601
|
Bondjers C, Kalén M, Hellström M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:721-9. [PMID: 12598306 PMCID: PMC1868109 DOI: 10.1016/s0002-9440(10)63868-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
All blood capillaries consist of endothelial tubes surrounded by mural cells referred to as pericytes. The origin, recruitment, and function of the pericytes is poorly understood, but the importance of these cells is underscored by the severe cardiovascular defects in mice genetically devoid of factors regulating pericyte recruitment to embryonic vessels, and by the association between pericyte loss and microangiopathy in diabetes mellitus. A general problem in the study of pericytes is the shortage of markers for these cells. To identify new markers for pericytes, we have taken advantage of the platelet-derived growth factor (PDGF)-B knockout mouse model, in which developing blood vessels in the central nervous system are almost completely devoid of pericytes. Using cDNA microarrays, we analyzed the gene expression in PDGF-B null embryos in comparison with corresponding wild-type embryos and searched for down-regulated genes. The most down-regulated gene present on our microarray was RGS5, a member of the RGS family of GTPase-activating proteins for G proteins. In situ hybridization identified RGS5 expression in brain pericytes, and in pericytes and vascular smooth muscle cells in certain other, but not all, locations. Absence of RGS5 expression in PDGF-B and PDGFR beta-null embryos correlated with pericyte loss in these mice. Residual RGS5 expression in rare pericytes suggested that RGS5 is a pericyte marker expressed independently of PDGF-B/R beta signaling. With RGS5 as a proof-of-principle, our data demonstrate the usefulness of microarray analysis of mouse models for abnormal pericyte development in the identification of new pericyte-specific markers.
Collapse
MESH Headings
- Animals
- Becaplermin
- Biomarkers
- DNA Fingerprinting
- Embryo, Mammalian
- Female
- GTP-Binding Proteins/genetics
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Oligonucleotide Array Sequence Analysis
- Pericytes/cytology
- Platelet-Derived Growth Factor/deficiency
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/physiology
- Pregnancy
- Proto-Oncogene Proteins c-sis
- RGS Proteins/analysis
- RGS Proteins/genetics
- Receptor, Platelet-Derived Growth Factor beta/deficiency
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Cecilia Bondjers
- Department of Medical Biochemistry, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
602
|
Nishihara A, Fujii M, Sampath TK, Miyazono K, Reddi AH. Bone morphogenetic protein signaling in articular chondrocyte differentiation. Biochem Biophys Res Commun 2003; 301:617-22. [PMID: 12565908 DOI: 10.1016/s0006-291x(02)03068-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Articular chondrocytes progressively undergo dedifferentiation into a spindle-shaped mesenchymal cellular phenotype in monolayers. Chondrocyte dedifferentiation is stimulated by retinoic acid. On the other hand, bone morphogenic proteins (BMPs) stimulate differentiation of chondrocytes. We examined the mechanism of effects of BMP in chondrocyte differentiation with use of a recombinant adenovirus vector system. Constitutively active forms of BMP type I receptors (BMPR-IA and BMPR-IB) and those of activin receptor-like kinase (ALK)-1 and ALK-2 maintained differentiation of chondrocytes in the presence of retinoic acid. The BMP receptor-regulated signaling substrates, Smad1/5, weakly induced chondrocyte differentiation; the effects of Smad1/5 were enhanced by BMP-7 treatment. Inhibitory Smad, Smad6, blocked increase of expression of chondrocyte markers by BMP-7 in a dose-dependent manner. SB202190, a p38 mitogen-activated protein kinase inhibitor, inhibited this effect of BMP-7; however, since SB202190 suppressed phosphorylation of Smad1/5, this may be due to blockade of BMP receptor activation. These results together strongly suggest that induction of chondrocyte differentiation by BMP-7 is regulated by Smad pathways.
Collapse
Affiliation(s)
- Ayako Nishihara
- Center for Tissue Regeneration and Repair and Department of Orthopedic Surgery, University of California-Davis, Medical Center, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
603
|
Kiba A, Sagara H, Hara T, Shibuya M. VEGFR-2-specific ligand VEGF-E induces non-edematous hyper-vascularization in mice. Biochem Biophys Res Commun 2003; 301:371-7. [PMID: 12565870 DOI: 10.1016/s0006-291x(02)03033-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
VEGF family members play important roles in angiogenesis and vascular permeability. VEGF-A-transgenic mice showed an increased vascularization with edema due to hyper-vascular permeability and subcutaneous hemorrhage as side effects. VEGF-A binds and activates two receptors, VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1). To dissect the signals of these two receptors, we generated transgenic mice overexpressing either the VEGFR-2-specific ligand VEGF-E(NZ-7) or VEGFR-1-specific ligand PlGF-II under the control of the Keratin-14 promoter. VEGF-E-mice showed a significant increase in vascularization (about 10-fold compared to control mice) in subcutaneous tissues, whereas PlGF-mice showed only a 2-3-fold increase. Interestingly, VEGF-E-mice did not show any clear edematous lesions or hemorrhagic spots on the skin. Microscopically, VEGF-E-induced capillary networks have a well organized structure with the recruitment of pericytes. These results indicate that VEGF-E is a new angiogenic agent with less side effects for clinical usage.
Collapse
Affiliation(s)
- Atsushi Kiba
- Division of Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
604
|
Cao Z, Flanders KC, Bertolette D, Lyakh LA, Wurthner JU, Parks WT, Letterio JJ, Ruscetti FW, Roberts AB. Levels of phospho-Smad2/3 are sensors of the interplay between effects of TGF-beta and retinoic acid on monocytic and granulocytic differentiation of HL-60 cells. Blood 2003; 101:498-507. [PMID: 12393416 DOI: 10.1182/blood-2002-05-1549] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have investigated the role of Smad family proteins, known to be important cytoplasmic mediators of signals from the transforming growth factor-beta (TGF-beta) receptor serine/threonine kinases, in TGF-beta-dependent differentiation of hematopoietic cells, using as a model the human promyelocytic leukemia cell line, HL-60. TGF-beta-dependent differentiation of these cells to monocytes, but not retinoic acid-dependent differentiation to granulocytes, was accompanied by rapid phosphorylation and nuclear translocation of Smad2 and Smad3. Vitamin D(3) also induced phosphorylation of Smad2/3 and monocytic differentiation; however the effects were indirect, dependent on its ability to induce expression of TGF-beta1. Simultaneous treatment of these cells with TGF-beta1 and all-trans-retinoic acid (ATRA), which leads to almost equal numbers of granulocytes and monocytes, significantly reduced the level of phospho-Smad2/3 and its nuclear accumulation, compared with that in cells treated with TGF-beta1 alone. TGF-beta1 and ATRA activate P42/44 mitogen-activated protein (MAP) kinase with nearly identical kinetics, ruling out its involvement in these effects on Smad phosphorylation. Addition of the inhibitor-of-protein serine/threonine phosphatases, okadaic acid, blocks the ATRA-mediated reduction in TGF-beta-induced phospho-Smad2 and shifts the differentiation toward monocytic end points. In HL-60R mutant cells, which harbor a defective retinoic acid receptor-alpha (RAR-alpha), ATRA is unable to reduce levels of TGF-beta-induced phospho-Smad2/3, coincident with its inability to differentiate these cells along granulocytic pathways. Together, these data suggest a new level of cross-talk between ATRA and TGF-beta, whereby a putative RAR-alpha-dependent phosphatase activity limits the levels of phospho-Smad2/3 induced by TGF-beta, ultimately reducing the levels of nuclear Smad complexes mediating the TGF-beta-dependent differentiation of the cells to monocytic end points.
Collapse
Affiliation(s)
- Zhouhong Cao
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
605
|
Abstract
During the past two decades, a significant amount of data has been accumulated revealing the intriguing functions of bone morphogenetic proteins (BMPs) in all aspects of embryonic development and organogenesis. Numerous genes encoding BMPs, BMP receptors, and their downstream signal transducers have been mutated in the mouse through targeted mutagenesis. This review focuses on what is known about the role of BMP signaling in gastrulation, mesoderm formation, left-right asymmetry, neural patterning, skeletal and limb development, organogenesis, and gametogenesis as revealed by BMP-signaling mutants.
Collapse
Affiliation(s)
- Guang-Quan Zhao
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
606
|
Abstract
The developing vertebrate limb has fascinated developmental biologists and theoreticians for decades as a model system for investigating cell fate, cell signalling and tissue interactions. We are beginning to understand the mechanisms and signalling pathways that control and regulate the outgrowth and formation of the limb bud into a differentiated identifiable limb by late embryogenesis. However, the mechanisms underlying the development and maintenance of the vasculature of the developing limb are far from being completely understood. The vasculature supplies oxygen, nutrients and signals to developing tissues, allowing them to develop and grow. Moreover, a lot of evidence recently points to molecules involved in morphological development also controlling vascular development. Thus understanding how the vasculature forms and is patterned in the developing limb may further our understanding of limb development. In this review I outline how blood vessels are formed and maintained and how the developing chick limb is vascularized. I also review the role of the TGFbeta superfamily signalling pathway in the development of the chick limb vasculature: in particular, how antagonizing TGFbeta signalling in the developing chick limb has shed new light on the role vascular smooth muscle cells play in vessel calibre control and how this work has added to our understanding of TGFbeta superfamily signal transduction.
