601
|
Nakanishi T, Kato Y, Matsuura T, Watanabe H. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS One 2014; 9:e98363. [PMID: 24878568 PMCID: PMC4039500 DOI: 10.1371/journal.pone.0098363] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022] Open
Abstract
The water flea Daphnia magna has been used as an animal model in ecology, evolution, and environmental sciences. Thanks to the recent progress in Daphnia genomics, genetic information such as the draft genome sequence and expressed sequence tags (ESTs) is now available. To investigate the relationship between phenotypes and the available genetic information about Daphnia, some gene manipulation methods have been developed. However, a technique to induce targeted mutagenesis into Daphnia genome remains elusive. To overcome this problem, we focused on an emerging genome editing technique mediated by the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system to introduce genomic mutations. In this study, we targeted a functionally conserved regulator of eye development, the eyeless gene in D. magna. When we injected Cas9 mRNAs and eyeless-targeting guide RNAs into eggs, 18-47% of the survived juveniles exhibited abnormal eye morphology. After maturation, up to 8.2% of the adults produced progenies with deformed eyes, which carried mutations in the eyeless loci. These results showed that CRISPR/Cas system could introduce heritable mutations into the endogenous eyeless gene in D. magna. This is the first report of a targeted gene knockout technique in Daphnia and will be useful in uncovering Daphnia gene functions.
Collapse
Affiliation(s)
- Takashi Nakanishi
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hajime Watanabe
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
602
|
Gagnon JA, Valen E, Thyme SB, Huang P, Ahkmetova L, Pauli A, Montague TG, Zimmerman S, Richter C, Schier AF. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 2014; 9:e98186. [PMID: 24873830 PMCID: PMC4038517 DOI: 10.1371/journal.pone.0098186] [Citation(s) in RCA: 625] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/18/2014] [Indexed: 11/19/2022] Open
Abstract
The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5' adenine were improved by rescuing 5' end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes.
Collapse
Affiliation(s)
- James A. Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eivind Valen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Summer B. Thyme
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Peng Huang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Laila Ahkmetova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tessa G. Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Steven Zimmerman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Constance Richter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
603
|
RNA-guided nucleases: a new era for engineering the genomes of model and nonmodel organisms. Genetics 2014; 195:303-8. [PMID: 24089463 DOI: 10.1534/genetics.113.155093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
604
|
Abstract
UNLABELLED Toxoplasma gondii has become a model for studying the phylum Apicomplexa, in part due to the availability of excellent genetic tools. Although reverse genetic tools are available in a few widely utilized laboratory strains, they rely on special genetic backgrounds that are not easily implemented in natural isolates. Recent progress in modifying CRISPR (clustered regularly interspaced short palindromic repeats), a system of DNA recognition used as a defense mechanism in bacteria and archaea, has led to extremely efficient gene disruption in a variety of organisms. Here we utilized a CRISPR/CAS9-based system with single guide RNAs to disrupt genes in T. gondii. CRISPR/CAS9 provided an extremely efficient system for targeted gene disruption and for site-specific insertion of selectable markers through homologous recombination. CRISPR/CAS9 also facilitated site-specific insertion in the absence of homology, thus increasing the utility of this approach over existing technology. We then tested whether CRISPR/CAS9 would enable efficient transformation of a natural isolate. Using CRISPR/CAS9, we were able to rapidly generate both rop18 knockouts and complemented lines in the type I GT1 strain, which has been used for forward genetic crosses but which remains refractory to reverse genetic approaches. Assessment of their phenotypes in vivo revealed that ROP18 contributed a greater proportion to acute pathogenesis in GT1 than in the laboratory type I RH strain. Thus, CRISPR/CAS9 extends reverse genetic techniques to diverse isolates of T. gondii, allowing exploration of a much wider spectrum of biological diversity. IMPORTANCE Genetic approaches have proven very powerful for studying the biology of organisms, including microbes. However, ease of genetic manipulation varies widely among isolates, with common lab isolates often being the most amenable to such approaches. Unfortunately, such common lab isolates have also been passaged frequently in vitro and have thus lost many of the attributes of wild isolates, often affecting important traits, like virulence. On the other hand, wild isolates are often not amenable to standard genetic approaches, thus limiting inquiry about the genetic basis of biological diversity. Here we imported a new genetic system based on CRISPR/CAS9, which allows high efficiency of targeted gene disruption in natural isolates of T. gondii. This advance promises to bring the power of genetics to bear on the broad diversity of T. gondii strains that have been described recently.
Collapse
|
605
|
Frokjaer-Jensen C, Davis MW, Sarov M, Taylor J, Flibotte S, LaBella M, Pozniakovski A, Moerman DG, Jorgensen EM. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods 2014; 11:529-34. [PMID: 24820376 PMCID: PMC4126194 DOI: 10.1038/nmeth.2889] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
We have generated a recombinant Mos1 transposon that can insert up to 45-kb transgenes into the Caenorhabditis elegans genome. The minimal Mos1 transposon (miniMos) is 550 bp long and inserts DNA into the genome at high frequency (~60% of injected animals). Genetic and antibiotic markers can be used for selection, and the transposon is active in C. elegans isolates and Caenorhabditis briggsae. We used the miniMos transposon to generate six universal Mos1-mediated single-copy insertion (mosSCI) landing sites that allow targeted transgene insertion with a single targeting vector into permissive expression sites on all autosomes. We also generated two collections of strains: a set of bright fluorescent insertions that are useful as dominant, genetic balancers and a set of lacO insertions to track genome position.
