbS, coding for chloroplastic proteins was severely attenuated in LA-treated samples. In contrast, LA treatment did not affect the transcript abundance of chalcone synthase, a marker gene for cytoplasm, and β-ATP synthase, a marker gene for mitochondria. This demonstrates the retrograde signaling from chloroplast to nucleus to suppress chloroplastic proteins during impaired chloroplast development. However, under identical conditions in LA-treated tetrapyrrole-deficient gun5 mutant, retrograde signal continued. The tetrapyrrole biosynthesis inhibitor LA suppressed formation of all tetrapyrroles both in WT and gun5. This rules out the role of tetrapyrroles as signaling molecules in WT and gun5. The removal of LA from the Arabidopsis seedlings restored the chlorophyll and carotenoid contents and expression of nuclear genes coding for chloroplastic proteins involved in chloroplast biogenesis. Therefore, LA could be used to modulate chloroplast biogenesis at a desired phase of chloroplast development.
Collapse
Affiliation(s)
- Gopal K Pattanayak
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
623
|
Takano H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci Biotechnol Biochem 2016; 80:1264-73. [PMID: 26967471 DOI: 10.1080/09168451.2016.1156478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Light is a ubiquitous environmental factor serving as an energy source and external stimulus. Here, I review the conserved molecular mechanism of light-inducible production of carotenoids in three nonphototrophic bacteria: Streptomyces coelicolor A3(2), Thermus thermophilus HB27, and Bacillus megaterium QM B1551. A MerR family transcriptional regulator, LitR, commonly plays a central role in their light-inducible carotenoid production. Genetic and biochemical studies on LitR proteins revealed a conserved function: LitR in complex with adenosyl B12 (AdoB12) has a light-sensitive DNA-binding activity and thus suppresses the expression of the Crt biosynthesis gene cluster. The in vitro DNA-binding and transcription assays showed that the LitR-AdoB12 complex serves as a repressor allowing transcription initiation by RNA polymerase in response to illumination. The existence of novel light-inducible genes and the unique role of the megaplasmid were revealed by the transcriptomic analysis of T. thermophilus. The findings suggest that LitR is a general regulator responsible for the light-inducible carotenoid production in the phylogenetically divergent nonphototrophic bacteria, and that LitR performs diverse physiological functions in bacteria.
Collapse
Affiliation(s)
- Hideaki Takano
- a Applied Biological Science and Life Science Research Center, College of Bioresource Sciences , Nihon University , Fujisawa , Japan
| |
Collapse
|
624
|
Colasuonno P, Incerti O, Lozito ML, Simeone R, Gadaleta A, Blanco A. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population. BMC Genet 2016; 17:43. [PMID: 26884094 PMCID: PMC4756519 DOI: 10.1186/s12863-016-0350-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 02/08/2016] [Indexed: 11/17/2022] Open
Abstract
Background Durum wheat (Triticum turgidum L.) is a cereal crop widely grown in the Mediterranean regions; the amber grain is mainly used for the production of pasta, couscous and typical breads. Single nucleotide polymorphism (SNP) detection technologies and high-throughput mutation induction represent a new challenge in wheat breeding to identify allelic variation in large populations. The TILLING strategy makes use of traditional chemical mutagenesis followed by screening for single base mismatches to identify novel mutant loci. Although TILLING has been combined to several sensitive pre-screening methods for SNP analysis, most rely on expensive equipment. Recently, a new low cost and time saving DHPLC protocol has been used in molecular human diagnostic to detect unknown mutations. Results In this work, we developed a new durum wheat TILLING population (cv. Marco Aurelio) using 0.70-0.85 % ethyl methane sulfonate (EMS). To investigate the efficiency of the mutagenic treatments, a pilot screening was carried out on 1,140 mutant lines focusing on two target genes (Lycopene epsilon-cyclase, ε-LCY, and Lycopene beta-cyclase, β-LCY) involved in carotenoid metabolism in wheat grains. We simplify the heteroduplex detection by two low cost methods: the enzymatic cleavage (CelI)/agarose gel technique and the denaturing