Collapse
Affiliation(s)
- Neil Vargesson
- Vertebrate Development Laboratory, Cancer Research UK, Lincolns Inn Fields, London, UK.
| |
Collapse
|
607
|
Mo J, Fang SJ, Chen W, Blobe GC. Regulation of ALK-1 signaling by the nuclear receptor LXRbeta. J Biol Chem 2002; 277:50788-94. [PMID: 12393874 DOI: 10.1074/jbc.m210376200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The transforming growth factor beta (TGF-beta) receptor, ALK-1, is expressed specifically on endothelial cells and is essential for angiogenesis, as demonstrated by its targeted deletion in mice and its mutation in the human disease hereditary hemorrhagic telangiectasia. Although ALK-1 and another endothelial-specific TGF-beta receptor, endoglin, both bind TGF-beta with identical isoform specificity and form a complex together, neither has been shown to signal in response to TGF-beta, and the mechanism by which these receptors signal in endothelial cells remains unknown. Here we report the identification of the nuclear receptor liver X receptor beta (LXRbeta) as a modulator/mediator of ALK-1 signaling. The cytoplasmic domain of ALK-1 specifically binds to LXRbeta in vitro and in vivo. Expression of activated ALK-1 results in translocation of LXRbeta from the nuclear compartment to the cytoplasmic compartment. The interaction of activated ALK-1 with LXRbeta in the cytoplasmic compartment results in the specific phosphorylation of LXRbeta by ALK-1, primarily on serine residues. LXRbeta subsequently modulates signaling by ALK-1 and the closely related TGF-beta receptor, ALK-2, as demonstrated by specific and potent inhibition of ALK-1- and ALK-2-mediated transcriptional responses, establishing LXRbeta as a potential modulator/mediator of ALK-1/ALK-2 signaling.
Collapse
Affiliation(s)
- Jinyao Mo
- Department of Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
608
|
Lamouille S, Mallet C, Feige JJ, Bailly S. Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 2002; 100:4495-501. [PMID: 12453878 DOI: 10.1182/blood.v100.13.4495] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK-1) is an orphan type I receptor of the transforming growth factor beta (TGF-beta) receptor family. In vivo studies have demonstrated that this endothelial-specific receptor is implicated in angiogenesis. In this study, we addressed the cellular function of ALK-1 in cultured human microvascular endothelial cells from the dermis (HMVEC-d's) using adenoviral expression of a constitutively active form of ALK-1 (ALK-1QD). We observed that ALK-1QD expression inhibits cell proliferation through an arrest in the G1 phase in the cell cycle. ALK-1QD expression also inhibited migration. This inhibition was also observed in other endothelial cells (human microvascular endothelial cells [HMEC-1's], HMVECs from the lung, and human umbilical vein endothelial cells [HUVECs]). Finally, ALK-1QD expression decreased re-adhesion and spreading to different matrices. This led us to examine the dynamic formation of adhesion complexes. We demonstrated that while beta-gal-infected cells reorganized actin stress fibers and focal adhesion complexes at the edge of a wound, ALK-1QD-infected cells did not. To identify downstream genes implicated in ALK-1 cellular responses, we next performed a cDNA array analysis of the expressed genes. There were 13 genes found to be significantly induced or suppressed by ALK-1QD. Among them, 2 genes encoded cell cycle-related proteins (c-myc and p21/waf1), 3 encoded components of the cytoskeleton-focal adhesion complex (beta-actin, paxillin, and zyxin), and 2 encoded members of the TGF-beta family (BMPRII and GDF-15). Taken together, our results suggest that ALK-1 is implicated in the maturation phase of angiogenesis. Disruption of this latter phase of angiogenesis may be an important step in the development of hereditary hemorrhagic telangiectasia.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/physiology
- Activin Receptors, Type II
- Bone Morphogenetic Protein Receptors, Type II
- Cell Division
- Cell Movement
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclins/biosynthesis
- Cyclins/genetics
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytoskeletal Proteins/biosynthesis
- Cytoskeletal Proteins/genetics
- DNA, Complementary/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Focal Adhesions
- G1 Phase
- Gene Expression Profiling
- Gene Expression Regulation
- Genes, myc
- Glycoproteins
- Growth Differentiation Factor 15
- Humans
- Lung/blood supply
- Metalloproteins/biosynthesis
- Metalloproteins/genetics
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- Oligonucleotide Array Sequence Analysis
- Organ Specificity
- Paxillin
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins c-myc/biosynthesis
- Recombinant Fusion Proteins/physiology
- Skin/blood supply
- Umbilical Veins/cytology
- Zyxin
Collapse
Affiliation(s)
- Samy Lamouille
- Institut National de la Santé et de la Recherche Médicale (INSERM) EMI 0105, Department of Responses and Cellular Dynamics, Commissariat à l'Energie (CEA)-Grenoble, France
| | | | | | | |
Collapse
|
609
|
Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 2002; 7:1191-204. [PMID: 12485160 DOI: 10.1046/j.1365-2443.2002.00599.x] [Citation(s) in RCA: 525] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily bind to two different serine/threonine kinase receptors, i.e. type I and type II receptors. Upon ligand binding, type I receptors specifically activate intracellular Smad proteins. R-Smads are direct substrates of type I receptors; Smads 2 and 3 are specifically activated by activin/nodal and TGF-beta type I receptors, whereas Smads 1, 5 and 8 are activated by BMP type I receptors. Nearly 30 proteins have been identified as members of the TGF-beta superfamily in mammals, and can be classified based on whether they activate activin/TGF-beta-specific R-Smads (AR-Smads) or BMP-specific R-Smads (BR-Smads). R-Smads form complexes with Co-Smads and translocate into the nucleus, where they regulate the transcription of target genes. AR-Smads bind to various proteins, including transcription factors and transcriptional co-activators or co-repressors, whereas BR-Smads interact with other proteins less efficiently than AR-Smads. Id proteins are induced by BR-Smads, and play important roles in exhibiting some biological effects of BMPs. Understanding the mechanisms of TGF-beta superfamily signalling is thus important for the development of new ways to treat various clinical diseases in which TGF-beta superfamily signalling is involved.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
610
|
Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, Miyazono K. Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 2002; 193:299-318. [PMID: 12384983 DOI: 10.1002/jcp.10170] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transforming growth factor-beta (TGF-beta) plays a crucial role in vascular development and homeostasis by regulating many transcriptional targets. Activin receptor-like kinase 5 (ALK-5) is a TGF-beta type I receptor expressed in various TGF-beta-responsive cells. In contrast, ALK-1 functions as a TGF-beta type I receptor in endothelial cells, and is responsible for human hereditary hemorrhagic telangiectasia (HHT) type II. ALK-5 and ALK-1 mediate TGF-beta signals through distinct Smad proteins, i.e., Smad2/Smad3 and Smad1/Smad5, respectively. To identify target genes of ALK-1 and ALK-5 in endothelial cells, we conducted oligonucleotide microarray analysis. Human umbilical vein endothelial cells (HUVEC) were infected with recombinant adenoviruses carrying a constitutively active form of ALK-1 or ALK-5. ALK-5 inhibited the proliferation, network formation, and tube formation of HUVEC and induced their apoptosis, whereas ALK-1 did not exhibit significant effects on HUVEC in vitro. mRNAs were extracted from HUVEC and used for hybridization of oligonucleotide arrays representing approximately 7,000 human genes. Northern blot and quantitative real-time polymerase chain reaction (PCR) analyses were also performed for some of these genes, confirming the validity of this microarray analysis. We found that ALK-1 specifically upregulated Smad6, Smad7, Id1, Id2, endoglin, STAT1, and interleukin 1 receptor-like 1. ALK-5, in contrast, upregulated PlGF, SM22alpha, connexin 37, betaIG-H3, and LTBP1. ALK-1 downregulated Smad1, CXCR4, Ephrin-A1, and plakoglobin, whereas ALK-5 downregulated claudin 5 and integrin beta(5). These results revealed some new targets of TGF-beta in endothelial cells, and differences in transcriptional regulation patterns between ALK-1 and ALK-5.
