601
|
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer death in the United States. Despite significant improvement in understanding disease biology, the 5-year survival rates remain less than 5%. Targeted agents failed to add any meaningful survival benefit in this patient population despite very promising pre-clinical data. The new paradigm for the treatment of PC must emphasize validation of targeted agents in the appropriate pre-clinical models, identification of predictive markers for disease response, and extending range of targets into cancer stem cells and tumor microenvironment. It is also necessary to perform studies that are designed to address the various stages of disease with respect to study endpoints and application of a multimodality approach in management. Phase III trials should only be considered when a strong efficacy signal is demonstrated in phase II studies that is based on a survival endpoint. This review will focus on the development of novel treatments in pancreas cancer and the proposed design of future clinical trials.
Collapse
|
602
|
Vaccaro V, Melisi D, Bria E, Cuppone F, Ciuffreda L, Pino MS, Gelibter A, Tortora G, Cognetti F, Milella M. Emerging pathways and future targets for the molecular therapy of pancreatic cancer. Expert Opin Ther Targets 2011; 15:1183-96. [PMID: 21819318 DOI: 10.1517/14728222.2011.607438] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pancreatic cancer treatment remains a challenge for clinicians and researchers. Despite undisputable advances in the comprehension of the molecular mechanisms underlying cancer development and progression, early disease detection and clinical management of patients has made little, if any, progress in the past 20 years. Clinical development of targeted agents directed against validated pathways, such as the EGF/EGF receptor axis, the mutant KRAS protein, MMPs, and VEGF-mediated angiogenesis, alone or in combination with gemcitabine-based standard chemotherapy, has been disappointing. AREAS COVERED This review explores the preclinical rationale for clinical approaches aimed at targeting the TGF-β, IGF, Hedgehog, Notch and NF-κB signaling pathways, to develop innovative therapeutic strategies for pancreatic cancer. EXPERT OPINION Although some of the already clinically explored approaches (particularly EGFR and KRAS targeting) deserve further clinical consideration, by employing more innovative and creative clinical trial designs than the gemcitabine-targeted agent paradigm that has thus far invariably failed, the targeting of emerging and relatively unexplored signaling pathways holds great promise to increase our understanding of the complex molecular biology and to advance the clinical management of pancreatic cancer.
Collapse
Affiliation(s)
- Vanja Vaccaro
- Medical Oncology A, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
603
|
Graham RA, Lum BL, Morrison G, Chang I, Jorga K, Dean B, Shin YG, Yue Q, Mulder T, Malhi V, Xie M, Low JA, Hop CECA. A single dose mass balance study of the Hedgehog pathway inhibitor vismodegib (GDC-0449) in humans using accelerator mass spectrometry. Drug Metab Dispos 2011; 39:1460-7. [PMID: 21602311 DOI: 10.1124/dmd.111.039339] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vismodegib (GDC-0449), a small-molecule Hedgehog pathway inhibitor, was well tolerated in patients with solid tumors and showed promising efficacy in advanced basal cell carcinoma in a Phase I trial. The purpose of the study presented here was to determine routes of elimination and the extent of vismodegib metabolism, including assessment and identification of metabolites in plasma, urine, and feces. Six healthy female subjects of nonchildbearing potential were enrolled; each received a single 30-ml oral suspension containing 150 mg of vismodegib with 6.5 μg of [(14)C]vismodegib to yield a radioactivity dose of approximately 37 kBq (1000 nCi). Plasma, urine, and feces samples were collected over 56 days to permit sample collection for up to 5 elimination half-lives. Nonradioactive vismodegib was measured in plasma using liquid chromatographic-tandem mass spectrometry, and total radioactivity in plasma, urine, and feces was measured using accelerator mass spectrometry. Vismodegib was slowly eliminated by a combination of metabolism and excretion of parent drug, most of which was recovered in feces. The estimated excretion of the administered dose was 86.6% on average, with 82.2 and 4.43% recovered in feces and urine, respectively. Vismodegib was predominant in plasma, with concentrations representing >98% of the total circulating drug-related components. Metabolic pathways of vismodegib in humans included oxidation, glucuronidation, and uncommon pyridine ring cleavage. We conclude that vismodegib and any associated metabolic products are mainly eliminated through feces after oral administration in healthy volunteers.
Collapse
|
604
|
Pancreatic cancer stem cells: new insights and perspectives. J Gastroenterol 2011; 46:966-73. [PMID: 21698355 DOI: 10.1007/s00535-011-0422-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/05/2011] [Indexed: 02/04/2023]
Abstract
Since the identification of self-renewing cells in the hematopoietic system several decades ago, stem cells have changed the way we study biology and medicine. Solid tumors contain a distinct subpopulation of cells that have stem cell characteristics and are exclusively responsible for tumorigenicity. This discovery has led to the development of the stem cell concept of cancer, which proposes that a subpopulation of self-renewing tumor cells, also termed cancer stem cells, is responsible for tumorigenesis and metastasis. This contrasts with the stochastic model of tumor development, which holds that all tumor cells are capable of tumor initiation. Different subpopulations of cancer stem cells have been identified in pancreatic ductal adenocarcinoma, based on the use of combinations of surface markers that allow their isolation, propagation, and further characterization. Importantly, cancer stem cells are not only capable of self-renewal and differentiation, but may also confer virulence via immune system evasion and multidrug resistance, and potentially via vasculogenic mimicry and transition to migratory and metastasizing derivatives. Therapeutic targeting of this subset of cells and the pathways defining their virulence holds great promise for the development of more effective strategies for the amelioration and eradication of this most lethal form of cancer.
Collapse
|
605
|
Schmid S, Bieber M, Zhang F, Zhang M, He B, Jablons D, Teng NN. Wnt and hedgehog gene pathway expression in serous ovarian cancer. Int J Gynecol Cancer 2011; 21:975-80. [PMID: 21666490 PMCID: PMC3285558 DOI: 10.1097/igc.0b013e31821caa6f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Ovarian cancer has very heterogeneous histological classification, and response to therapy of the same grade and type varies. We studied genes in the Wnt and hedgehog (Hh) pathways, which are essential for embryonic development and which play critical roles in proliferation in a variety of human cancers. Variations in these pathway genes causing proliferation could play a role in the variation in tumor progression and response to therapy. METHODS/MATERIALS Using real-time polymerase chain reaction, we studied 16 primary grade 3 International Federation of Gynecology and Obstetrics stage III serous ovarian cancer samples for expression of the Wnt pathway gene AXIN2, fibroblast growth factor 9, and Hh pathway gene expressions of glioma-associated oncogene 1, glioma-associated oncogene 2, patched homolog 1, patched homolog 2, Indian Hedgehog (HH), sonic HH, and Smoothened, a G protein-coupled receptor protein. Normal ovary epithelial cell line was used as control. RESULTS We found wide variation of up-regulation of pathway component and target genes in the primary tumor samples and apparent cross talk between the pathways. AXIN2, a Wnt target gene, showed increased expression in all serous ovarian cancer samples. Fibroblast growth factor 9 was also overexpressed in all tumors with greater than 1000-fold increase in gene expression in 4 tumors. Expression of Hh pathway genes varied greatly. More than half of the tumor samples showed involvement of Hh signaling or pathway activation either by expression of transcription factors and Hh ligands or by overexpression of Indian HH/sonic HH and the receptor-encoding patched homolog 1/patched homolog 2. CONCLUSION We found a wide variation in fold expression of genes involved in the Wnt and Hh pathway between patient samples.
Collapse
Affiliation(s)
- Seraina Schmid
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Marcia Bieber
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Fang Zhang
- Thoracic Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Mallory Zhang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Biao He
- Thoracic Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA
| | - David Jablons
- Thoracic Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Nelson N.H. Teng
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
606
|
Onishi H, Katano M. Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci 2011; 102:1756-60. [PMID: 21679342 DOI: 10.1111/j.1349-7006.2011.02010.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hedgehog (Hh) signaling is an important factor in growth and patterning during embryonic development. A mutation in Patched, Smoothened or Gli1, which regulate the Hh signaling pathway, might lead to the onset of glioblastoma, basal cell carcinoma, medulloblastoma and rhabdomyosarcoma. Recently, Hh signaling has been reported to be activated in a ligand-dependent manner, contributing to carcinogenesis and cancer progression. Hedgehog signaling is reactivated in various types of cancer, and this contributes to cancer progression by facilitating proliferation, invasion and cell survival. Moreover, Hh signaling is associated with several other signaling pathways that contribute to cancer progression. These observations indicate that controlling Hh signaling might become a target for novel molecular targeting therapy.