high-performance liquid chromatography (DHPLC). The CelI/agarose gel approach allowed us to identify 31 mutations, whereas the DHPLC procedure detected a total of 46 mutations for both genes. All detected mutations were confirmed by direct sequencing. The estimated overall mutation frequency for the pilot assay by the DHPLC methodology resulted to be of 1/77 kb, representing a high probability to detect interesting mutations in the target genes. Conclusion We demonstrated the applicability and efficiency of a new strategy for the detection of induced variability. We produced and characterized a new durum wheat TILLING population useful for a better understanding of key gene functions. The availability of this tool together with TILLING technique will expand the polymorphisms in candidate genes of agronomically important traits in wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0350-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pasqualina Colasuonno
- Department of Soil, Plant and Food Sciences, section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Ornella Incerti
- Department of Soil, Plant and Food Sciences, section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Maria Luisa Lozito
- Department of Soil, Plant and Food Sciences, section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Rosanna Simeone
- Department of Soil, Plant and Food Sciences, section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
625
|
Larkin RM. Tetrapyrrole Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1586. [PMID: 27807442 PMCID: PMC5069423 DOI: 10.3389/fpls.2016.01586] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. The misregulation of tetrapyrrole metabolism can produce toxic reactive oxygen species. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1). GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.
Collapse
|
626
|
Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor-product balance. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:195-205. [PMID: 25857664 PMCID: PMC11389078 DOI: 10.1111/pbi.12373] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 05/17/2023]
Abstract
The profile of secondary metabolites in plants reflects the balance of biosynthesis, degradation and storage, including the availability of precursors and products that affect the metabolic equilibrium. We investigated the impact of the precursor-product balance on the carotenoid pathway in the endosperm of intact rice plants because this tissue does not normally accumulate carotenoids, allowing us to control each component of the pathway. We generated transgenic plants expressing the maize phytoene synthase gene (ZmPSY1) and the bacterial phytoene desaturase gene (PaCRTI), which are sufficient to produce β-carotene in the presence of endogenous lycopene β-cyclase. We combined this mini-pathway with the Arabidopsis thaliana genes AtDXS (encoding 1-deoxy-D-xylulose 5-phosphate synthase, which supplies metabolic precursors) or AtOR (the ORANGE gene, which promotes the formation of a metabolic sink). Analysis of the resulting transgenic plants suggested that the supply of isoprenoid precursors from the MEP pathway is one of the key factors limiting carotenoid accumulation in the endosperm and that the overexpression of AtOR increased the accumulation of carotenoids in part by up-regulating a series of endogenous carotenogenic genes. The identification of metabolic bottlenecks in the pathway will help to refine strategies for the creation of engineered plants with specific carotenoid profiles.
Collapse
Affiliation(s)
- Chao Bai
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Judit Berman
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Gerhard Sandmann
- Institute of Molecular Bioscience, J. W. Goethe University, Frankfurt am Main, Germany
| | - Paul Christou
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
- Institucio Catalana de Recerca i Estudis Avancats, Passeig Lluís Companys, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| |
Collapse
|
627
|
|
628
|
Abstract
Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.
Collapse
Affiliation(s)
- Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
629
|
Alós E, Rodrigo MJ, Zacarias L. Manipulation of Carotenoid Content in Plants to Improve Human Health. Subcell Biochem 2016; 79:311-43. [PMID: 27485228 DOI: 10.1007/978-3-319-39126-7_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health.