Collapse
MESH Headings
- Activin Receptors, Type I/classification
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/physiology
- Activin Receptors, Type II
- Cells, Cultured
- Down-Regulation
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Gene Expression Profiling
- Humans
- Models, Biological
- Mutation
- Oligonucleotide Array Sequence Analysis
- Protein Serine-Threonine Kinases
- RNA, Messenger/analysis
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/classification
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/physiology
- Transcription, Genetic
- Transforming Growth Factor beta/physiology
- Umbilical Veins/cytology
- Up-Regulation
Collapse
Affiliation(s)
- Tatsuru Ota
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
611
|
Abstract
Transforming growth factor-betas (TGF-betas) regulate pivotal cellular processes such as proliferation, differentiation and apoptosis. After ligand binding, the signals are transmitted by two types of transmembrane serine/threonine kinase receptors. The type I receptor phosphorylates Smad proteins, intracellular effectors which upon oligomerization enter the nucleus to regulate transcription following assembly with transcriptional co-factors and co-modulators. The cellular distribution of TGF-beta receptors along with their oligomerization mode and their complex formation with different cell surface receptors represent crucial steps in determining the initiation of distinct signalling cascades. In addition, the broad array of intracellular proteins that influence the TGF-beta pathway demonstrates that signal transduction does not proceed in a linear fashion but rather comprises a complex network of cascades that mutually influence each other. The present review describes the intricate control of TGF-beta signal transduction on various levels of the cascade with particular focus (i) on the assembly of different receptor subtypes and (ii) on the multitude of crosstalk with signal transducers from other pathways. Integration of the TGF-beta/Smad pathway into the signalling network has taken on added importance as it substantially contributes to elicit the plethora of cell- and tissue-specific effects of TGF-beta.
Collapse
Affiliation(s)
- Marion Lutz
- Department of Physiological Chemistry II, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | | |
Collapse
|
612
|
Komatsu Y, Shibuya H, Takeda N, Ninomiya-Tsuji J, Yasui T, Miyado K, Sekimoto T, Ueno N, Matsumoto K, Yamada G. Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech Dev 2002; 119:239-49. [PMID: 12464436 DOI: 10.1016/s0925-4773(02)00391-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily consists of a group of secreted signaling molecules that perform important roles in the regulation of cell growth and differentiation. TGF-beta activated kinase-1 binding protein-1 (TAB1) was identified as a molecule that activates TGF-beta activated kinase-1 (TAK1). Recent studies have revealed that the TAB1-TAK1 interaction plays an important role in signal transduction in vitro, but little is known about the role of these molecules in vivo. To investigate the role of TAB1 during development, we cloned the murine Tab1 gene and disrupted it by homologous recombination. Homozygous Tab1 mutant mice died, exhibiting a bloated appearance with extensive edema and hemorrhage at the late stages of gestation. By histological examinations, it was revealed that mutant embryos exhibited cardiovascular and lung dysmorphogenesis. Tab1 mutant embryonic fibroblast cells displayed drastically reduced TAK1 kinase activities and decreased sensitivity to TGF-beta stimulation. These results indicate a possibility that TAB1 plays an important role in mammalian embryogenesis and is required for TAK1 activation in TGF-beta signaling.
Collapse
Affiliation(s)
- Yoshihiro Komatsu
- Center for Animal Resources and Development, Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
613
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
614
|
Buckwalter M, Pepper JP, Gaertner RF, Von Euw D, Lacombe P, Wyss-Coray T. Molecular and functional dissection of TGF-beta1-induced cerebrovascular abnormalities in transgenic mice. Ann N Y Acad Sci 2002; 977:87-95. [PMID: 12480736 DOI: 10.1111/j.1749-6632.2002.tb04801.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerebrovascular abnormalities, such as reduced blood flow, microvascular fibrosis, and cerebrovascular amyloid angiopathy, are prominent in Alzheimer's disease (AD). However, their etiology is poorly understood and it is unclear whether cerebrovascular changes contribute to functional impairments in the absence of neurodegeneration. In humans with AD, transforming growth factor-beta1 (TGF-beta1) mRNA levels in the midfrontal gyrus correlate positively with the relative degree of cerebrovascular amyloid deposition in that brain region, suggesting a possible role for TGF-beta1 in human cerebrovascular abnormalities. Transgenic mice overexpressing TGF-beta1 in astrocytes develop AD-like cerebrovascular abnormalities, including perivascular astrocytosis, microvascular basement membrane thickening, and accumulation of thioflavin S-positive amyloid in the absence of parenchymal degeneration. Mice overexpressing TGF-beta1 alone or in addition to human amyloid precursor protein (hAPP) show selective accumulation of human beta-amyloid (Abeta) in blood vessels and develop cerebral hemorrhages in old age. In 9-month-old TGF-beta1 transgenic mice, cerebral blood flow (CBF) in the limbic system was significantly less than in nontransgenic littermate controls. Aged TGF-beta1 mice also showed overall reduced cerebral glucose uptake (CGU) as a measure of brain activity. Thus, chronic overproduction of TGF-beta1 in the brain results in structural and functional impairments reminiscent of those in AD cases with amyloid angiopathy.
Collapse
Affiliation(s)
- Marion Buckwalter
- Department of Neurology, Gladstone Institute of Neurological Disease, University of California, San Francisco, CA 94141, USA
| | | | | | | | | | | |
Collapse
|
615
|
Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR. Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Nat Genet 2002; 32:408-10. [PMID: 12368913 DOI: 10.1038/ng1003] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Accepted: 08/12/2002] [Indexed: 11/09/2022]
Abstract
Elimination of the developing female reproductive tract in male fetuses is an essential step in mammalian sexual differentiation. In males, the fetal testis produces the transforming growth factor beta (TGF-beta) family member anti-Müllerian hormone (Amh, also known as Müllerian-inhibiting substance (Mis)), which causes regression of the Müllerian ducts, the primordia of the oviducts, uterus and upper vagina. Amh induces regression by binding to a specific type II receptor (Amhr2) expressed in the mesenchyme surrounding the ductal epithelium. Mutations in AMH or AMHR2 in humans and mice disrupt signaling, producing male pseudohermaphrodites that possess oviducts and uteri. The type I receptor and Smad proteins that are required in vivo for Müllerian duct regression have not yet been identified. Here we show that targeted disruption of the widely expressed type I bone morphogenetic protein (BMP) receptor Bmpr1a (also known as Alk3) in the mesenchymal cells of the Müllerian ducts leads to retention of oviducts and uteri in males. These results identify Bmpr1a as a type I receptor for Amh-induced regression of Müllerian ducts. Because Bmpr1a is evolutionarily conserved, these findings indicate that a component of the BMP signaling pathway has been co-opted during evolution for male sexual development in amniotes.
Collapse
Affiliation(s)
- Soazik P Jamin
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
616
|
Teng PI, Dichiara MR, Kömüves LG, Abe K, Quertermous T, Topper JN. Inducible and selective transgene expression in murine vascular endothelium. Physiol Genomics 2002; 11:99-107. [PMID: 12388791 DOI: 10.1152/physiolgenomics.00059.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a system utilizing the murine Tie2 promoter/enhancer coupled with the "tetracycline-on" regulatory elements to create a model that allows regulated and selective expression of a beta-galactosidase (betaGal) reporter transgene in the adult murine vascular endothelium. Two independent lines of viable and fertile mice were characterized, and they exhibit minimal betaGal expression under basal conditions. In response to exogenous doxycycline (Dox), selective expression of betaGal was demonstrated in the vascular endothelium of all tissues examined. En face analyses of the aorta and its principle branches indicate that the vast majority of lumenal endothelial cells express the transgene. Inducible betaGal expression also extends to the endocardium and the microvasculature of all organs. There is no evidence of specific transgene expression in nonendothelial cell types. Induction of the betaGal was effectively achieved after 3 days of oral Dox treatment and persisted for over 3 mo with continuous administration. This model can now be widely applied to study the role of specific genes in the phenotype of adult murine vasculature.
