651
|
Rajput A, Mandlik S, Pokharkar V. Nanocarrier-Based Approaches for the Efficient Delivery of Anti-Tubercular Drugs and Vaccines for Management of Tuberculosis. Front Pharmacol 2021; 12:749945. [PMID: 34992530 PMCID: PMC8724553 DOI: 10.3389/fphar.2021.749945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Drug-resistant species of tuberculosis (TB), which spread faster than traditiona TB, is a severely infectious disease. The conventional drug therapy used in the management of tuberculosis has several challenges linked with adverse effects. Hence, nanotherapeutics served as an emerging technique to overcome problems associated with current treatment. Nanotherapeutics helps to overcome toxicity and poor solubility issues of several drugs used in the management of tuberculosis. Due to their diameter and surface chemistry, nanocarriers encapsulated with antimicrobial drugs are readily taken up by macrophages. Macrophages play a crucial role as they serve as target sites for active and passive targeting for nanocarriers. The surface of the nanocarriers is coated with ligand-specific receptors, which further enhances drug concentration locally and indicates the therapeutic potential of nanocarriers. This review highlights tuberculosis's current facts, figures, challenges associated with conventional treatment, different nanocarrier-based systems, and its application in vaccine development.
Collapse
Affiliation(s)
| | | | - Varsha Pokharkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
| |
Collapse
|
652
|
Anane-Adjei AB, Jacobs E, Nash SC, Askin S, Soundararajan R, Kyobula M, Booth J, Campbell A. Amorphous Solid Dispersions: Utilization and Challenges in Preclinical Drug Development within AstraZeneca. Int J Pharm 2021; 614:121387. [PMID: 34933082 DOI: 10.1016/j.ijpharm.2021.121387] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 01/04/2023]
Abstract
The poor aqueous solubility of many active pharmaceutical ingredients (APIs) dominates much of the early drug development portfolio and poses a major challenge in pharmaceutical development. Polymer-based amorphous solid dispersions (ASDs) are becoming increasingly common and offer a promising formulation strategy to tackle the solubility and oral absorption issues of these APIs. This review discusses the design, manufacture, and utilisation of ASD formulations in preclinical drug development, with a key focus on the pre-formulation assessments and workflows employed at AstraZeneca.
Collapse
Affiliation(s)
- Akosua B Anane-Adjei
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Esther Jacobs
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Samuel C Nash
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Sean Askin
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Ramesh Soundararajan
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Mary Kyobula
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Jonathan Booth
- Pharmaceutical Technology & Development, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, UK
| | - Andrew Campbell
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK.
| |
Collapse
|
653
|
Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: A story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm 2021; 613:121388. [PMID: 34923051 DOI: 10.1016/j.ijpharm.2021.121388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is an inherited multisystem disease affecting the lung which leads to a progressive decline in lung function as a result of malfunctioning mucociliary clearance and subsequent chronic bacterial infections. Pseudomonas aeruginosa is the predominant cause of lung infection in CF patients and is associated with significant morbidity and mortality. Thus, antibiotic therapy remains the cornerstone of the treatment of CF. Pulmonary delivery of antibiotics for lung infections significantly reduces the required dose and the associated systemic side effects while improving therapeutic outcomes. Ciprofloxacin is one of the most widely used antibiotics against P. aeruginosa and the most effective fluoroquinolone. However, in spite of the substantial amount of research aimed at developing ciprofloxacin powder for inhalation, none of these formulations has been commercialized. Here, we present an integrated view of the diverse challenges associated with delivering ciprofloxacin dry particles to the lungs of CF patients and the rationales behind recent formulations of ciprofloxacin dry powder for inhalation. This review will discuss the challenges in developing ciprofloxacin powder for inhalation along with the physiological and pathophysiological challenges such as ciprofloxacin lung permeability, overproduction of viscous mucus and bacterial biofilms. The review will also discuss the current and emerging particle engineering approaches to overcoming these challenges. By doing so, we believe the review will help the reader to understand the current limitations in developing an inhalable ciprofloxacin powder and explore new opportunities of rational design strategies.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
