601
|
Stengel A, Goebel-Stengel M, Wang L, Hu E, Karasawa H, Pisegna JR, Taché Y. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R582-91. [PMID: 23883680 DOI: 10.1152/ajpregu.00598.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P < 0.05). Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (-9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity.
Collapse
Affiliation(s)
- Andreas Stengel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
602
|
Poulain-Godefroy O, Eury E, Leloire A, Hennart B, Guillemin GJ, Allorge D, Froguel P. Induction of TDO2 and IDO2 in Liver by High-Fat Feeding in Mice: Discrepancies with Human Obesity. Int J Tryptophan Res 2013; 6:29-37. [PMID: 26882470 PMCID: PMC3729279 DOI: 10.4137/ijtr.s11717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Low-grade and chronic inflammation is elicited in white adipose tissue in human obesity. The presence of inflammatory molecules leads to an increased tryptophan catabolism through the induction of indoleamine-2,3-dioxygenase-1 (IDO1). In order to characterize the mechanisms underlying this dysregulation, we have studied 2 mouse models of obesity. Unexpectedly, we did not detect any IDO1 expression in obese or lean mice adipose tissue. In a previous study, we did not find any significant difference in the liver for IDO2 and tryptophan-2,3-dioxygenase (TDO2) gene expression between normal weight and obese patients. IDO2 and TDO2 expression was increased in the liver of high-fat fed mice, but not in ob/ob mice, and was strongly correlated with hydroxysteroid-(11-beta) dehydrogenase-1 (HSD11B1) expression, an enzyme that generates active cortisol within tissues. In conclusion, despite a dysregulation of tryptophan metabolism, obese mice display discrepancies with human obesity metabolism, rendering them inappropriate for further investigations in this animal model.
Collapse
Affiliation(s)
- Odile Poulain-Godefroy
- European Genomic Institute for Diabetes (EGID), Lille, France.; University of Lille, Lille, France.; CNRS UMR 8199, Lille, France.; CHRU Lille, Lille, France.; IPL, Lille, France
| | - Elodie Eury
- European Genomic Institute for Diabetes (EGID), Lille, France.; University of Lille, Lille, France.; CNRS UMR 8199, Lille, France.; CHRU Lille, Lille, France.; IPL, Lille, France
| | - Audrey Leloire
- European Genomic Institute for Diabetes (EGID), Lille, France.; University of Lille, Lille, France.; CNRS UMR 8199, Lille, France.; CHRU Lille, Lille, France.; IPL, Lille, France
| | - Benjamin Hennart
- University of Lille, Lille, France.; CHRU Lille, Lille, France.; EA4483, Faculty of Medicine, Lille, France
| | - Gilles J Guillemin
- MND and Neurodegenerative Diseases Research Group, Australian School of Advanced Medicine, Macquarie University, Australia
| | - Delphine Allorge
- University of Lille, Lille, France.; CHRU Lille, Lille, France.; EA4483, Faculty of Medicine, Lille, France
| | - Philippe Froguel
- European Genomic Institute for Diabetes (EGID), Lille, France.; University of Lille, Lille, France.; CNRS UMR 8199, Lille, France.; CHRU Lille, Lille, France.; IPL, Lille, France.; Department of Genomics of Common Disease, School of Public Health, Imperial College London, United Kingdom
| |
Collapse
|
603
|
Singhal SS, Figarola J, Singhal J, Reddy MA, Liu X, Berz D, Natarajan R, Awasthi S. RLIP76 protein knockdown attenuates obesity due to a high-fat diet. J Biol Chem 2013; 288:23394-406. [PMID: 23821548 DOI: 10.1074/jbc.m113.480194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Feeding a Western high-fat diet (HFD) to C57BL/6 mice induces obesity, associated with a chronic inflammatory state, lipid transport, and metabolic derangements, and organ system effects that particularly prominent in the kidneys. Here, we report that RLIP76 homozygous knock-out (RLIP76(-/-)) mice are highly resistant to obesity as well as these other features of metabolic syndrome caused by HFD. The normal increase in pro-inflammatory and fibrotic markers associated with HFD induced obesity in wild-type C57B mice was broadly and nearly completely abrogated in RLIP76(-/-) mice. This is a particularly striking finding because chemical markers of oxidative stress including lipid hydroperoxides and alkenals were significantly higher in RLIP76(-/-) mice. Whereas HFD caused marked suppression of AMPK in wild-type C57B mice, RLIP76(-/-) mice had baseline activation of AMP-activated protein kinase, which was not further affected by HFD. The baseline renal function was reduced in RLIP76(-/-) mice as compared with wild-type, but was unaffected by HFD, in marked contrast to severe renal impairment and glomerulopathy in the wild-type mice given HFD. Our findings confirm a fundamental role of RLIP76 in regulating the function of obesity-promoting pro-inflammatory cytokines, and provide a novel mechanism for targeted therapy of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
604
|
White PAS, Cercato LM, Araújo JMD, Souza LA, Soares AF, Barbosa APO, R. Neto JMD, Marçal AC, Machado UF, Camargo EA, Santos MRV, Brito LC. Modelo de obesidade induzida por dieta hiperlipídica e associada à resistência à ação da insulina e intolerância à glicose. ACTA ACUST UNITED AC 2013; 57:339-45. [DOI: 10.1590/s0004-27302013000500002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 01/20/2013] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Validar um modelo de obesidade induzida por dieta hiperlipídica, de baixo custo, fácil reprodutibilidade, que mimetizasse características observadas no humano e viabilizasse posteriores proposições terapêuticas. MATERIAIS E MÉTODOS: Dezesseis camundongos Swiss receberam dieta padrão (DP) ou dieta hiperlipídica (DH), durante 10 semanas. RESULTADOS: Embora o grupo DP tenha apresentado maior consumo de água (p < 0,01) e ração (p < 0,001), o grupo DH apresentou maior ganho de peso corpóreo (p < 0,5) e aumento de coxins adiposos (p < 0,001), favorecendo maior índice de adiposidade (p < 0,001), glicemia (p < 0,01) e área sob a curva nos testes de tolerância à insulina (p < 0,001) e à glicose (p < 0,01). CONCLUSÃO: Validou-se um modelo de obesidade induzida por dieta hiperlipídica associada à resistência à ação da insulina e à intolerância à glicose, em um período de 10 semanas.