Collapse
Affiliation(s)
- Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
607
|
Abstract
Gli zinc-finger proteins are transcription factors involved in the intracellular signal transduction controlled by the Hedgehog family of secreted molecules. They are frequently mutated in human congenital malformations, and their abnormal regulation leads to tumorigenesis. Genetic studies in several model systems indicate that their activity is tightly regulated by Hedgehog signaling through various posttranslational modifications, including phosphorylation, ubiquitin-mediated degradation, and proteolytic processing, as well as through nucleocytoplasmic shuttling. In vertebrate cells, primary cilia are required for the sensing of Hedgehog pathway activity and involved in the processing and activation of Gli proteins. Two evolutionarily conserved Hedgehog pathway components, Suppressor of fused and Kif7, are core intracellular regulators of mammalian Gli proteins. Recent studies revealed that Gli proteins are also regulated transcriptionally and posttranslationally through noncanonical mechanisms independent of Hedgehog signaling. In this review, we describe the regulation of Gli proteins during development and discuss possible mechanisms for their abnormal activation during tumorigenesis.
Collapse
Affiliation(s)
- Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
| | | |
Collapse
|
608
|
Lorusso PM, Jimeno A, Dy G, Adjei A, Berlin J, Leichman L, Low JA, Colburn D, Chang I, Cheeti S, Jin JY, Graham RA. Pharmacokinetic dose-scheduling study of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with locally advanced or metastatic solid tumors. Clin Cancer Res 2011; 17:5774-82. [PMID: 21753154 DOI: 10.1158/1078-0432.ccr-11-0972] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study was designed to evaluate whether less frequent dosing [three times per week (TIW) or once weekly (QW)] of 150 mg vismodegib following a loading dose [150 mg once daily (QD) for 11 days] would result in similar safety, tolerability, and steady-state levels of total and unbound vismodegib as continuous QD dosing. EXPERIMENTAL DESIGN Sixty-seven patients with advanced solid tumors were stratified by baseline plasma alpha 1-acid glycoprotein (AAG) levels and randomized to one of three vismodegib 150 mg regimens: QD (n = 23), TIW (n = 22), or QW (n = 22) for up to 42 days after an 11-day loading phase (150 mg QD). Total and unbound (dialyzed) plasma vismodegib concentrations were determined by LC-MS/MS. RESULTS The most frequently reported adverse events were consistent with those in prior monotherapy trials, with similar incidence and severity regardless of dosing schedule. After the 150 mg QD loading phase, a concentration-dependent change in protein binding (3-fold increase in vismodegib fraction unbound) was observed at steady state compared with single dose. Mean total and unbound vismodegib steady-state concentrations were lower after TIW and QW than QD dosing, with an average intrasubject decrease of 50% and 80%, respectively, for unbound drug. Mechanism-based PK model simulations accurately and prospectively predicted the PK results. CONCLUSIONS Vismodegib 150 mg TIW or QW failed to achieve unbound plasma concentrations previously associated with efficacy in patients with advanced basal cell carcinoma and medulloblastoma, even after a QD loading dose period. The 150 mg QD regimen is appropriate for vismodegib based on its clinical activity, tolerability, and favorable unbound concentrations.
Collapse
|
609
|
Singh S, Wang Z, Fei DL, Black KE, Goetz JA, Tokhunts R, Giambelli C, Rodriguez-Blanco J, Long J, Lee E, Briegel KJ, Bejarano PA, Dmitrovsky E, Capobianco AJ, Robbins DJ. Hedgehog-producing cancer cells respond to and require autocrine Hedgehog activity. Cancer Res 2011; 71:4454-63. [PMID: 21565978 PMCID: PMC3809996 DOI: 10.1158/0008-5472.can-10-2313] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A number of Smoothened (SMO) pathway antagonists are currently undergoing clinical trials as anticancer agents. These drugs are proposed to attenuate tumor growth solely through inhibition of Hedgehog (HH), which is produced in tumor cells but acts on tumor stromal cells. The pivotal argument underlying this model is that the growth-inhibitory properties of SMO antagonists on HH-producing cancer cells are due to their off-target effects. Here, we show that the tumorigenic properties of such lung cancer cells depend on their intrinsic level of HH activity. Notably, reducing HH signaling in these tumor cells decreases HH target gene expression. Taken together, these results question the dogma that autocrine HH signaling plays no role in HH-dependent cancers, and does so without using SMO antagonists.
Collapse
Affiliation(s)
- Samer Singh
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Zhiqiang Wang
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Dennis Liang Fei
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Kendall E. Black
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - John A. Goetz
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Robert Tokhunts
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Camilla Giambelli
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Jezabel Rodriguez-Blanco
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Jun Long
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Karoline J. Briegel
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL-33136
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Pablo A. Bejarano
- Department of Pathology, Jackson Memorial Hospital, University of Miami, Miami, Florida 33136
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
- Norris Cotton Cancer Center, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Anthony J. Capobianco
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL-33136
| | - David J. Robbins
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL-33136
| |
Collapse
|
610
|
Maugeri-Saccà M, Zeuner A, De Maria R. Therapeutic targeting of cancer stem cells. Front Oncol 2011; 1:10. [PMID: 22655230 PMCID: PMC3356019 DOI: 10.3389/fonc.2011.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/09/2011] [Indexed: 01/11/2023] Open
Abstract
Recent breakthroughs in translational oncology are opening new perspectives for the treatment of cancer. The advent of targeted therapies has provided the proof-of-concept to selectively turn-off deregulated oncogenic proteins, while the identification and validation of predictive biomarkers of response has allowed to improve, at least in some cases, their performance. Moreover, a subpopulation of tumor-propagating cells has been identified from many solid and hematological tumors. These cells share functional properties of normal stem cells, and are commonly referred to as cancer stem cells (CSCs). It is emerging that CSCs are defended against broadly used anticancer agents by means of different, partly interconnected, mechanisms. However, CSCs rely on specific pathways involved in self-renewal that can be pharmacologically antagonized by experimental molecular targeted agents, some of which have recently entered early phases of clinical development. Here, we discuss the spectrum of pharmacological strategies under clinical or preclinical development for CSCs targeting.
Collapse
Affiliation(s)
- Marcello Maugeri-Saccà
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità Rome, Italy
| | | | | |
Collapse
|
611
|
Strand MF, Wilson SR, Dembinski JL, Holsworth DD, Khvat A, Okun I, Petersen D, Krauss S. A novel synthetic smoothened antagonist transiently inhibits pancreatic adenocarcinoma xenografts in a mouse model. PLoS One 2011; 6:e19904. [PMID: 21698280 PMCID: PMC3115942 DOI: 10.1371/journal.pone.0019904] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/20/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials. PRINCIPAL FINDINGS Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a "focused diversity" library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo. SIGNIFICANCE We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists.
Collapse
Affiliation(s)
- Martin F. Strand
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Jennifer L. Dembinski
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Alexander Khvat
- ChemDiv Inc., San Diego, California, United States of America
| | - Ilya Okun
- ChemDiv Inc., San Diego, California, United States of America
| | - Dirk Petersen
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
612
|
Abstract
Laser direct-write technology such as modified laser-induced forward transfer (LIFT) is emerging as a revolutionary technology for biological construct fabrication. While many modified LIFT-based cell direct writing successes have been achieved, possible process-induced cell injury and death is still a big hurdle for modified LIFT-based cell direct writing to be a viable technology. The objective of this study is to propose metallic foil-assisted LIFT using a four-layer structure to achieve better droplet size control and increase cell viability in direct writing of human colon cancer cells (HT-29). The proposed four layers include a quartz disk, a sacrificial and adhesive layer, a metallic foil, and a cell suspension layer. The bubble formation-induced stress wave is responsible for droplet formation. It is found that the proposed metallic foil-assisted LIFT approach is an effective cell direct-write technology and provides better printing resolution and high post-transfer cell viability when compared with other conventional modified LIFT technologies such as matrix-assisted pulsed-laser evaporation direct-write; at the same time, the possible contamination from the laser energy absorbing material is minimized using a metallic foil.