654
|
Wang X, Wan W, Lu J, Quan G, Pan X, Liu P. Effects of L-leucine on the properties of spray-dried swellable microparticles with wrinkled surfaces for inhalation therapy of pulmonary fibrosis. Int J Pharm 2021; 610:121223. [PMID: 34710541 DOI: 10.1016/j.ijpharm.2021.121223] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022]
Abstract
Swellable microparticles (SMs) provide a potential strategy for achieving sustained inhalation therapy. However, spray dried SMs are highly hygroscopic, exhibiting poor flowability and dispersibility properties. This study aimed at determining whether L-leucine (LL) can improve aerosolization performance of SMs with wrinkled surface and its potential mechanisms. Cryptotanshinone was co-spray dried with chitosan and LL (0-40%, mass fraction in carrier materials), after which the production yield, particle size, density, encapsulation efficiency, morphology, cohesion, crystallinity, surface LL distribution, hygroscopicity, water content and in vitro aerosolization performance of the developed formulations were characterized. In addition, we determined whether LL, as a hydrophobic amino acid, would impair swellability and macrophage phagocytosis of SMs. The possible impact of LL on in vitro drug release, cytotoxicity and anti-fibrosis effects on MRC-5 cells was also investigated. As the LL content increased, LL began to crystallize. At 7.5% LL, water content and hygroscopicity of the SMs were at their lowest. Moreover, at 7.5% LL, surface enrichment increased rapidly after which it achieved a comparatively complete coverage at 20-40% LL. However, LL ≥ 20% caused the formation of over-wrinkled, even dimpled or hollow particles, which significantly deteriorated powder properties. Optimum aerosolization performance was obtained at 10% LL, irrespective of its crystallization behavior, accompanied by the lowest cohesion, optimal flowability and production yield, and without impaired swellability, macrophage uptake and anti-fibrosis efficacy. The optimal formulation did not exhibit optimum surface LL coverage, implying that improvement of aerosolization performance of wrinkled SMs by LL not simply depended on its surface enrichment, but its significant influence on morphology and on related powder properties as well.
Collapse
Affiliation(s)
- Xiuhua Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Wan
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
655
|
Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, Chen H, Ling B. Recent Advances in Enhancement of Dissolution and Supersaturation of Poorly Water-Soluble Drug in Amorphous Pharmaceutical Solids: A Review. AAPS PharmSciTech 2021; 23:16. [PMID: 34893936 DOI: 10.1208/s12249-021-02137-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Amorphization is one of the most effective pharmaceutical approaches to enhance the dissolution and oral bioavailability of poorly water-soluble drugs. In recent years, amorphous formulations have been experiencing rapid development both in theoretical and practical application. Based on using different types of stabilizing agents, amorphous formulations can be mainly classified as polymer-based amorphous solid dispersion, coamorphous formulation, mesoporous silica-based amorphous formulation, etc. This paper summarizes recent advances in the dissolution and supersaturation of these amorphous formulations. Moreover, we also highlight the roles of stabilizing agents such as polymers, low molecular weight co-formers, and mesoporous silica. Maintaining supersaturation in solution is a key factor for the enhancement of dissolution profile and oral bioavailability, and thus, the strategies and challenges for maintaining supersaturation are also discussed. With an in-depth understanding of the inherent mechanisms of dissolution behaviors, the design of amorphous pharmaceutical formulations will become more scientific and reasonable, leading to vigorous development of commercial amorphous drug products.