Collapse
|
605
|
De Giorgio MR, Yoshioka M, Riedl I, Moreault O, Cherizol RG, Shah AA, Blin N, Richard D, St-Amand J. Trefoil factor family member 2 (Tff2) KO mice are protected from high-fat diet-induced obesity. Obesity (Silver Spring) 2013; 21:1389-95. [PMID: 23754443 DOI: 10.1002/oby.20165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 11/02/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Trefoil factor family member 2 (Tff2) is a small gut peptide, mainly known for its protective and healing functions. As previously demonstrated, high-fat (HF) feeding can rapidly and specifically modulate Tff2 transcription in key tissues of mice, including the duodenum and mesenteric adipose tissue, therefore suggesting a novel role for this gene in energy balance. DESIGN AND METHODS To explore whether and how Tff2 can influence feeding behavior and energy metabolism, Tff2 knock-out (KO) mice were challenged with HF diet for 12 weeks, hence food and energy intakes, body composition, as well as energy excretion and serum lipid and hormonal levels were analyzed. Finally, energy efficiency was estimated. RESULTS Tff2 KO mice showed a greater appetite and higher energy intake compared to wild-type (WT). Consistently, they presented lower levels of serum leptin, and increased transcription of agouti-related protein (Agrp) in the hypothalamus. Though energy and triglyceride fecal excretion were augmented in Tff2 KO mice, digestible energy intake was superior. However, KO mice were finally protected from HF diet-induced obesity, and accumulated less weight and fat depots than WT animals, while keeping a normal lean mass. Energy efficiency was lower in HF-KO mice, while energy expenditure and locomotor activity were globally increased. CONCLUSIONS The present work demonstrates previously unsuspected roles for Tff2 and suggests it to be a mastermind in the control of energy balance and a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Maria Rita De Giorgio
- Functional Genomics Laboratory, CREMOGH, CRCHUQ and Department of Molecular Medicine, Laval University, Québec City, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
606
|
Beck B, Pourié G. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutr Rev 2013; 71:541-61. [PMID: 23865799 DOI: 10.1111/nure.12045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hippocampus is a brain region of primary importance for neurogenesis, which occurs during early developmental states as well as during adulthood. Increases in neuronal proliferation and in neuronal death with age have been associated with drastic changes in memory and learning. Numerous neurotransmitters are involved in these processes, and some neuropeptides that mediate neurogenesis also modulate feeding behavior. Concomitantly, feeding peptides, which act primarily in the hypothalamus, are also present in the hippocampus. This review aims to ascertain the role of several important feeding peptides in cognitive functions, either through their local synthesis in the hippocampus or through their actions via specific receptors in the hippocampus. A link between neurogenesis and the orexigenic or anorexigenic properties of feeding peptides is discussed.
Collapse
Affiliation(s)
- Bernard Beck
- INSERM U954, Nutrition, Génétique et Expositions aux Risques Environnementaux, Faculté de Médecine, Vandœuvre, France.
| | | |
Collapse
|
607
|
Ludwig T, Worsch S, Heikenwalder M, Daniel H, Hauner H, Bader BL. Metabolic and immunomodulatory effects of n-3 fatty acids are different in mesenteric and epididymal adipose tissue of diet-induced obese mice. Am J Physiol Endocrinol Metab 2013; 304:E1140-56. [PMID: 23482450 DOI: 10.1152/ajpendo.00171.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In studies emphasizing antiobesogenic and anti-inflammatory effects of long-chain n-3 polyunsaturated fatty acids (LC-n-3 PUFA), diets with very high fat content, not well-defined fat quality, and extreme n-6/n-3 PUFA ratios have been applied frequently. Additionally, comparative analyses of visceral adipose tissues (VAT) were neglected. Considering the link of visceral obesity to insulin resistance or inflammatory bowel diseases, we hypothesized that VAT, especially mesenteric adipose tissue (MAT), may exhibit differential responsiveness to diets through modulation of metabolic and inflammatory processes. Here, we aimed to assess dietary LC-n-3 PUFA effects on MAT and epididymal adipose tissue (EAT) and on MAT-adjacent liver and intestine in diet-induced obese mice fed defined soybean/palm oil-based diets. High-fat (HF) and LC-n-3 PUFA-enriched high-fat diet (HF/n-3) contained moderately high fat with unbalanced and balanced n-6/n-3 PUFA ratios, respectively. Body composition/organ analyses, glucose tolerance test, measurements of insulin, lipids, mRNA and protein expression, and immunohistochemistry were applied. Compared with HF, HF/n-3 mice showed reduced fat mass, smaller adipocytes in MAT than EAT, improved insulin level, and lower hepatic triacylglycerol and plasma NEFA levels, consistent with liver and brown fat gene expression. Gene expression arrays pointed to immune cell activation in MAT and alleviation of intestinal endothelial cell activation. Validations demonstrated simultaneously upregulated pro- (TNFα, MCP-1) and anti-inflammatory (IL-10) cytokines and M1/M2-macrophage markers in VAT and reduced CD4/CD8α expression in MAT and spleen. Our data revealed differential responsiveness to diets for VAT through preferentially metabolic alterations in MAT and inflammatory processes in EAT. LC-n-3 PUFA effects were pro- and anti-inflammatory and disclose T cell-immunosuppressive potential.