Collapse
Affiliation(s)
- Enriqueta Alós
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Maria Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Lorenzo Zacarias
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
630
|
Lu S, Zhang Y, Zheng X, Zhu K, Xu Q, Deng X. Isolation and Functional Characterization of a Lycopene β-cyclase Gene Promoter from Citrus. FRONTIERS IN PLANT SCIENCE 2016; 7:1367. [PMID: 27679644 PMCID: PMC5020073 DOI: 10.3389/fpls.2016.01367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/29/2016] [Indexed: 05/19/2023]
Abstract
Lycopene β-cyclases are key enzymes located at the branch point of the carotenoid biosynthesis pathway. However, the transcriptional regulatory mechanisms of LCYb1 in citrus with abundant carotenoid accumulation are still unclear. To understand the molecular basis of CsLCYb1 expression, we isolated and functionally characterized the 5' upstream sequences of CsLCYb1 from citrus. The full-length CsLCYb1 promoter and a series of its 5' deletions were fused to the β-glucuronidase (GUS) reporter gene and transferred into different plants (tomato, Arabidopsis and citrus callus) to test the promoter activities. The results of all transgenic species showed that the 1584 bp upstream region from the translational start site displayed maximal promoter activity, and the minimal promoter containing 746 bp upstream sequences was sufficient for strong basal promoter activity. Furthermore, the CsLCYb1 promoter activity was developmentally and tissue-specially regulated in transgenic Arabidopsis, and it was affected by multiple hormones and environmental cues in transgenic citrus callus under various treatments. Finer deletion analysis identified an enhancer element existing as a tandem repeat in the promoter region between -574 to -513 bp and conferring strong promoter activity. The copy numbers of the enhancer element differed among various citrus species, leading to the development of a derived simple sequence repeat marker to distinguish different species. In conclusion, this study elucidates the expression characteristics of the LCYb1 promoter from citrus and further identifies a novel enhancer element required for the promoter activity. The characterized promoter fragment would be an ideal candidate for genetic engineering and seeking of upstream trans-acting elements.
Collapse
|
631
|
Abstract
Carotenoids are the most important biocolor isoprenoids responsible for yellow, orange and red colors found in nature. In plants, they are synthesized in plastids of photosynthetic and sink organs and are essential molecules for photosynthesis, photo-oxidative damage protection and phytohormone synthesis. Carotenoids also play important roles in human health and nutrition acting as vitamin A precursors and antioxidants. Biochemical and biophysical approaches in different plants models have provided significant advances in understanding the structural and functional roles of carotenoids in plants as well as the key points of regulation in their biosynthesis. To date, different plant models have been used to characterize the key genes and their regulation, which has increased the knowledge of the carotenoid metabolic pathway in plants. In this chapter a description of each step in the carotenoid synthesis pathway is presented and discussed.
Collapse
Affiliation(s)
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| |
Collapse
|
632
|
Galindo-González L, Deyholos MK. RNA-seq Transcriptome Response of Flax ( Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. FRONTIERS IN PLANT SCIENCE 2016; 7:1766. [PMID: 27933082 PMCID: PMC5121121 DOI: 10.3389/fpls.2016.01766] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/09/2016] [Indexed: 05/19/2023]
Abstract
Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113, and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3); the flavonoid-related enzymes chalcone synthase, dihydroflavonol reductase and multiple anthocyanidin synthases; and a peroxidase implicated in lignin formation (PRX52). Additionally, regulation of some genes indicated potential pathogen manipulation to facilitate infection; these included four disease resistance proteins that were repressed, indole acetic acid amido/amino hydrolases which were upregulated, activated expansins and glucanases, amino acid transporters and aquaporins, and finally, repression of major latex proteins.
