601
|
Yuan YW, Sagawa JM, Frost L, Vela JP, Bradshaw HD. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus). THE NEW PHYTOLOGIST 2014; 204:1013-27. [PMID: 25103615 PMCID: PMC4221532 DOI: 10.1111/nph.12968] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/05/2014] [Indexed: 05/04/2023]
Abstract
A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a 'baseline' floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species. We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers. The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general.
Collapse
Affiliation(s)
- Yao-Wu Yuan
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Janelle M. Sagawa
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Laura Frost
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - James P. Vela
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
602
|
Rhodes DH, Hoffmann L, Rooney WL, Ramu P, Morris GP, Kresovich S. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10916-27. [PMID: 25272193 DOI: 10.1021/jf503651t] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Identifying natural variation of health-promoting compounds in staple crops and characterizing its genetic basis can help improve human nutrition through crop biofortification. Some varieties of sorghum, a staple cereal crop grown worldwide, have high concentrations of proanthocyanidins and 3-deoxyanthocyanidins, polyphenols with antioxidant and anti-inflammatory properties. We quantified total phenols, proanthocyanidins, and 3-deoxyanthocyanidins in a global sorghum diversity panel (n = 381) using near-infrared spectroscopy (NIRS), and characterized the patterns of variation with respect to geographic origin and botanical race. A genome-wide association study (GWAS) with 404,628 SNP markers identified novel quantitative trait loci for sorghum polyphenols, some of which colocalized with homologues of flavonoid pathway genes from other plants, including an orthologue of maize (Zea mays) Pr1 and a homologue of Arabidopsis (Arabidopsis thaliana) TT16. This survey of grain polyphenol variation in sorghum germplasm and catalog of flavonoid pathway loci may be useful to guide future enhancement of cereal polyphenols.
Collapse
Affiliation(s)
- Davina H Rhodes
- Department of Biological Sciences, University of South Carolina , Columbia, South Carolina 29208, United States
| | | | | | | | | | | |
Collapse
|
603
|
Mouradov A, Spangenberg G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. FRONTIERS IN PLANT SCIENCE 2014; 5:620. [PMID: 25426130 PMCID: PMC4226159 DOI: 10.3389/fpls.2014.00620] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/21/2014] [Indexed: 05/18/2023]
Abstract
From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.
Collapse
Affiliation(s)
- Aidyn Mouradov
- Royal Melbourne Institute of Technology UniversityBundoora, VIC, Australia
| | - German Spangenberg
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University – AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
| |
Collapse
|
604
|
Schwinn KE, Boase MR, Bradley JM, Lewis DH, Deroles SC, Martin CR, Davies KM. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions. FRONTIERS IN PLANT SCIENCE 2014; 5:603. [PMID: 25414715 PMCID: PMC4220640 DOI: 10.3389/fpls.2014.00603] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/16/2014] [Indexed: 05/17/2023]
Abstract
Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related basic helix-loop-helix TF transgene (LEAF COLOR, LC), which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high-light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1 × 35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment in the petal throat region, and the anthers changed from yellow to purple pigmentation. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1 × 35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants.
Collapse
Affiliation(s)
- Kathy E. Schwinn
- New Zealand Institute for Plant and Food Research Limited, Palmerston NorthNew Zealand
| | - Murray R. Boase
- New Zealand Institute for Plant and Food Research Limited, Palmerston NorthNew Zealand
| | - J. Marie Bradley
- New Zealand Institute for Plant and Food Research Limited, WellingtonNew Zealand
| | - David H. Lewis
- New Zealand Institute for Plant and Food Research Limited, Palmerston NorthNew Zealand
| | - Simon C. Deroles
- New Zealand Institute for Plant and Food Research Limited, Palmerston NorthNew Zealand
| | | | - Kevin M. Davies
- New Zealand Institute for Plant and Food Research Limited, Palmerston NorthNew Zealand
| |
Collapse
|
605
|
D'Amelia V, Aversano R, Batelli G, Caruso I, Castellano Moreno M, Castro-Sanz AB, Chiaiese P, Fasano C, Palomba F, Carputo D. High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:527-40. [PMID: 25159050 DOI: 10.1111/tpj.12653] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
AN1 is a regulatory gene that promotes anthocyanin biosynthesis in potato tubers and encodes a R2R3 MYB transcription factor. However, no clear evidence implicates AN1 in anthocyanin production in leaves, where these pigments might enhance environmental stress tolerance. In our study we found that AN1 displays intraspecific sequence variability in both coding/non-coding regions and in the promoter, and that its expression is associated with high anthocyanin content in leaves of commercial potatoes. Expression analysis provided evidence that leaf pigmentation is associated to AN1 expression and that StJAF13 acts as putative AN1 co-regulator for anthocyanin gene expression in leaves of the red leaf variety 'Magenta Love,' while a concomitant expression of StbHLH1 may contribute to anthocyanin accumulation in leaves of 'Double Fun.' Yeast two-hybrid experiments confirmed that AN1 interacts with StbHLH1 and StJAF13 and the latter interaction was verified and localized in the cell nucleus by bimolecular fluorescence complementation assays. In addition, transgenic tobacco (Nicotiana tabacum) overexpressing a combination of either AN1 with StJAF13 or AN1 with StbHLH1 showed deeper purple pigmentation with respect to AN1 alone. This further confirmed AN1/StJAF13 and AN1/StbHLH1 interactions. Our findings demonstrate that the classical loci identified for potato leaf anthocyanin accumulation correspond to AN1 and may represent an important step to expand our knowledge on the molecular mechanisms underlying anthocyanin biosynthesis in different plant tissues.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
606
|
Bai YC, Li CL, Zhang JW, Li SJ, Luo XP, Yao HP, Chen H, Zhao HX, Park SU, Wu Q. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. PHYSIOLOGIA PLANTARUM 2014; 152:431-40. [PMID: 24730512 DOI: 10.1111/ppl.12199] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/15/2013] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) contains high concentrations of flavonoids. The flavonoids are mainly represented by rutin, anthocyanins and proanthocyanins in tartary buckwheat. R2R3-type MYB transcription factors (TFs) play key roles in the transcriptional regulation of the flavonoid biosynthetic pathway. In this study, two TF genes, FtMYB1 and FtMYB2, were isolated from F. tataricum and characterized. The results of bioinformatic analysis indicated that the putative FtMYB1 and FtMYB2 proteins belonged to the R2R3-MYB family and displayed a high degree of similarity with TaMYB14 and AtMYB123/TT2. In vitro and in vivo evidence both showed the two proteins were located in the nucleus and exhibited transcriptional activation activities. During florescence, both FtMYB1 and FtMYB2 were more highly expressed in the flowers than any other organ. The overexpression of FtMYB1 and FtMYB2 significantly enhanced the accumulation of proanthocyanidins (PAs) and showed a strong effect on the target genes' expression in Nicotiana tabacum. The expression of dihydroflavonol-4-reductase (DFR) was upregulated to 5.6-fold higher than that of control, and the expression level was lower for flavonol synthase (FLS). To our knowledge, this is the first functional characterization of two MYB TFs from F. tataricum that control the PA pathway.
Collapse
Affiliation(s)
- Yue-Chen Bai
- College of Life and Basic Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
607
|
A Malus crabapple chalcone synthase gene, McCHS, regulates red petal color and flavonoid biosynthesis. PLoS One 2014; 9:e110570. [PMID: 25357207 PMCID: PMC4214706 DOI: 10.1371/journal.pone.0110570] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/15/2014] [Indexed: 12/31/2022] Open
Abstract
Chalcone synthase is a key and often rate-limiting enzyme in the biosynthesis of anthocyanin pigments that accumulate in plant organs such as flowers and fruits, but the relationship between CHS expression and the petal coloration level in different cultivars is still unclear. In this study, three typical crabapple cultivars were chosen based on different petal colors and coloration patterns. The two extreme color cultivars, ‘Royalty’ and ‘Flame’, have dark red and white petals respectively, while the intermediate cultivar ‘Radiant’ has pink petals. We detected the flavoniods accumulation and the expression levels of McCHS during petals expansion process in different cultivars. The results showed McCHS have their special expression patterns in each tested cultivars, and is responsible for the red coloration and color variation in crabapple petals, especially for color fade process in ‘Radiant’. Furthermore, tobacco plants constitutively expressing McCHS displayed a higher anthocyanins accumulation and a deeper red petal color compared with control untransformed lines. Moreover, the expression levels of several anthocyanin biosynthetic genes were higher in the transgenic McCHS overexpressing tobacco lines than in the control plants. A close relationship was observed between the expression of McCHS and the transcription factors McMYB4 and McMYB5 during petals development in different crabapple cultivars, suggesting that the expression of McCHS was regulated by these transcription factors. We conclude that the endogenous McCHS gene is a critical factor in the regulation of anthocyanin biosynthesis during petal coloration in Malus crabapple.
Collapse
|
608
|
Almagro L, Carbonell-Bejerano P, Belchí-Navarro S, Bru R, Martínez-Zapater JM, Lijavetzky D, Pedreño MA. Dissecting the transcriptional response to elicitors in Vitis vinifera cells. PLoS One 2014; 9:e109777. [PMID: 25314001 PMCID: PMC4196943 DOI: 10.1371/journal.pone.0109777] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/05/2014] [Indexed: 01/02/2023] Open
Abstract
The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production.