Collapse
Affiliation(s)
- Christian Frokjaer-Jensen
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - M Wayne Davis
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Mihail Sarov
- TransgeneOmics, Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Jon Taylor
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew LaBella
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Andrei Pozniakovski
- TransgeneOmics, Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik M Jorgensen
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
606
|
Zantke J, Bannister S, Rajan VBV, Raible F, Tessmar-Raible K. Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 2014; 197:19-31. [PMID: 24807110 PMCID: PMC4012478 DOI: 10.1534/genetics.112.148254] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/17/2014] [Indexed: 01/27/2023] Open
Abstract
The bristle worm Platynereis dumerilii displays many interesting biological characteristics. These include its reproductive timing, which is synchronized to the moon phase, its regenerative capacity that is hormonally controlled, and a slow rate of evolution, which permits analyses of ancestral genes and cell types. As a marine annelid, Platynereis is also representative of the marine ecosystem, as well as one of the three large animal subphyla, the Lophotrochozoa. Here, we provide an overview of the molecular resources, functional techniques, and behavioral assays that have recently been established for the bristle worm. This combination of tools now places Platynereis in an excellent position to advance research at the frontiers of neurobiology, chronobiology, evo-devo, and marine biology.
Collapse
Affiliation(s)
- Juliane Zantke
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| | - Stephanie Bannister
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| | - Vinoth Babu Veedin Rajan
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| | - Florian Raible
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| |
Collapse
|
607
|
Archambeault DR, Matzuk MM. Disrupting the male germ line to find infertility and contraception targets. ANNALES D'ENDOCRINOLOGIE 2014; 75:101-8. [PMID: 24793995 DOI: 10.1016/j.ando.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genetically-manipulated mouse models have become indispensible for broadening our understanding of genes and pathways related to male germ cell development. Until suitable in vitro systems for studying spermatogenesis are perfected, in vivo models will remain the gold standard for inquiry into testicular function. Here, we discuss exciting advances that are allowing researchers faster, easier, and more customizable access to their mouse models of interest. Specifically, the trans-NIH Knockout Mouse Project (KOMP) is working to generate knockout mouse models of every gene in the mouse genome. The related Knockout Mouse Phenotyping Program (KOMP2) is performing systematic phenotypic analysis of this genome-wide collection of knockout mice, including fertility screening. Together, these programs will not only uncover new genes involved in male germ cell development but also provide the research community with the mouse models necessary for further investigations. In addition to KOMP/KOMP2, another promising development in the field of mouse models is the advent of CRISPR (clustered regularly interspaced short palindromic repeat)-Cas technology. Utilizing 20 nucleotide guide sequences, CRISPR/Cas has the potential to introduce sequence-specific insertions, deletions, and point mutations to produce null, conditional, activated, or reporter-tagged alleles. CRISPR/Cas can also successfully target multiple genes in a single experimental step, forgoing the multiple generations of breeding traditionally required to produce mouse models with deletions, insertions, or mutations in multiple genes. In addition, CRISPR/Cas can be used to create mouse models carrying variants identical to those identified in infertile human patients, providing the opportunity to explore the effects of such mutations in an in vivo system. Both the KOMP/KOMP2 projects and the CRISPR/Cas system provide powerful, accessible genetic approaches to the study of male germ cell development in the mouse. A more complete understanding of male germ cell biology is critical for the identification of novel targets for potential non-hormonal contraceptive intervention.
Collapse
Affiliation(s)
- Denise R Archambeault
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
608
|
The application of transcription activator-like effector nucleases for genome editing in C. elegans. Methods 2014; 68:389-96. [PMID: 24780522 DOI: 10.1016/j.ymeth.2014.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/24/2022] Open
Abstract
The nematode Caenorhabditis elegans has been a powerful model system for biomedical research in the past decades, however, the efficient genetic tools are still demanding for gene knockout, knock-in or conditional gene mutations. Transcription activator-like effector nucleases (TALENs) that comprise a sequence-specific DNA-binding domain fused to a FokI nuclease domain facilitate the targeted genome editing in various cell types or organisms. Here we summarize the recent progresses and protocols using TALENs in C. elegans that generate gene mutations and knock-ins in the germ line and the conditional gene knockout in somatic tissues.
Collapse
|
609
|
Hwang WY, Peterson RT, Yeh JRJ. Methods for targeted mutagenesis in zebrafish using TALENs. Methods 2014; 69:76-84. [PMID: 24747922 DOI: 10.1016/j.ymeth.2014.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 12/26/2022] Open
Abstract
The transcription activator-like effector (TALE) nucleases, or TALENs, are customizable restriction enzymes that may be used to induce mutations at nearly any investigator-specified DNA sequence in zebrafish. The DNA-binding specificities of TALENs are determined by a protein array comprised of four types of TALE repeats, where each repeat recognizes a different DNA base. Here, we describe methods for constructing TALEN vectors that have been shown to achieve high success rates and mutation efficiencies in zebrafish. In addition, we discuss simple techniques and protocols that can be used to detect TALEN-induced mutations at almost any genomic locus. These methods should enable zebrafish researchers to quickly generate targeted mutations at their genes-of-interest.
Collapse
Affiliation(s)
- Woong Y Hwang
- Cardiovascular Research Center, Massachusetts General Hospital, 149 13th street, Room 4201, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Randall T Peterson
- Cardiovascular Research Center, Massachusetts General Hospital, 149 13th street, Room 4201, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, 149 13th street, Room 4201, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
610
|
Therrien M, Parker JA. Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans. Front Genet 2014; 5:85. [PMID: 24860590 PMCID: PMC4029022 DOI: 10.3389/fgene.2014.00085] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/30/2014] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases share pathogenic mechanisms at the cellular level including protein misfolding, excitotoxicity and altered RNA homeostasis among others. Recent advances have shown that the genetic causes underlying these pathologies overlap, hinting at the existence of a genetic network for neurodegeneration. This is perhaps best illustrated by the recent discoveries of causative mutations for amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). Once thought to be distinct entities, it is now recognized that these diseases exist along a genetic spectrum. With this wealth of discoveries comes the need to develop new genetic models of ALS and FTD to investigate not only pathogenic mechanisms linked to causative mutations, but to uncover potential genetic interactions that may point to new therapeutic targets. Given the conservation of many disease genes across evolution, Caenorhabditis elegans is an ideal system to investigate genetic interactions amongst these genes. Here we review the use of C. elegans to model ALS and investigate a putative genetic network for ALS/FTD that may extend to other neurological disorders.