Collapse
|
656
|
Emanuelli J, Pagnussat V, Krieser K, Willig J, Buffon A, Kanis LA, Bilatto S, Correa DS, Maito TF, Guterres SS, Pohlmann AR, Külkamp-Guerreiro IC. Polycaprolactone and polycaprolactone triol blends to obtain a stable liquid nanotechnological formulation: synthesis, characterization and in vitro - in vivo taste masking evaluation. Drug Dev Ind Pharm 2021; 47:1556-1567. [PMID: 34821528 DOI: 10.1080/03639045.2021.2010743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The use of polymeric blends is a potential strategy to obtain novel nanotechnological formulations aiming at drug delivery systems. Saquinavir, an antiretroviral drug, was chosen as a model drug for the development of new stable liquid formulations with unpleasant taste masking properties. Three formulations containing different polymeric ratios (1:3, 1:1 and 3:1) were prepared and properly characterized by particle size distribution, zeta potential, pH, drug content and encapsulation efficiency measurements. The stability was verified by monitoring the zeta potential, particle size distribution, polydispersity index and drug content by 90 days. The light backscattering analysis was used to early identify possible phenomena of instability in the formulations. The in vitro drug release and saquinavir cytotoxicity were evaluated. The in vitro and in vivo taste masking properties were studied using an electronic tongue and a human sensory panel. All formulations presented nanometric sizes around 200 nm and encapsulation efficiency above 99%. The parameters evaluated for stability remained constant throughout 90 days. The in vitro tests showed a controlled drug release and absence of toxic effects on human T lymphocytes. The electronic tongue experiment showed taste differences for all formulations in comparison to drug solutions, with a more pronounced difference for the formulation with higher polycaprolactone content (3:1). This formulation was chosen for in vivo sensory panel evaluation which results corroborated the electronic tongue experiments. In conclusion, the polymer blend nanoformulation developed herein showed the promising application to incorporate drugs aiming at pharmaceutical taste-masking properties.
Collapse
Affiliation(s)
- Juliana Emanuelli
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Viviane Pagnussat
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Katherine Krieser
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Julia Willig
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andréia Buffon
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luiz A Kanis
- Mestrado em Ciências da Saúde, UNISUL, Tubarão, Brazil
| | - Stanley Bilatto
- Laboratório Nacional de Nanotecnologia para o Agronegócio, Embrapa Instrumentação, São Carlos, Brazil
| | - Daniel Souza Correa
- Laboratório Nacional de Nanotecnologia para o Agronegócio, Embrapa Instrumentação, São Carlos, Brazil
| | - Thaís F Maito
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Sílvia S Guterres
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana R Pohlmann
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Irene C Külkamp-Guerreiro
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
657
|
Lechanteur A, Plougonven E, Orozco L, Lumay G, Vandewalle N, Léonard A, Evrard B. Engineered-inhaled particles: Influence of carbohydrates excipients nature on powder properties and behavior. Int J Pharm 2021; 613:121319. [PMID: 34875354 DOI: 10.1016/j.ijpharm.2021.121319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
Pulmonary drug administration has long been used for local or systemic treatment due to several advantages. Dry powder inhalers emerge as the most promising due to efficiency, ecologic, and drug stability concerns. Coarse lactose-carrier is still the gold standard when inhalation powders are developed. Despite some efforts to produce new types of powders, the lung drug deposition is still poorly controlled, which will ultimately impact therapeutic effectiveness. In this study, we developed "engineered-inhalation powders" using the spray-drying technique. Multiple carbohydrates excipients were binary mixed and combined with two active pharmaceutical ingredients for asthma therapy (budesonide and formoterol). Particle morphology, from spherical to deflated shapes, was characterized by the number and the depth of dimples measured from SEM images. We define a new characteristic deflation ratio ξ as the product between the number of dimples and their depth. Six different powders having opposite morphologies have been selected and we have demonstrated a linear correlation between the fine particle fraction and the deflation ratio of produced powders. Overall, we showed first that the morphology of inhalable powder can be finely tuned by spray-drying technique when excipients varied. Secondly, we developed stable inhalation powders that simultaneously induced high fine particle fractions (>40%) for two drugs due to their deflated surface. The stability has been evaluated for up to 2 months at room temperature.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium.