Collapse
Affiliation(s)
- Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
- * E-mail:
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Complejo Científico Tecnológico, Logroño, Spain
| | - Sarai Belchí-Navarro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Roque Bru
- Department of Agrochemistry and Biochemistry, Faculty of Sciences, University of Alicante, Alicante, Spain
| | - José M. Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Complejo Científico Tecnológico, Logroño, Spain
| | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza (CONICET-Universidad Nacional de Cuyo), Facultad de Ciencias Agrarias, Mendoza, Argentina
| | - María A. Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
609
|
Li MY, Tan HW, Wang F, Jiang Q, Xu ZS, Tian C, Xiong AS. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum). PLoS One 2014; 9:e108977. [PMID: 25268141 PMCID: PMC4182582 DOI: 10.1371/journal.pone.0108977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/27/2014] [Indexed: 01/14/2023] Open
Abstract
Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hua-Wei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
610
|
Pérez-Gregorio MR, Regueiro J, Simal-Gándara J, Rodrigues AS, Almeida DPF. Increasing the added-value of onions as a source of antioxidant flavonoids: a critical review. Crit Rev Food Sci Nutr 2014; 54:1050-62. [PMID: 24499121 DOI: 10.1080/10408398.2011.624283] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Flavonoids are a large and diverse group of polyphenolic compounds with antioxidant effects. While the flavonoid content and composition profile clearly reflect the genetic background of the cultivar, environmental conditions and agronomic practices are also determinants for the composition of crops at harvest. Considerable research has been directed toward understanding the nature of polyphenols in different products and the factors influencing their accumulation. This review examines the flavonoids as a class of compounds, the role these compounds play in the plant, their contributions to product quality, and recent research on the impacts of environmental factors and cultural practices on flavonoid content in onions, highlighting how this knowledge may be used to modulate their polyphenolic composition at harvest or during post-harvest handling.
Collapse
Affiliation(s)
- M R Pérez-Gregorio
- a Institute of Advanced Chemistry of Catalonia (IQAC) , Spanish National Research Council (CSIC) , Jordi Girona 18-26 , E-08034 , Barcelona , Spain
| | | | | | | | | |
Collapse
|
611
|
The Impact of Harvesting, Storage and Processing Factors on Health-Promoting Phytochemicals in Berries and Fruits. Processes (Basel) 2014. [DOI: 10.3390/pr2030596] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
612
|
Lännenpää M. Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. PLANT CELL REPORTS 2014; 33:1377-88. [PMID: 24792422 DOI: 10.1007/s00299-014-1623-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/23/2014] [Accepted: 04/16/2014] [Indexed: 05/09/2023]
Abstract
Overexpression of Arabidopsis AtMYB12 transcription factor greatly increases the total phenolic and flavonol content in transgenic kale leaves. Flavonoids are a diverse group of plant secondary metabolites exhibiting a number of health-promoting effects. There has been a growing interest to develop biotechnological methods for the enhanced production of flavonoids in crop plants. AtMYB12 is an Arabidopsis transcription factor which specifically activates flavonol synthesis and its overexpression has led to increased flavonol accumulation in several transgenic plants. In the present study, AtMYB12 was overexpressed in a commercial cultivar of kale and the transgenic plants were tested both in in vitro and in semi-field conditions in cages under natural light. Using this method, a severalfold increase in both total phenolics content and flavonol accumulation was achieved. This study provides a reliable and efficient transformation protocol for kale and suggests the potential of this flavonol-enriched vegetable for the production of kaempferol.
Collapse
Affiliation(s)
- Mika Lännenpää
- BioCarelia Research Laboratory, Juurikantie 45, 82580, Juurikka, Finland,
| |
Collapse
|
613
|
Degu A, Hochberg U, Sikron N, Venturini L, Buson G, Ghan R, Plaschkes I, Batushansky A, Chalifa-Caspi V, Mattivi F, Delledonne M, Pezzotti M, Rachmilevitch S, Cramer GR, Fait A. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC PLANT BIOLOGY 2014; 14:188. [PMID: 25064275 PMCID: PMC4222437 DOI: 10.1186/s12870-014-0188-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/11/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq. RESULTS The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3'5'H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3'5'H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between the central and specialized metabolism, stronger in Shiraz than Cabernet Sauvignon. RNAseq analysis also revealed that the two cultivars exhibited distinct pattern of changes in genes related to abscisic acid (ABA) biosynthesis enzymes. CONCLUSIONS Compared with CS, Shiraz showed higher number of significant correlations between metabolites, which together with the relatively higher expression of flavonoid genes supports the evidence of increased accumulation of coumaroyl anthocyanins in that cultivar. Enhanced stress related metabolism, e.g. trehalose, stilbene and ABA in Shiraz berry-skin are consistent with its relatively higher susceptibility to environmental cues.
Collapse
Affiliation(s)
- Asfaw Degu
- The Albert Katz International School, Beer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Uri Hochberg
- The Albert Katz International School, Beer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Noga Sikron
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Luca Venturini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Genny Buson
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno 9557, NV, USA
| | - Inbar Plaschkes
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Albert Batushansky
- The Albert Katz International School, Beer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Vered Chalifa-Caspi
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Massimo Delledonne
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Mario Pezzotti
- Biotechnology Department, University of Verona, Strada Le Grazie 15, Verona, Italy
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno 9557, NV, USA
| | - Aaron Fait
- The French Associates Institute for Agriculture and Biotechnology of Drylands, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| |
Collapse
|
614
|
Lu Z, Liu Y, Zhao L, Jiang X, Li M, Wang Y, Xu Y, Gao L, Xia T. Effect of low-intensity white light mediated de-etiolation on the biosynthesis of polyphenols in tea seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:328-36. [PMID: 24844450 DOI: 10.1016/j.plaphy.2014.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/18/2014] [Indexed: 05/04/2023]
Abstract
Light is an important source of energy as well as environmental signal for the regulation of biosynthesis and accumulation of multiple secondary metabolites in plants. Polyphenols are the major class of secondary metabolites in tea, which possess potential antioxidant properties. In order to investigate the effect of light signal on the regulation of biosynthesis and accumulation of polyphenols in tea seedlings, a low-intensity white light was used and the change in trends of polyphenol contents, patterns of gene expression, and corresponding enzymatic activities were studied. LC-TOF/MS analysis revealed that light signal promoted the accumulation of hydroxycinnamic acid derivatives and nongalloylated catechin (EGC), while it restrained the accumulation of β-glucogallin and galloylated catechins. The quantitative reverse transcription-PCR analysis showed that the expression levels of the regulator genes and some structural genes involved in photomorphogenesis and biosynthetic pathway of nongalloylated catechins, respectively, were up-regulated. In contrast, the expression of DHD/SDH and UGT genes, which may be involved in biosynthetic pathway of βG, was down-regulated. The corresponding in vitro enzyme assays revealed decrease in the activity of ECGT (galloylates nongalloylated catechins) and an increase in activity of GCH (hydrolyzes galloylated catechins) during de-etiolation. The present study yielded inconsistent accumulation patterns of phenolic acids, flavan-3-ols, and flavonols in tea seedlings during de-etiolation. In addition, the accumulation of catechins was possibly jointly influenced by the biosynthesis, hydrolysis, glycosylation, and galloylation of polyphenols in tea plants.
Collapse
Affiliation(s)
- Zhongwei Lu
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui 230036, China.
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui 230036, China.
| | - Lei Zhao
- Key Laboratory of Tea Biochemistry & Biotechnology, Ministry of Education in China, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui 230036, China.
| | - Xiaolan Jiang
- Key Laboratory of Tea Biochemistry & Biotechnology, Ministry of Education in China, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui 230036, China.
| | - Mingzhuo Li
- Key Laboratory of Tea Biochemistry & Biotechnology, Ministry of Education in China, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui 230036, China.
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui 230036, China.
| | - Yujiao Xu
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui 230036, China.
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui 230036, China.
| | - Tao Xia
- Key Laboratory of Tea Biochemistry & Biotechnology, Ministry of Education in China, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui 230036, China.
| |
Collapse
|
615
|
Dhar MK, Sharma R, Koul A, Kaul S. Development of fruit color in Solanaceae: a story of two biosynthetic pathways. Brief Funct Genomics 2014; 14:199-212. [PMID: 24916164 DOI: 10.1093/bfgp/elu018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review highlights the major differences between the regulation of two important pathways namely anthocyanin and carotenoid pathways, responsible for fruit color generation in Solanaceae mediated by transcription factors (TFs). The anthocyanin pathway is regulated by a common set of TFs (MYB, MYC and WD40) belonging to specific families of DNA-binding proteins. Their regulation is aimed at controlling the type and amount of pigments produced and the physiological conditions (like pH) at which they are finally stored. In the carotenoid pathway, the color diversity depends on the quantity of pigment produced and the point where the pathway is arrested. TFs in the latter case are accordingly found to influence the sequestration and degradation of these pigments, which determines their final concentration in the tissue. TFs (phytochrome interacting factors, MADS-BOX, HB-ZIP and B-ZIP) also regulate important rate-determining steps, which decide the direction in which the pathway proceeds and the point at which it is terminated. In the absence of a clear pattern of TF-mediated regulation, it is suggested that the carotenoid pathway is more significantly influenced by other regulatory methods which need to be explored. It is expected that common factors affecting these pathways are the ones acting much before the initiation of the biosynthesis of respective pigments.