Collapse
Affiliation(s)
- Tobias Ludwig
- Clinical Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
608
|
Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats. Surg Endosc 2013; 27:4192-201. [PMID: 23719976 PMCID: PMC3824302 DOI: 10.1007/s00464-013-3020-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/10/2013] [Indexed: 01/14/2023]
Abstract
Background The consumption of high fat and sugar diets is decreased after gastric bypass surgery (GB). The mechanisms remain unclear, with tests of motivated behavior toward fat and sugar producing conflicting results in a rat model. These discrepancies may be due to differences in presurgical maintenance diets. The authors used their GB rat model to determine whether the fat content of preoperative maintenance diets affects weight loss, calorie intake, and macronutrient selection after surgery. Methods Male Wistar rats were either low-fat diet fed (LFDF) with normal chow or high-fat diet fed (HFDF) before randomization to GB or sham surgery. In food preference test 1, the animals were offered the choice of a vegetable drink (V8) or a high-calorie liquid (Ensure), and in food preference test 2, they could choose normal chow or a solid high-fat diet. Results The GB groups did not differ significantly in terms of body weight loss or caloric intake. In food preference test 1, both groups responded similarly by reducing their preference for Ensure and increasing their preference for V8. In food preference test 2, the HFDF-GB rats reduced their preference for a solid high-fat diet gradually compared with the immediate reduction observed in the LFDF-GB rats. Conclusion The consumption of presurgical maintenance diets with different fat contents did not affect postoperative weight loss outcomes. Both the LFDF-GB and HFDF-GB rats exhibited behaviors consistent with the possible expression of a conditioned taste aversion to a high-fat stimulus. These results suggest that for some physiologic parameters, low-fat-induced obesity models can be used for the study of changes after GB and have relevance to many obese humans who consume high-calorie but low-fat diets.
Collapse
|
609
|
Habbout A, Li N, Rochette L, Vergely C. Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences. J Nutr 2013; 143:553-62. [PMID: 23446961 DOI: 10.3945/jn.112.172825] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Numerous studies have demonstrated that the early postnatal environment can influence body weight and energy homeostasis into adulthood. Rodents raised in small litters have been shown to be a useful experimental model to study the short- and long-term consequences of early overnutrition, which can lead to modifications not only in body weight but also of several metabolic features. Postnatal overfeeding (PNOF) induces early malprogramming of the hypothalamic system, inducing acquired persisting central leptin and insulin resistance and an increase in orexigenic signals. Visceral white adipose tissue, lipogenic activity, and inflammatory status are increased in PNOF rodents, while brown adipose tissue shows reduced thermogenic activity. Pancreatic and hepatic glucose responsiveness is persistently reduced in PNOF rodents, which also frequently present disturbances in plasma lipids. PNOF rodents present increased circulating concentrations of leptin, elevated corticosterone secretion, and significant changes in glucocorticoid sensitivity. PNOF also influences nephrogenesis and renal maturation. Increased oxidative stress is also described in circulating blood and in some tissues, such as the heart or liver. At the cardiovascular level, a moderate increase in arterial blood pressure is sometimes observed and rapid cardiac hypertrophy is observed at weaning; however, during maturation, impaired contractility and fibrosis are observed. Myocardial genome expression is rapidly modified in overfed mice. Moreover, hearts of PNOF rodents are more sensitive to ischemia-reperfusion injury. Together, these results suggest that the nutritional state in the immediate postnatal period should be taken into account, because it may have an impact on cardiometabolic risk in adulthood.
Collapse
Affiliation(s)
- Ahmed Habbout
- Inserm UMR866, LPPCM, Faculties of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | | | | | | |
Collapse
|
610
|
Cho SJ, Yoon IS, Kim DD. Obesity-related physiological changes and their pharmacokinetic consequences. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0073-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
611
|
Rossi H, Luu A, DeVilbiss J, Recober A. Obesity increases nociceptive activation of the trigeminal system. Eur J Pain 2013; 17:649-53. [PMID: 23070979 PMCID: PMC4275045 DOI: 10.1002/j.1532-2149.2012.00230.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity is a risk factor associated with several pain syndromes. However, the mechanisms underlying the association between obesity and pain are not known. The aim of this study was to test the hypothesis that obesity enhances neuronal responses to nociceptive stimulation within the trigeminal nucleus caudalis (TNC). METHODS Male and female C57BL/6J mice were fed a high-fat or regular diet from the time of weaning until 20 weeks of age. We then quantified neuronal activation by measuring Fos immunoreactivity within the TNC in response to a facial injection of a low dose of capsaicin (1 μg/10 μL). RESULTS We found that 0.01% capsaicin did not significantly increase Fos immunoreactivity in control mice fed a regular diet. In contrast, this low dose of capsaicin caused a 3.3-fold increase in Fos in the TNC in obese mice (p < 0.001). CONCLUSIONS These results support the hypothesis that diet-induced obesity in mice enhances nociceptive processing within the TNC. Diet-induced obesity may be a useful model for mechanistic studies. Future studies will improve our understanding of how obesity may contribute to trigeminal pain by sensitizing the trigeminal nociceptive system.