Collapse
Affiliation(s)
- Martine Therrien
- Départment de Pathologie et Biologie Cellulaire, CRCHUM-Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| | - J Alex Parker
- Départment de Pathologie et Biologie Cellulaire, Départment de Neurosciences, CRCHUM-Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
611
|
Yu Z, Chen H, Liu J, Zhang H, Yan Y, Zhu N, Guo Y, Yang B, Chang Y, Dai F, Liang X, Chen Y, Shen Y, Deng WM, Chen J, Zhang B, Li C, Jiao R. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol Open 2014; 3:271-80. [PMID: 24659249 PMCID: PMC3988796 DOI: 10.1242/bio.20147682] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modifying the genomes of many organisms is becoming as easy as manipulating DNA in test tubes, which is made possible by two recently developed techniques based on either the customizable DNA binding protein, TALEN, or the CRISPR/Cas9 system. Here, we describe a series of efficient applications derived from these two technologies, in combination with various homologous donor DNA plasmids, to manipulate the Drosophila genome: (1) to precisely generate genomic deletions; (2) to make genomic replacement of a DNA fragment at single nucleotide resolution; and (3) to generate precise insertions to tag target proteins for tracing their endogenous expressions. For more convenient genomic manipulations, we established an easy-to-screen platform by knocking in a white marker through homologous recombination. Further, we provided a strategy to remove the unwanted duplications generated during the “ends-in” recombination process. Our results also indicate that TALEN and CRISPR/Cas9 had comparable efficiency in mediating genomic modifications through HDR (homology-directed repair); either TALEN or the CRISPR/Cas9 system could efficiently mediate in vivo replacement of DNA fragments of up to 5 kb in Drosophila, providing an ideal genetic tool for functional annotations of the Drosophila genome.
Collapse
Affiliation(s)
- Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
612
|
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system-based RNA-guided endonuclease (RGEN) has recently emerged as a simple and efficient tool for targeted genome editing. In this study, we showed successful targeted mutagenesis using RGENs in medaka, Oryzias latipes. Somatic and heritable mutations were induced with high efficiency at the targeted genomic sequence on the DJ-1 gene in embryos that had been injected with the single guide RNA (sgRNA) transcribed by a T7 promoter and capped RNA encoding a Cas9 nuclease. The sgRNAs that were designed for the target genomic sequences without the 5′ end of GG required by the T7 promoter induced the targeted mutations. This suggests that the RGEN can target any sequence adjacent to an NGG protospacer adjacent motif (PAM) sequence, which occurs once every 8 bp. The off-target alterations at 2 genomic loci harboring double mismatches in the 18-bp targeting sequences were induced in the RGEN-injected embryos. However, we also found that the off-target effects could be reduced by lower dosages of sgRNA. Taken together, our results suggest that CRISPR/Cas-mediated RGENs may be an efficient and flexible tool for genome editing in medaka.
Collapse
Affiliation(s)
- Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
613
|
Abstract
Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 ( C: lustered R: egularly I: nterspaced S: hort P: alindromic R: epeats/ C: RISPR AS: sociated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species.
Collapse
|
614
|
Abstract
Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 ( C: lustered R: egularly I: nterspaced S: hort P: alindromic R: epeats/ C: RISPR AS: sociated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species.
Collapse
|
615
|
Abstract
Programmable nucleases - including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided engineered nucleases (RGENs) derived from the bacterial clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) system - enable targeted genetic modifications in cultured cells, as well as in whole animals and plants. The value of these enzymes in research, medicine and biotechnology arises from their ability to induce site-specific DNA cleavage in the genome, the repair (through endogenous mechanisms) of which allows high-precision genome editing. However, these nucleases differ in several respects, including their composition, targetable sites, specificities and mutation signatures, among other characteristics. Knowledge of nuclease-specific features, as well as of their pros and cons, is essential for researchers to choose the most appropriate tool for a range of applications.
Collapse
Affiliation(s)
- Hyongbum Kim
- Graduate School of Biomedical Science and Engineering, and College of Medicine, Hanyang University, Wangsimni-ro 222, Sungdong-gu, Seoul 133-791, South Korea
| | - Jin-Soo Kim
- 1] Center for Genome Engineering, Institute for Basic Science, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, South Korea. [2] Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, South Korea
| |
Collapse
|
616
|
Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, Abe Y, Hatada I. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 2014; 4:4513. [PMID: 24675426 PMCID: PMC5380110 DOI: 10.1038/srep04513] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/13/2014] [Indexed: 02/07/2023] Open
Abstract
The CRISPR/Cas system, in which the Cas9 endonuclease and a guide RNA complementary to the target are sufficient for RNA-guided cleavage of the target DNA, is a powerful new approach recently developed for targeted gene disruption in various animal models. However, there is little verification of microinjection methods for generating knockout mice using this approach. Here, we report the verification of microinjection methods of the CRISPR/Cas system. We compared three methods for injection: (1) injection of DNA into the pronucleus, (2) injection of RNA into the pronucleus, and (3) injection of RNA into the cytoplasm. We found that injection of RNA into the cytoplasm was the most efficient method in terms of the numbers of viable blastocyst stage embryos and full-term pups generated. This method also showed the best overall knockout efficiency.