Collapse
|
616
|
Duval I, Lachance D, Giguère I, Bomal C, Morency MJ, Pelletier G, Boyle B, MacKay JJ, Séguin A. Large-scale screening of transcription factor-promoter interactions in spruce reveals a transcriptional network involved in vascular development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2319-33. [PMID: 24713992 PMCID: PMC4036505 DOI: 10.1093/jxb/eru116] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This research aimed to investigate the role of diverse transcription factors (TFs) and to delineate gene regulatory networks directly in conifers at a relatively high-throughput level. The approach integrated sequence analyses, transcript profiling, and development of a conifer-specific activation assay. Transcript accumulation profiles of 102 TFs and potential target genes were clustered to identify groups of coordinately expressed genes. Several different patterns of transcript accumulation were observed by profiling in nine different organs and tissues: 27 genes were preferential to secondary xylem both in stems and roots, and other genes were preferential to phelloderm and periderm or were more ubiquitous. A robust system has been established as a screening approach to define which TFs have the ability to regulate a given promoter in planta. Trans-activation or repression effects were observed in 30% of TF-candidate gene promoter combinations. As a proof of concept, phylogenetic analysis and expression and trans-activation data were used to demonstrate that two spruce NAC-domain proteins most likely play key roles in secondary vascular growth as observed in other plant species. This study tested many TFs from diverse families in a conifer tree species, which broadens the knowledge of promoter-TF interactions in wood development and enables comparisons of gene regulatory networks found in angiosperms and gymnosperms.
Collapse
Affiliation(s)
- Isabelle Duval
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Denis Lachance
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Isabelle Giguère
- Centre d'Étude de la Forêt, Université Laval, Québec, QC, G1V A06, Canada
| | - Claude Bomal
- Centre d'Étude de la Forêt, Université Laval, Québec, QC, G1V A06, Canada
| | - Marie-Josée Morency
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Brian Boyle
- Centre d'Étude de la Forêt, Université Laval, Québec, QC, G1V A06, Canada
| | - John J MacKay
- Centre d'Étude de la Forêt, Université Laval, Québec, QC, G1V A06, Canada Department of Plant Sciences, University of Oxford, Oxford, OX1 2RB, UK
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| |
Collapse
|
617
|
Zhou Q, Jia J, Huang X, Yan X, Cheng L, Chen S, Li X, Peng X, Liu G. The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics 2014; 15:399. [PMID: 24886329 PMCID: PMC4045969 DOI: 10.1186/1471-2164-15-399] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/09/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many Poaceae species show a gametophytic self-incompatibility (GSI) system, which is controlled by at least two independent and multiallelic loci, S and Z. Until currently, the gene products for S and Z were unknown. Grass SI plant stigmas discriminate between pollen grains that land on its surface and support compatible pollen tube growth and penetration into the stigma, whereas recognizing incompatible pollen and thus inhibiting pollination behaviors. Leymus chinensis (Trin.) Tzvel. (sheepgrass) is a Poaceae SI species. A comprehensive analysis of sheepgrass stigma transcriptome may provide valuable information for understanding the mechanism of pollen-stigma interactions and grass SI. RESULTS The transcript abundance profiles of mature stigmas, mature ovaries and leaves were examined using high-throughput next generation sequencing technology. A comparative transcriptomic analysis of these tissues identified 1,025 specifically or preferentially expressed genes in sheepgrass stigmas. These genes contained a significant proportion of genes predicted to function in cell-cell communication and signal transduction. We identified 111 putative transcription factors (TFs) genes and the most abundant groups were MYB, C2H2, C3H, FAR1, MADS. Comparative analysis of the sheepgrass, rice and Arabidopsis stigma-specific or preferential datasets showed broad similarities and some differences in the proportion of genes in the Gene Ontology (GO) functional categories. Potential SI candidate genes identified in other grasses were also detected in the sheepgrass stigma-specific or preferential dataset. Quantitative real-time PCR experiments validated the expression pattern of stigma preferential genes including homologous grass SI candidate genes. CONCLUSIONS This study represents the first large-scale investigation of gene expression in the stigmas of an SI grass species. We uncovered many notable genes that are potentially involved in pollen-stigma interactions and SI mechanisms, including genes encoding receptor-like protein kinases (RLK), CBL (calcineurin B-like proteins) interacting protein kinases, calcium-dependent protein kinase, expansins, pectinesterase, peroxidases and various transcription factors. The availability of a pool of stigma-specific or preferential genes for L. chinensis offers an opportunity to elucidate the mechanisms of SI in Poaceae.
Collapse
Affiliation(s)
- Qingyuan Zhou
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Junting Jia
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Xing Huang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | | | - Liqin Cheng
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Shuangyan Chen
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Xiaoxia Li
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Xianjun Peng
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Gongshe Liu
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| |
Collapse
|
618
|
Pandey A, Misra P, Bhambhani S, Bhatia C, Trivedi PK. Expression of Arabidopsis MYB transcription factor, AtMYB111, in tobacco requires light to modulate flavonol content. Sci Rep 2014; 4:5018. [PMID: 24846090 PMCID: PMC4028898 DOI: 10.1038/srep05018] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/22/2014] [Indexed: 02/04/2023] Open
Abstract
Flavonoids, due to their pharmacological attributes, have recently become target molecules for metabolic engineering in commonly consumed food crops. Strategies including expression of single genes and gene pyramiding have provided only limited success, due principally to the highly branched and complex biosynthetic pathway of the flavonoids. Transcription factors have been demonstrated as an efficient tool for metabolic engineering of this pathway, but often exhibit variation in heterologous systems relative to that in the homologous system. In the present work, Arabidopsis MYB transcription factor, AtMYB111, has been expressed in tobacco to study whether this can enhance flavonoid biosynthesis in heterologous system. The results suggest that AtMYB111 expression in transgenic tobacco enhances expression of genes of the phenylpropanoid pathway leading to an elevated content of flavonols. However, dark incubation of transgenic and wild type (WT) plants down-regulated both the expression of genes as well as flavonoid content as compared to light grown plants. The study concludes that AtMYB111 can be effectively used in heterologous systems, however, light is required for its action in modulating biosynthetic pathway.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Council of Scientific and Industrial Research-National Botanical Research Institute, (CSIR-NBRI), Rana Pratap Marg, Lucknow-226 001, INDIA
- Current address: National Agri-Food Biotechnology Institute (NABI), Mohali-160071, Punjab, INDIA
| | - Prashant Misra
- Council of Scientific and Industrial Research-National Botanical Research Institute, (CSIR-NBRI), Rana Pratap Marg, Lucknow-226 001, INDIA
- Current address: CSIR-Indian Institute of Integrative Medicine (IIIM), Canal Road, Jammu-180001, INDIA
| | - Sweta Bhambhani
- Council of Scientific and Industrial Research-National Botanical Research Institute, (CSIR-NBRI), Rana Pratap Marg, Lucknow-226 001, INDIA
| | - Chitra Bhatia
- Council of Scientific and Industrial Research-National Botanical Research Institute, (CSIR-NBRI), Rana Pratap Marg, Lucknow-226 001, INDIA
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research-National Botanical Research Institute, (CSIR-NBRI), Rana Pratap Marg, Lucknow-226 001, INDIA
| |
Collapse
|
619
|
Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, van Loon JJ, Dicke M. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2203-17. [PMID: 24619996 PMCID: PMC3991749 DOI: 10.1093/jxb/eru096] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin and flavonol levels which enhances plant resistance to generalist caterpillars. However, how these metabolites affect specialist herbivores has remained unknown. Performance of a specialist aphid (Brevicoryne brassicae) was unaffected after feeding on oxMYB75 plants, whereas a specialist caterpillar (Pieris brassicae) gained significantly higher body mass when feeding on this plant. An increase in anthocyanin and total flavonol glycoside levels correlated negatively with the body mass of caterpillars fed on oxMYB75 plants. However, a significant reduction of kaempferol-3,7-dirhamnoside (KRR) corresponded to an increased susceptibility of oxMYB75 plants to caterpillar feeding. Pieris brassicae caterpillars also grew less on an artificial diet containing KRR or on oxMYB75 plants that were exogenously treated with KRR, supporting KRR's function in direct defence against this specialist caterpillar. The results show that enhancing the activity of the anthocyanin pathway in oxMYB75 plants results in re-channelling of quercetin/kaempferol metabolites which has a negative effect on the accumulation of KRR, a novel defensive metabolite against a specialist caterpillar.