Collapse
Affiliation(s)
- Peter I Teng
- Millennium Pharmaceuticals, South San Francisco 94080, USA
| | | | | | | | | | | |
Collapse
|
617
|
|
618
|
Abstract
Cytokines of the transforming growth factor-beta (TGF-beta) superfamily transduce their signals by activating receptor-regulated Smads (R-Smads). Distinct R-Smads or combinations of R-Smads are activated by TGF-beta, activin, or bone morphogenetic proteins (BMPs). R-Smads activated by BMPs induce expression of Id proteins, which act as inhibitors of differentiation and stimulators of cell growth by inhibiting the function of basic helix-loop-helix transcription factors. In endothelial cells, TGF-beta binds to two distinct type I receptor serine-threonine kinases, ALK-5 and ALK-1; the latter activates the same R-Smads that are activated by BMP and induces synthesis of Id (inhibitor of differentiation or inhibitor of DNA binding) proteins. Growing evidence suggests that Id proteins may play crucial roles in angiogenesis, neurogenesis, and osteogenesis and act as key molecules in regulating biological responses induced by BMPs and TGF-beta.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
619
|
Valcourt U, Gouttenoire J, Moustakas A, Herbage D, Mallein-Gerin F. Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J Biol Chem 2002; 277:33545-58. [PMID: 12082094 DOI: 10.1074/jbc.m202086200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the effects of bone morphogenetic protein (BMP)-2, a member of the transforming growth factor-beta superfamily, on the regulation of the chondrocyte phenotype, and we identified signaling molecules involved in this regulation. BMP-2 triggers three concomitant responses in mouse primary chondrocytes and chondrocytic MC615 cells. First, BMP-2 stimulates expression or synthesis of type II collagen. Second, BMP-2 induces expression of molecular markers characteristic of pre- and hypertrophic chondrocytes, such as Indian hedgehog, parathyroid hormone/parathyroid hormone-related peptide receptor, type X collagen, and alkaline phosphatase. Third, BMP-2 induces osteocalcin expression, a specific trait of osteoblasts. Constitutively active forms of transforming growth factor-beta family type I receptors and Smad proteins were overexpressed to address their role in this process. Activin receptor-like kinase (ALK)-1, ALK-2, ALK-3, and ALK-6 were able to reproduce the hypertrophic maturation of chondrocytes induced by BMP-2. In addition, ALK-2 mimicked further the osteoblastic differentiation of chondrocytes induced by BMP-2. In the presence of BMP-2, Smad1, Smad5, and Smad8 potentiated the hypertrophic maturation of chondrocytes, but failed to induce osteocalcin expression. Smad6 and Smad7 impaired chondrocytic expression and osteoblastic differentiation induced by BMP-2. Thus, our results indicate that Smad-mediated pathways are essential for the regulation of the different steps of chondrocyte and osteoblast differentiation and suggest that additional Smad-independent pathways might be activated by ALK-2.
Collapse
Affiliation(s)
- Ulrich Valcourt
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
620
|
Nishihara A, Watabe T, Imamura T, Miyazono K. Functional heterogeneity of bone morphogenetic protein receptor-II mutants found in patients with primary pulmonary hypertension. Mol Biol Cell 2002; 13:3055-63. [PMID: 12221115 PMCID: PMC124142 DOI: 10.1091/mbc.e02-02-0063] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Revised: 05/23/2002] [Accepted: 06/05/2002] [Indexed: 01/24/2023] Open
Abstract
Germline mutations in the BMPR2 gene encoding bone morphogenetic protein (BMP) type II receptor (BMPR-II) have been reported in patients with primary pulmonary hypertension (PPH), but the contribution of various types of mutations found in PPH to the pathogenesis of clinical phenotypes has not been elucidated. To determine the biological activities of these mutants, we performed functional assays testing their abilities to transduce BMP signals. We found that the reported missense mutations within the extracellular and kinase domains of BMPR-II abrogated their signal-transducing abilities. BMPR-II proteins containing mutations at the conserved cysteine residues in the extracellular and kinase domains were detected in the cytoplasm, suggesting that the loss of signaling ability of certain BMPR-II mutants is due at least in part to their altered subcellular localization. In contrast, BMPR-II mutants with truncation of the cytoplasmic tail retained the ability to transduce BMP signals. The differences in biological activities among the BMPR-II mutants observed thus suggest that additional genetic and/or environmental factors may play critical roles in the pathogenesis of PPH.
Collapse
Affiliation(s)
- Ayako Nishihara
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
621
|
Enge M, Bjarnegård M, Gerhardt H, Gustafsson E, Kalén M, Asker N, Hammes HP, Shani M, Fässler R, Betsholtz C. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 2002; 21:4307-16. [PMID: 12169633 PMCID: PMC126162 DOI: 10.1093/emboj/cdf418] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Loss of pericytes from the capillary wall is a hallmark of diabetic retinopathy, however, the pathogenic significance of this phenomenon is unclear. In previous mouse gene knockout models leading to pericyte deficiency, prenatal lethality has so far precluded analysis of postnatal consequences in the retina. We now report that endothelium-restricted ablation of platelet-derived growth factor-B generates viable mice with extensive inter- and intra-individual variation in the density of pericytes throughout the CNS. We found a strong inverse correlation between pericyte density and the formation of a range of retinal microvascular abnormalities strongly reminiscent of those seen in diabetic humans. Proliferative retinopathy invariably developed when pericyte density was <50% of normal. Our data suggest that a reduction of the pericyte density is sufficient to cause retinopathy in mice, implying that pericyte loss may also be a causal pathogenic event in human diabetic retinopathy.
Collapse
Affiliation(s)
| | | | | | - Erika Gustafsson
- Department of Medical Biochemistry, Göteborg University, PO Box 440, SE 405 30 Göteborg,
Department of Experimental Pathology, Lund University, SE 221 85 Lund, AngioGenetics AB, Medicinaregatan 7, SE 413 90 Göteborg, Sweden, Vth Medical Clinic, Medical Faculty of the University of Heidelberg, D-68135 Mannheim, Germany, Institute of Animal Science, The Volcani Center, Bet Dagan 50250, Israel and Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
| | - Mattias Kalén
- Department of Medical Biochemistry, Göteborg University, PO Box 440, SE 405 30 Göteborg,
Department of Experimental Pathology, Lund University, SE 221 85 Lund, AngioGenetics AB, Medicinaregatan 7, SE 413 90 Göteborg, Sweden, Vth Medical Clinic, Medical Faculty of the University of Heidelberg, D-68135 Mannheim, Germany, Institute of Animal Science, The Volcani Center, Bet Dagan 50250, Israel and Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
| | - Noomi Asker
- Department of Medical Biochemistry, Göteborg University, PO Box 440, SE 405 30 Göteborg,
Department of Experimental Pathology, Lund University, SE 221 85 Lund, AngioGenetics AB, Medicinaregatan 7, SE 413 90 Göteborg, Sweden, Vth Medical Clinic, Medical Faculty of the University of Heidelberg, D-68135 Mannheim, Germany, Institute of Animal Science, The Volcani Center, Bet Dagan 50250, Israel and Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
| | - Hans-Peter Hammes
- Department of Medical Biochemistry, Göteborg University, PO Box 440, SE 405 30 Göteborg,
Department of Experimental Pathology, Lund University, SE 221 85 Lund, AngioGenetics AB, Medicinaregatan 7, SE 413 90 Göteborg, Sweden, Vth Medical Clinic, Medical Faculty of the University of Heidelberg, D-68135 Mannheim, Germany, Institute of Animal Science, The Volcani Center, Bet Dagan 50250, Israel and Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
| | - Moshe Shani
- Department of Medical Biochemistry, Göteborg University, PO Box 440, SE 405 30 Göteborg,
Department of Experimental Pathology, Lund University, SE 221 85 Lund, AngioGenetics AB, Medicinaregatan 7, SE 413 90 Göteborg, Sweden, Vth Medical Clinic, Medical Faculty of the University of Heidelberg, D-68135 Mannheim, Germany, Institute of Animal Science, The Volcani Center, Bet Dagan 50250, Israel and Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
| | - Reinhardt Fässler
- Department of Medical Biochemistry, Göteborg University, PO Box 440, SE 405 30 Göteborg,
Department of Experimental Pathology, Lund University, SE 221 85 Lund, AngioGenetics AB, Medicinaregatan 7, SE 413 90 Göteborg, Sweden, Vth Medical Clinic, Medical Faculty of the University of Heidelberg, D-68135 Mannheim, Germany, Institute of Animal Science, The Volcani Center, Bet Dagan 50250, Israel and Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
| | - Christer Betsholtz
- Department of Medical Biochemistry, Göteborg University, PO Box 440, SE 405 30 Göteborg,
Department of Experimental Pathology, Lund University, SE 221 85 Lund, AngioGenetics AB, Medicinaregatan 7, SE 413 90 Göteborg, Sweden, Vth Medical Clinic, Medical Faculty of the University of Heidelberg, D-68135 Mannheim, Germany, Institute of Animal Science, The Volcani Center, Bet Dagan 50250, Israel and Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
| |
Collapse
|
622
|
Abstract
Certain rare familial or congenital syndromes include cerebrovascular malformations among their constellations of abnormalities. In addition, recognition of familial clustering in a subset of patients with cerebrovascular malformations has led to studies investigating the underlying genetic basis for these lesions. Genetic defects have been identified that cause familial cerebral cavernous malformations and hereditary hemorrhagic telangiectasia, a syndrome that features cerebral arteriovenous malformations. In addition to enhancing presymptomatic screening, identification of the responsible genes may result in a better understanding of the pathogenesis of these lesions, and ultimately, in novel treatments.