| | - Erwan Plougonven
- PEPs, Laboratory of Chemical Engineering, Department of Applied Chemistry, University of Liège, Building B6a, Sart-Tilman, Liège 4000, Belgium
| | - Luisa Orozco
- GRASP, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Geoffroy Lumay
- GRASP, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Nicolas Vandewalle
- GRASP, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Angélique Léonard
- PEPs, Laboratory of Chemical Engineering, Department of Applied Chemistry, University of Liège, Building B6a, Sart-Tilman, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|
658
|
Lee JH, Park C, Weon KY, Kang CY, Lee BJ, Park JB. Improved Bioavailability of Poorly Water-Soluble Drug by Targeting Increased Absorption through Solubility Enhancement and Precipitation Inhibition. Pharmaceuticals (Basel) 2021; 14:ph14121255. [PMID: 34959655 PMCID: PMC8707685 DOI: 10.3390/ph14121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Itraconazole (ITZ) is a class II drug according to the biopharmaceutical classification system. Its solubility is pH 3-dependent, and it is poorly water-soluble. Its pKa is 3.7, which makes it a weak base drug. The aim of this study was to prepare solid dispersion (SD) pellets to enhance the release of ITZ into the gastrointestinal environment using hot-melt extrusion (HME) technology and a pelletizer. The pellets were then filled into capsules and evaluated in vitro and in vivo. The ITZ changed from a crystalline state to an amorphous state during the HME process, as determined using DSC and PXRD. In addition, its release into the gastrointestinal tract was enhanced, as was the level of ITZ recrystallization, which was lower than the marketed drug (Sporanox®), as assessed using an in vitro method. In the in vivo study that was carried out in rats, the AUC0-48h of the commercial formulation, Sporanox®, was 1073.9 ± 314.7 ng·h·mL-1, and the bioavailability of the SD pellet (2969.7 ± 720.6 ng·h·mL-1) was three-fold higher than that of Sporanox® (*** p < 0.001). The results of the in vivo test in beagle dogs revealed that the AUC0-24h of the SD-1 pellet (which was designed to enhance drug release into gastric fluids) was 3.37 ± 3.28 μg·h·mL-1 and that of the SD-2 pellet (which was designed to enhance drug release in intestinal fluids) was 7.50 ± 4.50 μg·h·mL-1. The AUC of the SD-2 pellet was 2.2 times higher than that of the SD-1 pellet. Based on pharmacokinetic data, ITZ would exist in a supersaturated state in the area of drug absorption. These results indicated that the absorption area is critical for improving the bioavailability of ITZ. Consequently, the bioavailability of ITZ could be improved by inhibiting precipitation in the absorption area.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea; (J.-H.L.); (C.-Y.K.)
| | - Chulhun Park
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Kwon-Yeon Weon
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si 38430, Korea;
| | - Chin-Yang Kang
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea; (J.-H.L.); (C.-Y.K.)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea;
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea; (J.-H.L.); (C.-Y.K.)
- Bioavailability Control Lab, Sahmyook University, Seoul 01795, Korea
- Correspondence: ; Tel.: +82-2-3399-1624
| |
Collapse
|
659
|
Brokešová J, Slámová M, Zámostný P, Kuentz M, Koktan J, Krejčík L, Vraníková B, Svačinová P, Šklubalová Z. Mechanistic study of dissolution enhancement by interactive mixtures of chitosan with meloxicam as model. Eur J Pharm Sci 2021; 169:106087. [PMID: 34863871 DOI: 10.1016/j.ejps.2021.106087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022]
Abstract
To enhance dissolution rate of meloxicam (MX), a poorly soluble model drug, a natural polysaccharide excipient chitosan (CH) is employed in this work as a carrier to prepare binary interactive mixtures by either mixing or co-milling techniques. The MX-CH mixtures of three different drug loads were characterized for morphological, granulometric, and thermal properties as well as drug crystallinity. The relative dissolution rate of MX was determined in phosphate buffer of pH 6.8 using the USP-4 apparatus; a significant increase in MX dissolution rate was observed for both mixed and co-milled mixtures comparing to the raw drug. Higher dissolution rate of MX was evidently connected to surface activation by mixing or milling, which was pronounced by the higher specific surface energy as detected by inverse gas chromatography. In addition to the particle size reduction, the carrier effect of the CH was confirmed for co-milling by linear regression between the MX maximum relative dissolution rate and the total surface area of the mixture (R2 = 0.863). No MX amorphization or crystalline structure change were detected. The work of adhesion/cohesion ratio of 0.9 supports the existence of preferential adherence of MX to the coarse particles of CH to form stable interactive mixtures.