Collapse
Affiliation(s)
- Nawaporn Onkokesung
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700EH Wageningen, The Netherlands
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straβe 8, D-07745 Jena, Germany
| | - Arjen van Doorn
- Keygene NV, Agro Business Park 90, 6708OW, Wageningen, The Netherlands
| | - Robert C. Schuurink
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Joop J.A. van Loon
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700EH Wageningen, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
620
|
Shen X, Zhao K, Liu L, Zhang K, Yuan H, Liao X, Wang Q, Guo X, Li F, Li T. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). PLANT & CELL PHYSIOLOGY 2014; 55:862-80. [PMID: 24443499 DOI: 10.1093/pcp/pcu013] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The MYB transcription factors and plant hormone ABA have been suggested to play a role in fruit anthocyanin biosynthesis, but supporting genetic evidence has been lacking in sweet cherry. The present study describes the first functional characterization of an R2R3-MYB transcription factor, PacMYBA, from red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Transient promoter assays demonstrated that PacMYBA physically interacted with several anthocyanin-related basic helix-loop-helix (bHLH) transcription factors to activate the promoters of PacDFR, PacANS and PacUFGT, which are thought to be involved in anthocyanin biosynthesis. Furthermore, the immature seeds of transgenic Arabidopsis plants overexpressing PacMYBA exhibited ectopic pigmentation. Silencing of PacMYBA, using a Tobacco rattle virus (TRV)-induced gene silencing technique, resulted in sweet cherry fruit that lacked red pigment. ABA treatment significantly induced anthocyanin accumulation, while treatment with the ABA biosynthesis inhibitor nordihydroguaiaretic acid (NDGA) blocked anthocyanin production. PacMYBA expression peaked after 2 h of pre-incubation in ABA and was 15.2-fold higher than that of sweet cherries treated with NDGA. The colorless phenotype was also observed in the fruits silenced in PacNCED1, which encodes a key enzyme in the ABA biosynthesis pathway. The endogenous ABA content as well as the transcript levels of six structural genes and PacMYBA in PacNCED1-RNAi (RNA interference) fruit were significantly lower than in the TRV vector control fruit. These results suggest that PacMYBA plays an important role in ABA-regulated anthocyanin biosynthesis and ABA is a signal molecule that promotes red-colored sweet cherry fruit accumulating anthocyanin.
Collapse
Affiliation(s)
- Xinjie Shen
- Department of Pomology, Key Laboratory of Stress Physiology and Molecular Biology for Tree Fruits of Beijing, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
621
|
Xu W, Lepiniec L, Dubos C. New insights toward the transcriptional engineering of proanthocyanidin biosynthesis. PLANT SIGNALING & BEHAVIOR 2014; 9:e28736. [PMID: 24721726 PMCID: PMC4091501 DOI: 10.4161/psb.28736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids are secondary metabolites that play important roles throughout the plant life cycle and have potential human health beneficial properties. Flavonols, anthocyanins and proanthocyanidins (PAs or condensed tannins) are the three main class of flavonoids found in Arabidopsis thaliana. We have previously shown that PA biosynthesis (occurring exclusively in seeds) involves the transcriptional activity of four different ternary protein complexes composed of different R2R3-MYB and bHLH factors together with TRANSPARENT TESTA GLABRA 1 (TTG1), a WD repeat containing protein. We have also identified their direct targets, the late biosynthetic genes. In this study, we have further investigated the transcriptional capacity of the MBW complexes through transactivation assays in moss protoplast and overexpression in Arabidopsis siliques. Results provide new information for biotechnological engineering of PA biosynthesis, as well as new insights into the elucidation of the mechanisms that govern the interactions between MBW complexes and the DNA motifs they can target.
Collapse
Affiliation(s)
- Wenjia Xu
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
| | - Loïc Lepiniec
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
| | - Christian Dubos
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- Correspondence to: Christian Dubos,
| |
Collapse
|
622
|
Gholami A, De Geyter N, Pollier J, Goormachtig S, Goossens A. Natural product biosynthesis in Medicago species. Nat Prod Rep 2014; 31:356-80. [PMID: 24481477 DOI: 10.1039/c3np70104b] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The genus Medicago, a member of the legume (Fabaceae) family, comprises 87 species of flowering plants, including the forage crop M. sativa (alfalfa) and the model legume M. truncatula (barrel medic). Medicago species synthesize a variety of bioactive natural products that are used to engage into symbiotic interactions but also serve to deter pathogens and herbivores. For humans, these bioactive natural products often possess promising pharmaceutical properties. In this review, we focus on the two most interesting and well characterized secondary metabolite classes found in Medicago species, the triterpene saponins and the flavonoids, with a detailed overview of their biosynthesis, regulation, and profiling methods. Furthermore, their biological role within the plant as well as their potential utility for human health or other applications is discussed. Finally, we give an overview of the advances made in metabolic engineering in Medicago species and how the development of novel molecular and omics toolkits can influence a better understanding of this genus in terms of specialized metabolism and chemistry. Throughout, we critically analyze the current bottlenecks and speculate on future directions and opportunities for research and exploitation of Medicago metabolism.
Collapse
Affiliation(s)
- Azra Gholami
- Department of Plant Systems Biology, VIB, Ghent University, Technologiepark 927, B-9052 Gent, Belgium.
| | | | | | | | | |
Collapse
|
623
|
Padmaja LK, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:339-47. [PMID: 24247234 DOI: 10.1007/s00122-013-2222-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/18/2013] [Indexed: 05/19/2023]
Abstract
Identification of the candidate gene responsible for the seed coat colour variation in Brassica juncea was undertaken following an earlier study where two independent loci (BjSc1 and BjSc2) were mapped to two linkage groups, LG A9 and B3 (Padmaja et al. in Theor Appl Genet 111:8-14, 2005). The genome search from BRAD data for the presence of flavonoid genes in B. rapa identified three candidate genes namely, DFR, TT1 and TT8 in the LG A9. Quantitative real-time PCR revealed absence of transcript for the late biosynthetic genes (LBGs) and showed significant reduction of transcript in the TT8 from the developing seeds of yellow-seeded line. While mapping of two DFR genes, the BjuA.DFR and BjuB.DFR did not show perfect co-segregation with the seed coat colour loci, that of the two TT8 genes, BjuA.TT8 and BjuB.TT8 showed perfect co-segregation with the seed coat colour phenotype. The BjuA.TT8 allele from the yellow-seeded line revealed the presence of an insertion of 1,279 bp in the exon 7 and did not produce any transcript as revealed by reverse transcriptase PCR. The BjuB.TT8 allele from the yellow-seeded line revealed the presence of an SNP (C→T) in the exon 7 resulting in a stop codon predicting a truncated protein lacking the C-terminal 8 amino acid residues and produced significantly low level of transcript than its wild-type counterpart. Hence, it is hypothesized that the mutations in both the TT8 genes are required for inhibiting the transcription of LBGs in the yellow-seeded mutant of B. juncea.
Collapse
Affiliation(s)
- Lakshmi K Padmaja
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | | | | | | | |
Collapse
|
624
|
Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, Ring L, Rodríguez-Franco A, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:401-17. [PMID: 24277278 DOI: 10.1093/jxb/ert377] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This work characterized the role of the R2R3-MYB10 transcription factor (TF) in strawberry fruit ripening. The expression of this TF takes place mainly in the fruit receptacle and is repressed by auxins and activated by abscisic acid (ABA), in parallel to the ripening process. Anthocyanin was not produced when FaMYB10 expression was transiently silenced in fruit receptacles. An increase in FaMYB10 expression was observed in water-stressed fruits, which was accompanied by an increase in both ABA and anthocyanin content. High-throughput transcriptomic analyses performed in fruits with downregulated FaMYB10 expression indicated that this TF regulates the expression of most of the Early-regulated Biosynthesis Genes (EBGs) and the Late-regulated Biosynthesis Genes (LBGs) genes involved in anthocyanin production in ripened fruit receptacles. Besides, the expression of FaMYB10 was not regulated by FaMYB1 and vice versa. Taken together, all these data clearly indicate that the Fragaria × ananassa MYB10 TF plays a general regulatory role in the flavonoid/phenylpropanoid pathway during the ripening of strawberry.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
625
|
Georgiev V, Ananga A, Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014; 6:391-415. [PMID: 24451310 PMCID: PMC3916869 DOI: 10.3390/nu6010391] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 01/04/2014] [Accepted: 01/10/2014] [Indexed: 01/06/2023] Open
Abstract
Grape is one of the oldest fruit crops domesticated by humans. The numerous uses of grape in making wine, beverages, jelly, and other products, has made it one of the most economically important plants worldwide. The complex phytochemistry of the berry is characterized by a wide variety of compounds, most of which have been demonstrated to have therapeutic or health promoting properties. Among them, flavonoids are the most abundant and widely studied, and have enjoyed greater attention among grape researchers in the last century. Recent studies have shown that the beneficial health effects promoted by consumption of grape and grape products are attributed to the unique mix of polyphenolic compounds. As the largest group of grape polyphenols, flavonoids are the main candidates considered to have biological properties, including but not limited to antioxidant, anti-inflammatory, anti-cancer, antimicrobial, antiviral, cardioprotective, neuroprotective, and hepatoprotective activities. Here, we discuss the recent scientific advances supporting the beneficial health qualities of grape and grape-derived products, mechanisms of their biological activity, bioavailability, and their uses as nutraceuticals. The advantages of modern plant cell based biotechnology as an alternative method for production of grape nutraceuticals and improvement of their health qualities are also discussed.