Collapse
Affiliation(s)
- Sepideh Amin Hanjani
- Department of Surgery (Neurosurgery), Harvard Medical School, and the Neurosurgical Service, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
623
|
Oh SP, Li E. Gene-dosage-sensitive genetic interactions between inversus viscerum (iv), nodal, and activin type IIB receptor (ActRIIB) genes in asymmetrical patterning of the visceral organs along the left-right axis. Dev Dyn 2002; 224:279-90. [PMID: 12112458 DOI: 10.1002/dvdy.10103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that mice deficient in the activin type IIB receptor (ActRIIB) exhibit right isomerism, which is characterized by mirror-image symmetrical right lungs, complex cardiac malformations, and hypoplasia of the spleen. These observations led us to hypothesize that the signaling of a TGF-beta family member by means of ActRIIB is necessary for the determination of the left-sidedness of the visceral organs. To test this hypothesis, we examined laterality defects in mice carrying mutations in both ActRIIB and inversus viscerum (iv) genes, because iv(-/-) mice display a spectrum of laterality defects, including situs inversus, right isomerism, and left isomerism. We found that all mice homozygous for both iv and ActRIIB mutations displayed the right isomerism. The phenotype of right isomerism in the double mutants was also more severe than that in ActRIIB(-/-) mice as shown by persistent left inferior vena cava, right atrial isomerism, and hypoplasia of spleen. Interestingly, the incidence of right isomerism also increased significantly in iv(-/-);ActRIIB(+/-) and iv(+/-);ActRIIB(-/-) mice compared with homozygous mice carrying either of single gene mutations. A mechanism of the genetic modulation between ActRIIB and iv genes may be that iv modulates the asymmetric expression of a TGF-beta family member that signals through activin type II receptors, ActRIIA and ActRIIB, to specify the "left-sidedness." Nodal is the most likely candidate. We show here that the penetrance and severity of the right isomerism is significantly elevated in nodal(+/-); ActRIIB(-/-) mice, compared with ActRIIB(-/-) mice. Furthermore, the chimeric mice derived from nodal(-/-) ES cells displayed right isomerism, indistinguishable from that in (iv(-/-);ActRIIB(-/-)) mice. We propose that iv functions to establish asymmetric expression of nodal in a gene-dosage-sensitive manner and that nodal signals through the activin type II receptors to specify the left-sidedness by means of a threshold mechanism.
Collapse
Affiliation(s)
- S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
624
|
Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002; 62:65-74. [PMID: 12065756 DOI: 10.1124/mol.62.1.65] [Citation(s) in RCA: 1365] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small molecule inhibitors have proven extremely useful for investigating signal transduction pathways and have the potential for development into therapeutics for inhibiting signal transduction pathways whose activities contribute to human diseases. Transforming growth factor beta (TGF-beta) is a member of a large family of pleiotropic cytokines that are involved in many biological processes, including growth control, differentiation, migration, cell survival, adhesion, and specification of developmental fate, in both normal and diseased states. TGF-beta superfamily members signal through a receptor complex comprising a type II and type I receptor, both serine/threonine kinases. Here, we characterize a small molecule inhibitor (SB-431542) that was identified as an inhibitor of activin receptor-like kinase (ALK)5 (the TGF-beta type I receptor). We demonstrate that it inhibits ALK5 and also the activin type I receptor ALK4 and the nodal type I receptor ALK7, which are very highly related to ALK5 in their kinase domains. It has no effect on the other, more divergent ALK family members that recognize bone morphogenetic proteins (BMPs). Consistent with this, we demonstrate that SB-431542 is a selective inhibitor of endogenous activin and TGF-beta signaling but has no effect on BMP signaling. To demonstrate the specificity of SB-431542, we tested its effect on several other signal transduction pathways whose activities depend on the concerted activation of multiple kinases. SB-431542 has no effect on components of the ERK, JNK, or p38 MAP kinase pathways or on components of the signaling pathways activated in response to serum.
Collapse
Affiliation(s)
- Gareth J Inman
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
625
|
Cao W, Mattagajasingh SN, Xu H, Kim K, Fierlbeck W, Deng J, Lowenstein CJ, Ballermann BJ. TIMAP, a novel CAAX box protein regulated by TGF-beta1 and expressed in endothelial cells. Am J Physiol Cell Physiol 2002; 283:C327-37. [PMID: 12055102 DOI: 10.1152/ajpcell.00442.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Representational difference analysis of the glomerular endothelial cell response to transforming growth factor-beta1 (TGF-beta1) revealed a novel gene, TIMAP (TGF-beta-inhibited membrane-associated protein), which contains 10 exons and maps to human chromosome 20.q11.22. By Northern blot, TIMAP mRNA is highly expressed in all cultured endothelial and hematopoietic cells. The frequency of the TIMAP SAGE tag is much greater in endothelial cell SAGE databases than in nonendothelial cells. Immunofluorescence studies of rat tissues show that anti-TIMAP antibodies localize to vascular endothelium. TGF-beta1 represses TIMAP through a protein synthesis- and histone deacetylase-dependent process. The TIMAP protein contains five ankyrin repeats, a protein phosphatase-1 (PP1)-interacting domain, a COOH-terminal CAAX box, a domain arrangement similar to that of MYPT3, and a PP1 inhibitor. A green fluorescent protein-TIMAP fusion protein localized to the plasma membrane in a CAAX box-dependent fashion. Hence, TIMAP is a novel gene highly expressed in endothelial and hematopoietic cells and regulated by TGF-beta1. On the basis of its domain structure, TIMAP may serve a signaling function, potentially through interaction with PP1.
Collapse
Affiliation(s)
- Wangsen Cao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
626
|
Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM. Disruption ofacvrl1increases endothelial cell number in zebrafish cranial vessels. Development 2002; 129:3009-19. [PMID: 12050147 DOI: 10.1242/dev.129.12.3009] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The zebrafish mutant violet beauregarde (vbg) can be identified at two days post-fertilization by an abnormal circulation pattern in which most blood cells flow through a limited number of dilated cranial vessels and fail to perfuse the trunk and tail. This phenotype cannot be explained by caudal vessel abnormalities or by a defect in cranial vessel patterning, but instead stems from an increase in endothelial cell number in specific cranial vessels. We show that vbg encodes activin receptor-like kinase 1 (Acvrl1; also known as Alk1), a TGFβ type I receptor that is expressed predominantly in the endothelium of the vessels that become dilated in vbg mutants. Thus, vbg provides a model for the human autosomal dominant disorder, hereditary hemorrhagic telangiectasia type 2, in which disruption of ACVRL1 causes vessel malformations that may result in hemorrhage or stroke.Movies available on-line
Collapse
Affiliation(s)
- Beth L Roman
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
627
|
Wikström P, Lissbrant IF, Stattin P, Egevad L, Bergh A. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate 2002; 51:268-75. [PMID: 11987155 DOI: 10.1002/pros.10083] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Endoglin, a receptor for some of the members of the transforming growth factor-beta (TGF-beta) family, is expressed on proliferating endothelial cells and has been suggested as a marker of ongoing angiogenesis. In this study, endoglin was evaluated as a prognostic factor for prostate cancer progression. METHODS Immunohistochemical staining of endoglin was examined in 72 cases of prostate cancer and compared with immunohistochemical staining of the pan-endothelial marker von Willebrand factor (vWf), clinicopathological factors, and cancer-specific survival. Micro-vessels were measured in the most vascularized fields. Double staining with antibodies against smooth muscle actin and endoglin or vWf, respectively, was performed in order to evaluate vessel maturation. RESULTS Endoglin-stained tumor vessels were generally small and only 19% also stained with actin. Endoglin was a better prognostic marker than vWf. The median survival times were shorter for patients with tumor vascular count (vc) above median than for patients with vc below median (4 vs. 12 years, P = 0.0007, and 5 vs. 10 years, P = 0.018, for endoglin and vWf, respectively). Endoglin vc was associated with Gleason score (P = 0.001), local tumor stage (P = 0.0006), metastasis (P = 0.01), tumor cell immunoreactivity for TGF-beta1 (P = 0.0003), and tumor cell proliferation index (r(s) = 0.319, P = 0.02). Endoglin, in contrast to vWf, vc was prognostic for survival in the subgroup of patients with Gleason score 5, 6, and 7 tumors. CONCLUSIONS Endoglin marks principally small, probably newly formed tumor vessels in zthe prostate, and is a promising prognostic marker for prostate cancer patients.
Collapse
Affiliation(s)
- Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
628
|
de Caestecker MP, Bottomley M, Bhattacharyya S, Payne TL, Roberts AB, Yelick PC. The novel type I serine-threonine kinase receptor Alk8 binds TGF-beta in the presence of TGF-betaRII. Biochem Biophys Res Commun 2002; 293:1556-65. [PMID: 12054694 DOI: 10.1016/s0006-291x(02)00424-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The TGF-beta superfamily consists of an array of ligands including BMP, TGF-beta, activin, and nodal subfamilies. The extensive range of biological effects elicited by TGF-beta family signaling is due in part to the large numbers and promiscuity of types I and II TGF-beta family member receptors. Alk8 is a novel type I TGF-beta family member receptor first identified in zebrafish [Dev. Dyn. 211 (4) (1998) 352], which participates in BMP signaling pathways [Development 128 (6) (2001) 849; Development 128 (6) (2001) 859; Mech. Dev. 100 (2) (2001) 275; J. Dent. Res. 80 (11) (2001) 1968]. Here we report that Alk8 also forms active signaling complexes with TGF-beta in the presence of TGF-betaRII. These results expand the signaling repertoire of zAlk8 by demonstrating an ability to participate in two distinct TGF-beta subfamily signaling pathways.