Collapse
Affiliation(s)
- Takuro Horii
- 1] Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan [2]
| | - Yuji Arai
- 1] Division of Developmental Biotechnology, Department of Bioscience and Genetics Research Institute, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita Osaka 565-8565, Japan [2]
| | - Miho Yamazaki
- 1] Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan [2] Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan [3] Department of Obstetrics and Gynecology, Gunma CHUO General Hospital, 1-7-13, Kouun-cho, Maebashi, Gunma 371-0025, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Masahiro Itoh
- Department of Obstetrics and Gynecology, Gunma CHUO General Hospital, 1-7-13, Kouun-cho, Maebashi, Gunma 371-0025, Japan
| | - Yumiko Abe
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
617
|
Engineering the Caenorhabditis elegans genome with CRISPR/Cas9. Methods 2014; 68:381-8. [PMID: 24685391 DOI: 10.1016/j.ymeth.2014.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
The development in early 2013 of CRISPR/Cas9-based genome engineering promises to dramatically advance our ability to alter the genomes of model systems at will. A single, easily produced targeting RNA guides the Cas9 endonuclease to a specific DNA sequence where it creates a double strand break. Imprecise repair of the break can yield mutations, while homologous recombination with a repair template can be used to effect specific changes to the genome. The tremendous potential of this system led several groups to independently adapt it for use in Caenorhabditiselegans, where it was successfully used to generate mutations and to create tailored genome changes through homologous recombination. Here, we review the different approaches taken to adapt CRISPR/Cas9 for C. elegans, and provide practical guidelines for CRISPR/Cas9-based genome engineering.
Collapse
|
618
|
Ma S, Chang J, Wang X, Liu Y, Zhang J, Lu W, Gao J, Shi R, Zhao P, Xia Q. CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep 2014; 4:4489. [PMID: 24671069 PMCID: PMC3967148 DOI: 10.1038/srep04489] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/11/2014] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas9, a bacterial adaptive immune system derived genome-editing technique, has become to be one of the most compelling topics in biotechnology. Bombyx mori is an economically important insect and a model organism for studying lepidopteran and arthropod biology. Here we reported highly efficient and multiplex genome editing in B. mori cell line and heritable site-directed mutagenesis of Bmku70, which is required for NHEJ pathway and also related to antigen diversity, telomere length maintenance and subtelomeric gene silencing, using CRISPR/Cas9 system. We established a simple and practicable method and obtained several Bmku70 knockout B. mori lines, and showed that the frequency of HR was increased in embryos of the Bmku70 knockout B. mori. The mutant lines obtained in this study could be a candidate genetic resource for efficient knock-in and fundamental research of DNA repair in B. mori. We also provided a strategy and procedure to perform heritable genome editing of target genes with no significant phenotype effect.
Collapse
Affiliation(s)
- Sanyuan Ma
- 1] State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China [2]
| | - Jiasong Chang
- 1] State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China [2]
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Jianduo Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Jie Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| |
Collapse
|
619
|
Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 2014; 23:R40-6. [PMID: 24651067 DOI: 10.1093/hmg/ddu125] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system provides a robust and multiplexable genome editing tool, enabling researchers to precisely manipulate specific genomic elements, and facilitating the elucidation of target gene function in biology and diseases. CRISPR/Cas9 comprises of a nonspecific Cas9 nuclease and a set of programmable sequence-specific CRISPR RNA (crRNA), which can guide Cas9 to cleave DNA and generate double-strand breaks at target sites. Subsequent cellular DNA repair process leads to desired insertions, deletions or substitutions at target sites. The specificity of CRISPR/Cas9-mediated DNA cleavage requires target sequences matching crRNA and a protospacer adjacent motif locating at downstream of target sequences. Here, we review the molecular mechanism, applications and challenges of CRISPR/Cas9-mediated genome editing and clinical therapeutic potential of CRISPR/Cas9 in future.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Faculty of Public Health, College of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Wen
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Faculty of Public Health, College of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiong Guo
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Faculty of Public Health, College of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
620
|
Chen H, Choi J, Bailey S. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J Biol Chem 2014; 289:13284-94. [PMID: 24634220 DOI: 10.1074/jbc.m113.539726] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cas9, the RNA-guided DNA endonuclease from the CRISPR-Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) system, has been adapted for genome editing and gene regulation in multiple model organisms. Here we characterize a Cas9 ortholog from Streptococcus thermophilus LMG18311 (LMG18311 Cas9). In vitro reconstitution of this system confirms that LMG18311 Cas9 together with a trans-activating RNA (tracrRNA) and a CRISPR RNA (crRNA) cleaves double-stranded DNA with a specificity dictated by the sequence of the crRNA. Cleavage requires not only complementarity between crRNA and target but also the presence of a short motif called the PAM. Here we determine the sequence requirements of the PAM for LMG18311 Cas9. We also show that both the efficiency of DNA target cleavage and the location of the cleavage sites vary based on the position of the PAM sequence.
Collapse
Affiliation(s)
- Hongfan Chen
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | | |
Collapse
|
621
|
Anton T, Bultmann S, Leonhardt H, Markaki Y. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 2014; 5:163-72. [PMID: 24637835 PMCID: PMC4049922 DOI: 10.4161/nucl.28488] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Labeling and tracing of specific sequences in living cells has been a major challenge in studying the spatiotemporal dynamics of native chromatin. Here we repurposed the prokaryotic CRISPR/Cas adaptive immunity system to specifically detect endogenous genomic loci in mouse embryonic stem cells. We constructed a catalytically inactive version of the Cas9 endonuclease, fused it with eGFP (dCas9-eGFP) and co-expressed small guide RNAs (gRNAs) to target pericentric, centric, and telomeric repeats, which are enriched in distinct nuclear structures. With major satellite specific gRNAs we obtained a characteristic chromocenter (CC) pattern, while gRNAs targeting minor satellites and telomeres highlighted smaller foci coinciding with centromere protein B (CENP-B) and telomeric repeat-binding factor 2 (TRF2), respectively. DNA sequence specific labeling by gRNA/dCas9-eGFP complexes was directly shown with 3D-fluorescent in situ hybridization (3D-FISH). Structured illumination microscopy (3D-SIM) of gRNA/dCas9-eGFP expressing cells revealed chromatin ultrastructures and demonstrated the potential of this approach for chromatin conformation studies by super resolution microscopy. This programmable dCas9 labeling system opens new perspectives to study functional nuclear architecture.