Collapse
Affiliation(s)
- Vasil Georgiev
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| | - Anthony Ananga
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| |
Collapse
|
626
|
Lai B, Li XJ, Hu B, Qin YH, Huang XM, Wang HC, Hu GB. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS One 2014; 9:e86293. [PMID: 24466010 PMCID: PMC3897698 DOI: 10.1371/journal.pone.0086293] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022] Open
Abstract
The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.
Collapse
Affiliation(s)
- Biao Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao-Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yong-Hua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xu-Ming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Hui-Cong Wang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
627
|
Shi MZ, Xie DY. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol 2014; 8:47-60. [PMID: 24354533 PMCID: PMC4036305 DOI: 10.2174/1872208307666131218123538] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/24/2012] [Accepted: 11/06/2012] [Indexed: 11/22/2022]
Abstract
Arabidopsis thaliana is the first model plant, the genome of which has been sequenced. In general, intensive studies on this model plant over the past nearly 30 years have led to many new revolutionary understandings in every single aspect of plant biology. Here, we review the current understanding of anthocyanin biosynthesis in this model plant. Although the investigation of anthocyanin structures in this model plant was not performed until 2002, numerous studies over the past three decades have been conducted to understand the biosynthesis of anthocyanins. To date, it appears that all pathway genes of anthocyanins have been molecularly, genetically and biochemically characterized in this plant. These fundamental accomplishments have made Arabidopsis an ideal model to understand the regulatory mechanisms of anthocyanin pathway. Several studies have revealed that the biosynthesis of anthocyanins is controlled by WD40-bHLH-MYB (WBM) transcription factor complexes under lighting conditions. However, how different regulatory complexes coordinately and specifically regulate the pathway genes of anthocyanins remains unclear. In this review, we discuss current progresses and findings including structural diversity, regulatory properties and metabolic engineering of anthocyanins in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
628
|
Li S. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. PLANT SIGNALING & BEHAVIOR 2014; 9:e27522. [PMID: 24393776 PMCID: PMC4091223 DOI: 10.4161/psb.27522] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Flavonoids are plant secondary polyphenolic metabolites and fulfil many vital biological functions, offering a valuable metabolic and genetic model for studying transcriptional control of gene expression. Arabidopsis thaliana mainly accumulates 3 types of flavonoids, including flavonols, anthocyanins, and proanthocyanidins (PAs). Flavonoid biosynthesis involves a multitude of well-characterized enzymatic and regulatory proteins. Three R2R3-MYB proteins (MYB11, MYB12, and MYB111) control flavonol biosynthesis via activating the early biosynthetic steps, whereas the production of anthocyanins and PAs requires the MYB-bHLH-WD40 (MBW) complex to activate the late biosynthetic genes. Additional regulators of flavonoid biosynthesis have recently come to light, which interact with R2R3-MYBs or bHLHs to organize or disrupt the formation of the MBW complex, leading to enhanced or compromised flavonoid production. This mini-review gives an overview of how these novel players modulate flavonoid metabolism and thus plant developmental processes and further proposes a fine-tuning mechanism to complete the complex regulatory network controlling flavonoid biosynthesis.
Collapse
|
629
|
Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. Light-controlled flavonoid biosynthesis in fruits. FRONTIERS IN PLANT SCIENCE 2014; 5:534. [PMID: 25346743 PMCID: PMC4191440 DOI: 10.3389/fpls.2014.00534] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern.
Collapse
Affiliation(s)
- Laura Zoratti
- Department of Biology, University of OuluOulu, Finland
| | | | - Ana Luengo Escobar
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de la FronteraTemuco, Chile
| | - Hely Häggman
- Department of Biology, University of OuluOulu, Finland
| | - Laura Jaakola
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of NorwayTromsø, Norway
- Norwegian Institute for Agricultural and Environmental Research, Bioforsk Nord HoltTromsø, Norway
- *Correspondence: Laura Jaakola, Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Holtveien 62, NO-9037 Tromsø, Norway e-mail:
| |
Collapse
|
630
|
Pandey A, Misra P, Khan MP, Swarnkar G, Tewari MC, Bhambhani S, Trivedi R, Chattopadhyay N, Trivedi PK. Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:69-80. [PMID: 24102754 DOI: 10.1111/pbi.12118] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/09/2013] [Indexed: 05/07/2023]
Abstract
Isoflavones, a group of flavonoids, restricted almost exclusively to family Leguminosae are known to exhibit anticancerous and anti-osteoporotic activities in animal systems and have been a target for metabolic engineering in commonly consumed food crops. Earlier efforts based on the expression of legume isoflavone synthase (IFS) genes in nonlegume plant species led to the limited success in terms of isoflavone content in transgenic tissue due to the limitation of substrate for IFS enzyme. In this work to overcome this limitation, the activation of multiple genes of flavonoid pathway using Arabidopsis transcription factor AtMYB12 has been carried out. We developed transgenic tobacco lines constitutively co-expressing AtMYB12 and GmIFS1 (soybean IFS) genes or independently and carried out their phytochemical and molecular analyses. The leaves of co-expressing transgenic lines were found to have elevated flavonol content along with the accumulation of substantial amount of genistein glycoconjugates being at the highest levels that could be engineered in tobacco leaves till date. Oestrogen-deficient (ovariectomized, Ovx) mice fed with leaf extract from transgenic plant co-expressing AtMYB12 and GmIFS1 but not wild-type extract exhibited significant conservation of trabecular microarchitecture, reduced osteoclast number and expression of osteoclastogenic genes, higher total serum antioxidant levels and increased uterine oestrogenicity compared with Ovx mice treated with vehicle (control). The skeletal effect of the transgenic extract was comparable to oestrogen-treated Ovx mice. Together, our results establish an efficient strategy for successful pathway engineering of isoflavones and other flavonoids in crop plants and provide a direct evidence of improved osteoprotective effect of transgenic plant extract.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Council of Scientific and Industrial Research-National Botanical Research Institute, (CSIR-NBRI), Lucknow, India
| | | | | | | | | | | | | | | | | |
Collapse
|
631
|
Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. Light-controlled flavonoid biosynthesis in fruits. FRONTIERS IN PLANT SCIENCE 2014; 5:534. [PMID: 25346743 DOI: 10.3389/fpls.2014.005341996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/19/2014] [Indexed: 05/20/2023]
Abstract
Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern.
Collapse
Affiliation(s)
- Laura Zoratti
- Department of Biology, University of Oulu Oulu, Finland
| | | | - Ana Luengo Escobar
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de la Frontera Temuco, Chile
| | - Hely Häggman
- Department of Biology, University of Oulu Oulu, Finland
| | - Laura Jaakola
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of Norway Tromsø, Norway ; Norwegian Institute for Agricultural and Environmental Research, Bioforsk Nord Holt Tromsø, Norway
| |
Collapse
|
632
|
Wong DCJ, Sweetman C, Drew DP, Ford CM. VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genomics 2013; 14:882. [PMID: 24341535 PMCID: PMC3904201 DOI: 10.1186/1471-2164-14-882] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/29/2013] [Indexed: 11/16/2022] Open
Abstract
Background Gene expression datasets in model plants such as Arabidopsis have contributed to our understanding of gene function and how a single underlying biological process can be governed by a diverse network of genes. The accumulation of publicly available microarray data encompassing a wide range of biological and environmental conditions has enabled the development of additional capabilities including gene co-expression analysis (GCA). GCA is based on the understanding that genes encoding proteins involved in similar and/or related biological processes may exhibit comparable expression patterns over a range of experimental conditions, developmental stages and tissues. We present an open access database for the investigation of gene co-expression networks within the cultivated grapevine, Vitis vinifera. Description The new gene co-expression database, VTCdb (http://vtcdb.adelaide.edu.au/Home.aspx), offers an online platform for transcriptional regulatory inference in the cultivated grapevine. Using condition-independent and condition-dependent approaches, grapevine co-expression networks were constructed using the latest publicly available microarray datasets from diverse experimental series, utilising the Affymetrix Vitis vinifera GeneChip (16 K) and the NimbleGen Grape Whole-genome microarray chip (29 K), thus making it possible to profile approximately 29,000 genes (95% of the predicted grapevine transcriptome). Applications available with the online platform include the use of gene names, probesets, modules or biological processes to query the co-expression networks, with the option to choose between Affymetrix or Nimblegen datasets and between multiple co-expression measures. Alternatively, the user can browse existing network modules using interactive network visualisation and analysis via CytoscapeWeb. To demonstrate the utility of the database, we present examples from three fundamental biological processes (berry development, photosynthesis and flavonoid biosynthesis) whereby the recovered sub-networks reconfirm established plant gene functions and also identify novel associations. Conclusions Together, we present valuable insights into grapevine transcriptional regulation by developing network models applicable to researchers in their prioritisation of gene candidates, for on-going study of biological processes related to grapevine development, metabolism and stress responses.