Collapse
Affiliation(s)
| | - Michael K. Deyholos
- IK Barber School of Arts and Sciences, University of British Columbia, KelownaBC, Canada
- *Correspondence: Michael K. Deyholos,
| |
Collapse
|
633
|
Carotenoid profile and retention in yellow-, purple- and red-fleshed potatoes after thermal processing. Food Chem 2015; 197:992-1001. [PMID: 26617045 DOI: 10.1016/j.foodchem.2015.11.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 11/24/2022]
Abstract
This research aimed to investigate the effect of thermal processing on carotenoid profile, quantity and stability in 22 colour-fleshed potato cultivars grown in the Czech Republic. The total of nine carotenoids was analysed by HPLC using a C30 column and PDA detection. The total carotenoid content for all cultivars ranged from 1.44 to 40.13 μg/g DM. Yellow cultivars showed a much higher average total carotenoid content (26.22 μg/g DM) when compared to red/purple-fleshed potatoes (5.69 μg/g DM). Yellow cultivars were dominated by antheraxanthin, whereas neoxanthin was the main carotenoid in red/purple cultivars. Thermal processing significantly impacted all potato cultivars. Boiling decreased the total carotenoids by 92% compared to baking (88%). Lutein was the most stable carotenoid against thermal processing (decreased by 24-43%) followed by β-carotene (decreased by 78-83%); other carotenoids were degraded nearly completely. Increased formation of (Z)-isomers by thermal processing has not been confirmed.
Collapse
|
634
|
Chayut N, Yuan H, Ohali S, Meir A, Yeselson Y, Portnoy V, Zheng Y, Fei Z, Lewinsohn E, Katzir N, Schaffer AA, Gepstein S, Burger J, Li L, Tadmor Y. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC PLANT BIOLOGY 2015; 15:274. [PMID: 26553015 PMCID: PMC4640158 DOI: 10.1186/s12870-015-0661-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/03/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Melon fruit flesh color is primarily controlled by the "golden" single nucleotide polymorhism of the "Orange" gene, CmOr, which dominantly triggers the accumulation of the pro-vitamin A molecule, β-carotene, in the fruit mesocarp. The mechanism by which CmOr operates is not fully understood. To identify cellular and metabolic processes associated with CmOr allelic variation, we compared the transcriptome of bulks of developing fruit of homozygous orange and green fruited F3 families derived from a cross between orange and green fruited parental lines. RESULTS Pooling together F3 families that share same fruit flesh color and thus the same CmOr allelic variation, normalized traits unrelated to CmOr allelic variation. RNA sequencing analysis of these bulks enabled the identification of differentially expressed genes. These genes were clustered into functional groups. The relatively enriched functional groups were those involved in photosynthesis, RNA and protein regulation, and response to stress. CONCLUSIONS The differentially expressed genes and the enriched processes identified here by bulk segregant RNA sequencing analysis are likely part of the regulatory network of CmOr. Our study demonstrates the resolution power of bulk segregant RNA sequencing in identifying genes related to commercially important traits and provides a useful tool for better understanding the mode of action of CmOr gene in the mediation of carotenoid accumulation.
Collapse
Affiliation(s)
- Noam Chayut
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Hui Yuan
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Shachar Ohali
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Ayala Meir
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Yelena Yeselson
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet-Dagan, 50250, ISRAEL.
| | - Vitaly Portnoy
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Efraim Lewinsohn
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Nurit Katzir
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet-Dagan, 50250, ISRAEL.
| | - Shimon Gepstein
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
- US Department of Agriculture-Agricultural Research Service, Robert W Holly Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA.
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
635
|
Cárdenas-Conejo Y, Carballo-Uicab V, Lieberman M, Aguilar-Espinosa M, Comai L, Rivera-Madrid R. De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis. BMC Genomics 2015; 16:877. [PMID: 26511010 PMCID: PMC4625570 DOI: 10.1186/s12864-015-2065-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/13/2015] [Indexed: 12/02/2022] Open
Abstract
Background Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. Results In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds from B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway. Conclusion The identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2065-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yair Cárdenas-Conejo
- Centro de Investigación Científica de Yucatán, A. C. Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico.
| | - Víctor Carballo-Uicab
- Centro de Investigación Científica de Yucatán, A. C. Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico.
| | - Meric Lieberman
- Plant Biology and Genome Center, University of California, Davis, CA, 95616, USA.