Collapse
Affiliation(s)
- H.L. Rossi
- Department of Neurology. University of Iowa, USA
| | - A.K.S. Luu
- Department of Neurology. University of Iowa, USA
| | | | - A. Recober
- Department of Neurology. University of Iowa, USA
| |
Collapse
|
612
|
Lycopene supplementation modulates plasma concentrations and epididymal adipose tissue mRNA of leptin, resistin and IL-6 in diet-induced obese rats. Br J Nutr 2013; 110:1803-9. [PMID: 23632237 DOI: 10.1017/s0007114513001256] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Obesity is characterised by chronic low-grade inflammation, and lycopene has been reported to display anti-inflammatory effects. However, it is not clear whether lycopene supplementation modulates adipokine levels in vivo in obesity. To determine whether lycopene supplementation can regulate adipokine expression in obesity, male Wistar rats were randomly assigned to receive a control diet (C, n 6) ora hyperenergetic diet (DIO, n 12) for 6 weeks. After this period, the DIO animals were randomised into two groups: DIO (n 6) and DIO supplemented with lycopene (DIO + L, n 6). The animals received maize oil (C and DIO) or lycopene (DIO + L, 10 mg/kg body weight(BW) per d) by oral administration for a 6-week period. The animals were then killed by decapitation, and blood samples and epididymal adipose tissue were collected for hormonal determination and gene expression evaluation (IL-6, monocyte chemoattractant protein-1(MCP-1), TNF-α, leptin and resistin). There was no detectable lycopene in the plasma of the C and DIO groups. However, the mean lycopene plasma concentration was 24 nmol in the DIO + L group. Although lycopene supplementation did not affect BW or adiposity, it significantly decreased leptin, resistin and IL-6 gene expression in epididymal adipose tissue and plasma concentrations. Also, it significantly reduced the gene expression of MCP-1 in epididymal adipose tissue. Lycopene affects adipokines by reducing leptin, resistin and plasma IL-6 levels. These data suggest that lycopene may be an effective strategy in reducing inflammation in obesity.
Collapse
|
613
|
Cottone P, Sabino V, Nagy TR, Coscina DV, Levin BE, Zorrilla EP. Centrally administered urocortin 2 decreases gorging on high-fat diet in both diet-induced obesity-prone and -resistant rats. Int J Obes (Lond) 2013; 37:1515-23. [PMID: 23478425 PMCID: PMC3706508 DOI: 10.1038/ijo.2013.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/03/2013] [Accepted: 01/27/2013] [Indexed: 01/01/2023]
Abstract
Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity.
Collapse
Affiliation(s)
- P Cottone
- 1] Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA [2] Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA [3] Harold L. Dorris Neurological Research Institute, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
614
|
Hwang YP, Choi JH, Kim HG, Khanal T, Song GY, Nam MS, Lee HS, Chung YC, Lee YC, Jeong HG. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells. Toxicol Appl Pharmacol 2013; 267:174-83. [DOI: 10.1016/j.taap.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022]
|
615
|
Borges MC, Vinolo MA, Crisma AR, Fock RA, Borelli P, Tirapegui J, Curi R, Rogero MM. High-fat diet blunts activation of the nuclear factor-κB signaling pathway in lipopolysaccharide-stimulated peritoneal macrophages of Wistar rats. Nutrition 2013; 29:443-9. [DOI: 10.1016/j.nut.2012.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/29/2012] [Accepted: 06/16/2012] [Indexed: 12/24/2022]
|
616
|
Borges MC, Vinolo MAR, Nakajima K, de Castro IA, Bastos DHM, Borelli P, Fock RA, Tirapegui J, Curi R, Rogero MM. The effect of mate tea (Ilex paraguariensis) on metabolic and inflammatory parameters in high-fat diet-fed Wistar rats. Int J Food Sci Nutr 2013; 64:561-9. [DOI: 10.3109/09637486.2012.759188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
617
|
Zhang L, Dasuri K, Fernandez-Kim SO, Bruce-Keller AJ, Freeman LR, Pepping JK, Beckett TL, Murphy MP, Keller JN. Prolonged diet induced obesity has minimal effects towards brain pathology in mouse model of cerebral amyloid angiopathy: implications for studying obesity-brain interactions in mice. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1456-62. [PMID: 23313575 DOI: 10.1016/j.bbadis.2013.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/30/2012] [Accepted: 01/02/2013] [Indexed: 12/12/2022]
Abstract
Cerebral amyloid angiopathy (CAA) occurs in nearly every individual with Alzheimer's disease (AD) and Down's syndrome, and is the second largest cause of intracerebral hemorrhage. Mouse models of CAA have demonstrated evidence for increased gliosis contributing to CAA pathology. Nearly two thirds of Americans are overweight or obese, with little known about the effects of obesity on the brain, although increasingly the vasculature appears to be a principle target of obesity effects on the brain. In the current study we describe for the first time whether diet induced obesity (DIO) modulates glial reactivity, amyloid levels, and inflammatory signaling in a mouse model of CAA. In these studies we identify surprisingly that DIO does not significantly increase Aβ levels, astrocyte (GFAP) or microglial (IBA-1) gliosis in the CAA mice. However, within the hippocampal gyri a localized increase in reactive microglia were increased in the CA1 and stratum oriens relative to CAA mice on a control diet. DIO was observed to selectively increase IL-6 in CAA mice, with IL-1β and TNF-α not increased in CAA mice in response to DIO. Taken together, these data show that prolonged DIO has only modest effects towards Aβ in a mouse model of CAA, but appears to elevate some localized microglial reactivity within the hippocampal gyri and selective markers of inflammatory signaling. These data are consistent with the majority of the existing literature in other models of Aβ pathology, which surprisingly show a mixed profile of DIO effects towards pathological processes in mouse models of neurodegenerative disease. The importance for considering the potential impact of ceiling effects in pathology within mouse models of Aβ pathogenesis, and the current experimental limitations for DIO in mice to fully replicate metabolic dysfunction present in human obesity, are discussed. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Le Zhang
- Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
618
|
Cedernaes J, Alsiö J, Västermark A, Risérus U, Schiöth HB. Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet. Lipids Health Dis 2013; 12:2. [PMID: 23298201 PMCID: PMC3558438 DOI: 10.1186/1476-511x-12-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/05/2013] [Indexed: 01/19/2023] Open