Collapse
Affiliation(s)
| | | | | | - Christopher M Ford
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide 5064, South Australia, Australia.
| |
Collapse
|
633
|
Zhou B, Wang Y, Zhan Y, Li Y, Kawabata S. Chalcone synthase family genes have redundant roles in anthocyanin biosynthesis and in response to blue/UV-A light in turnip (Brassica rapa; Brassicaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:2458-67. [PMID: 24197179 DOI: 10.3732/ajb.1300305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY The epidermis of Brassica rapa (turnip) cv. Tsuda contains light-induced anthocyanins, visible signs of activity of chalcone synthase (CHS), a key anthocyanin biosynthetic enzyme, which is encoded by the CHS gene family. To elucidate the regulation of this light-induced pigmentation, we isolated Brassica rapa CHS1-CHS6 (BrCHS1-CHS6) and characterized their cis-elements and expression patterns. METHODS Epidermises of light-exposed swollen hypocotyls (ESHS) were harvested to analyze transcription levels of BrCHS genes by real-time PCR. Different promoters for the genes were inserted into tobacco to examine pCHS-GUS activity by histochemistry. Yeast-one-hybridization was used to detect binding activity of BrCHS motifs to transcription factors. KEY RESULTS Transcript levels of BrCHS1, -4, and -5 and anthocyanin-biosynthesis-related genes F3H, DFR, and ANS were high, while those of BrCHS2, -3, and -6 were almost undetectable in pigmented ESHS. However, in leaves, CHS5, F3H, and ANS expression was higher than in nonpigmented ESHS, but transcription of DFR was not detected. In the analysis of BrCHS1 and BrCHS3 promoter activity, GUS activity was strong in pigmented flowers of BrPCHS1-GUS-transformed tobacco plants, but nearly absent in BrPCHS3-GUS-transformed plants. Transcript levels of regulators, BrMYB75 and BrTT8, were strongly associated with the anthocyanin content and were light-induced. Coregulated cis-elements were found in promoters of BrCHS1,-4, and -5, and BrMYB75 and BrTT8 had high binding activities to the BrCHS Unit 1 motif. CONCLUSIONS The chalcone synthase gene family encodes a redundant set of light-responsive, tissue-specific genes that are expressed at different levels and are involved in flavonoid biosynthesis in Tsuda turnip.
Collapse
Affiliation(s)
- Bo Zhou
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | | | | | | | | |
Collapse
|
634
|
Jin X, Wang RS, Zhu M, Jeon BW, Albert R, Chen S, Assmann SM. Abscisic acid-responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants. THE PLANT CELL 2013; 25:4789-811. [PMID: 24368793 PMCID: PMC3903988 DOI: 10.1105/tpc.113.119800] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/18/2013] [Accepted: 11/27/2013] [Indexed: 05/03/2023]
Abstract
Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography-multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼ 350 million guard cell protoplasts from ∼ 30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca(2+)-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1.
Collapse
Affiliation(s)
- Xiaofen Jin
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Rui-Sheng Wang
- Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Mengmeng Zhu
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Byeong Wook Jeon
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Reka Albert
- Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sixue Chen
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, Florida 32610
| | - Sarah M. Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
635
|
Zhu Q, Li B, Mu S, Han B, Cui R, Xu M, You Z, Dong H. TTG2-regulated development is related to expression of putative AUXIN RESPONSE FACTOR genes in tobacco. BMC Genomics 2013; 14:806. [PMID: 24252253 PMCID: PMC4046668 DOI: 10.1186/1471-2164-14-806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The phytohormone auxin mediates a stunning array of plant development through the functions of AUXIN RESPONSE FACTORs (ARFs), which belong to transcription factors and are present as a protein family comprising 10-43 members so far identified in different plant species. Plant development is also subject to regulation by TRANSPARENT TESTA GLABRA (TTG) proteins, such as NtTTG2 that we recently characterized in tobacco Nicotiana tabacum. To find the functional linkage between TTG and auxin in the regulation of plant development, we performed de novo assembly of the tobacco transcriptome to identify candidates of NtTTG2-regulated ARF genes. RESULTS The role of NtTTG2 in tobacco growth and development was studied by analyzing the biological effects of gene silencing and overexpression. The NtTTG2 gene silencing causes repressive effects on vegetative growth, floral anthocyanin synthesis, flower colorization, and seed production. By contrast, the plant growth and development processes are promoted by NtTTG2 overexpression. The growth/developmental function of NtTTG2 associates with differential expression of putative ARF genes identified by de novo assembly of the tobacco transcriptome. The transcriptome contains a total of 54,906 unigenes, including 30,124 unigenes (54.86%) with annotated functions and at least 8,024 unigenes (14.61%) assigned to plant growth and development. The transcriptome also contains 455 unigenes (0.83%) related to auxin responses, including 40 putative ARF genes. Based on quantitative analyses, the expression of the putative genes is either promoted or inhibited by NtTTG2. CONCLUSIONS The biological effects of the NtTTG2 gene silencing and overexpression suggest that NtTTG2 is an essential regulator of growth and development in tobacco. The effects of the altered NtTTG2 expression on expression levels of putative ARF genes identified in the transcriptome suggest that NtTTG2 functions in relation to ARF transcription factors.
Collapse
Affiliation(s)
- Qian Zhu
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Baoyan Li
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
- />Yantai Academy of Agricultural Sciences, Yantai, 265500 China
| | - Shuyuan Mu
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bing Han
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Runzhi Cui
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Manyu Xu
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhenzhen You
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hansong Dong
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
636
|
Zhou X, Wang K, Lv D, Wu C, Li J, Zhao P, Lin Z, Du L, Yan Y, Ye X. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens. PLoS One 2013; 8:e79390. [PMID: 24278131 PMCID: PMC3835833 DOI: 10.1371/journal.pone.0079390] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/20/2013] [Indexed: 12/24/2022] Open
Abstract
Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops.
Collapse
Affiliation(s)
- Xiaohong Zhou
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongwen Lv
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | - Chengjun Wu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Pei Zhao
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhishan Lin
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lipu Du
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | - Xingguo Ye
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
637
|
Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:1-20. [PMID: 23774057 DOI: 10.1016/j.plaphy.2013.05.009] [Citation(s) in RCA: 551] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/10/2013] [Indexed: 05/18/2023]
Abstract
Land-adapted plants appeared between about 480 and 360 million years ago in the mid-Palaeozoic era, originating from charophycean green algae. The successful adaptation to land of these prototypes of amphibious plants - when they emerged from an aquatic environment onto the land - was achieved largely by massive formation of "phenolic UV light screens". In the course of evolution, plants have developed the ability to produce an enormous number of phenolic secondary metabolites, which are not required in the primary processes of growth and development but are of vital importance for their interaction with the environment, for their reproductive strategy and for their defense mechanisms. From a biosynthetic point of view, beside methylation catalyzed by O-methyltransferases, acylation and glycosylation of secondary metabolites, including phenylpropanoids and various derived phenolic compounds, are fundamental chemical modifications. Such modified metabolites have altered polarity, volatility, chemical stability in cells but also in solution, ability for interaction with other compounds (co-pigmentation) and biological activity. The control of the production of plant phenolics involves a matrix of potentially overlapping regulatory signals. These include developmental signals, such as during lignification of new growth or the production of anthocyanins during fruit and flower development, and environmental signals for protection against abiotic and biotic stresses. For some of the key compounds, such as the flavonoids, there is now an excellent understanding of the nature of those signals and how the signal transduction pathway connects through to the activation of the phenolic biosynthetic genes. Within the plant environment, different microorganisms can coexist that can establish various interactions with the host plant and that are often the basis for the synthesis of specific phenolic metabolites in response to these interactions. In the rhizosphere, increasing evidence suggests that root specific chemicals (exudates) might initiate and manipulate biological and physical interactions between roots and soil organisms. These interactions include signal traffic between roots of competing plants, roots and soil microbes, and one-way signals that relate the nature of chemical and physical soil properties to the roots. Plant phenolics can also modulate essential physiological processes such as transcriptional regulation and signal transduction. Some interesting effects of plant phenolics are also the ones associated with the growth hormone auxin. An additional role for flavonoids in functional pollen development has been observed. Finally, anthocyanins represent a class of flavonoids that provide the orange, red and blue/purple colors to many plant tissues. According to the coevolution theory, red is a signal of the status of the tree to insects that migrate to (or move among) the trees in autumn.
Collapse
Affiliation(s)
- Véronique Cheynier
- INRA, UMR1083 Sciences Pour l'oenologie, 2 place Viala, 34060 Montpellier Cedex 1, France.
| | | | | | | | | |
Collapse
|
638
|
Zhao J, Li ZT, Chen J, Henny RJ, Gray DJ, Chen J. Purple-leaved Ficus lyrata plants produced by overexpressing a grapevine VvMybA1 gene. PLANT CELL REPORTS 2013; 32:1783-93. [PMID: 23926030 DOI: 10.1007/s00299-013-1491-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/18/2013] [Accepted: 07/30/2013] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE This study established an efficient method of regenerating plants of Ficus lyrata and producing purple-leaved F. lyrata plants through genetic transformation using a VvMybA1 gene of grapevine. ABSTRACT Ficus lyrata, a species with unique violin- or guitar-shaped leaves, was regenerated from leaf-derived calli cultured on Murashige and Skoog (MS) basal medium supplemented with 4.5 μM N-phenyl-N'-1, 2, 3-thiadiazol-5-yl urea (TDZ) and 0.5 μM α-naphthalene acetic acid (NAA). Leaf discs were inoculated with Agrobacterium tumefaciens strain EHA 105 harboring a binary vector DEAT that contains the VvMybA1 gene and neomycin phosphotransferase (npt II) gene and subsequently cultured on the established regeneration medium supplemented with 100 mg l(-1) kanamycin. Results showed that 87.5 % of the leaf discs produced kanamycin-resistant callus, and 68.8 % of them produced adventitious shoots. Transgenic plants with three leaf colors including green, green-purple, and purple were produced. Regular and quantitative real-time PCR analyses confirmed the integration of transgenes into the host genome. Semi-quantitative RT-PCR analysis indicated that the VvMybA1 gene was responsible for the purple-colored phenotype. Purple-leaved plants with strong color stability grew vigorously in a greenhouse. This study illustrated the feasibility of using a genetically engineered VvMybA1 gene for drastic modification of leaf color of an important woody ornamental plant.