Collapse
Affiliation(s)
- Tobias Anton
- Department of Biology II; Center for Integrated Protein Science Munich (CIPSM); Ludwig Maximilians University Munich; Planegg-Martinsried, Germany
| | - Sebastian Bultmann
- Department of Biology II; Center for Integrated Protein Science Munich (CIPSM); Ludwig Maximilians University Munich; Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Department of Biology II; Center for Integrated Protein Science Munich (CIPSM); Ludwig Maximilians University Munich; Planegg-Martinsried, Germany
| | - Yolanda Markaki
- Department of Biology II; Center for Integrated Protein Science Munich (CIPSM); Ludwig Maximilians University Munich; Planegg-Martinsried, Germany
| |
Collapse
|
622
|
Abstract
Current technology enables the production of highly specific genome modifications with excellent efficiency and specificity. Key to this capability are targetable DNA cleavage reagents and cellular DNA repair pathways. The break made by these reagents can produce localized sequence changes through inaccurate nonhomologous end joining (NHEJ), often leading to gene inactivation. Alternatively, user-provided DNA can be used as a template for repair by homologous recombination (HR), leading to the introduction of desired sequence changes. This review describes three classes of targetable cleavage reagents: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas RNA-guided nucleases (RGNs). As a group, these reagents have been successfully used to modify genomic sequences in a wide variety of cells and organisms, including humans. This review discusses the properties, advantages, and limitations of each system, as well as the specific considerations required for their use in different biological systems.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| |
Collapse
|
623
|
CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32:347-55. [PMID: 24584096 DOI: 10.1038/nbt.2842] [Citation(s) in RCA: 2131] [Impact Index Per Article: 213.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/31/2014] [Indexed: 12/12/2022]
Abstract
Targeted genome editing using engineered nucleases has rapidly gone from being a niche technology to a mainstream method used by many biological researchers. This widespread adoption has been largely fueled by the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology, an important new approach for generating RNA-guided nucleases, such as Cas9, with customizable specificities. Genome editing mediated by these nucleases has been used to rapidly, easily and efficiently modify endogenous genes in a wide variety of biomedically important cell types and in organisms that have traditionally been challenging to manipulate genetically. Furthermore, a modified version of the CRISPR-Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression or label specific genomic loci in living cells. Although the genome-wide specificities of CRISPR-Cas9 systems remain to be fully defined, the power of these systems to perform targeted, highly efficient alterations of genome sequence and gene expression will undoubtedly transform biological research and spur the development of novel molecular therapeutics for human disease.
Collapse
|
624
|
Ramakrishna S, Cho SW, Kim S, Song M, Gopalappa R, Kim JS, Kim H. Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat Commun 2014; 5:3378. [PMID: 24569644 DOI: 10.1038/ncomms4378] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/04/2014] [Indexed: 12/26/2022] Open
Abstract
RNA-guided endonucleases (RGENs), which are based on the clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR-associated (Cas) system, have recently emerged as a simple and efficient tool for genome editing. However, the activities of prepared RGENs are sometimes low, hampering the generation of cells containing RGEN-induced mutations. Here we report efficient methods to enrich cells containing RGEN-induced mutations by using surrogate reporters. HEK293T cells are cotransfected with the reporter plasmid, a plasmid encoding Cas9 and a plasmid encoding crRNA and tracrRNA, and subjected to flow cytometric sorting, magnetic separation or hygromycin selection. The selected cell populations are highly enriched with cells containing RGEN-induced mutations, by a factor of up to 11-fold as compared with the unselected population. The fold enrichment tends to be high when RGEN activity is low. We envision that these reporters will facilitate the use of RGEN in a wide range of biomedical research.
Collapse
Affiliation(s)
- Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seongdong-gu, Seoul 133-791, South Korea
| | - Seung Woo Cho
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 151-747, South Korea
| | - Sojung Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 151-747, South Korea
| | - Myungjae Song
- Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seongdong-gu, Seoul 133-791, South Korea
| | - Ramu Gopalappa
- Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seongdong-gu, Seoul 133-791, South Korea
| | - Jin-Soo Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 151-747, South Korea
| | - Hyongbum Kim
- Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seongdong-gu, Seoul 133-791, South Korea
| |
Collapse
|
625
|
Abstract
Screening for suppressor mutations is a powerful method to isolate genes that function in a common pathway or process. Because suppressor mutations often do not have phenotypes on their own, cloning of suppressor loci can be challenging. A method combining whole-genome sequencing (WGS) and single nucleotide polymorphism (SNP) mapping (WGS/SNP mapping) was developed to identify mutations with visible phenotypes in C. elegans. We show here that WGS/SNP mapping is an efficient method to map suppressor mutations without the need for previous phenotypic characterization. Using RNA-mediated interference to test candidate loci identified by WGS/SNP mapping, we identified 10 extragenic and six intragenic suppressors of mbk-2, a DYRK family kinase required for the transition from oocyte to zygote. Remarkably, seven suppressors are mutations in cell-cycle regulators that extend the timing of the oocyte-to-zygote transition.