Collapse
Affiliation(s)
- Jana Brokešová
- Department of Pharmaceutical Technology, Charles University, Faculty of Pharmacy, Akademika Heyrovského 1203/8, Hradec Králové 500 05, Czech Republic
| | - Michaela Slámová
- Department of Organic Technology, UCT Prague, Faculty of Chemical Technology, Technická 5, Dejvice, Prague 6 166 28, Czech Republic
| | - Petr Zámostný
- Department of Organic Technology, UCT Prague, Faculty of Chemical Technology, Technická 5, Dejvice, Prague 6 166 28, Czech Republic
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Hofackerstrasse 30, Muttenz CH-4132, Switzerland
| | - Jakub Koktan
- Zentiva, K.S., U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Lukáš Krejčík
- Zentiva, K.S., U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Barbora Vraníková
- Department of Pharmaceutical Technology, Charles University, Faculty of Pharmacy, Akademika Heyrovského 1203/8, Hradec Králové 500 05, Czech Republic
| | - Petra Svačinová
- Department of Pharmaceutical Technology, Charles University, Faculty of Pharmacy, Akademika Heyrovského 1203/8, Hradec Králové 500 05, Czech Republic
| | - Zdenka Šklubalová
- Department of Pharmaceutical Technology, Charles University, Faculty of Pharmacy, Akademika Heyrovského 1203/8, Hradec Králové 500 05, Czech Republic.
| |
Collapse
|
660
|
Kapourani A, Tzakri T, Valkanioti V, Kontogiannopoulos KN, Barmpalexis P. Drug crystal growth in ternary amorphous solid dispersions: Effect of surfactants and polymeric matrix-carriers. Int J Pharm X 2021; 3:100086. [PMID: 34151251 PMCID: PMC8193146 DOI: 10.1016/j.ijpx.2021.100086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023] Open
Abstract
The present study evaluates the crystal growth rate of amorphous drugs when dispersed in different ternary polymeric amorphous solid dispersions (ASDs) in the presence of surfactants. Specifically, ternary ASDs of aprepitant (APT, selected as a model drug) were prepared via melt-quench cooling by evaluating three commonly used ASDs matrix/carriers, namely hydroxypropyl cellulose (HPC), poly(vinylpyrrolidone) (PVP) and the copolymer Soluplus® (SOL), and two suitable surfactants, namely d-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P407). Results showed that all components were completely miscible (verified via hot stage polarized microscopy) and both surfactants were acting as plasticizers to the API. APT's crystal growth rate was increased in the presence of both P407 and TPGS, while PVP was identified as the matrix/carrier with the greatest impact API's crystal growth rate inhibition. Interestingly, TPGS presented a noticeable synergistic effect when combined with PVP resulting in a further reduction of APT's crystal growth rate. Furthermore, evaluation of APT's nucleation induction time in dissolution medium (PBS pH 6.8) revealed PVP as the most effective crystallization inhibitor, whereas the addition of TPGS showed to improve PVP's ability to inhibit APT's recrystallization. Finally, the formation of intermolecular interactions in the ternary APT-PVP-TPGS provided an explanation for the observed PVP-TPGS synergistic effects, with molecular dynamics simulations being able to unravel the type and extent of these interactions on a theoretical basis.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Theodora Tzakri
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vasiliki Valkanioti
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N. Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| |
Collapse
|
661
|
Berillo D, Zharkinbekov Z, Kim Y, Raziyeva K, Temirkhanova K, Saparov A. Stimuli-Responsive Polymers for Transdermal, Transmucosal and Ocular Drug Delivery. Pharmaceutics 2021; 13:2050. [PMID: 34959332 PMCID: PMC8708789 DOI: 10.3390/pharmaceutics13122050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Despite their conventional and widespread use, oral and intravenous routes of drug administration face several limitations. In particular, orally administered drugs undergo enzymatic degradation in the gastrointestinal tract and first-pass metabolism in the liver, which tend to decrease their bioavailability. Intravenous infusions of medications are invasive, painful and stressful for patients and carry the risk of infections, tissue damage and other adverse reactions. In order to account for these disadvantages, alternative routes of drug delivery, such as transdermal, nasal, oromucosal, ocular and others, have been considered. Moreover, drug formulations have been modified in order to improve their storage stability, solubility, absorption and safety. Recently, stimuli-responsive polymers have been shown to achieve controlled release and enhance the bioavailability of multiple drugs. In this review, we discuss the most up-to-date use of stimuli-responsive materials in order to optimize the delivery of medications that are unstable to pH or undergo primary metabolism via transdermal, nasal, oromucosal and ocular routes. Release kinetics, diffusion parameters and permeation rate of the drug via the mucosa or skin are discussed as well.