Collapse
Affiliation(s)
- Jietang Zhao
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2725 S. Binion Road, Apopka, FL, 32703, USA
| | | | | | | | | | | |
Collapse
|
639
|
Rock CD. Trans-acting small interfering RNA4: key to nutraceutical synthesis in grape development? TRENDS IN PLANT SCIENCE 2013; 18:601-10. [PMID: 23993483 PMCID: PMC3818397 DOI: 10.1016/j.tplants.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/12/2013] [Accepted: 07/31/2013] [Indexed: 05/19/2023]
Abstract
The facility and versatility of microRNAs (miRNAs) to evolve and change likely underlies how they have become dominant constituents of eukaryotic genomes. In this opinion article I propose that trans-acting small interfering RNA gene 4 (TAS4) evolution may be important for biosynthesis of polyphenolics, arbuscular symbiosis, and bacterial pathogen etiologies. Expression-based and phylogenetic evidence shows that TAS4 targets two novel grape (Vitis vinifera L.) MYB transcription factors (VvMYBA6, VvMYBA7) that spawn phased small interfering RNAs (siRNAs) which probably function in nutraceutical bioflavonoid biosynthesis and fruit development. Characterization of the molecular mechanisms of TAS4 control of plant development and integration into biotic and abiotic stress- and nutrient-signaling regulatory networks has applicability to molecular breeding and the development of strategies for engineering healthier foods.
Collapse
Affiliation(s)
- Christopher D Rock
- Department of Biological Sciences, Texas Tech University (TTU), Lubbock, TX 79409-3131, USA.
| |
Collapse
|
640
|
Merchante C, Vallarino JG, Osorio S, Aragüez I, Villarreal N, Ariza MT, Martínez GA, Medina-Escobar N, Civello MP, Fernie AR, Botella MA, Valpuesta V. Ethylene is involved in strawberry fruit ripening in an organ-specific manner. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4421-39. [PMID: 24098047 PMCID: PMC3808323 DOI: 10.1093/jxb/ert257] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The fruit of the strawberry Fragaria×ananassa has traditionally been classified as non-climacteric because its ripening process is not governed by ethylene. However, previous studies have reported the timely endogenous production of minor amounts of ethylene by the fruit as well as the differential expression of genes of the ethylene synthesis, reception, and signalling pathways during fruit development. Mining of the Fragaria vesca genome allowed for the identification of the two main ethylene biosynthetic genes, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Their expression pattern during fruit ripening was found to be stage and organ (achene or receptacle) specific. Strawberry plants with altered sensitivity to ethylene could be employed to unravel the role of ethylene in the ripening process of the strawberry fruit. To this end, independent lines of transgenic strawberry plants were generated that overexpress the Arabidopsis etr1-1 mutant ethylene receptor, which is a dominant negative allele, causing diminished sensitivity to ethylene. Genes involved in ethylene perception as well as in its related downstream processes, such as flavonoid biosynthesis, pectin metabolism, and volatile biosynthesis, were differently expressed in two transgenic tissues, the achene and the receptacle. The different transcriptional responsiveness of the achene and the receptacle to ethylene was also revealed by the metabolic profiling of the primary metabolites in these two organs. The free amino acid content was higher in the transgenic lines compared with the control in the mature achene, while glucose and fructose, and citric and malic acids were at lower levels. In the receptacle, the most conspicuous change in the transgenic lines was the depletion of the tricarboxylic acid cycle intermediates at the white stage of development, most probably as a consequence of diminished respiration. The results are discussed in the context of the importance of ethylene during strawberry fruit ripening.
Collapse
Affiliation(s)
- Catharina Merchante
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - José G. Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Irene Aragüez
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Natalia Villarreal
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, Km 6, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | - María T. Ariza
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Gustavo A. Martínez
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, Km 6, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, (1900) La Plata, Argentina
| | - Nieves Medina-Escobar
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Marcos P. Civello
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, (1900) La Plata, Argentina
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 y Calle 61 no. 495 – C.c 327, (1900) La Plata, Argentina
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Miguel A. Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Victoriano Valpuesta
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| |
Collapse
|
641
|
Bhattacharyya D, Sinha R, Hazra S, Datta R, Chattopadhyay S. De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics 2013; 14:748. [PMID: 24182234 PMCID: PMC3840631 DOI: 10.1186/1471-2164-14-748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 10/19/2013] [Indexed: 11/22/2022] Open
Abstract
Background The Himalayan or Indian Mayapple (Podophyllum hexandrum Royle) produces podophyllotoxin, which is used in the production of semisynthetic anticancer drugs. High throughput transcriptome sequences or genomic sequence data from the Indian Mayapple are essential for further understanding of the podophyllotoxin biosynthetic pathway. Results 454 pyrosequencing of a P. hexandrum cell culture normalized cDNA library generated 2,667,207 raw reads and 1,503,232 high quality reads, with an average read length of 138 bp. The denovo assembly was performed by Newbler using default and optimized parameters. The optimized parameter generated 40, 380 assembled sequences, comprising 12,940 contigs and 27,440 singlets which resulted in better assembly as compared to default parameters. BLASTX analysis resulted in the annotation of 40,380 contigs/singlet using a cut-off value of ≤1E-03. High similarity to Medicago truncatula using optimized parameters and to Populus trichocarpa using default parameters was noted. The Kyoto encyclopedia of genes and genomes (KEGG) analysis using KEGG Automatic Annotation Server (KAAS) combined with domain analysis of the assembled transcripts revealed putative members of secondary metabolism pathways that may be involved in podophyllotoxin biosynthesis. A proposed schematic pathway for phenylpropanoids and podophyllotoxin biosynthesis was generated. Expression profiling was carried out based on fragments per kilobase of exon per million fragments (FPKM). 1036 simple sequence repeats were predicted in the P. hexandrum sequences. Sixty-nine transcripts were mapped to 99 mature and precursor microRNAs from the plant microRNA database. Around 961 transcripts containing transcription factor domains were noted. High performance liquid chromatography analysis showed the peak accumulation of podophyllotoxin in 12-day cell suspension cultures. A comparative qRT-PCR analysis of phenylpropanoid pathway genes identified in the present data was performed to analyze their expression patterns in 12-day cell culture, callus and rhizome. Conclusions The present data will help the identification of the potential genes and transcription factors involved in podophyllotoxin biosynthesis in P. hexandrum. The assembled transcripts could serve as potential candidates for marker discovery and conservation, which should form the foundations for future endeavors.
Collapse
Affiliation(s)
| | | | | | | | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute Chemical Biology, 4 Raja S, C, Mullick Road, Kolkata 700032, India.
| |
Collapse
|
642
|
Van Oosten MJ, Sharkhuu A, Batelli G, Bressan RA, Maggio A. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. PLANT MOLECULAR BIOLOGY 2013; 83:405-15. [PMID: 23925404 DOI: 10.1007/s11103-013-0099-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/21/2013] [Indexed: 05/05/2023]
Abstract
The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3'H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins.