Collapse
Affiliation(s)
- Yafu Lin
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
613
|
Kim TJ, Lee JY, Hwang TK, Kang CS, Choi YJ. Hedgehog signaling protein expression and its association with prognostic parameters in prostate cancer: a retrospective study from the view point of new 2010 anatomic stage/prognostic groups. J Surg Oncol 2011; 104:472-9. [PMID: 21656527 DOI: 10.1002/jso.21988] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND The expression of Hedgehog (Hh) signaling pathway in prostate cancer is well-known but its clinicopathologic role has not been elucidated well. METHODS Prostatectomy cases of prostate cancer (n=155) were prepared and assessed by clinicopathologic parameters including new 2010 anatomic stage/prognostic groups (ASPG) of prostate cancer. The expression of five Hh signaling proteins including Sonic hedgehog (Shh), Patched, Smoothened, and GLIoma-associated oncogene, in addition with Suppressor of fused (Su(fu)) were analyzed immunohistochemically. Real-time polymerase chain reaction was performed to assess the mRNA expression status. RESULTS The expression of each Hh signaling protein was significantly correlated with poor prognostic parameters such as larger tumor size, high pretreatment prostate-specific antigen (PSA), high Gleason score, perineural invasion and new ASPG. Among Hh signaling proteins, Sonic hedgehog and Smoothened expressions tend to have a significantly higher risk of PSA recurrence (P<0.001 and P=0.011, respectively). Multivariate analysis proved Shh expression as independent prognostic factors of PSA recurrence along with Gleason score, ASPG, tumor volume, and pretreatment PSA. CONCLUSIONS Hh signaling activity is significantly associated with worse prognostic parameters. Shh can be regarded as a poor prognostic factor for PSA recurrence.
Collapse
Affiliation(s)
- Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
614
|
Rubin LL, Haston KM. Stem cell biology and drug discovery. BMC Biol 2011; 9:42. [PMID: 21649940 PMCID: PMC3110139 DOI: 10.1186/1741-7007-9-42] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/07/2011] [Indexed: 12/21/2022] Open
Abstract
There are many reasons to be interested in stem cells, one of the most prominent being their potential use in finding better drugs to treat human disease. This article focuses on how this may be implemented. Recent advances in the production of reprogrammed adult cells and their regulated differentiation to disease-relevant cells are presented, and diseases that have been modeled using these methods are discussed. Remaining difficulties are highlighted, as are new therapeutic insights that have emerged.
Collapse
Affiliation(s)
- Lee L Rubin
- Dept of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
615
|
Reardon DA, Perry JR, Brandes AA, Jalali R, Wick W. Advances in malignant glioma drug discovery. Expert Opin Drug Discov 2011; 6:739-53. [DOI: 10.1517/17460441.2011.584530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
616
|
Yue Q, Chen YH, Mulder T, Deese A, Takahashi R, Rudewicz PJ, Reynolds M, Solon E, Hop CECA, Wong H, Khojasteh SC. Absorption, distribution, metabolism, and excretion of [¹⁴C]GDC-0449 (vismodegib), an orally active hedgehog pathway inhibitor, in rats and dogs: a unique metabolic pathway via pyridine ring opening. Drug Metab Dispos 2011; 39:952-65. [PMID: 21363998 DOI: 10.1124/dmd.110.037374] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
2-Chloro-N-(4-chloro-3-(pyridin-2-yl)-phenyl)-4-(methylsulfonyl)-benzamide (GDC-0449, vismodegib) is a potent and selective first-in-class small-molecule inhibitor of the Hedgehog signaling pathway and is currently in clinical development. In this study, we investigated the metabolic fate and disposition of GDC-0449 in rats and dogs after a single oral administration of [¹⁴C]GDC-0449. An average of 92.4 and 80.4% of the total administered radioactivity was recovered from urine and feces in rats and dogs, respectively. In both species, feces were the major route of excretion, representing 90.0 and 77.4% of the total dose in rats and dogs, respectively. At least 42.1 and 30.8% of the dose was absorbed in rats and dogs, respectively, based on the total excretion of radioactivity in bile and urine. GDC-0449 underwent extensive metabolism in rats and dogs with the major metabolic pathways being oxidation of the 4-chloro-3-(pyridin-2-yl)-phenyl moiety followed by phase II glucuronidation or sulfation. Three other metabolites resulting from an uncommon pyridine ring opening were found, mainly in feces, representing 1.7 to 17.7% of the dose in total in rats and dogs. In plasma, the total radioactivity was absorbed quickly in both rats and dogs, and unchanged GDC-0449 was the predominant circulating radioactive species in both species (>95% of total circulating radioactivity). Quantitative whole-body autoradiography in rats showed that the radioactivity was well distributed in the body, except for the central nervous system, and the majority of radioactivity was eliminated from most tissues by 144 h.
Collapse
Affiliation(s)
- Qin Yue
- Department of Drug Metabolism, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
617
|
O'Toole SA, Machalek DA, Shearer RF, Millar EK, Nair R, Schofield P, McLeod D, Cooper CL, McNeil CM, McFarland A, Nguyen A, Ormandy CJ, Qiu MR, Rabinovich B, Martelotto LG, Vu D, Hannigan GE, Musgrove EA, Christ D, Sutherland RL, Watkins DN, Swarbrick A. Hedgehog Overexpression Is Associated with Stromal Interactions and Predicts for Poor Outcome in Breast Cancer. Cancer Res 2011; 71:4002-14. [DOI: 10.1158/0008-5472.can-10-3738] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
618
|
Abstract
Research into basic developmental biology has frequently yielded insights into cancer biology. This is particularly true for the Hedgehog (HH) pathway. Activating mutations in the HH pathway cause a subset of sporadic and familial, skin (basal cell carcinoma) and brain (medulloblastoma) tumours. Furthermore, the growth of many human tumours is supported by HH pathway activity in stromal cells. Naturally occurring and synthetic inhibitors of HH signalling show great promise in animal models and in early clinical studies. However, it remains unclear how many cancers will ultimately benefit from these new, molecularly targeted therapies.
Collapse
|
619
|
Wong H, Alicke B, West KA, Pacheco P, La H, Januario T, Yauch RL, de Sauvage FJ, Gould SE. Pharmacokinetic-pharmacodynamic analysis of vismodegib in preclinical models of mutational and ligand-dependent Hedgehog pathway activation. Clin Cancer Res 2011; 17:4682-92. [PMID: 21610148 DOI: 10.1158/1078-0432.ccr-11-0975] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Vismodegib (GDC-0449) is a potent and selective inhibitor of the Hedgehog (Hh) pathway that shows antitumor activity in preclinical models driven by mutational or ligand-dependent activation of the Hh pathway. We wished to characterize the pharmacokinetic-pharmacodynamic (PK/PD) relationship of vismodegib in both model systems to guide optimal dose and schedule for vismodegib in the clinic. EXPERIMENTAL DESIGN Preclinical efficacy and PK/PD studies were carried out with vismodegib in a Ptch(+/-) allograft model of medulloblastoma exhibiting mutational activation of the Hh pathway and patient-derived colorectal cancer (CRC) xenograft models exhibiting ligand-dependent pathway activation. Inhibition of the hedgehog pathway was related to vismodegib levels in plasma and to antitumor efficacy using an integrated population-based PK/PD model. RESULTS Oral dosing of vismodegib caused tumor regressions in the Ptch(+/-) allograft model of medulloblastoma at doses ≥25 mg/kg and tumor growth inhibition at doses up to 92 mg/kg dosed twice daily in two ligand-dependent CRC models, D5123, and 1040830. Analysis of Hh pathway activity and PK/PD modeling reveals that vismodegib inhibits Gli1 with a similar IC(50) in both the medulloblastoma and D5123 models (0.165 μmol/L ±11.5% and 0.267 μmol/L ±4.83%, respectively). Pathway modulation was linked to efficacy using an integrated PK/PD model revealing a steep relationship where > 50% of the activity of vismodegib is associated with >80% repression of the Hh pathway. CONCLUSIONS These results suggest that even small reductions in vismodegib exposure can lead to large changes in antitumor activity and will help guide proper dose selection for vismodegib in the clinic.