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| | - Kamila Temirkhanova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| |
Collapse
|
662
|
Huang Z, Wu L, Wang W, Wang W, Fu F, Zhang X, Huang Y, Pan X, Wu C. Major difference in particle size, minor difference in release profile: a case study of solid lipid nanoparticles. Pharm Dev Technol 2021; 26:1110-1119. [PMID: 34694203 DOI: 10.1080/10837450.2021.1998114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/29/2023]
Abstract
Solid lipid nanoparticles (SLN) have been widely used in a variety of drug delivery routes, which have the outstanding advantage of controlled drug release. The release of SLN is dominated by many factors, among which the particle size of SLN is a critical one. The aim of this project was to explore the relationship between drug release profile and particle size of SLN. SLN were synthesized via the hot high-pressure homogenization (HPH) method, budesonide (BUD) was used as the model drug, and BUD-SLN1-BUD-SLN4 with increasing particle size was obtained, i.e. 120, 240, 360, and 480 nm. The prepared SLN has good encapsulation efficiency, drug loading capacity, and stability. In vitro release behavior studies showed that the cumulative release of BUD-SLN in Tris-Maleate (Tris-M) media was negligible, while that in Tris-M plus pancreatin media or Tris-M-ethanol media obeyed Ritger-Peppas model or first-order kinetic model, respectively. Noticeably, the release behavior of SLN was to some extent related to the average particle size of SLN, but the correlation was insignificant when the intersection degree of particle size distribution was great. This study provides a new idea for the understanding of in vitro release of SLN and has a certain referencing value for the research and development of novel nanomedicines.
Collapse
Affiliation(s)
| | - Linjing Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
663
|
Kozaka S, Wakabayashi R, Kamiya N, Goto M. Design of Swollen Lipidic Cubic Phase to Increase Transcutaneous Penetration of Biomacromolecules. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54753-54761. [PMID: 34752078 DOI: 10.1021/acsami.1c16659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipidic cubic phase (LCP) is a self-assembled system composed of lipids with interpenetrated aqueous channels, and its potential in drug delivery systems has been investigated. Although LCP was shown to improve transcutaneous penetration of hydrophilic molecules of up to 1203 Da so far, the transcutaneous delivery of larger molecules such as proteins has not been achieved. This is likely because proteins are usually larger than the aqueous channels of LCP (∼37.2 Å in diameter), which limits the molecular diffusion in LCP. In this report, we overcome this issue by adding N-octyl-β-d-glucopyranoside to glyceryl monooleate-water-based LCP to give swollen LCP (SLCP), which has larger aqueous channel diameters (∼65.6 Å). First, we systemically evaluated the effect of swelling on drug diffusion in LCP/SLCP. The release kinetics of various peptides and proteins whose sizes ranged from 9.14 to 55.28 Å in diameter were evaluated, and the diffusion coefficients (D) were calculated by the Fickian diffusion model. As expected, all peptides and proteins diffused faster in SLCP than in LCP. A more detailed analysis revealed a negative linear relationship between log D and the ratio of the radius of gyration of the proteins to the aqueous channel radius, indicating that swelling of a cubic nanostructure is an effective strategy to enhance D. Next, the skin penetration of proteins encapsulated in LCP and SLCP was evaluated. The skin penetration of ovalbumin (42.9 kDa), for example, was enhanced by SLCP but not by LCP, and a positive correlation between D and the amount of skin penetration was found. Collectively, this study provides an effective measure for designing LCP systems that enhance transcutaneous penetration of biomacromolecules.