| | - Margarita Aguilar-Espinosa
- Centro de Investigación Científica de Yucatán, A. C. Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico.
| | - Luca Comai
- Plant Biology and Genome Center, University of California, Davis, CA, 95616, USA.
| | - Renata Rivera-Madrid
- Centro de Investigación Científica de Yucatán, A. C. Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico.
| |
Collapse
|
636
|
McQuinn RP, Giovannoni JJ, Pogson BJ. More than meets the eye: from carotenoid biosynthesis, to new insights into apocarotenoid signaling. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:172-9. [PMID: 26302169 DOI: 10.1016/j.pbi.2015.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 05/22/2023]
Abstract
Carotenoids are a class of isoprenoids synthesized almost exclusively in plants involved in a myriad of roles including the provision of flower and fruit pigmentation for the attraction of pollinators and seed dispersing organisms. While carotenoids are essential throughout plant development, they are also extremely important in human diets providing necessary nutrition and aiding in the prevention of various cancers, age-related diseases and macular degeneration. Utilization of multiple plant models systems (i.e. Arabidopsis; maize; and tomato) has provided a comprehensive framework detailing the regulation of carotenogenesis throughout plant development covering all levels of genetic regulation from epigenetic to post-translational modifications. That said, the understanding of how carotenoids self-regulate remains fragmented. Recent reports demonstrate the potential influence of carotenoid-cleavage products (apocarotenoids) as signaling molecules regulating carotenoid biosynthesis in addition to various aspects of plants development (i.e. leaf and root development). This review highlights recent advances in carotenogenic regulation and insights into potential roles of novel apocarotenoids in plants.
Collapse
Affiliation(s)
- Ryan P McQuinn
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - James J Giovannoni
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
637
|
Luo T, Xu K, Luo Y, Chen J, Sheng L, Wang J, Han J, Zeng Y, Xu J, Chen J, Wu Q, Cheng Y, Deng X. Distinct Carotenoid and Flavonoid Accumulation in a Spontaneous Mutant of Ponkan (Citrus reticulata Blanco) Results in Yellowish Fruit and Enhanced Postharvest Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8601-8614. [PMID: 26329679 DOI: 10.1021/acs.jafc.5b02807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As the most important fresh fruit worldwide, citrus is often subjected to huge postharvest losses caused by abiotic and biotic stresses. As a promising strategy to reduce postharvest losses, enhancing natural defense by potential metabolism reprogramming in citrus mutants has rarely been reported. The yellowish spontaneous mutant of Ponkan (Citrus reticulata Blanco) (YP) was used to investigate the influence of metabolism reprogramming on postharvest performance. Our results show that reduced xanthophyll accumulation is the cause of yellowish coloring of YP and might be attributed to the reduced carotenoid sequestration capacity and upregulated expression of carotenoid cleavage dioxygenase genes. Constantly higher levels of polymethoxylated flavones (PMFs) during the infection and the storage stage might make significant contribution to the more strongly induced resistance against Penicillium digitatum and lower rotting rate. The present study demonstrates the feasibility of applying bud mutants to improve the postharvest performance of citrus fruits.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Kunyang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Yi Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Ling Sheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Jinqiu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Jingwen Han
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Jianmin Chen
- Quzhou Bureau of Agriculture Economic Specialty Station , Quzhou 324000, Zhejiang Province, PR China
| | - Qun Wu
- Quzhou Bureau of Agriculture Economic Specialty Station , Quzhou 324000, Zhejiang Province, PR China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education) and Key Laboratory of Horticultural Crop Biology and Genetic Improvement, Central Region (Ministry of Agriculture), Huazhong Agricultural University , Wuhan 430070, PR China
| |
Collapse
|
638
|
Zhang L, Ma G, Yamawaki K, Ikoma Y, Matsumoto H, Yoshioka T, Ohta S, Kato M. Effect of blue LED light intensity on carotenoid accumulation in citrus juice sacs. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:58-63. [PMID: 26432407 DOI: 10.1016/j.jplph.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 05/09/2023]