Collapse
Affiliation(s)
- Harvey Wong
- Department of Translational Oncology, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
620
|
Ying H, Elpek KG, Vinjamoori A, Zimmerman SM, Chu GC, Yan H, Fletcher-Sananikone E, Zhang H, Liu Y, Wang W, Ren X, Zheng H, Kimmelman AC, Paik JH, Lim C, Perry SR, Jiang S, Malinn B, Protopopov A, Colla S, Xiao Y, Hezel AF, Bardeesy N, Turley SJ, Wang YA, Chin L, Thayer SP, DePinho RA. PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-κB-cytokine network. Cancer Discov 2011; 1:158-69. [PMID: 21984975 DOI: 10.1158/2159-8290.cd-11-0031] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Initiation of pancreatic ductal adenocarcinoma (PDAC) is driven by oncogenic KRAS mutation, and disease progression is associated with frequent loss of tumor suppressors. In this study, human PDAC genome analyses revealed frequent deletion of the PTEN gene as well as loss of expression in primary tumor specimens. A potential role for PTEN as a haploinsufficient tumor suppressor is further supported by mouse genetic studies. The mouse PDAC driven by oncogenic Kras mutation and Pten deficiency also sustains spontaneous extinction of Ink4a expression and shows prometastatic capacity. Unbiased transcriptomic analyses established that combined oncogenic Kras and Pten loss promotes marked NF-κB activation and its cytokine network, with accompanying robust stromal activation and immune cell infiltration with known tumor-promoting properties. Thus, PTEN/phosphoinositide 3-kinase (PI3K) pathway alteration is a common event in PDAC development and functions in part to strongly activate the NF-κB network, which may serve to shape the PDAC tumor microenvironment.
Collapse
Affiliation(s)
- Haoqiang Ying
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
621
|
Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells. Proc Natl Acad Sci U S A 2011; 108:9589-94. [PMID: 21597001 DOI: 10.1073/pnas.1017945108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hedgehog (Hh) signaling is critical to the patterning and development of a variety of organ systems, and both ligand-dependent and ligand-independent Hh pathway activation are known to promote tumorigenesis. Recent studies have shown that in tumors promoted by Hh ligands, activation occurs within the stromal microenvironment. Testing whether ligand-driven Hh signaling promotes tumor angiogenesis, we found that Hh antagonism reduced the vascular density of Hh-producing LS180 and SW480 xenografts. In addition, ectopic expression of sonic hedgehog in low-Hh-expressing DLD-1 xenografts increased tumor vascular density, augmented angiogenesis, and was associated with canonical Hh signaling within perivascular tumor stromal cells. To better understand the molecular mechanisms underlying Hh-mediated tumor angiogenesis, we established an Hh-sensitive angiogenesis coculture assay and found that fibroblast cell lines derived from a variety of human tissues were Hh responsive and promoted angiogenesis in vitro through a secreted paracrine signal(s). Affymetrix array analyses of cultured fibroblasts identified VEGF-A, hepatocyte growth factor, and PDGF-C as candidate secreted proangiogenic factors induced by Hh stimulation. Expression studies of xenografts and angiogenesis assays using combinations of Hh and VEGF-A inhibitors showed that it is primarily Hh-induced VEGF-A that promotes angiogenesis in vitro and augments tumor-derived VEGF to promote angiogenesis in vivo.
Collapse
|
622
|
Heretsch P, Büttner A, Tzagkaroulaki L, Zahn S, Kirchner B, Giannis A. Exo-cyclopamine--a stable and potent inhibitor of hedgehog-signaling. Chem Commun (Camb) 2011; 47:7362-4. [PMID: 21589966 DOI: 10.1039/c1cc11782c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The combination of theoretical and computational studies with organic synthesis and biological investigations has led to exo-cyclopamine. This stable and highly potent derivative of cyclopamine promises big potential as an experimental drug against several types of human cancer.
Collapse
Affiliation(s)
- Philipp Heretsch
- Institut für Organische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
623
|
Thomas ZI, Gibson W, Sexton JZ, Aird KM, Ingram SM, Aldrich A, Lyerly HK, Devi GR, Williams KP. Targeting GLI1 expression in human inflammatory breast cancer cells enhances apoptosis and attenuates migration. Br J Cancer 2011; 104:1575-86. [PMID: 21505458 PMCID: PMC3101910 DOI: 10.1038/bjc.2011.133] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/21/2011] [Accepted: 03/25/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive subtype of breast cancer with distinct molecular profiles. Gene expression profiling previously identified sonic hedgehog (SHH) as part of a gene signature that is differentially regulated in IBC patients. METHODS The effects of reducing GLI1 levels on protein expression, cell proliferation, apoptosis and migration were determined by immunoblots, MTT assay, Annexin-V/PI assay and conventional and automated cell migration assays. RESULTS Evaluation of a panel of breast cancer cell lines revealed elevated GLI1 expression, typically a marker for hedgehog-pathway activation, in a triple-negative, highly invasive IBC cell line, SUM149 and its isogenic-derived counterpart rSUM149 that has acquired resistance to ErbB1/2 targeting strategies. Downregulation of GLI1 expression in SUM149 and rSUM149 by small interfering RNA or a small molecule GLI1 inhibitor resulted in decreased proliferation and increased apoptosis. Further, GLI1 suppression in these cell lines significantly inhibited cell migration as assessed by a wound-healing assay compared with MCF-7, a non-invasive cell line with low GLI1 expression. A novel high-content migration assay allowed us to quantify multiple effects of GLI1 silencing including significant decreases in cell distance travelled and linearity of movement. CONCLUSION Our data reveal a role for GLI1 in IBC cell proliferation, survival and migration, which supports the feasibility of targeting GLI1 as a novel therapeutic strategy for IBC patients.
Collapse
Affiliation(s)
- Z I Thomas
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Durham, North Carolina Central University, Durham, NC 27707, USA
| | - W Gibson
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Durham, North Carolina Central University, Durham, NC 27707, USA
| | - J Z Sexton
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Durham, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, Durham, North Carolina Central University, Durham, NC 27707, USA
| | - K M Aird
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - S M Ingram
- Department of Pharmaceutical Sciences, Durham, North Carolina Central University, Durham, NC 27707, USA
| | - A Aldrich
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - H K Lyerly
- Duke Comprehensive Cancer Center, Duke University Medical Center, Durham, NC 27710, USA
| | - G R Devi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Duke Comprehensive Cancer Center, Duke University Medical Center, Durham, NC 27710, USA
| | - K P Williams
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Durham, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, Durham, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
624
|
Spallone G, Botti E, Costanzo A. Targeted therapy in nonmelanoma skin cancers. Cancers (Basel) 2011; 3:2255-73. [PMID: 24212808 PMCID: PMC3757416 DOI: 10.3390/cancers3022255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/11/2011] [Accepted: 04/26/2011] [Indexed: 12/13/2022] Open
Abstract
Nonmelanoma skin cancer (NMSC) is the most prevalent cancer in light-skinned populations, and includes mainly Basal Cell Carcinomas (BCC), representing around 75% of NMSC and Squamous Cell Carcinomas (SCC). The incidence of these tumors is continuously growing. It was found that the overall number of procedures for NMSC in US rose by 76%, from 1,158,298 in 1992 to 2,048,517 in 2006. Although mortality from NMSC tends to be very low, clearly the morbidity related to these skin cancers is very high. Treatment options for NMSC include both surgical and nonsurgical interventions. Surgery was considered the gold standard therapy, however, advancements in the knowledge of pathogenic mechanisms of NMSCs led to the identification of key targets for drug intervention and to the consequent development of several targeted therapies. These represent the future in treatment of these common forms of cancer ensuring a high cure rate, preservation of the maximal amount of normal surrounding tissue and optimal cosmetic outcome. Here, we will review recent advancements in NMSC targeted therapies focusing on BCC and SCC.
Collapse
Affiliation(s)
- Giulia Spallone
- Department of Dermatology, University of Rome "Tor Vergata", Via Montpellier 1, 00199, Rome, Italy.
| | | | | |
Collapse
|
625
|
Dolznig H, Rupp C, Puri C, Haslinger C, Schweifer N, Wieser E, Kerjaschki D, Garin-Chesa P. Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:487-501. [PMID: 21703426 DOI: 10.1016/j.ajpath.2011.03.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/02/2011] [Accepted: 03/29/2011] [Indexed: 12/27/2022]
Abstract
Activated tumor stroma participates in tumor cell growth, invasion, and metastasis. Normal fibroblasts and cancer-associated fibroblasts (CAFs) have been shown to display distinct gene expression signatures. This molecular heterogeneity may influence the way tumor cells migrate, proliferate, and survive during tumor progression. To test this hypothesis and to better understand the molecular mechanisms that control these interactions, we established a three-dimensional (3D) human cell culture system that recapitulates the tumor heterogeneity observed in vivo. Human colon tumor cells were grown as multicellular spheroids and subsequently co-cultured with normal fibroblasts or CAFs in collagen I gels. This in vitro model system closely mirrors the architecture of human epithelial cancers and allows the characterization of the tumor cell-stroma interactions phenotypically and at the molecular level. Using GeneChip analysis, antibody arrays, and enzyme-linked immunosorbent assays, we demonstrate that the interaction of colon cancer cells with stromal fibroblasts induced different highly relevant cancer expression profiles. Genes involved in invasion, extracellular matrix remodeling, inflammation, and angiogenesis were differentially regulated in our 3D carcinoma model. The modular setup, reproducibility, and robustness of the model make it a powerful tool to identify target molecules involved in signaling pathways that mediate paracrine interactions in the tumor microenvironment and to validate the influence of these molecular targets during tumor growth and invasion in the supporting stroma.