Collapse
|
626
|
CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genet 2014; 30:111-8. [PMID: 24555991 DOI: 10.1016/j.tig.2014.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/18/2022]
Abstract
To combat potentially deadly viral infections, prokaryotic microbes enlist small RNA-based adaptive immune systems (CRISPR-Cas systems) that protect through sequence-specific recognition and targeted destruction of viral nucleic acids (either DNA or RNA depending on the system). Here, we summarize rapid progress made in redirecting the nuclease activities of these microbial immune systems to bind and cleave DNA or RNA targets of choice, by reprogramming the small guide RNAs of the various CRISPR-Cas complexes. These studies have demonstrated the potential of Type II CRISPR-Cas systems both as efficient and versatile genome-editing tools and as potent and specific regulators of gene expression in a broad range of cell types (including human) and organisms. Progress is also being made in developing a Type III RNA-targeting CRISPR-Cas system as a novel gene knockdown platform to investigate gene function and modulate gene expression for metabolic engineering in microbes.
Collapse
|
627
|
Abstract
The CRISPR-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA:DNA base-pairing to target foreign DNA in bacteria. Cas9:guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9:RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9:RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9:RNA. DNA strand separation and RNA:DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 employs PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate dsDNA scission.
Collapse
|
628
|
Kiro R, Shitrit D, Qimron U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol 2014. [PMID: 24457913 DOI: 10.4161/rna.27766.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.
Collapse
Affiliation(s)
- Ruth Kiro
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Dror Shitrit
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| |
Collapse
|
629
|
Malina A, Mills JR, Cencic R, Yan Y, Fraser J, Schippers LM, Paquet M, Dostie J, Pelletier J. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev 2014; 27:2602-14. [PMID: 24298059 PMCID: PMC3861673 DOI: 10.1101/gad.227132.113] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Malina et al. readapted the CRISPR/Cas9 genome-editing system for targeted gene disruption positive selection assays. They generated “all-in-one” lentiviral and retroviral delivery vectors heterologously expressing both a codon-optimized Cas9 and its synthetic guide RNA (sgRNA) and linked Cas9 expression to GFP fluorescence for in vivo applications. These results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens. RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target, we readapted the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR associated 9) genome-editing system to demonstrate the feasibility of this methodology for targeted gene disruption positive selection assays. By using novel “all-in-one” lentiviral and retroviral delivery vectors heterologously expressing both a codon-optimized Cas9 and its synthetic guide RNA (sgRNA), we show robust selection for the CRISPR-modified Trp53 locus following drug treatment. Furthermore, by linking Cas9 expression to GFP fluorescence, we use an “all-in-one” system to track disrupted Trp53 in chemoresistant lymphomas in the Eμ-myc mouse model. Deep sequencing analysis of the tumor-derived endogenous Cas9-modified Trp53 locus revealed a wide spectrum of mutants that were enriched with seemingly limited off-target effects. Taken together, these results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens.
Collapse
Affiliation(s)
- Abba Malina
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6 Canada,
| | | | | | | | | | | | | | | | | |
Collapse
|
630
|
Kiro R, Shitrit D, Qimron U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol 2014; 11:42-4. [PMID: 24457913 DOI: 10.4161/rna.27766] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.
Collapse
Affiliation(s)
- Ruth Kiro
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Dror Shitrit
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| |
Collapse
|
631
|
Zhao P, Zhang Z, Ke H, Yue Y, Xue D. Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system. Cell Res 2014; 24:247-50. [PMID: 24418757 DOI: 10.1038/cr.2014.9] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Pei Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongmei Ke
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiren Yue
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ding Xue
- 1] School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
632
|
Beumer KJ, Carroll D. Targeted genome engineering techniques in Drosophila. Methods 2014; 68:29-37. [PMID: 24412316 DOI: 10.1016/j.ymeth.2013.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/16/2013] [Indexed: 12/12/2022] Open
Abstract
For a century, Drosophila has been a favored organism for genetic research. However, the array of materials and methods available to the Drosophila worker has expanded dramatically in the last decade. The most common gene targeting tools, zinc finger nucleases, TALENs, and RNA-guided CRISPR/Cas9, have all been adapted for use in Drosophila, both for simple mutagenesis and for gene editing via homologous recombination. For each tool, there exist a number of web sites, design applications, and delivery methods. The successful application of any of these tools also requires an understanding of methods for detecting successful genome modifications. This article provides an overview of the available gene targeting tools and their application in Drosophila. In lieu of simply providing a protocol for gene targeting, we direct the researcher to resources that will allow access to the latest research in this rapidly evolving field.
Collapse
Affiliation(s)
- Kelly J Beumer
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, United States.
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, United States
| |
Collapse
|
633
|
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems that protect bacteria and archaea from infection by viruses are now being routinely repurposed for genome engineering in a wide variety of cell types and multicellular organisms.
Collapse
Affiliation(s)
- Royce Wilkinson
- Department of Immunology and Infectious Diseases, Montana State UniversityBozeman, MT 59717USA
| | - Blake Wiedenheft
- Department of Immunology and Infectious Diseases, Montana State UniversityBozeman, MT 59717USA
| |
Collapse
|
634
|
Schwartz HT, Sternberg PW. Transgene-free genome editing by germline injection of CRISPR/Cas RNA. Methods Enzymol 2014; 546:441-57. [PMID: 25398352 DOI: 10.1016/b978-0-12-801185-0.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Genome modification by CRISPR/Cas offers its users the ability to target endogenous sites in the genome for cleavage and for engineering precise genomic changes using template-directed repair, all with unprecedented ease and flexibility of targeting. As such, CRISPR/Cas is just part of a set of recently developed and rapidly improving tools that offer great potential for researchers to functionally access the genomes of organisms that have not previously been extensively used in a laboratory setting. We describe in detail protocols for using CRISPR/Cas to target genes of experimental organisms, in a manner that does not require transformation to obtain transgenic lines and that should be readily applicable to a wide range of previously little-studied species.