Collapse
Affiliation(s)
- Michael James Van Oosten
- Department of Agriculture, University of Naples "Federico II", Via Università 100, 80055, Portici, Italy
| | | | | | | | | |
Collapse
|
643
|
Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L. Transcriptional regulation of secondary metabolite biosynthesis in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1236-47. [PMID: 24113224 DOI: 10.1016/j.bbagrm.2013.09.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/31/2013] [Accepted: 09/30/2013] [Indexed: 01/25/2023]
Abstract
Plants produce thousands of secondary metabolites (a.k.a. specialized metabolites) of diverse chemical nature. These compounds play important roles in protecting plants under adverse conditions. Many secondary metabolites are valued for their pharmaceutical properties. Because of their beneficial effects to health, biosynthesis of secondary metabolites has been a prime focus of research. Many transcription factors have been characterized for their roles in regulating biosynthetic pathways at the transcriptional level. The emerging picture of transcriptional regulation of secondary metabolite biosynthesis suggests that the expression of activators and repressors, in response to phytohormones and different environmental signals, forms a dynamic regulatory network that fine-tune the timing, amplitude and tissue specific expression of pathway genes and the subsequent accumulation of these compounds. Recent research has revealed that some metabolic pathways are also controlled by posttranscriptional and posttranslational mechanisms. This review will use recent developments in the biosynthesis of flavonoids, alkaloids and terpenoids to highlight the complexity of transcriptional regulation of secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Barunava Patra
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
644
|
Lai Y, Li H, Yamagishi M. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11515-013-1281-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
645
|
Majer E, Daròs JA, Zwart MP. Stability and fitness impact of the visually discernible Rosea1 marker in the Tobacco etch virus genome. Viruses 2013; 5:2153-68. [PMID: 24022073 PMCID: PMC3798895 DOI: 10.3390/v5092153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022] Open
Abstract
Antirrhinum majus Rosea1 (Ros1) is an MYB-related transcription factor that induces anthocyanin biosynthesis in plant tissues, and has been shown to be suitable for visual tracking of virus infection in plants. However, activation of anthocyanin biosynthesis has far reaching effects on plant physiology and could consequently have negative effects on viral replication. Therefore, viruses carrying the Ros1 marker might have a low fitness and consequently rapidly lose the marker. To compare the stability of the Ros1 marker, we generated Tobacco etch virus (TEV) based constructs containing either Ros1 or the enhanced green fluorescent protein (eGFP) between the NIb and CP cistrons (TEV-Ros1 and TEV-eGFP, respectively). We measured the within-host competitive fitness of both viruses by direct competitions with a common competitor during infection of Nicotiana tabacum. The fitness of TEV-Ros1 was significantly lower than that of TEV-eGFP, and both recombinant viruses had a significantly lower fitness than the wild-type virus. Nevertheless, after seven weeks of infection in N. tabacum, similar levels of marker gene instability where found for both viruses. Despite lower fitness of the marked virus, Ros1 is therefore a viable alternative marker for tracking viral infection in plants.
Collapse
Affiliation(s)
| | | | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 València, Spain; E-Mails: (E.M.); (J.-A.D.)
| |
Collapse
|
646
|
Reinprecht Y, Yadegari Z, Perry GE, Siddiqua M, Wright LC, McClean PE, Pauls KP. In silico comparison of genomic regions containing genes coding for enzymes and transcription factors for the phenylpropanoid pathway in Phaseolus vulgaris L. and Glycine max L. Merr. FRONTIERS IN PLANT SCIENCE 2013; 4:317. [PMID: 24046770 PMCID: PMC3763686 DOI: 10.3389/fpls.2013.00317] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/29/2013] [Indexed: 05/27/2023]
Abstract
Legumes contain a variety of phytochemicals derived from the phenylpropanoid pathway that have important effects on human health as well as seed coat color, plant disease resistance and nodulation. However, the information about the genes involved in this important pathway is fragmentary in common bean (Phaseolus vulgaris L.). The objectives of this research were to isolate genes that function in and control the phenylpropanoid pathway in common bean, determine their genomic locations in silico in common bean and soybean, and analyze sequences of the 4CL gene family in two common bean genotypes. Sequences of phenylpropanoid pathway genes available for common bean or other plant species were aligned, and the conserved regions were used to design sequence-specific primers. The PCR products were cloned and sequenced and the gene sequences along with common bean gene-based (g) markers were BLASTed against the Glycine max v.1.0 genome and the P. vulgaris v.1.0 (Andean) early release genome. In addition, gene sequences were BLASTed against the OAC Rex (Mesoamerican) genome sequence assembly. In total, fragments of 46 structural and regulatory phenylpropanoid pathway genes were characterized in this way and placed in silico on common bean and soybean sequence maps. The maps contain over 250 common bean g and SSR (simple sequence repeat) markers and identify the positions of more than 60 additional phenylpropanoid pathway gene sequences, plus the putative locations of seed coat color genes. The majority of cloned phenylpropanoid pathway gene sequences were mapped to one location in the common bean genome but had two positions in soybean. The comparison of the genomic maps confirmed previous studies, which show that common bean and soybean share genomic regions, including those containing phenylpropanoid pathway gene sequences, with conserved synteny. Indels identified in the comparison of Andean and Mesoamerican common bean 4CL gene sequences might be used to develop inter-pool phenylpropanoid pathway gene-based markers. We anticipate that the information obtained by this study will simplify and accelerate selections of common bean with specific phenylpropanoid pathway alleles to increase the contents of beneficial phenylpropanoids in common bean and other legumes.
Collapse
Affiliation(s)
| | - Zeinab Yadegari
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| | - Gregory E. Perry
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| | - Mahbuba Siddiqua
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| | - Lori C. Wright
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - K. Peter Pauls
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
647
|
Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. TRENDS IN PLANT SCIENCE 2013; 18:477-83. [PMID: 23870661 DOI: 10.1016/j.tplants.2013.06.003] [Citation(s) in RCA: 645] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
Anthocyanins are important health-promoting pigments that make a major contribution to the quality of fruits. The biosynthetic pathway leading to anthocyanins is well known and the key regulatory genes controlling the pathway have been isolated in many species. Recently, a considerable amount of new information has been gathered on the developmental and environmental regulation of anthocyanin biosynthesis in fruits, specifically the impact of regulation through light. New discoveries have begun to reveal links between the developmental regulatory network and the specific regulators of anthocyanin biosynthesis during fruit ripening. In this opinion article, a simplified model for the different regulatory networks involved with anthocyanin production in fruit is proposed.
Collapse
Affiliation(s)
- Laura Jaakola
- Climate Laboratory, Department of Arctic and Marine Biology, University of Tromsø, Norway.
| |
Collapse
|
648
|
Sobel JM, Streisfeld MA. Flower color as a model system for studies of plant evo-devo. FRONTIERS IN PLANT SCIENCE 2013; 4:321. [PMID: 23970892 PMCID: PMC3748380 DOI: 10.3389/fpls.2013.00321] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/30/2013] [Indexed: 05/20/2023]
Abstract
Even though pigmentation traits have had substantial impacts on the field of animal evolutionary developmental biology, they have played only relatively minor roles in plant evo-devo. This is surprising given the often direct connection between flower color and fitness variation mediated through the effects of pollinators. At the same time, ecological and evolutionary genetic studies have utilized the molecular resources available for the anthocyanin pathway to generate several examples of the molecular basis of putatively adaptive transitions in flower color. Despite this opportunity to synthesize experimental approaches in ecology, evolution, and developmental biology, the investigation of many fundamental questions in evo-devo using this powerful model is only at its earliest stages. For example, a long-standing question is whether predictable genetic changes accompany the repeated evolution of a trait. Due to the conserved nature of the biochemical and regulatory control of anthocyanin biosynthesis, it has become possible to determine whether, and under what circumstances, different types of mutations responsible for flower color variation are preferentially targeted by natural selection. In addition, because plants use anthocyanin and related compounds in vegetative tissue for other important physiological functions, the identification of naturally occurring transitions from unpigmented to pigmented flowers provides the opportunity to examine the mechanisms by which regulatory networks are co-opted into new developmental domains. Here, we review what is known about the ecological and molecular basis of anthocyanic flower color transitions in natural systems, focusing on the evolutionary and developmental features involved. In doing so, we provide suggestions for future work on this trait and suggest that there is still much to be learned from the evolutionary development of flower color transitions in nature.
Collapse
|
649
|
De novo transcriptome of Brassica juncea seed coat and identification of genes for the biosynthesis of flavonoids. PLoS One 2013; 8:e71110. [PMID: 23990927 PMCID: PMC3747200 DOI: 10.1371/journal.pone.0071110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/25/2013] [Indexed: 01/10/2023] Open
Abstract
Brassica juncea, a worldwide cultivated crop plant, produces seeds of different colors. Seed pigmentation is due to the deposition in endothelial cells of proanthocyanidins (PAs), end products from a branch of flavonoid biosynthetic pathway. To elucidate the gene regulatory network of seed pigmentation in B. juncea, transcriptomes in seed coat of a yellow-seeded inbred line and its brown-seeded near- isogenic line were sequenced using the next-generation sequencing platform Illumina/Solexa and de novo assembled. Over 116 million high-quality reads were assembled into 69,605 unigenes, of which about 71.5% (49,758 unigenes) were aligned to Nr protein database with a cut-off E-value of 10−5. RPKM analysis showed that the brown-seeded testa up-regulated 802 unigenes and down-regulated 502 unigenes as compared to the yellow-seeded one. Biological pathway analysis revealed the involvement of forty six unigenes in flavonoid biosynthesis. The unigenes encoding dihydroflavonol reductase (DFR), leucoantho-cyanidin dioxygenase (LDOX) and anthocyanidin reductase (ANR) for late flavonoid biosynthesis were not expressed at all or at a very low level in the yellow-seeded testa, which implied that these genes for PAs biosynthesis be associated with seed color of B. juncea, as confirmed by qRT-PCR analysis of these genes. To our knowledge, it is the first time to sequence the transcriptome of seed coat in Brassica juncea. The unigene sequences obtained in this study will not only lay the foundations for insight into the molecular mechanisms underlying seed pigmentation in B.juncea, but also provide the basis for further genomics research on this species or its allies.
Collapse
|
650
|
Huang W, Sun W, Lv H, Luo M, Zeng S, Pattanaik S, Yuan L, Wang Y. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway. PLoS One 2013; 8:e70778. [PMID: 23936468 PMCID: PMC3731294 DOI: 10.1371/journal.pone.0070778] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs) have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1) from Epimedium sagittatum (Sieb. Et Zucc.) Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade) of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wei Sun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ming Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shaohua Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|