Collapse
Affiliation(s)
- Helmut Dolznig
- Institute of Pathology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
626
|
Nagao H, Ijiri K, Hirotsu M, Ishidou Y, Yamamoto T, Nagano S, Takizawa T, Nakashima K, Komiya S, Setoguchi T. Role of GLI2 in the growth of human osteosarcoma. J Pathol 2011; 224:169-79. [DOI: 10.1002/path.2880] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/12/2011] [Accepted: 02/20/2011] [Indexed: 12/20/2022]
|
627
|
Dodge ME, Lum L. Drugging the cancer stem cell compartment: lessons learned from the hedgehog and Wnt signal transduction pathways. Annu Rev Pharmacol Toxicol 2011; 51:289-310. [PMID: 20887197 DOI: 10.1146/annurev-pharmtox-010510-100558] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell-cell communication mediated by the secreted Hedgehog (Hh) and Wnt signaling molecules is essential to the coordination of cell fate decision making throughout the metazoan lifespan. From decades of genetically based interrogation, core components constituting the Hh and Wnt signal transduction pathways have been assembled, and a deep appreciation of how these signals elaborate distinct bodily tissues during development has been established. On the other hand, our incapacity to leverage similar genetic approaches to study adult organ systems has limited our understanding of how these molecules promote tissue renewal and regeneration through stem cell regulation. We discuss recent progress in the use of chemically based approaches to achieve control of these pathway activities in a broad range of biological studies and therapeutic contexts. In particular, we discuss the unique experimental opportunities that chemical modulators of these pathways afford in exploring the cancer stem cell hypothesis.
Collapse
Affiliation(s)
- Michael E Dodge
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | |
Collapse
|
628
|
Friedman E. The role of mirk kinase in sarcomas. Sarcoma 2011; 2011:260757. [PMID: 21559261 PMCID: PMC3087898 DOI: 10.1155/2011/260757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 02/23/2011] [Indexed: 01/07/2023] Open
Abstract
Targeting the tyrosine kinase KIT in gastrointestinal stromal tumors has led to improved treatment. Other kinases might serve as therapeutic targets in the more common forms of sarcoma. The kinase Mirk/dyrk1B is highly expressed in the vast majority of osteosarcomas and rhabdomyosarcomas and mediates their growth, as depletion of Mirk led to tumor cell apoptosis. Mirk is known to increase the expression of a series of antioxidant genes, which scavenge reactive oxygen species (ROS) within various tumor cells, mediating their survival. As a result, depleting Mirk led to increased levels of damaging ROS. Tumor cells depleted of Mirk were also sensitized to low levels of chemotherapeutic drugs that increase ROS levels. In contrast, Mirk expression is quite low in most normal cells, and Mirk depletion or embryonic knockout of Mirk did not detectably affect cell survival. Thus targeting Mirk for intervention in sarcomas might spare most normal tissues.
Collapse
Affiliation(s)
- Eileen Friedman
- Department of Pathology, Upstate Medical University, 750 East Adams Street, 2305 Weiskotten Hall, Syracuse, NY 13210, USA
| |
Collapse
|
629
|
Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, Mysorekar IU, Beachy PA. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 2011; 472:110-4. [PMID: 21389986 PMCID: PMC3676169 DOI: 10.1038/nature09851] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 01/17/2011] [Indexed: 12/28/2022]
Abstract
Epithelial integrity in metazoan organs is maintained through the regulated proliferation and differentiation of organ-specific stem and progenitor cells. Although the epithelia of organs such as the intestine regenerate constantly and thus remain continuously proliferative, other organs, such as the mammalian urinary bladder, shift from near-quiescence to a highly proliferative state in response to epithelial injury. The cellular and molecular mechanisms underlying this injury-induced mode of regenerative response are poorly defined. Here we show in mice that the proliferative response to bacterial infection or chemical injury within the bladder is regulated by signal feedback between basal cells of the urothelium and the stromal cells that underlie them. We demonstrate that these basal cells include stem cells capable of regenerating all cell types within the urothelium, and are marked by expression of the secreted protein signal Sonic hedgehog (Shh). On injury, Shh expression in these basal cells increases and elicits increased stromal expression of Wnt protein signals, which in turn stimulate the proliferation of both urothelial and stromal cells. The heightened activity of this signal feedback circuit and the associated increase in cell proliferation appear to be required for restoration of urothelial function and, in the case of bacterial injury, may help clear and prevent further spread of infection. Our findings provide a conceptual framework for injury-induced epithelial regeneration in endodermal organs, and may provide a basis for understanding the roles of signalling pathways in cancer growth and metastasis.
Collapse
Affiliation(s)
- Kunyoo Shin
- Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
630
|
Gavino C, Richard S. Patched1 haploinsufficiency impairs ependymal cilia function of the quaking viable mice, leading to fatal hydrocephalus. Mol Cell Neurosci 2011; 47:100-7. [PMID: 21447392 DOI: 10.1016/j.mcn.2011.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/22/2011] [Accepted: 03/20/2011] [Indexed: 01/20/2023] Open
Abstract
The quaking viable (qk(v)) mice harbor an autosomal recessive mutation that deletes the parkin co-regulated gene (pacrg) and parkin (park2) genes, and alters the expression of the quaking (qkI) gene. qk(v) mice have been well-studied for their dysmyelination phenotype caused by the altered expression of the qkI gene. The qk(v) mice exhibit sterility in males and develop acquired mild hydrocephalus due to the lack of PACRG expression. To identify genetic interactors of the pacrg-parkin-qkI locus, we crossbred the qk(v) mice with various mouse strains including the patched1 (ptch1)-deficient mice. The ptch1 heterozygous mice exhibit increased Sonic Hedgehog (Shh) signaling and are prone to several malignancies including tumorigenesis. In the present study, we show that the qk(v/v); ptch1⁺/⁻ mice are distinguished by a dome-shaped skull at 4 to 6weeks of age and exhibit dilation of the lateral and third ventricles leading to fatal acquired hydrocephalus by ~5months of age, unlike their littermate controls that did not develop the condition. The qk(v/v); ptch1⁺/⁻ mice contained normal ciliated ependymal cells lining the ventricles of the brain, but these cells were functionally compromised with a severe cilial mediated flow defect. Our findings suggest that the ptch1 and the pacrg-parkin-qkI loci genetically interact to regulate cilia function of the ependymal cells.
Collapse
Affiliation(s)
- Christina Gavino
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T1E2, Canada
| | | |
Collapse
|
631
|
Raaijmakers MHGP. Niche contributions to oncogenesis: emerging concepts and implications for the hematopoietic system. Haematologica 2011; 96:1041-8. [PMID: 21459792 DOI: 10.3324/haematol.2010.028035] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The field of hematopoietic oncology has traditionally focused on the study of hematopoietic cell autonomous genetic events in an effort to understand malignant transformation and develop therapeutics. Although highly rewarding in both aspects, this cell autonomous approach has failed to fully satisfy our need to understand tumor cell behavior and related clinical observations. In recent years, it has been increasingly recognized that the tumor microenvironment plays a pivotal role in cancer initiation and progression. This review will discuss recent experimental evidence in support of this view derived from investigations in both epithelial and hematopoietic systems. Based on this, conceptual views and therapeutic implications will be provided on the emerging role of the bone marrow microenvironment in leukemogenesis.
Collapse
Affiliation(s)
- Marc H G P Raaijmakers
- Erasmus University Medical Center, Department of Hematology and Erasmus Stem Cell Institute, Faculty Building, Rm Ee-1393, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands.
| |
Collapse
|
632
|
Ottenhof NA, de Wilde RF, Maitra A, Hruban RH, Offerhaus GJA. Molecular characteristics of pancreatic ductal adenocarcinoma. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:620601. [PMID: 21512581 PMCID: PMC3068308 DOI: 10.4061/2011/620601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/07/2010] [Accepted: 01/10/2011] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is an almost universally lethal disease and despite extensive research over the last decades, this has not changed significantly. Nevertheless, much progress has been made in understanding the pathogenesis of pancreatic ductal adenocarcinoma (PDAC) suggesting that different therapeutic strategies based on these new insights are forthcoming. Increasing focus exists on designing the so-called targeted treatment strategies in which the genetic characteristics of a tumor guide therapy. In the past, the focus of research was on identifying the most frequently affected genes in PDAC, but with the complete sequencing of the pancreatic cancer genome the focus has shifted to defining the biological function that the altered genes play. In this paper we aimed to put the genetic alterations present in pancreatic cancer in the context of their role in signaling pathways. In addition, this paper provides an update of the recent advances made in the development of the targeted treatment approach in PDAC.