Collapse
Affiliation(s)
- Mark P de Caestecker
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, TN 37232-2372, USA
| | | | | | | | | | | |
Collapse
|
629
|
Panopoulou E, Gillooly DJ, Wrana JL, Zerial M, Stenmark H, Murphy C, Fotsis T. Early endosomal regulation of Smad-dependent signaling in endothelial cells. J Biol Chem 2002; 277:18046-52. [PMID: 11877415 DOI: 10.1074/jbc.m107983200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) receptors require SARA for phosphorylation of the downstream transducing Smad proteins. SARA, a FYVE finger protein, binds to membrane lipids suggesting that activated receptors may interact with downstream signaling molecules at discrete endocytic locations. In the present study, we reveal a critical role for the early endocytic compartment in regulating Smad-dependent signaling. Not only is SARA localized on early endosomes, but also its minimal FYVE finger sequence is sufficient for early endosomal targeting. Expression of a SARA mutant protein lacking the FYVE finger inhibits downstream activin A signaling in endothelial cells. Moreover, a dominant-negative mutant of Rab5, a crucial protein for early endosome dynamics, causes phosphorylation and nuclear translocation of Smads leading to constitutive (i.e. ligand independent) transcriptional activation of a Smad-dependent promoter in endothelial cells. As inhibition of endocytosis using the K44A negative mutant of dynamin and RN-tre did not lead to activation of Smad-dependent transcription, the effects of the dominant-negative Rab5 are likely to be a consequence of altered membrane trafficking of constitutively formed TGFbeta/activin type I/II receptor complexes at the level of early endosomes. The results suggest an important interconnection between early endosomal dynamics and TGFbeta/activin signal transduction pathways.
Collapse
Affiliation(s)
- Ekaterini Panopoulou
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
630
|
Dennler S, Goumans M, ten Dijke P. Transforming growth factor β signal transduction. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Sylviane Dennler
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marie‐José Goumans
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter ten Dijke
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
631
|
Sabbà C, Cirulli A, Rizzi R, Pasculli G, Gallitelli M, Specchia G, Liso V. Angiogenesis and hereditary hemorrhagic telangiectasia. Rendu-Osler-Weber disease. Acta Haematol 2002; 106:214-9. [PMID: 11815719 DOI: 10.1159/000046618] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To date much of the recent work on pathological angiogenesis has focused on inflammatory diseases, diabetes and cancer in particular. Hereditary hemorrhagic telangiectasia or Rendu-Osler-Weber disease provides an example of the genetic disorder of angiogenesis in which a multisystemic angiodysplasia is responsible for severe hemorrhage. The disease pathogenesis is partially explained by a defect in the TGF-beta signaling system, although in more recent works a possible role of other vascular growth factors has been proposed. This paper provides a model of an aberrant angiogenesis in which multiple vascular growth factors could be involved in a diffuse angiodysplasia.
Collapse
Affiliation(s)
- C Sabbà
- Cattedra di Medicina d'Urgenza e Pronto Soccorso, Università degli Studi, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
632
|
Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 2002; 21:1743-53. [PMID: 11927558 PMCID: PMC125949 DOI: 10.1093/emboj/21.7.1743] [Citation(s) in RCA: 871] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The generation of mice lacking specific components of the transforming growth factor-beta (TGF-beta) signal tranduction pathway shows that TGF-beta is a key player in the development and physiology of the cardiovascular system. Both pro- and anti-angiogenic properties have been ascribed to TGF-beta, for which the molecular mechanisms are unclear. Here we report that TGF-beta can activate two distinct type I receptor/Smad signalling pathways with opposite effects. TGF-beta induces phosphorylation of Smad1/5 and Smad2 in endothelial cells and these effects can be blocked upon selective inhibition of ALK1 or ALK5 expression, respectively. Whereas the TGF-beta/ALK5 pathway leads to inhibition of cell migration and proliferation, the TGF-beta/ALK1 pathway induces endothelial cell migration and proliferation. We identified genes that are induced specifically by TGF-beta-mediated ALK1 or ALK5 activation. Id1 was found to mediate the TGF-beta/ALK1-induced (and Smad-dependent) migration, while induction of plasminogen activator inhibitor-1 by activated ALK5 may contribute to the TGF-beta-induced maturation of blood vessels. Our results suggest that TGF-beta regulates the activation state of the endothelium via a fine balance between ALK5 and ALK1 signalling.
Collapse
Affiliation(s)
- Marie-José Goumans
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands and
AstraZeneca, Departments of Molecular Sciences and Biosciences, Scheelevägen 2, S-221 87 Lund and Department of Immunology, Biomedical Center, Lund University, Sölvegatan 21, S-223 62 Lund, Sweden Corresponding author e-mail:
| | | | | | - Alexander Rosendahl
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands and
AstraZeneca, Departments of Molecular Sciences and Biosciences, Scheelevägen 2, S-221 87 Lund and Department of Immunology, Biomedical Center, Lund University, Sölvegatan 21, S-223 62 Lund, Sweden Corresponding author e-mail:
| | - Paschalis Sideras
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands and
AstraZeneca, Departments of Molecular Sciences and Biosciences, Scheelevägen 2, S-221 87 Lund and Department of Immunology, Biomedical Center, Lund University, Sölvegatan 21, S-223 62 Lund, Sweden Corresponding author e-mail:
| | | |
Collapse
|
633
|
Caviness VS. Developmental vasculopathies as manifestations of dysregulated histogenetic signal transduction pathways. Curr Opin Neurol 2002; 15:127-31. [PMID: 11923624 DOI: 10.1097/00019052-200204000-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
634
|
Gerety SS, Anderson DJ. Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 2002; 129:1397-410. [PMID: 11880349 DOI: 10.1242/dev.129.6.1397] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
EphrinB2, a transmembrane ligand of EphB receptor tyrosine kinases, is specifically expressed in arteries. In ephrinB2 mutant embryos, there is a complete arrest of angiogenesis. However, ephrinB2 expression is not restricted to vascular endothelial cells, and it has been proposed that its essential function may be exerted in adjacent mesenchymal cells. We have generated mice in which ephrinB2 is specifically deleted in the endothelium and endocardium of the developing vasculature and heart. We find that such a vascular-specific deletion of ephrinB2 results in angiogenic remodeling defects identical to those seen in the conventional ephrinB2 mutants. These data indicate that ephrinB2 is required specifically in endothelial and endocardial cells for angiogenesis, and that ephrinB2 expression in perivascular mesenchyme is not sufficient to compensate for the loss of ephrinB2 in these vascular cells.