Abstract
Background Fatty acid (FA) composition and desaturase indices are associated with obesity and related metabolic conditions. However, it is unclear to what extent desaturase activity in different lipid fractions contribute to obesity susceptibility. Our aim was to test whether desaturase activity and FA composition are linked to an obese phenotype in rats that are either obesity prone (OP) or resistant (OR) on a high-fat diet (HFD). Methods Two groups of Sprague–Dawley rats were given ad libitum (AL-HFD) or calorically restricted (HFD-paired; pair fed to calories consumed by chow-fed rats) access to a HFD. The AL-HFD group was categorized into OP and OR sub-groups based on weight gain over 5 weeks. Five different lipid fractions were examined in OP and OR rats with regard to proportions of essential and very long-chain polyunsaturated FAs: linoleic acid (LA), alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid and the stearoyl-CoA desaturase 1 (SCD-1) product 16:1n-7. FA ratios were used to estimate activities of the delta-5-desaturase (20:4n-6/20:3n-6), delta-6-desaturase (18:3n-6/18:2n-6), stearoyl-CoA desaturase 1 (SCD-1; 16:1n-7/16:0, SCD-16 and 18:1n-9/18:0, SCD-18), de novo lipogenesis (16:0/18:2n-6) and FA elongation (18:0/16:0). Fasting insulin, glucose, adiponectin and leptin concentrations were measured in plasma. Results After AL-HFD access, OP rats had a significantly higher SCD-16 index and 16:1n-7 proportion, but a significantly lower LA proportion, in subcutaneous adipose tissue (SAT) triacylglycerols, as well as significantly higher insulin and leptin concentrations, compared with OR rats. No differences were found between the two phenotypes in liver (phospholipids; triacylglycerols) or plasma (cholesterol esters; phospholipids) lipid fractions or for plasma glucose or adiponectin concentrations. For the desaturase indices of the HFD-paired rats, the only significant differences compared with the OP or OR rats were higher SCD-16 and SCD-18 indices in SAT triacylglycerols in OP compared with HFD-paired rats. Conclusion The higher SCD-16 may reflect higher SCD-1 activity in SAT, which in combination with lower LA proportions may reflect higher insulin resistance and changes in SAT independent of other lipid fractions. Whether a lower SCD-16 index protects against diet-induced obesity is an interesting possibility that warrants further investigation.
Collapse
|
619
|
Reduction of lipid accumulation in white adipose tissues by Cassia tora (Leguminosae) seed extract is associated with AMPK activation. Food Chem 2013; 136:1086-94. [DOI: 10.1016/j.foodchem.2012.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/18/2012] [Accepted: 09/05/2012] [Indexed: 12/28/2022]
|
620
|
Abstract
The focus of this overview is on the animal models of obesity most commonly utilized in research. The models include monogenic models in the leptin pathway, polygenic diet-dependent models, and, in particular for their historical perspective, surgical and chemical models of obesity. However, there are far too many models to consider all of them comprehensively, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, the generation and use of inducible transgenic animals (induced knock-out or knock-in) is not covered, even though they often carry significant advantages compared to traditional transgenic animals, e.g., influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this unit.
Collapse
Affiliation(s)
- Thomas A Lutz
- University of Zurich, Institute of Veterinary Physiology, Zurich Center of Integrative Human Physiology, Zurich, Switzerland
| | | |
Collapse
|
621
|
Park JA, Tirupathi Pichiah P, Yu JJ, Oh SH, Daily J, Cha YS. Anti-obesity effect of kimchi fermented with Weissella koreensis
OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J Appl Microbiol 2012; 113:1507-16. [DOI: 10.1111/jam.12017] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/08/2012] [Accepted: 09/09/2012] [Indexed: 12/01/2022]
Affiliation(s)
- J.-A. Park
- Department of Food Science and Human Nutrition; Chonbuk National University; Jeonju Korea
| | - P.B. Tirupathi Pichiah
- Department of Food Science and Human Nutrition; Chonbuk National University; Jeonju Korea
| | - J.-J. Yu
- Department of Food Science and Biotechnology; Woosuk University; Jeonju Korea
| | - S.-H. Oh
- Department of Food Science and Biotechnology; Woosuk University; Jeonju Korea
| | - J.W. Daily
- Department of Research and Development; Daily Manufacturing, Inc.; Rockwell NC, USA
| | - Y.-S. Cha
- Department of Food Science and Human Nutrition; Chonbuk National University; Jeonju Korea
- Jeonju Makgeolli Research Center; Chonbuk National University; Jeonju Korea
| |
Collapse
|
622
|
Lindholm CR, Ertel RL, Bauwens JD, Schmuck EG, Mulligan JD, Saupe KW. A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats. J Physiol Biochem 2012; 69:165-75. [PMID: 22941749 DOI: 10.1007/s13105-012-0199-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 07/19/2012] [Indexed: 01/18/2023]
Abstract
Consumption of a high-fat diet (HFD) in experimental animal models initiates a series of molecular events and outcomes, including insulin resistance and obesity, that mimic the metabolic syndrome in humans. The relationship among, and order of, the molecular events linking a diet high in fat to pathologies is often unclear. In the present study, we provide several novel insights into the relationship between a HFD and AMP-activated protein kinase (AMPK), a key regulator of cellular metabolism and whole-body energy balance. HFD substantially decreased the activities of both isoforms of AMPK in white adipose tissue, heart, and liver. These decreases in AMPK activity occurred in the absence of decreased AMPK transcription, systemic inflammation, hyperglycemia, or elevated levels of free fatty acids. The HFD-induced decrease in AMPK activity was associated with systemic insulin resistance and hyperleptinemia. In blood, >98 % of AMPK activity was localized in agranulocytes as the α1 isoform. In contrast to the solid tissues studied, AMPK activities were not altered by HFD in granulocytes or agranulocytes. We conclude that HFD-induced obesity causes a broad, non-tissue, or isoform-specific lowering of AMPK activity. Given the central position AMPK plays in whole-body energy balance, this decreased AMPK activity may play a previously unrecognized role in obesity and its associated pathologies.