Collapse
Affiliation(s)
- Niki A. Ottenhof
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Roeland F. de Wilde
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Anirban Maitra
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - G. Johan A. Offerhaus
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- *G. Johan A. Offerhaus:
| |
Collapse
|
633
|
Brechbiel JL, Ng JMY, Curran T. PTHrP treatment fails to rescue bone defects caused by Hedgehog pathway inhibition in young mice. Toxicol Pathol 2011; 39:478-85. [PMID: 21411723 DOI: 10.1177/0192623311399788] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of molecular targeted therapies offers the hope of therapeutic advance in the fight against cancer. However, this hope is tempered by recent findings that certain targeted therapies may have unique side effects. The Hedgehog (HH) pathway is a potential target for treatment of several cancers, including basal cell carcinoma and a subset of medulloblastoma. Recent clinical trials in adults have shown responses to HH pathway inhibition in both basal cell carcinoma and medulloblastoma. However, concerns have been raised about the use of HH pathway inhibitors in children because of the role the HH pathway plays in development. Indeed, young mice treated with the HH pathway inhibitor HhAntag developed severe bone defects, including premature differentiation of chondrocytes, thinning of cortical bone, and fusion of the growth plate. In an effort to lessen the severity of bone defects caused by HhAntag, we treated young mice simultaneously with HhAntag and parathyroid hormone-related protein (PTHrP), which functions downstream of Indian Hedgehog to maintain chondrocytes in a proliferative state. The results show that whereas treatment with PTHrP causes a significant increase in trabecular bone, it does not prevent fusion of the growth plate induced by HhAntag.
Collapse
Affiliation(s)
- Jillian L Brechbiel
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Pennsylvania, PA 19104, USA
| | | | | |
Collapse
|
634
|
Onishi H, Kai M, Odate S, Iwasaki H, Morifuji Y, Ogino T, Morisaki T, Nakashima Y, Katano M. Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer. Cancer Sci 2011; 102:1144-50. [DOI: 10.1111/j.1349-7006.2011.01912.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
635
|
Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, Hsiao K, Yuan J, Green J, Ospina B, Yu Q, Ostrom L, Fordjour P, Anderson DL, Monahan JE, Kelleher JF, Peukert S, Pan S, Wu X, Maira SM, García-Echeverría C, Briggs KJ, Watkins DN, Yao YM, Lengauer C, Warmuth M, Sellers WR, Dorsch M. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2011; 2:51ra70. [PMID: 20881279 DOI: 10.1126/scitranslmed.3001599] [Citation(s) in RCA: 391] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The malignant brain cancer medulloblastoma is characterized by mutations in Hedgehog (Hh) signaling pathway genes, which lead to constitutive activation of the G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor Smoothened (Smo). The Smo antagonist NVP-LDE225 inhibits Hh signaling and induces tumor regression in animal models of medulloblastoma. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed several resistance mechanisms. We noted chromosomal amplification of Gli2, a downstream effector of Hh signaling, and, more rarely, point mutations in Smo that led to reactivated Hh signaling and restored tumor growth. Analysis of pathway gene expression signatures also, unexpectedly, identified up-regulation of phosphatidylinositol 3-kinase (PI3K) signaling in resistant tumors as another potential mechanism of resistance. Probing the relevance of increased PI3K signaling, we demonstrated that addition of the PI3K inhibitor NVP-BKM120 or the dual PI3K-mTOR (mammalian target of rapamycin) inhibitor NVP-BEZ235 to the initial treatment with the Smo antagonist markedly delayed the development of resistance. Our findings may be useful in informing treatment strategies for medulloblastoma.
Collapse
Affiliation(s)
- Silvia Buonamici
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
636
|
Chen YJ, Lin CP, Hsu ML, Shieh HR, Chao NK, Chao KSC. Sonic hedgehog signaling protects human hepatocellular carcinoma cells against ionizing radiation in an autocrine manner. Int J Radiat Oncol Biol Phys 2011; 80:851-9. [PMID: 21377281 DOI: 10.1016/j.ijrobp.2011.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 01/17/2023]
Abstract
PURPOSE Sonic hedgehog (Shh) signaling is critical to embryogenesis and resistance to chemotherapy. We aimed to examine the role of Shh signaling in the response to radiation of human hepatocellular carcinoma (HCC) cells. METHODS AND MATERIALS Response to ionizing radiation therapy (RT) was evaluated by clonogenic assay. Quantitative RT-polymerase chain reaction for patched-1 (PTCH-1) expression was performed. Cytosolic accumulation of Shh and nuclear translocation of Gli-1 were assessed by immunofluorescence. Gli-1 knockdown was done by RNA interference (RNAi). Immunoprecipitation was performed to detect Shh ligand in conditioned medium. Immunofluorescent stain for γ-H2AX was used as an index of DNA double strand breaks (DSB). Expression of proteins related to DNA damage repair was assessed by Western blotting. RESULTS We found that Shh ligand could protect human HCC HA22T and Sk-Hep1 cells against RT. In HA22T cells, Shh ligand activated the Shh signaling with upregulation of Shh, PTCH-1, and Gli-1 expression. The nuclear translocation of Gli-1 further supports the activation of Gli-1. The radioprotection by Shh ligand was partly blocked by Shh antibody neutralization and was abolished by Gli-1 RNAi, suggesting a critical role of Shh signaling in radiation resistance. Furthermore, we noted that soluble factors secreted into conditioned medium, either constitutively or responding to radiation, by HA22T or Sk-Hep1 cells protected subsequent culturing cells against RT. Immunoprecipitation shows the presence of Shh peptide in conditioned medium. Intriguingly, antibody neutralization of Shh ligand or knockdown of Gli-1 reversed the radioprotective effect of conditioned medium. Furthermore, Shh ligand reduced the RT-induced phosphorylation of checkpoint kinase 1 and impaired the repair of DNA DSB. CONCLUSIONS Activation of Shh signaling protects HCC cells against ionizing radiation in an autocrine manner. Impairment of DNA damage repair might involve mechanism of Shh-induced radioresistance. Targeting Shh signaling pathway may be a novel strategy to enhance the radioresponse of human HCC cells.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
637
|
Ailles L, Siu LL. Targeting the Hedgehog pathway in cancer: can the spines be smoothened? Clin Cancer Res 2011; 17:2071-3. [PMID: 21367749 DOI: 10.1158/1078-0432.ccr-11-0211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant Hedgehog (Hh) pathway signaling has been suggested to play a role in the development of multiple solid tumors and hematologic malignancies. GDC-0449 is a novel first-in-human, first-in-class smoothened (SMO) inhibitor, which has completed its phase I evaluation and achieved proof of concept in tumors with Hh pathway mutations.
Collapse
Affiliation(s)
- Laurie Ailles
- Princess Margaret Hospital, Ontario Cancer Institute, University of Toronto, Toronto, Canada
| | | |
Collapse
|
638
|
Roudaut H, Traiffort E, Gorojankina T, Vincent L, Faure H, Schoenfelder A, Mann A, Manetti F, Solinas A, Taddei M, Ruat M. Identification and mechanism of action of the acylguanidine MRT-83, a novel potent Smoothened antagonist. Mol Pharmacol 2011; 79:453-60. [PMID: 21177415 DOI: 10.1124/mol.110.069708] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
There is a clear need to develop novel pharmacological tools to improve our understanding of Smoothened (Smo) function in normal and pathological states. Here, we report the discovery, the mechanism of action, and the in vivo activity of N-(2-methyl-5-(3-(3,4,5-trimethoxybenzoyl)guanidino)phenyl)biphenyl-4-carboxamide (MRT-83), a novel potent antagonist of Smo that belongs to the acylguanidine family of molecules. MRT-83 fits to a proposed pharmacophoric model for Smo antagonists with three hydrogen bond acceptor groups and three hydrophobic regions. MRT-83 blocks Hedgehog (Hh) signaling in various assays with an IC50 in the nanomolar range, showing greater potency than the reference Smo antagonist cyclopamine. MRT-83 inhibits Bodipy-cyclopamine binding to human and mouse Smo but does not modify Wnt signaling in human embryonic kidney 293 transiently transfected with a Tcf/Lef-dependent Firefly luciferase reporter together with a Renilla reniformis luciferase control reporter. MRT-83 abrogates the agonist-induced trafficking of endogenous mouse or human Smo to the primary cilium of C3H10T1/2 or NT2 cells that derive from a pluripotent testicular carcinoma. Stereotaxic injection into the lateral ventricle of adult mice of MRT-83 but not of a structurally related compound inactive at Smo abolished up-regulation of Patched transcription induced by Sonic Hedgehog in the neighboring subventricular zone. These data demonstrate that MRT-83 efficiently antagonizes Hh signaling in vivo. All together, these molecular, functional and biochemical studies provide evidence that MRT-83 interacts with Smo. Thus, this novel Smo antagonist will be useful for manipulating Hh signaling and may help develop new therapies against Hh-pathway related diseases.