Abstract
In the present study, the effects of blue LED light intensity on carotenoid accumulation and expression of genes related to carotenoid biosynthesis were investigated in the juice sacs of Satsuma mandarin (Citrus unshiu Marc.) and Valencia orange (Citrus sinensis Osbeck) in vitro. The results showed that 100 μmol m(-2)s(-1) blue LED light (100B) was effective for increasing carotenoid content, especially β-cryptoxanthin, in Satsuma mandarin after cultured in vitro for four weeks. In Valencia orange, in contrast, 50 μmol m(-2)s(-1) blue LED light (50B) treatment was effective for inducing carotenoid accumulation through increasing the contents of two major carotenoids, all-trans-violaxanthin and 9-cis-violaxanthin. In addition, gene expression results showed that the simultaneous increases in the expression of genes (CitPSY, CitPDS, CitZDS, CitLCYb2, and CitHYb) involved in producing β,β-xanthophylls were well consistent with the accumulation of β-cryptoxanthin in Satsuma mandarin under 100B, and violaxanthin in Valencia orange under 50B. The results presented herein contribute to further elucidating the regulatory mechanism of carotenoid accumulation by blue LED light.
Collapse
Affiliation(s)
- Lancui Zhang
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Gang Ma
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Kazuki Yamawaki
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Yoshinori Ikoma
- Department of Citrus Research, NARO Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Hikaru Matsumoto
- Department of Citrus Research, NARO Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Terutaka Yoshioka
- Department of Citrus Research, NARO Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Satoshi Ohta
- Department of Citrus Research, NARO Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Masaya Kato
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| |
Collapse
|
639
|
Solovchenko AE. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. PHOTOSYNTHESIS RESEARCH 2015; 125:437-49. [PMID: 25975708 DOI: 10.1007/s11120-015-0156-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/06/2015] [Indexed: 05/09/2023]
Abstract
Massive accumulation of the secondary ketokarotenoid astaxanthin is a characteristic stress response of certain microalgal species with Haematococcus pluvialis as an illustrious example. The carotenogenic response confers these organisms a remarkable ability to survive in extremely unfavorable environments and makes them the richest source of natural astaxanthin. Exerting a plethora of beneficial effects on human and animal health, astaxanthin is among the most important bioproducts from microalgae. Though our understanding of astaxanthin biosynthesis, induction, and regulation is far from complete, this gap is filling rapidly with new knowledge generated predominantly by application of advanced "omics" approaches. This review focuses on the most recent progress in the biology of astaxanthin accumulation in microalgae including the genomic, proteomic, and metabolomics insights into the induction and regulation of secondary carotenogenesis and its role in stress tolerance of the photosynthetic microorganisms. Special attention is paid to the coupling of the carotenoid and lipid biosynthesis as well as deposition of astaxanthin in the algal cell. The place of the carotenogenic response among the stress tolerance mechanisms is revisited, and possible implications of the new findings for biotechnological production of astaxanthin from microalgae are considered. The potential use of the carotenogenic microalgae as a source not only of value-added carotenoids, but also of biofuel precursors is discussed.
Collapse
Affiliation(s)
- Alexei E Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia,
| |
Collapse
|
640
|
Yuan H, Zhang J, Nageswaran D, Li L. Carotenoid metabolism and regulation in horticultural crops. HORTICULTURE RESEARCH 2015; 2:15036. [PMID: 26504578 PMCID: PMC4591682 DOI: 10.1038/hortres.2015.36] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 05/05/2023]
Abstract
Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables. Not only do carotenoids give horticultural crops their visual appeal, they also enhance nutritional value and health benefits for humans. As a result, carotenoid research in horticultural crops has grown exponentially over the last decade. These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants. In this review, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables, fruits, and flowers.