Collapse
Affiliation(s)
- Christopher R Lindholm
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, 1630 Medical Sciences Center, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
623
|
Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation. Nutr Res 2012; 32:218-28. [PMID: 22464809 DOI: 10.1016/j.nutres.2012.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 12/31/2022]
Abstract
Chitooligosaccharide (CO) has been reported to have potential antiobestic effects in a few studies, but the antiobesity properties of CO and its related mechanisms in models of dietary obesity remain unclear. We investigated the effect of CO on body weight gain, size of adipocytes, adipokines, and lipid profiles in high-fat (HF) diet-induced obese mice and on the gene expression in adipose tissue using a complementary DNA microarray approach to test the hypothesis that CO supplementation would alleviate HF diet-induced obesity by the alteration of adipose tissue-specific gene expression. Male C57BL/6N mice were fed a normal diet (control), HF diet, or CO-supplemented HF diet (1% or 3%) for 5 months. Compared with the HF diet mice, mice fed the 3% CO-supplemented diet gained 15% less weight but did not display any change in food and energy intake. Chitooligosaccharide supplementation markedly improved serum and hepatic lipid profiles. Histologic examination showed that epididymal adipocyte size was smaller in mice fed the HF + 3% CO. Microarray analysis showed that dietary CO supplementation modulated adipogenesis-related genes such as matrix metallopeptidases 3, 12, 13, and 14; tissue inhibitor of metalloproteinase 1; and cathepsin k in the adipose tissues. Twenty-five percent of the CO-responsive genes identified are involved in immune responses including the inflammatory response and cytokine production. These results suggest that CO supplementation may help ameliorate HF diet-induced weight gain and improve serum and liver lipid profile abnormalities, which are associated, at least in part, with altered adipose tissue gene expression involved in adipogenesis and inflammation.
Collapse
|
624
|
Caiozzi G, Wong BS, Ricketts ML. Dietary modification of metabolic pathways via nuclear hormone receptors. Cell Biochem Funct 2012; 30:531-51. [PMID: 23027406 DOI: 10.1002/cbf.2842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/07/2012] [Accepted: 05/09/2012] [Indexed: 12/17/2022]
Abstract
Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail.
Collapse
Affiliation(s)
- Gianella Caiozzi
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada Reno, Reno, NV 89557, USA
| | | | | |
Collapse
|
625
|
Neto Angéloco LR, Deminice R, Leme IDA, Lataro RC, Jordão AA. Bioelectrical impedance analysis and anthropometry for the determination of body composition in rats: effects of high-fat and high-sucrose diets. REV NUTR 2012. [DOI: 10.1590/s1415-52732012000300003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE: The aim of the present study was to determine the impedance of Wistar rats treated with high-fat and high-sucrose diets and correlate their biochemical and anthropometric parameters with chemical analysis of the carcass. METHODS: Twenty-four male Wistar rats were fed a standard (AIN-93), high-fat (50% fat) or high-sucrose (59% of sucrose) diet for 4 weeks. Abdominal and thoracic circumference and body length were measured. Bioelectrical impedance analysis was used to determine resistance and reactance. Final body composition was determined by chemical analysis. RESULTS: Higher fat intake led to a high percentage of liver fat and cholesterol and low total body water in the High-Fat group, but these changes in the biochemical profile were not reflected by the anthropometric measurements or bioelectrical impedance analysis variables. Anthropometric and bioelectrical impedance analysis changes were not observed in the High-Sucrose group. However, a positive association was found between body fat and three anthropometric variables: body mass index, Lee index and abdominal circumference. CONCLUSION: Bioelectrical impedance analysis did not prove to be sensitive for detecting changes in body composition, but body mass index, Lee index and abdominal circumference can be used for estimating the body composition of rats.
Collapse
Affiliation(s)
| | - Rafael Deminice
- Universidade de São Paulo, Brasil; Universidade de Londrina, Brasil
| | | | | | | |
Collapse
|
626
|
Finger BC, Dinan TG, Cryan JF. The temporal impact of chronic intermittent psychosocial stress on high-fat diet-induced alterations in body weight. Psychoneuroendocrinology 2012; 37:729-41. [PMID: 21783325 DOI: 10.1016/j.psyneuen.2011.06.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chronic stress and diet can independently or in concert influence the body's homeostasis over time. Thus, it is crucial to investigate the interplay of these parameters to gain insight into the evolution of stress-induced metabolic and eating disorders. METHODS C57BL/6J mice were subjected to chronic psychosocial (mixed model of social defeat and overcrowding) stress in combination with either a high- or low-fat diet for three or six weeks. To determine the evolution of stress and dietary effects, changes in body weight, caloric intake and caloric efficiency were determined as well as circulating leptin, insulin, glucose and corticosterone levels and social avoidance behaviour. RESULTS Exposure to stress for three weeks caused an increase in weight gain, in caloric intake and in caloric efficiency only in mice on a low-fat diet. However, after six weeks, only stressed mice on a high-fat diet displayed a pronounced inhibition of body weight gain, accompanied by reduced caloric intake and caloric efficiency. Stress decreased circulating leptin levels in mice on a low-fat diet after three weeks and in mice on a high-fat diet after three and six weeks of exposure. Plasma levels of insulin and markers of insulin resistance were blunted in mice on high-fat diet following six weeks of stress exposure. Social avoidance following chronic stress was present in all mice after three and six weeks. CONCLUSIONS This study describes the evolution of the chronic effects of social defeat/overcrowding stress in combination with exposure to high- or low-fat diet. Most importantly, we demonstrate that a six week chronic exposure to social defeat stress prevents the metabolic effects of high-fat diet, by inhibiting an increase in weight gain, caloric intake and efficiency and insulin resistance as well as in plasma leptin and insulin levels. This study highlights the importance of considering the chronic aspects of both parameters and their time-dependent interplay.