Collapse
Affiliation(s)
- Hermine Roudaut
- Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Centre National de la Recherche Scientifique, UPR-3294, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
639
|
Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov 2011; 10:179-87. [DOI: 10.1038/nrd3385] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
640
|
Chung CH, Dignam JJ, Hammond ME, Klimowicz AC, Petrillo SK, Magliocco A, Jordan R, Trotti A, Spencer S, Cooper JS, Le QT, Ang KK. Glioma-associated oncogene family zinc finger 1 expression and metastasis in patients with head and neck squamous cell carcinoma treated with radiation therapy (RTOG 9003). J Clin Oncol 2011; 29:1326-34. [PMID: 21357786 DOI: 10.1200/jco.2010.32.3295] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Glioma-associated oncogene family zinc finger 1 (GLI1) expression was assessed to determine a potential role of hedgehog (Hh) signaling in head and neck squamous cell carcinoma (HNSCC). Additional proteins known to be modulated by Hh signaling, including beta-catenin (CTNNB1) and epidermal growth factor receptor (EGFR), were also assessed to determine the correlation among these distinct signaling pathways. PATIENTS AND METHODS Nuclear GLI1 and CTNNB1 expression levels were determined in tumors from patients enrolled on Radiation Therapy Oncology Group (RTOG) 9003, a radiation fractionation trial. The results were also correlated with previously determined EGFR expression. The expression levels were evaluated in relation to three end points: time to metastasis (TTM), time to disease progression (TDP), and overall survival (OS). RESULTS Among 1,068 eligible patients, data on GLI1, CTNNB1, and EGFR were available in 339, 164, and 300 patients, respectively. Although CTNNB1 expression did not differentiate prognosis, GLI1 was associated with poorer outcomes, adjusted for age, TNM stages, and Karnofsky performance score, and the significant influence persisted in a multivariable analysis (quartile 4 [Q4] v Q1 to Q3: TTM hazard ratio [HR], 2.7; 95% CI, 1.5 to 4.9; TDP HR, 1.6; 95% CI, 1.1 to 2.5; OS HR, 1.9; 95% CI, 1.4 to 2.7). The significance of GLI1 persisted in a multivariable analysis that included EGFR expression levels. CONCLUSION These data suggest that Hh signaling may play an important role in metastasis and that GLI1 could serve as a marker in HNSCC, but the regulatory mechanisms and oncogenic significance need further investigation. Risk classification based on this analysis needs a validation in independent cohorts.
Collapse
Affiliation(s)
- Christine H Chung
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St, CRB-1 Room 344, Baltimore, MD 21231-1000, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
641
|
Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 2011; 19:192-205. [PMID: 21295524 PMCID: PMC3040415 DOI: 10.1016/j.ccr.2010.12.022] [Citation(s) in RCA: 456] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/17/2010] [Accepted: 11/10/2010] [Indexed: 02/06/2023]
Abstract
Despite evidence supporting an oncogenic role in breast cancer, the Notch pathway's contribution to metastasis remains unknown. Here, we report that the Notch ligand Jagged1 is a clinically and functionally important mediator of bone metastasis by activating the Notch pathway in bone cells. Jagged1 promotes tumor growth by stimulating IL-6 release from osteoblasts and directly activates osteoclast differentiation. Furthermore, Jagged1 is a potent downstream mediator of the bone metastasis cytokine TGFβ that is released during bone destruction. Importantly, γ-secretase inhibitor treatment reduces Jagged1-mediated bone metastasis by disrupting the Notch pathway in stromal bone cells. These findings elucidate a stroma-dependent mechanism for Notch signaling in breast cancer and provide rationale for using γ-secretase inhibitors for the treatment of bone metastasis.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xudong Dai
- Merck Research Laboratories, Boston, MA 02115, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Breast Cancer Program, Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
642
|
Graham RA, Lum BL, Cheeti S, Jin JY, Jorga K, Von Hoff DD, Rudin CM, Reddy JC, Low JA, Lorusso PM. Pharmacokinetics of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with locally advanced or metastatic solid tumors: the role of alpha-1-acid glycoprotein binding. Clin Cancer Res 2011; 17:2512-20. [PMID: 21300760 DOI: 10.1158/1078-0432.ccr-10-2736] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In a phase I trial for patients with refractory solid tumors, hedgehog pathway inhibitor vismodegib (GDC-0449) showed little decline in plasma concentrations over 7 days after a single oral dose and nonlinearity with respect to dose and time after single and multiple dosing. We studied the role of GDC-0449 binding to plasma protein alpha-1-acid glycoprotein (AAG) to better understand these unusual pharmacokinetics. EXPERIMENTAL DESIGN Sixty-eight patients received GDC-0449 at 150 (n = 41), 270 (n = 23), or 540 (n = 4) mg/d, with pharmacokinetic (PK) sampling at multiple time points. Total and unbound (dialyzed) GDC-0449 plasma concentrations were assessed by liquid chromatography/tandem mass spectrometry, binding kinetics by surface plasmon resonance-based microsensor, and AAG levels by ELISA. RESULTS A linear relationship between total GDC-0449 and AAG plasma concentrations was observed across dose groups (R(2) = 0.73). In several patients, GDC-0449 levels varied with fluctuations in AAG levels over time. Steady-state, unbound GDC-0449 levels were less than 1% of total, independent of dose or total plasma concentration. In vitro, GDC-0449 binds AAG strongly and reversibly (K(D) = 13 μmol/L) and human serum albumin less strongly (K(D) = 120 μmol/L). Simulations from a derived mechanistic PK model suggest that GDC-0449 pharmacokinetics are mediated by AAG binding, solubility-limited absorption, and slow metabolic elimination. CONCLUSIONS GDC-0449 levels strongly correlated with AAG levels, showing parallel fluctuations of AAG and total drug over time and consistently low, unbound drug levels, different from previously reported AAG-binding drugs. This PK profile is due to high-affinity, reversible binding to AAG and binding to albumin, in addition to solubility-limited absorption and slow metabolic elimination properties.
Collapse
|
643
|
LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Chang I, Darbonne WC, Graham RA, Zerivitz KL, Low JA, Von Hoff DD. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res 2011; 17:2502-11. [PMID: 21300762 DOI: 10.1158/1078-0432.ccr-10-2745] [Citation(s) in RCA: 415] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE The hedgehog (Hh) signaling pathway, a key regulator of cell growth and differentiation during development is implicated in pathogenesis of certain cancers. Vismodegib (GDC-0449) is a small-molecule inhibitor of smoothened, a key component of Hh signaling. This phase I trial assessed GDC-0449 treatment in patients with solid tumors refractory to current therapies or for which no standard therapy existed. EXPERIMENTAL DESIGN Sixty-eight patients received GDC-0449 at 150 mg/d (n = 41), 270 mg/d (n = 23), or 540 mg/d (n = 4). Adverse events, tumor responses, pharmacokinetics, and pharmacodynamic down-modulation of GLI1 expression in noninvolved skin were assessed. RESULTS Thirty-three of 68 patients had advanced basal cell carcinoma (BCC), 8 had pancreatic cancer, 1 had medulloblastoma; 17 other types of cancer were also represented. GDC-0449 was generally well-tolerated. Six patients (8.8%) experienced 7 grade 4 events (hyponatremia, fatigue, pyelonephritis, presyncope, resectable pancreatic adenocarcinoma, and paranoia with hyperglycemia), and 27.9% of patients experienced a grade 3 event [most commonly hyponatremia (10.3%), abdominal pain (7.4%), and fatigue (5.9%)]. No maximum tolerated dose was reached. The recommended phase II dose was 150 mg/d, based on achievement of maximal plasma concentration and pharmacodynamic response at this dose. Tumor responses were observed in 20 patients (19 with BCC and 1 unconfirmed response in medulloblastoma), 14 patients had stable disease as best response, and 28 had progressive disease. Evidence of GLI1 down-modulation was observed in noninvolved skin. CONCLUSIONS GDC-0449 has an acceptable safety profile and encouraging anti-tumor activity in advanced BCC and medulloblastoma. Further study in these and other cancer types is warranted.