Collapse
Affiliation(s)
- Hui Yuan
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Junxiang Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Divyashree Nageswaran
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
641
|
Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM. Carotenoids from Haloarchaea and Their Potential in Biotechnology. Mar Drugs 2015; 13:5508-32. [PMID: 26308012 PMCID: PMC4584337 DOI: 10.3390/md13095508] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 12/02/2022] Open
Abstract
The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.
Collapse
Affiliation(s)
- Montserrat Rodrigo-Baños
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Inés Garbayo
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - María José Bonete
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| |
Collapse
|
642
|
Zhang J, Yuan H, Fei Z, Pogson BJ, Zhang L, Li L. Molecular characterization and transcriptome analysis of orange head Chinese cabbage (Brassica rapa L. ssp. pekinensis). PLANTA 2015; 241:1381-94. [PMID: 25686795 DOI: 10.1007/s00425-015-2262-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/06/2015] [Indexed: 05/19/2023]
Abstract
The orange head phenotype of Br - or resulted from a large insertion in carotenoid isomerase (BrCRTISO) . Comparative transcriptome analysis revealed that the mutation affected the expression of abundant transcription factor genes. A new orange trait-specific marker was developed for marker-assisted breeding. Orange head leaves are a desirable quality trait for Chinese cabbage. Our previous fine mapping identified BrCRTISO as the Br-or candidate gene for the orange Chinese cabbage mutant. Here, we examined the BrCRTISO gene from white and orange head Chinese cabbage. While BrCRTISO from the white control plant was able to complement the Arabidopsis Atcrtiso mutant phenotype, Brcrtiso with a large insertion from the orange head Chinese cabbage failed to rescue the Arabidopsis mutant phenotype. The results show that Brcrtiso was non-functional, concomitant with the accumulation of prolycopene in Br-or to yield orange head. Comparative transcriptome analysis by RNA-seq identified 372 differentially expressed genes between the control and Br-or mutant using two near-isogenic lines with white and orange inner leaves. The mutation in BrCRTISO specifically affected many genes in the functional groups involved in RNA, protein, transport, and signaling. Particularly, expressions of many transcription factor genes were dramatically altered in Br-or, suggesting a potential role of BrCRTISO or carotenoid metabolites in affecting transcription. A novel co-dominant gene-specific marker was developed that co-segregated with orange color phenotype and would be useful for marker-assisted selection with enhanced selection efficiency. Our study provides new insights into understanding of the molecular basis of Br-or in mediating head leaf color and depicts a global view of the effect of BrCRTISO on cellular processes in plant. It also provides a molecular tool to accelerate breeding new Chinese cabbage cultivars with unique health quality and visual appearance.
Collapse
Affiliation(s)
- Junxiang Zhang
- College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, 712100, China
| | | | | | | | | | | |
Collapse
|
643
|
Zeng J, Wang C, Chen X, Zang M, Yuan C, Wang X, Wang Q, Li M, Li X, Chen L, Li K, Chang J, Wang Y, Yang G, He G. The lycopene β-cyclase plays a significant role in provitamin A biosynthesis in wheat endosperm. BMC PLANT BIOLOGY 2015; 15:112. [PMID: 25943989 PMCID: PMC4433027 DOI: 10.1186/s12870-015-0514-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/29/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lycopene β-cyclase (LCYB) is a key enzyme catalyzing the biosynthesis of β-carotene, the main source of provitamin A. However, there is no documented research about this key cyclase gene's function and relationship with β-carotene content in wheat. Therefore, the objectives of this study were to clone TaLCYB and characterize its function and relationship with β-carotene biosynthesis in wheat grains. We also aimed to obtain more information about the endogenous carotenoid biosynthetic pathway and thus provide experimental support for carotenoid metabolic engineering in wheat. RESULTS In the present study, a lycopene β-cyclase gene, designated TaLCYB, was cloned from the hexaploid wheat cultivar Chinese Spring. The cyclization activity of the encoded protein was demonstrated by heterologous complementation analysis. The TaLCYB gene was expressed differentially in different tissues of wheat. Although TaLCYB had a higher expression level in the later stages of grain development, the β-carotene content still showed a decreasing tendency. The expression of TaLCYB in leaves was dramatically induced by strong light and the β-carotene content variation corresponded with changes of TaLCYB expression. A post-transcriptional gene silencing strategy was used to down-regulate the expression of TaLCYB in transgenic wheat, resulting in a decrease in the content of β-carotene and lutein, accompanied by the accumulation of lycopene to partly compensate for the total carotenoid content. In addition, changes in TaLCYB expression also affected the expression of several endogenous carotenogenic genes to varying degrees. CONCLUSION Our results suggest that TaLCYB is a genuine lycopene cyclase gene and plays a crucial role in β-carotene biosynthesis in wheat. Our attempt to silence it not only contributes to elucidating the mechanism of carotenoid accumulation in wheat but may also help in breeding wheat varieties with high provitamin A content through RNA interference (RNAi) to block specific carotenogenic genes in the wheat endosperm.