Collapse
Affiliation(s)
- Beate C Finger
- Food for Health Ireland, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
627
|
Maurel DB, Pallu S, Jaffré C, Fazzalari NL, Boisseau N, Uzbekov R, Benhamou CL, Rochefort GY. Osteocyte apoptosis and lipid infiltration as mechanisms of alcohol-induced bone loss. Alcohol Alcohol 2012; 47:413-22. [PMID: 22596044 DOI: 10.1093/alcalc/ags057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS We carried out an in vivo study to assess the relationship between increase in adiposity in the marrow and osteocyte apoptosis in the case of alcohol-induced bone loss. METHODS AND RESULTS After alcohol treatment, the number of apoptotic osteocytes was increased and lipid droplets were accumulated within the osteocytes, the bone marrow and the cortical bone micro-vessels. At last, we found an inverse correlation between bone mineral density and osteocyte apoptosis and strong significant correlations between the osteocyte apoptotic number and lipid droplet accumulation in osteocyte and bone micro-vessels. CONCLUSION These data show that alcohol-induced bone loss is associated with osteocyte apoptosis and lipid accumulation in the bone tissue. This lipid intoxication, or 'bone steatosis', is correlated with lipid accumulation in bone marrow and blood micro-vessels.
Collapse
Affiliation(s)
- Delphine B Maurel
- IPROS Unité Inserm U658, Hôpital Porte Madeleine, 1 rue Porte Madeleine, BP 2439, Orléans cedex 01 45032, France
| | | | | | | | | | | | | | | |
Collapse
|
628
|
Emodin, a Naturally Occurring Anthraquinone Derivative, Ameliorates Dyslipidemia by Activating AMP-Activated Protein Kinase in High-Fat-Diet-Fed Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:781812. [PMID: 22649478 PMCID: PMC3357974 DOI: 10.1155/2012/781812] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 02/29/2012] [Indexed: 01/22/2023]
Abstract
The aim of this study was to investigate the antiobesity and antihyperlipidaemic effects of emodin on high-fat diet (HFD)-induced obese rats, and on the regulation of the expression of the genes involved in lipid metabolism to elucidate the mechanisms. After being fed HFD for two weeks, Wistar rats were dosed orally with emodin (40 and 80 mg kg(-1)) or pioglitazone (20 mg kg(-1)), once daily for eight weeks. Emodin (80 mg kg(-1) per day) displayed similar characteristics to pioglitazone (20 mg kg(-1) per day) in reducing body weight gain, plasma lipid levels as well as coronary artery risk index and atherogenic index of HFD-fed rats. Emodin also caused dose related reductions in the hepatic triglyceride and cholesterol contents and lowered hepatic lipid droplets accumulation in HFD-fed rats. Emodin and pioglitazone enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and its primary downstream targeting enzyme, acetyl-CoA carboxylase, up-regulated gene expression of carnitine palmitoyl transferase 1, and down-regulated sterol regulatory element binding protein 1 and fatty acid synthase protein levels in hepatocytes of HFD-fed rats. Our findings suggest emodin could attenuate lipid accumulation by decreasing lipogenesis and increasing mitochondrial fatty acid β-oxidation mediated by activation of the AMPK signaling pathway.
Collapse
|
629
|
Pritchett CE, Hajnal A. Glucagon-like peptide-1 regulation of carbohydrate intake is differentially affected by obesogenic diets. Obesity (Silver Spring) 2012; 20:313-7. [PMID: 22134200 PMCID: PMC3603269 DOI: 10.1038/oby.2011.342] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in the regulation of appetite by acting as an anorexigenic gut-brain signal. The postprandial release of GLP-1 can be blunted in obese humans and animals. However, it remains unknown whether obesogenic diets with varying fat and carbohydrate content may differentially influence the effectiveness of GLP-1 feedback. To investigate this, male Sprague-Dawley rats were fed a standard (low fat) chow diet, or one of two high-energy diets varying in fat content (45 or 60 kcal%) for 28 weeks. Intake of sucrose and fructose solutions, two commonly added sugars in the Western diet, was then tested in nondeprived rats following administration of the GLP-1 receptor agonist, Exendin-4 (0, 0.5, 1, 2, 3 µg/kg; s.c.). Exendin-4 dose-dependently reduced short (2 h) sucrose and fructose intake. This effect was significantly attenuated in rats fed more dietary fat, despite both diets resulting in obesity. These findings demonstrate that intake of carbohydrates when offered as treats can be regulated by GLP-1 and suggests that dietary fat consumption, rather than extra calories or obesity, may lead to impaired GLP-1 feedback to curb carbohydrate intake. Future studies are warranted to investigate the relevance of these observations to humans and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Carolyn E Pritchett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| | | |
Collapse
|
630
|
Pandit R, Mercer JG, Overduin J, la Fleur SE, Adan RAH. Dietary factors affect food reward and motivation to eat. Obes Facts 2012; 5:221-42. [PMID: 22647304 DOI: 10.1159/000338073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/25/2011] [Indexed: 01/09/2023] Open
Abstract
The propensity to indulge in unhealthy eating and overconsumption of palatable food is a crucial determinant in the rising prevalence of obesity in today's society. The tendency to consume palatable foods in quantities that exceed energy requirements has been linked to an addiction-like process. Although the existence of 'food addiction' has not been conclusively proven, evidence points to alterations in the brain reward circuitry induced by overconsumption of palatable foods that are similar to those seen in drug addiction. The diet-induced obesity paradigm is a common procedure to replicate features of human obesity in rodents. Here we review data on the effect of various obesogenic diets (high-fat, Ensure™, cafeteria type, sucrose) on the extent of leptin resistance, hypothalamic-neuropeptidergic adaptations and changes in feeding behavior. We also discuss to what extent such diets and properties such as macronutrient composition, physical structure, sensory stimuli, and post-ingestive effects influence the brain-reward pathways. Understanding the interaction between individual components of diets, feeding patterns, and brain reward pathways could facilitate the design of diets that limit overconsumption and prevent weight gain.
Collapse
Affiliation(s)
- Rahul Pandit
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
631
|
Abstract
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.