Collapse
Affiliation(s)
- Sebastian S Gerety
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
635
|
Fuchs O, Simakova O, Klener P, Cmejlova J, Zivny J, Zavadil J, Stopka T. Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4. Blood Cells Mol Dis 2002; 28:221-33. [PMID: 12064918 DOI: 10.1006/bcmd.2002.0487] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with secondary myelodysplasias and acute myeloid leukemias (MDS/AML) frequently exhibit interstitial deletions of the chromosome-5q resulting in hemizygous loss of the transcription transactivator Smad5. Smad5 is a member of the signal transducer family conveying the pleiotropic TGF-gb/BMP cytokine signals with roles in development, cell growth control, and tumor progression. Here we present a study of the Smad5 expression and its functional role in leukemia cell lines as well as in primary CD34+ progenitors of MDS/AML patients and healthy individuals. Consistent Smad5 gene expression in these cell types and the gradual increase in its mRNA and protein levels in a model of induced erythroid differentiation of murine erythroleukemia (MEL) cells suggest a role of the gene in hematopoiesis. We show that bone morphogenetic protein 4 (BMP4) directs Smad5 activation in human hematopoietic cells, as monitored at the levels of protein phosphorylation, nuclear translocation, and specific transcription response. In vitro induction of normal human CD34+ cells by BMP4 results in significantly increased proliferation of erythroid progenitors (BFU-E) and formation of glycophorin-A+ cells, whereas perturbation of Smad5 expression by antisense oligonucleotides causes significantly decreased rates of BMP4-induced erythroid differentiation. We have not detected any effects of Smad5 inhibition on BMP4-stimulated progenitors of the granulocyteNmacrophage lineage. We propose that the BMP4/Smad5 signal transduction pathway activates hematopoietic differentiation programs that may be impaired in anemia manifestations in MDS and AML patients with Smad5 haploinsufficiency.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
636
|
Huang S, Tang B, Usoskin D, Lechleider RJ, Jamin SP, Li C, Anzano MA, Ebendal T, Deng C, Roberts AB. Conditional knockout of the Smad1 gene. Genesis 2002; 32:76-9. [PMID: 11857782 DOI: 10.1002/gene.10059] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shixia Huang
- Laboratory of Cell Regulation and Carcinogenesis, NCI, NIH, Bethesda, Maryland 20892-5055, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
637
|
Fan X, Valdimarsdottir G, Larsson J, Brun A, Magnusson M, Jacobsen SE, ten Dijke P, Karlsson S. Transient disruption of autocrine TGF-beta signaling leads to enhanced survival and proliferation potential in single primitive human hemopoietic progenitor cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:755-62. [PMID: 11777969 DOI: 10.4049/jimmunol.168.2.755] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hemopoietic stem cells (HSCs) are maintained at relative quiescence by the balance between the positive and negative regulatory factors that stimulate or inhibit their proliferation. Blocking the action of negative regulatory factors may provide a new approach for inducing HSCs into proliferation. A variety of studies have suggested that TGF-beta negatively regulates cell cycle progression of HSCs. In this study, a dominant negatively acting mutant of TGF-beta type II receptor (TbetaRIIDN) was transiently expressed in HSCs by using adenoviral vector-mediated gene delivery, such that the effects of disrupting the autocrine TGF-beta signaling in HSCs can be directly examined at a single cell level. Adenoviral vectors allowing the expression of TbetaRIIDN and green fluorescence protein in the same CD34(+)CD38(-)Lin(-) cells were constructed. Overexpression of TbetaRIIDN specifically disrupted TGF-beta-mediated signaling. Autocrine TGF-beta signaling in CD34(+)CD38(-)Lin(-) cells was studied in single cell assays under serum-free conditions. Transient blockage of autocrine TGF-beta signaling in CD34(+)CD38(-)Lin(-) cells enhanced their survival. Furthermore, the overall proliferation potential and proliferation kinetics in these cells were significantly enhanced compared with the CD34(+)CD38(-)Lin(-) cells expressing green fluorescence protein alone. Therefore, we have successfully blocked the autocrine TGF-beta-negative regulatory loop of primitive hemopoietic progenitor cells.
Collapse
Affiliation(s)
- Xiaolong Fan
- Department of Molecular Medicine and Stem Cell Biology, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
638
|
Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C. Analysis of mural cell recruitment to tumor vessels. Circulation 2002; 105:112-7. [PMID: 11772885 DOI: 10.1161/hc0102.101437] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tumor blood vessels are both structurally and functionally abnormal compared with normal vessels. A limited support of mural cells may contribute to these abnormalities. Here, we characterized mural cell recruitment in 2 mouse tumor models and addressed the question of why tumor vessels fail to recruit a proper coat of mural cells. METHODS AND RESULTS We studied mural cell recruitment to the vasculature of 2 transplantable mouse tumor models, T241 fibrosarcoma and KRIB osteosarcoma. We found that both tumors formed a vessel network with heterogeneous and highly abnormal organization of mural cells. Transplantation of tumors to mice expressing lacZ in mural cells demonstrated that these cells were host-derived. Although tumor vessel endothelium expressed PDGF-B, an embryonic mitogen for mural cells, only very few PDGFRbeta-positive cells were found to be associated with the developing tumor vasculature, suggesting a limited pool of recruitable mural cells. We tested whether exogenous mural cells could be recruited to tumor vessels by injecting mixtures of T241 tumor cells and embryonic mesenchymal cells isolated from mice expressing lacZ in mural cells. In the tumors that arose, lacZ-positive cells were efficiently recruited to the tumor vessels. CONCLUSIONS T241 and KRIB tumors show a similar highly abnormal organization of vessel-associated mural cells. T241 tumor vessels seem highly capable of recruiting exogenously added mural cells. The sparse mural cell coat of tumor vessels may result from a limited pool of mural cells available for recruitment.
Collapse
MESH Headings
- Actins/analysis
- Animals
- Cell Line
- Endothelium, Vascular/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Muscle, Smooth/chemistry
- Muscle, Smooth, Vascular/pathology
- Neoplasms/blood supply
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Pericytes/pathology
- Platelet Endothelial Cell Adhesion Molecule-1/analysis
- Platelet-Derived Growth Factor/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Tumor Cells, Cultured
Collapse
|
639
|
|
640
|
Roberts AB, Derynck R. Meeting report: signaling schemes for TGF-beta. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pe43. [PMID: 11752631 DOI: 10.1126/stke.2001.113.pe43] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily of signaling molecules regulates many developmental processes in a range of organisms from worms to humans. Understanding the mechanisms by which they exert their repertoire of effects has required identification of the components of signaling pathways that they control. Roberts and Derynck focus on this aspect of TGF-beta biology in their review of a recent Federation of American Societies for Experimental Biology (FASEB) meeting on TGF-beta signaling and development and summarize current signaling paradigms and future prospects in TGF-beta signaling from the cell surface to the nucleus.
Collapse
Affiliation(s)
- A B Roberts
- The Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA.
| | | |
Collapse
|
641
|
Vargesson N, Laufer E. Smad7 misexpression during embryonic angiogenesis causes vascular dilation and malformations independently of vascular smooth muscle cell function. Dev Biol 2001; 240:499-516. [PMID: 11784079 DOI: 10.1006/dbio.2001.0481] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous in vitro and in vivo studies implicate transforming growth factor-beta (TGFbeta) superfamily signaling in vascular development and maintenance. Mice and humans with mutations in TGFbeta superfamily signaling pathway genes exhibit a range of vascular defects that include dilated, fragile and hemorrhagic vessels, defective angiogenic remodeling, severe vascular malformations including arterio-venous malformations, and disrupted vascular smooth muscle cell recruitment and maintenance. Despite a wealth of data, the functions of TGFbeta superfamily signals during angiogenesis are poorly defined, since early embryonic lethality and difficulty distinguishing between primary and secondary defects frequently confound phenotypic interpretation. To perturb TGFbeta superfamily signaling during angiogenesis, we have misexpressed Smad7, an intracellular antagonist of TGFbeta superfamily signaling, in the developing chick limb and head. We find that the great vessels are strikingly dilated and frequently develop intra and intervascular shunts. Neither noggin nor dominant negative BMP receptor misexpression causes similar vascular phenotypes. However, simultaneous misexpression of constitutively active BMP receptors with Smad7 suppresses the Smad7-induced phenotype, suggesting that a BMP-like intracellular pathway is the target of Smad7 action. Despite the gross morphological defects, further analyses find no evidence of hemorrhage and vessel structure is normal. Furthermore, enlarged vessels and vascular malformations form in either the presence or absence of vascular smooth muscle, and vascular smooth muscle cell recruitment is unperturbed. Our data define the TGFbeta superfamily pathway as an integral regulator of vessel caliber that is also essential for appropriate vessel connectivity. They demonstrate that dilation need not result in vessel rupture or hemorrhage, and dissociate vessel maintenance from the presence of a vascular smooth muscle cell coat. Furthermore they uncouple vascular smooth muscle cell recruitment and differentiation from TGFbeta superfamily signaling.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Blood Vessels/abnormalities
- Blood Vessels/embryology
- Brain/blood supply
- Brain/embryology
- Cell Differentiation
- Chick Embryo
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Endothelium, Vascular/embryology
- Extremities/blood supply
- Extremities/embryology
- Gene Expression
- Genetic Vectors
- Humans
- Mice
- Microscopy, Electron
- Models, Biological
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/physiology
- Neovascularization, Physiologic/genetics
- Phenotype
- Retroviridae/genetics
- Signal Transduction
- Smad7 Protein
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- N Vargesson
- Department of Genetics and Development, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
642
|
Abstract
This paper concentrates on the genetic aspects of pulmonary arterial hypertension (PAH), a diagnostically based subclass of pulmonary hypertension that includes primary pulmonary hypertension (PPH). During the past year, patients with familial and sporadic PPH were found to have germline heterozygous missense, nonsense and frameshift mutations in bone morphogenetic protein receptor II (BMPR2). Mutations in BMPR2, a member of the transforming growth factor-beta (TGF-beta) receptor superfamily, are predicted to interrupt the bone morphogenetic protein (BMP) signalling pathway, resulting in proliferation, rather than apoptosis of cells within small arterioles. Mechanistically, haploinsufficiency was found by using in vitro gene expression experiments, but a dominant-negative mechanism has not been excluded. The failure to find BMPR2 mutations in all families with familial PPH and in all patients with sporadic PPH suggests that other genes remain to be identified. Mutations in ALK1, a TGF-beta type 1 receptor, previously known to cause type 2 hereditary haemorrhagic telangiectasia (HHT), have also been reported in a few HHT families with clinical and histological features of PPH. The clinical development of PPH, as in neoplasia, appears to require 'two hits' The two hits can be provided either by genetic or environmental factors.