Collapse
Affiliation(s)
- Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA; Howard Hughes Medical Institute, Pasadena, California, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA; Howard Hughes Medical Institute, Pasadena, California, USA.
| |
Collapse
|
635
|
Darby MM, Sabunciyan S. Repetitive Elements and Epigenetic Marks in Behavior and Psychiatric Disease. ADVANCES IN GENETICS 2014; 86:185-252. [DOI: 10.1016/b978-0-12-800222-3.00009-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
636
|
Abstract
CRISPR/Cas systems act to protect the cell from invading nucleic acids in many bacteria and archaea. The bacterial immune protein Cas9 is a component of one of these CRISPR/Cas systems and has recently been adapted as a tool for genome editing. Cas9 is easily targeted to bind and cleave a DNA sequence via a complementary RNA; this straightforward programmability has gained Cas9 rapid acceptance in the field of genetic engineering. While this technology has developed quickly, a number of challenges regarding Cas9 specificity, efficiency, fusion protein function, and spatiotemporal control within the cell remain. In this work, we develop a platform for constructing novel proteins to address these open questions. We demonstrate methods to either screen or select active Cas9 mutants and use the screening technique to isolate functional Cas9 variants with a heterologous PDZ domain inserted within the protein. As a proof of concept, these methods lay the groundwork for the future construction of diverse Cas9 proteins. Straightforward and accessible techniques for genetic editing are helping to elucidate biology in new and exciting ways; a platform to engineer new functionalities into Cas9 will help forge the next generation of genome-modifying tools.
Collapse
Affiliation(s)
- Benjamin L Oakes
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
| | - Dana C Nadler
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - David F Savage
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA; Department of Chemistry, University of California, Berkeley, California, USA; Energy Biosciences Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
637
|
Abstract
Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unprecedented efficacy and facility in a wide variety of biological systems. In zebrafish, specifically, studies have shown that Cas9 can be directed to user-defined genomic target sites via synthetic guide RNAs, enabling random or homology-directed sequence alterations, long-range chromosomal deletions, simultaneous disruption of multiple genes, and targeted integration of several kilobases of DNA. Altogether, these methods are opening new doors for the engineering of knock-outs, conditional alleles, tagged proteins, reporter lines, and disease models. In addition, the ease and high efficiency of generating Cas9-mediated gene knock-outs provides great promise for high-throughput functional genomics studies in zebrafish. In this chapter, we briefly review the origin of CRISPR/Cas technology and discuss current Cas9-based genome-editing applications in zebrafish with particular emphasis on their designs and implementations.
Collapse
Affiliation(s)
- Andrew P W Gonzales
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
638
|
Abstract
Protein kinase inhibitors are an important class of therapeutics. In addition, selective kinase inhibitors can often reveal unexpected biological insights, augmenting genetic approaches and playing a decisive role in preclinical target validation studies. Nevertheless, developing protein kinase inhibitors with sufficient selectivity and pharmacodynamic potency presents significant challenges. Targeting noncatalytic cysteines with covalent inhibitors is a powerful approach to address both challenges simultaneously. Here, we describe our efforts to design irreversible and reversible electrophilic inhibitors with varying degrees of kinase selectivity. Highly selective covalent inhibitors have been used to elucidate the roles of p90 ribosomal protein S6 kinases in animal models of atherosclerosis and diabetes. By contrast, semipromiscuous covalent inhibitors have revealed new therapeutic targets in disease-causing parasites and have shown utility as chemoproteomic probes for interrogating kinase occupancy in living cells.
Collapse
Affiliation(s)
- Rand M Miller
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California, USA
| | - Jack Taunton
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA.
| |
Collapse
|
639
|
Abstract
Cas9 is a bacterial RNA-guided endonuclease that uses base pairing to recognize and cleave target DNAs with complementarity to the guide RNA. The programmable sequence specificity of Cas9 has been harnessed for genome editing and gene expression control in many organisms. Here, we describe protocols for the heterologous expression and purification of recombinant Cas9 protein and for in vitro transcription of guide RNAs. We describe in vitro reconstitution of the Cas9-guide RNA ribonucleoprotein complex and its use in endonuclease activity assays. The methods outlined here enable mechanistic characterization of the RNA-guided DNA cleavage activity of Cas9 and may assist in further development of the enzyme for genetic engineering applications.
Collapse
Affiliation(s)
- Carolin Anders
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
640
|
Cram EJ. Mechanotransduction in C. elegans morphogenesis and tissue function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:281-316. [PMID: 25081623 DOI: 10.1016/b978-0-12-394624-9.00012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanobiology is an emerging field that investigates how living cells sense and respond to their physical surroundings. Recent interest in the field has been sparked by the finding that stem cells differentiate along different lineages based on the stiffness of the cell surroundings (Engler et al., 2006), and that metastatic behavior of cancer cells is strongly influenced by the mechanical properties of the surrounding tissue (Kumar and Weaver, 2009). Many questions remain about how cells convert mechanical information, such as viscosity, stiffness of the substrate, or stretch state of the cells, into the biochemical signals that control tissue function. Caenorhabditis elegans researchers are making significant contributions to the understanding of mechanotransduction in vivo. This review summarizes recent insights into the role of mechanical forces in morphogenesis and tissue function. Examples of mechanical regulation across length scales, from the single-celled zygote, to the intercellular coordination that enables cohesive tissue function, to the mechanical influences between tissues, are considered. The power of the C. elegans system as a gene discovery and in vivo quantitative bioimaging platform is enabling an important discoveries in this exciting field.