Collapse
Affiliation(s)
- Niloofar Hariri
- School of Dietetics and Human Nutrition, McGill University, Montreal, Canada
| | | |
Collapse
|
632
|
Huang XF, Yu Y, Beck EJ, South T, Li Y, Batterham MJ, Tapsell LC, Chen J. Diet high in oat β-glucan activates the gut-hypothalamic (PYY₃₋₃₆-NPY) axis and increases satiety in diet-induced obesity in mice. Mol Nutr Food Res 2011; 55:1118-21. [PMID: 21688388 DOI: 10.1002/mnfr.201100095] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/09/2011] [Accepted: 05/02/2011] [Indexed: 01/01/2023]
Abstract
This study tested the effects of (1→3),(1→4) β-D-glucan from oats, on activation of the gut-hypothalamic (PYY₃₋₃₆-NPY) axis, satiety, and weight loss in diet-induced obesity (DIO) mice. DIO mice were fed standard lab chow diets or varied doses of β-glucan for 6 weeks. Energy intake, satiety, body weight changes and peptide Y-Y₃₋₃₆ (PYY₃₋₃₆) were measured together with a satiety test and measurement of neuropeptide Y (NPY) mRNA expression in the hypothalamic arcuate nucleus (Arc). The average energy intake (-13%, p<0.05) and body weight gain was lower with increasing β-glucan over 6 wk with acute suppression of energy intake over 4 h. The highest β-glucan diet significantly increased plasma PYY₃₋₃₆, with suppression of Arc NPY mRNA.
Collapse
Affiliation(s)
- Xu-Feng Huang
- School of Health Sciences, University of Wollongong, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
633
|
Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats. Lipids Health Dis 2011; 10:99. [PMID: 21679418 PMCID: PMC3129582 DOI: 10.1186/1476-511x-10-99] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/16/2011] [Indexed: 11/10/2022] Open
Abstract
Background High-fat (HF) diet has been extensively used as a model to study metabolic disorders of human obesity in rodents. However, the adaptive whole-body metabolic responses that drive the development of obesity with chronically feeding a HF diet are not fully understood. Therefore, this study investigated the physiological mechanisms by which whole-body energy balance and substrate partitioning are adjusted in the course of HF diet-induced obesity. Methods Male Wistar rats were fed ad libitum either a standard or a HF diet for 8 weeks. Food intake (FI) and body weight were monitored daily, while oxygen consumption, respiratory exchange ratio, physical activity, and energy expenditure (EE) were assessed weekly. At week 8, fat mass and lean body mass (LBM), fatty acid oxidation and uncoupling protein-1 (UCP-1) content in brown adipose tissue (BAT), as well as acetyl-CoA carboxylase (ACC) content in liver and epidydimal fat were measured. Results Within 1 week of ad libitum HF diet, rats were able to spontaneously reduce FI to precisely match energy intake of control rats, indicating that alterations in dietary energy density were rapidly detected and FI was self-regulated accordingly. Oxygen consumption was higher in HF than controls throughout the study as whole-body fat oxidation also progressively increased. In HF rats, EE initially increased, but then reduced as dark cycle ambulatory activity reached values ~38% lower than controls. No differences in LBM were detected; however, epidydimal, inguinal, and retroperitoneal fat pads were 1.85-, 1.89-, and 2.54-fold larger in HF-fed than control rats, respectively. Plasma leptin was higher in HF rats than controls throughout the study, indicating the induction of leptin resistance by HF diet. At week 8, UCP-1 content and palmitate oxidation in BAT were 3.1- and 1.5-fold higher in HF rats than controls, respectively, while ACC content in liver and epididymal fat was markedly reduced. Conclusion The thermogenic response induced by the HF diet was offset by increased energy efficiency and time-dependent reduction in physical activity, favoring fat accumulation. These adaptations were mainly driven by the nutrient composition of the diet, since control and HF animals spontaneously elicited isoenergetic intake.
Collapse
|
634
|
Hariri N, Gougeon R, Thibault L. A highly saturated fat-rich diet is more obesogenic than diets with lower saturated fat content. Nutr Res 2011; 30:632-43. [PMID: 20934605 DOI: 10.1016/j.nutres.2010.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 11/25/2022]
Abstract
The present study tested the hypothesis that a saturated fatty acid (SFA)-rich diet is more obesogenic than diets with lower SFA content. In 8 female Sprague-Dawley rats fed a low-SFA canola or a moderate-SFA lard-rich diets at 67% of energy for 26 days, body weight gain, final body weight, obesity index, and food and energy intake were comparable. Twenty-nine rats were fed canola or high-SFA butter-rich diets (67% of energy) or chow for 50 days; then high-fat feeding was followed by ad libitum low-fat feeding (27% of energy) for 28 days and by a food-restricted low-fat diet for 32 days. High-fat feeding resulted in a greater body weight gain (P < .04), final body weight (P < .04), and energy intake (P < .008) in butter-fed rats than in canola- and chow-fed controls, after 26 or 50 days. Ad libitum canola and butter low-fat diets or chow feeding resulted in similar weight change, whereas food-restricted low-fat diets led to comparable weight loss and final weight. Canola-fed animals adjusted their intake based on diet energy density, whereas lard and butter-fed animals failed to do so. Abdominal fat (P = .012) and plasma leptin (P = .005) were higher in chow-fed controls than in canola-fed rats, but comparable with those of butter-fed rats. Prone and resistant phenotypes were detected with high-fat feeding. In conclusion, only feeding the high-SFA butter-rich diet led to obesity development and failure to adjust intake based on the energy density and preserving body fat even after weight loss. The high availability of SFA-rich foods in today's obesogenic environment could contribute to develop and maintain obesity.
Collapse
Affiliation(s)
- Niloofar Hariri
- School of Dietetics and Human Nutrition, Macdonald campus of McGill University, Quebec, Canada
| | | | | |
Collapse
|
635
|
|