Collapse
Affiliation(s)
- J H Morse
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | | | |
Collapse
|
643
|
Akman HO, Zhang H, Siddiqui MA, Solomon W, Smith EL, Batuman OA. Response to hypoxia involves transforming growth factor-beta2 and Smad proteins in human endothelial cells. Blood 2001; 98:3324-31. [PMID: 11719370 DOI: 10.1182/blood.v98.12.3324] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oxygen deprivation (hypoxia) is a consistent component of ischemia that induces an inflammatory and prothrombotic response in the endothelium. In this report, it is demonstrated that exposure of endothelial cells to hypoxia (1% O(2)) increases messenger RNA and protein levels of transforming growth factor-beta2 (TGF-beta2), a cytokine with potent regulatory effects on vascular inflammatory responses. Messenger RNA levels of the TGF-beta2 type II membrane receptor, which is a serine threonine kinase, also increased. The stimulatory effect of hypoxia was found to occur at the level of transcription of the TGF-beta2 gene and involves Smad proteins, a class of intracellular signaling proteins that mediates the downstream effects of TGF-beta receptors. Transient transfection studies showed that the region spanning -77 and -40 base pairs within the TGF-beta2 promoter (harboring a Smad-binding "CAGA box") is activated in hypoxic cells compared with nonhypoxic controls (P <.01). Hypoxia also stimulated transcription from another promoter, 3TP-Lux, a reporter construct responsive to Smads and TGF-beta. In addition, specific binding to a Smad-binding oligonucleotide was observed with nuclear extracts from hypoxic endothelial cells but not from nonhypoxic cells. It is concluded that Smad proteins, which can regulate endothelial responses to mechanical and inflammatory stress, also may play an important role in vascular responses to hypoxia and ischemia.
Collapse
Affiliation(s)
- H O Akman
- Division of Hematology/Oncology, Department of Medicine, Center for Cardiovascular and Molecular Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
644
|
Viñals F, Pouysségur J. Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol 2001; 21:7218-30. [PMID: 11585905 PMCID: PMC99897 DOI: 10.1128/mcb.21.21.7218-7230.2001] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor beta1 (TGF-beta1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-beta1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-beta1-induced angiogenesis mainly by compromising cell survival. We established that TGF-beta1 stimulated the expression of TGF-alpha mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-beta1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-beta1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-alpha alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-beta1. We therefore propose that TGF-beta1 promotes angiogenesis at least in part via the autocrine secretion of TGF-alpha, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.
Collapse
Affiliation(s)
- F Viñals
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543-Centre Antoine Lacassagne, 06189 Nice Cedex 2, France
| | | |
Collapse
|
645
|
Zhu HJ, Burgess AW. Regulation of transforming growth factor-beta signaling. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2001; 4:321-30. [PMID: 11703090 DOI: 10.1006/mcbr.2001.0301] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of transforming growth factor beta (TGF-beta) family are potent regulators of multiple cellular functions, including cell proliferation, differentiation, migration, organization, and death. Yet the signaling pathways underpinning a wide array of biological activities of TGF-beta appear to be deceptively simple. At every step from TGF-beta secretion to activation of its target genes, the activity of TGF-beta is regulated tightly, both positively and negatively. Biologically active TGF-beta is cleaved from a precursor protein (latent form) and multiple process factors control the levels of active TGF-beta. The efficient secretion, correct folding and deposition to the extracellular matrices require the cosecretion of latent TGF-beta binding proteins (LTBPs). Once activated, TGF-beta ligand signals through a heteromeric receptor complex of two distinct type I and type II serine/threonine kinase receptors TbetaRI and TbetaRII. Many factors appear to influence the formation of the active ligand-receptor complex. The relative orientation of TbetaRI and TbetaRII in the ligand-receptor complex is critical for activation: through TbetaRI, the activated ligand-receptor complex directly binds and phosphorylates downstream intracellular substrates, called Smads. Inhibitory Smads, Smad6 and 7, can antagonize this process. The phosphorylation of Smads leads to the formation of complexes which translocate to the nucleus. Other signaling systems can modulate the activity of the Smads: e.g., ras activity can prevent Smad complexes from entering the nucleus and specific ubiquitin ligases can target Smad for degradation. In the nucleus, the Smad complexes associate with other transcription activators or suppressors to regulate gene expression, either positively or negatively. The combined effects of the positive and/or negative TGF-beta controlled gene expression together with the endogenous protein set of the target cell are responsible for the multiplicity of biological functions.
Collapse
Affiliation(s)
- H J Zhu
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
646
|
Abstract
Transforming growth factor (TGF) beta1 is a potent growth inhibitor, with tumor-suppressing activity. Cancers are often refractile to this growth inhibition either because of genetic loss of TGF-beta signaling components or, more commonly, because of downstream perturbation of the signaling pathway, such as by Ras activation. Carcinomas often secrete excess TGF-beta1 and respond to it by enhanced invasion and metastasis. Therapeutic approaches should aim to inhibit the TGF-beta-induced invasive phenotype, but also to retain its growth-inhibitory and apoptosis-inducing effects.
Collapse
Affiliation(s)
- R J Akhurst
- Mt Zion Cancer Research Institute, University of California at San Francisco, San Francisco, CA 94143-0875, USA.
| | | |
Collapse
|
647
|
Abstract
Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily of secreted signaling molecules, have important functions in many biological contexts. They bind to specific serine/threonine kinase receptors, which transduce the signal to the nucleus through Smad proteins. The question of how BMPs can have such diverse effects while using the same canonical Smad pathway has recently come closer to an answer at the molecular level. Nuclear cofactors have been identified that cooperate with the Smads in regulating specific target genes depending on the cellular context. In addition, the pivotal role BMP signaling plays is underscored by the identification of factors that regulate members of this pathway at the cell surface, in the cytoplasm, and in the nucleus. Many of these factors are BMP-inducible and inhibit the BMP pathway, thus establishing negative feedback loops. Members of the BMP-Smad pathway can also physically interact with components of other signaling pathways to establish crosstalk. Finally, there is accumulating evidence that an alternative pathway involving MAP kinases can transduce BMP signals. The evidence and implications of these findings are discussed with an emphasis on early embryonic development of Xenopus and vertebrates.
Collapse
Affiliation(s)
- A von Bubnoff
- Department of Developmental & Cell Biology, University of California, Irvine, California 92697-2300, USA
| | | |
Collapse
|
648
|
Sánchez-Elsner T, Botella LM, Velasco B, Corbí A, Attisano L, Bernabéu C. Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem 2001; 276:38527-35. [PMID: 11486006 DOI: 10.1074/jbc.m104536200] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling by transforming growth factor (TGF)-beta family members is mediated by Smad proteins that regulate gene transcription through functional cooperativity and association with other DNA-binding proteins. The hypoxia-inducible factor (HIF)-1 is a transcriptional complex that plays a key role in oxygen-regulated gene expression. We demonstrate that hypoxia and TGF-beta cooperate in the induction of the promoter activity of vascular endothelial growth factor (VEGF), which is a major stimulus in the promotion of angiogenesis. This cooperation has been mapped on the human VEGF promoter within a region at -1006 to -954 that contains functional DNA-binding sequences for HIF-1 and Smads. Optimal HIF-1alpha-dependent induction of the VEGF promoter was obtained in the presence of Smad3, suggesting an interaction between these proteins. Consistent with this, co-immunoprecipitation experiments revealed that HIF-1alpha physically associates with Smad3. These results demonstrate that both TGF-beta and hypoxia signaling pathways can synergize in the regulation of VEGF gene expression at the transcriptional level.
Collapse
Affiliation(s)
- T Sánchez-Elsner
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
649
|
Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29:117-29. [PMID: 11586292 DOI: 10.1038/ng1001-117] [Citation(s) in RCA: 1771] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial and hematopoietic cells have a high turnover and their progenitor cells divide continuously, making them prime targets for genetic and epigenetic changes that lead to cell transformation and tumorigenesis. The consequent changes in cell behavior and responsiveness result not only from genetic alterations such as activation of oncogenes or inactivation of tumor suppressor genes, but also from altered production of, or responsiveness to, stimulatory or inhibitory growth and differentiation factors. Among these, transforming growth factor beta (TGF-beta) and its signaling effectors act as key determinants of carcinoma cell behavior. The autocrine and paracrine effects of TGF-beta on tumor cells and the tumor micro-environment exert both positive and negative influences on cancer development. Accordingly, the TGF-beta signaling pathway has been considered as both a tumor suppressor pathway and a promoter of tumor progression and invasion. Here we evaluate the role of TGF-beta in tumor development and attempt to reconcile the positive and negative effects of TGF-beta in carcinogenesis.
Collapse
Affiliation(s)
- R Derynck
- Department of Growth and Development, University of California at San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
650
|
|