Collapse
Affiliation(s)
- Erin J Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
641
|
Askjaer P, Galy V, Meister P. Modern Tools to Study Nuclear Pore Complexes and Nucleocytoplasmic Transport in Caenorhabditis elegans. Methods Cell Biol 2014; 122:277-310. [DOI: 10.1016/b978-0-12-417160-2.00013-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
642
|
Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, Choi JH, Ban YH, Ha SJ, Kim CH, Lee HW, Kim JS. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 2014; 24:125-31. [PMID: 24253447 PMCID: PMC3875853 DOI: 10.1101/gr.163394.113] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/07/2013] [Indexed: 12/26/2022]
Abstract
RNA-guided endonucleases (RGENs), derived from the prokaryotic Type II CRISPR-Cas system, enable targeted genome modification in cells and organisms. Here we describe the establishment of gene-knockout mice and zebrafish by the injection of RGENs as Cas9 protein:guide RNA complexes or Cas9 mRNA plus guide RNA into one-cell-stage embryos of both species. RGENs efficiently generated germline transmittable mutations in up to 93% of newborn mice with minimal toxicity. RGEN-induced mutations in the mouse Prkdc gene that encodes an enzyme critical for DNA double-strand break repair resulted in immunodeficiency both in F₀ and F₁ mice. We propose that RGEN-mediated mutagenesis in animals will greatly expedite the creation of genetically engineered model organisms, accelerating functional genomic research.
Collapse
Affiliation(s)
- Young Hoon Sung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jong Min Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea
| | - Hyun-Taek Kim
- Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jisun Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Young Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jung-Hwa Choi
- Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Young Ho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
- Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jin-Soo Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
643
|
Bilichak A, Kovalchuk I. Manipulation of epigenetic factors and the DNA repair machinery for improving the frequency of plant transformation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
644
|
Mashimo T. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Dev Growth Differ 2013; 56:46-52. [PMID: 24372523 DOI: 10.1111/dgd.12110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/21/2022]
Abstract
The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed.
Collapse
Affiliation(s)
- Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
645
|
Ronayne EA, Cox MM. RecA-dependent programmable endonuclease Ref cleaves DNA in two distinct steps. Nucleic Acids Res 2013; 42:3871-83. [PMID: 24371286 PMCID: PMC3973344 DOI: 10.1093/nar/gkt1342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The bacteriophage P1 recombination enhancement function (Ref) protein is a RecA-dependent programmable endonuclease. Ref targets displacement loops formed when an oligonucleotide is bound by a RecA filament and invades homologous double-stranded DNA sequences. Mechanistic details of this reaction have been explored, revealing that (i) Ref is nickase, cleaving the two target strands of a displacement loop sequentially, (ii) the two strands are cleaved in a prescribed order, with the paired strand cut first and (iii) the two cleavage events have different requirements. Cutting the paired strand is rapid, does not require RecA-mediated ATP hydrolysis and is promoted even by Ref active site variant H153A. The displaced strand is cleaved much more slowly, requires RecA-mediated ATP hydrolysis and does not occur with Ref H153A. The two cleavage events are also affected differently by solution conditions. We postulate that the second cleavage (displaced strand) is limited by some activity of RecA protein.
Collapse
Affiliation(s)
- Erin A Ronayne
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
646
|
Sugi T, Sakuma T, Ohtani Y, Yamamoto T. Versatile strategy for isolating transcription activator-like effector nuclease-mediated knockout mutants in Caenorhabditis elegans. Dev Growth Differ 2013; 56:78-85. [PMID: 24409999 DOI: 10.1111/dgd.12108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 12/13/2022]
Abstract
Targeted genome editing using transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems has recently emerged as a potentially powerful method for creating locus-specific mutations in Caenorhabditis elegans. Due to the low mutation frequencies, one of the crucial steps in using these technologies is screening animals that harbor a targeted mutation. In previous studies, identifying targeted mutations in C. elegans usually depended on observations of fluorescent markers such as a green fluorescent protein or visible phenotypes such as dumpy and uncoordinated phenotypes. However, this strategy is limited in practice because the phenotypes caused by targeted mutations such as defects in sensory behaviors are often apparently invisible. Here, we describe a versatile strategy for isolating C. elegans knockout mutants by TALEN-mediated genome editing and a heteroduplex mobility assay. We applied TALENs to engineer the locus of the neural gene glr-1, which is a C. elegans AMPA-type receptor orthologue that is known to have crucial roles in various sensory behaviors. Knockout mutations in the glr-1 locus, which caused defective mechanosensory behaviors, were efficiently identified by the heteroduplex mobility assay. Thus, we demonstrated the utility of a TALEN-based knockout strategy for creating C. elegans with mutations that cause invisible phenotypes.
Collapse
Affiliation(s)
- Takuma Sugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | | | | | | |
Collapse
|
647
|
Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 2013; 51:835-43. [PMID: 24123613 PMCID: PMC3947545 DOI: 10.1002/dvg.22720] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/12/2022]
Abstract
We have assessed the efficacy of the recently developed CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system for genome modification in the amphibian Xenopus tropicalis. As a model experiment, targeted mutations of the tyrosinase gene were verified, showing the expected albinism phenotype in injected embryos. We further tested this technology by interrupting the six3 gene, which is required for proper eye and brain formation. Expected eye and brain phenotypes were observed when inducing mutations in the six3 coding regions, as well as when deleting the gene promoter by dual targeting. We describe here a standardized protocol for genome editing using this system. This simple and fast method to edit the genome provides a powerful new reverse genetics tool for Xenopus researchers.
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Margaret B. Fish
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marilyn Fisher
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Jamina Oomen-Hajagos
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Gerald H. Thomsen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Robert M. Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
648
|
Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV, Charpentier E. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 2013; 42:2577-90. [PMID: 24270795 PMCID: PMC3936727 DOI: 10.1093/nar/gkt1074] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA:crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA:Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool.
Collapse
Affiliation(s)
- Ines Fonfara
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå S-90187, Sweden, Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig D-38124, Germany, Deptartment of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna A-1030, Austria, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA and Hannover Medical School, Hannover D-30625, Germany
| | | | | | | | | | | | | | | |
Collapse
|
649
|
Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci U S A 2013; 110:19012-7. [PMID: 24191015 DOI: 10.1073/pnas.1318481110] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.
Collapse
|
650
|
Abstract
The term "micro-evo-devo" refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field.
Collapse
Affiliation(s)
- Maria D. S. Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|