Collapse
Affiliation(s)
- Patricia M LoRusso
- Karmanos Cancer Institute, Detroit, Michigan; Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
644
|
Plaisant M, Giorgetti-Peraldi S, Gabrielson M, Loubat A, Dani C, Peraldi P. Inhibition of hedgehog signaling decreases proliferation and clonogenicity of human mesenchymal stem cells. PLoS One 2011; 6:e16798. [PMID: 21304817 PMCID: PMC3033417 DOI: 10.1371/journal.pone.0016798] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/11/2011] [Indexed: 01/23/2023] Open
Abstract
Human mesenchymal stem cells (hMSC) have the ability to differentiate into osteoblasts, adipocytes and chondrocytes. We have previously shown that hMSC were endowed with a basal level of Hedgehog signaling that decreased after differentiation of these cells. Since hMSC differentiation is associated with growth-arrest we investigated the function of Hh signaling on cell proliferation. Here, we show that inhibition of Hh signaling, using the classical inhibitor cyclopamine, or a siRNA directed against Gli-2, leads to a decrease in hMSC proliferation. This phenomenon is not linked to apoptosis but to a block of the cells in the G0/G1 phases of the cell cycle. At the molecular level, it is associated with an increase in the active form of pRB, and a decrease in cyclin A expression and MAP kinase phosphorylation. Inhibition of Hh signaling is also associated with a decrease in the ability of the cells to form clones. By contrast, inhibition of Hh signaling during hMSC proliferation does not affect their ability to differentiate. This study demonstrates that hMSC are endowed with a basal Hedgehog signaling activity that is necessary for efficient proliferation and clonogenicity of hMSC. This observation unravels an unexpected new function for Hedgehog signaling in the regulation of human mesenchymal stem cells and highlights the critical function of this morphogen in hMSC biology.
Collapse
Affiliation(s)
- Magali Plaisant
- CNRS UMR6543, Institute of Biology, Development and Cancer, Faculté de Médecine, Nice, France
| | | | | | | | | | | |
Collapse
|
645
|
Abstract
In most cholangiopathies, liver diseases of different etiologies in which the biliary epithelium is the primary target in the pathogenic sequence, the central mechanism involves inflammation. Inflammation, characterized by pleomorphic peribiliary infiltrate containing fibroblasts, macrophages, lymphocytes, as well as endothelial cells and pericytes, is associated to the emergence of "reactive cholangiocytes." These biliary cells do not possess bile secretory functions, are in contiguity with terminal cholangioles, and are of a less-differentiated phenotype. They have acquired several mesenchymal properties, including motility and ability to secrete a vast number of proinflammatory chemo/cytokines and growth factors along with de novo expression of a rich receptor machinery. These functional properties enable reactive cholangiocytes to establish intimate contacts and to mutually exchange a variety of paracrine signals with the different mesenchymal cell types populating the portal infiltrate. The extensive crosstalk between the epithelial and mesenchymal compartments is the driver of liver repair mechanisms in cholangiopathies, ultimately evolving toward portal fibrosis. Herein, the authors first review the properties of the different cell types involved in their interaction, and then analyze the underlying molecular mechanisms as they relate to liver repair in cholangiopathies.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Surgical and Gastroenterological Sciences, University of Padua, Padova, Italy
- Center for Liver Research (CeLiveR), Bergamo, Italy
| | - Mario Strazzabosco
- Center for Liver Research (CeLiveR), Bergamo, Italy
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Department of Clinical Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
646
|
Stefanius K, Kantola T, Tuomisto A, Vahteristo P, Karttunen TJ, Aaltonen LA, Mäkinen MJ, Karhu A. Downregulation of the hedgehog receptor PTCH1 in colorectal serrated adenocarcinomas is not caused by PTCH1 mutations. Virchows Arch 2011; 458:213-9. [PMID: 21234763 DOI: 10.1007/s00428-010-1031-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/09/2010] [Accepted: 12/18/2010] [Indexed: 01/03/2023]
Abstract
Colorectal serrated adenocarcinoma forms about 15-20% of colorectal carcinomas. We have previously shown that downregulation of PTCH1 is distinctive for this type of colorectal cancer. In several other tumor types, somatic inactivating PTCH1 mutations have been shown to lead to aberrant Hedgehog signaling, but in colorectal cancer the role of PTCH1 mutations has not been thoroughly studied. Here, we have analyzed the mutation status of PTCH1 in a series of 33 colorectal serrated adenocarcinomas by sequencing all 23 coding exons. We detected 11 previously known SNPs and eight new alterations. The latter included five synonymous changes and two previously unknown missense variations, somatic M319V, and germline V1231A. V1231A was also present in population controls and likely represents polymorphism. The somatic M319V variant does not appear to be an attractive candidate for a disease-associated mutation because in silico analyses did not support the pathogenic nature of the change. A somatic, intronic 1-bp deletion was detected in a short poly(T) stretch in two microsatellite unstable tumors. None of the three changes had predicted effect on splicing when analyzed in silico. Our results did not reveal any clearly deleterious inactivating PTCH1 mutations in our collection of colorectal serrated adenocarcinomas. This suggests that other mechanisms are involved in the observed downregulation of the PTCH1 gene. These might include, e.g., constantly active MAPK signaling by KRAS or BRAF mutations or silencing of PTCH1 by hypermethylation, and further studies are needed to reveal these mechanisms.
Collapse
Affiliation(s)
- Karoliina Stefanius
- Department of Pathology, Institute of Diagnostics, University of Oulu, FI-90014, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
647
|
Karlou M, Tzelepi V, Efstathiou E. Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 2011; 7:494-509. [PMID: 20818327 DOI: 10.1038/nrurol.2010.134] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solid tumors can be thought of as multicellular 'organs' that consist of a variety of cells as well as a scaffold of noncellular matrix. Stromal-epithelial crosstalk is integral to prostate cancer progression and metastasis, and androgen signaling is an important component of this crosstalk at both the primary and metastatic sites. Intratumoral production of androgen is an important mechanism of castration resistance and has been the focus of novel therapeutic approaches with promising results. Various other pathways are important for stromal-epithelial crosstalk and represent attractive candidate therapeutic targets. Hedgehog signaling has been associated with tumor progression, growth and survival, while Src family kinases have been implicated in tumor progression and in regulation of cancer cell migration. Fibroblast growth factors and transforming growth factor beta signaling regulate cell proliferation, apoptosis and angiogenesis in the prostate cancer microenvironment. Integrins mediate communication between the cell and the extracellular matrix, enhancing growth, migration, invasion and metastasis of cancer cells. The contribution of stromal-epithelial crosstalk to prostate cancer initiation and progression provides the impetus for combinatorial microenvironment-targeting strategies.
Collapse
Affiliation(s)
- Maria Karlou
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230-1439, USA
| | | | | |
Collapse
|
648
|
Abstract
Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.
Collapse
Affiliation(s)
- Malia B Potts
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 75390-9148, USA
| | | |
Collapse
|
649
|
Dolznig H, Walzl A, Kramer N, Rosner M, Garin-Chesa P, Hengstschläger M. Organotypic spheroid cultures to study tumor–stroma interaction during cancer development. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.ddmod.2011.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
650
|
Sethi N, Kang Y. Dysregulation of developmental pathways in bone metastasis. Bone 2011; 48:16-22. [PMID: 20630490 DOI: 10.1016/j.bone.2010.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 06/30/2010] [Accepted: 07/06/2010] [Indexed: 02/07/2023]
Abstract
It is well-known that pathways normally functioning during embryonic development are dysregulated in cancer. Experimental and clinical studies have established strong connections between aberrant developmental pathways and transformation, as well as other early stage events of cancer progression. There is now emerging evidence that also indicates the contribution of developmental pathways to the pathogenesis of distant metastasis, including bone metastasis. In particular, the Wnt, BMP, and Hedgehog signaling pathways have all been implicated in the development of bone metastasis. These developmental pathways participate in the regulation of cell-autonomous functions in tumor cells as well as tumor-stromal interactions in the bone microenvironment, eventually promoting the formation of osteolytic or osteoblastic bone metastasis.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|