Collapse
Affiliation(s)
- Jian Zeng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Cheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xi Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Mingli Zang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Cuihong Yuan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiatian Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Miao Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoyan Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Kexiu Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
644
|
Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez-Gómez L. Structural characterization of highly glucosylated crocins and regulation of their biosynthesis during flower development in Crocus. FRONTIERS IN PLANT SCIENCE 2015; 6:971. [PMID: 26582258 PMCID: PMC4632010 DOI: 10.3389/fpls.2015.00971] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/22/2015] [Indexed: 05/18/2023]
Abstract
Crocin biosynthesis in Crocus has been proposed to proceed through a zeaxanthin cleavage pathway catalyzed by carotenoid cleavage dioxygenase 2 (CCD2), and followed by glucosylation reactions catalyzed by CsGT2 (UGT74AD1). In Crocus ancyrensis flowers, crocins with eight (crocin-1), seven (crocin-2), and six glucose (crocin-3) moieties accumulated both in stigma and tepals. We have characterized the structure of these highly glucosylated crocins and follow up their accumulation by high-resolution liquid chromatography coupled with diode array detector along the development of both tissues, and coupled to the isolation and analysis of the expression of eighteen genes (PSY-I, PSY-II, PDS-(I-V), ISO-ZDS, ZDS, CtrISO, LYC-I and II, BCH, CaCCD2, UGT74AD2-5) related with the apocarotenoid metabolism in C. ancyrensis tepals and stigmas. Structure elucidation of crocin-1 and crocin-2 was done by the combined use of 1D and 2D [(1)H, (1)H] (gCOSY and TOCSY and ROESY) and [(1)H-(13)C] NMR experiments, revealing that for crocin-1 was all-trans-crocetin O-[β-D- Glucopyranosyl)-(1→4)-(β-D-glucopyranosyl)-(1→2)]-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranosyl diester, while crocin-2 showed an identical structure except for the absence of one glucose residue in one end of the molecule. Crocins accumulation was not synchronically regulated in stigma and tepals, although in both cases crocins accumulation parallels tissue development, decreasing at anthesis. The expression of the carotenogenic genes PSY, ZDS-V, BCH, and LCY-II was correlated with crocins accumulation. In addition, CaCCD2 and only one of the four glucosyltransferase encoding genes, UGT74AD2, were highly expressed, and the expression was correlated with high levels of crocins accumulation in stigma and tepals.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La ManchaAlbacete, Spain
- Fundación Parque Científico y Tecnológico de Castilla-La ManchaAlbacete, Spain
| | - Angela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Maria L. Jimeno
- Centro Química Orgánica “Lora-Tamayo” – Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La ManchaAlbacete, Spain
- *Correspondence: Lourdes Gómez-Gómez,
| |
Collapse
|