Collapse
Affiliation(s)
- Shuto Kozaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
664
|
Sharma A, Khamar D, Cullen S, Hayden A, Hughes H. Innovative Drying Technologies for Biopharmaceuticals. Int J Pharm 2021; 609:121115. [PMID: 34547393 DOI: 10.1016/j.ijpharm.2021.121115] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 01/30/2023]
Abstract
In the past two decades, biopharmaceuticals have been a breakthrough in improving the quality of lives of patients with various cancers, autoimmune, genetic disorders etc. With the growing demand of biopharmaceuticals, the need for reducing manufacturing costs is essential without compromising on the safety, quality, and efficacy of products. Batch Freeze-drying is the primary commercial means of manufacturing solid biopharmaceuticals. However, Freeze-drying is an economically unfriendly means of production with long production cycles, high energy consumption and heavy capital investment, resulting in high overall costs. This review compiles some potential, innovative drying technologies that have not gained popularity for manufacturing parenteral biopharmaceuticals. Some of these technologies such as Spin-freeze-drying, Spray-drying, Lynfinity® Technology etc. offer a paradigm shift towards continuous manufacturing, whereas PRINT® Technology and MicroglassificationTM allow controlled dry particle characteristics. Also, some of these drying technologies can be easily scaled-up with reduced requirement for different validation processes. The inclusion of Process Analytical Technology (PAT) and offline characterization techniques in tandem can provide additional information on the Critical Process Parameters (CPPs) and Critical Quality Attributes (CQAs) during biopharmaceutical processing. These processing technologies can be envisaged to increase the manufacturing capacity for biopharmaceutical products at reduced costs.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Main Campus, Cork Road, Waterford X91K0EK, Ireland.
| | - Dikshitkumar Khamar
- Sanofi, Manufacturing Science, Analytics and Technology (MSAT), IDA Industrial Park, Waterford X91TP27, Ireland
| | - Sean Cullen
- Gilead Sciences, Commercial Manufacturing, IDA Business & Technology Park, Carrigtwohill, Co. Cork T45DP77, Ireland
| | - Ambrose Hayden
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Main Campus, Cork Road, Waterford X91K0EK, Ireland
| | - Helen Hughes
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Main Campus, Cork Road, Waterford X91K0EK, Ireland
| |
Collapse
|
665
|
Huang Z, Fu F, Wu L, Wang W, Wang W, Shi C, Huang Y, Pan X, Wu C. Bibliometric landscape of the researches on protein corona of nanoparticles. FRONTIERS OF MATERIALS SCIENCE 2021; 15:477-493. [PMID: 34840853 PMCID: PMC8606624 DOI: 10.1007/s11706-021-0571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Unclear biological fate hampers the clinical translation of nanoparticles for biomedical uses. In recent years, it is documented that the formation of protein corona upon nanoparticles is a critical factor leading to the ambiguous biological fate. Efforts have been made to explore the protein corona forming behaviors on nanoparticles, and rearrangement of the relevant studies will help to understand the current trend of such a topic. In this work, the publications about protein corona of nanoparticles in Science Citation Index Expanded database of Web of Science from 2007 to 2020 (1417 in total) were analyzed in detail, and the bibliometrics landscape of them was showcased. The basic bibliometrics characteristics were summarized to provide an overall understanding. Citation analysis was performed to scrutinize the peer interests of these papers. The research hotspots in the field were evaluated, based on which some feasible topics for future studies were proposed. In general, the results demonstrated that protein corona of nanoparticles was a prospective research area, and had attracted global research interests. It was believed that this work could comprehensively highlight the bibliometrics landscape, inspire further exploitation on protein corona of nanoparticles, and ultimately promote the clinical translation of nanoparticles.
Collapse
Affiliation(s)
- Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Linjing Wu
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Chaonan Shi
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| |
Collapse
|
666
|
Mady OY, Al-Shoubki AA, Donia AA. An Industrial Procedure for Pharmacodynamic Improvement of Metformin HCl via Granulation with Its Paracellular Pathway Enhancer Using Factorial Experimental Design. Drug Des Devel Ther 2021; 15:4469-4487. [PMID: 34764634 PMCID: PMC8576103 DOI: 10.2147/dddt.s328262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023] Open
Abstract
Background Sorbitan monostearate is a surfactant used in the food industry. It was proved as a penetration enhancer to metformin HCl via a paracellular pathway. It is solid at room temperature and has a low melting point. Therefore, it was selected, as a granulating agent for metformin HCl. Methods Multi-level factorial design was applied to determine the optimized formula for industrial processing. The selected formulations were scanned using an electron microscope. Differential scanning calorimetry was used to ascertain the crystalline state of a drug. A modified non-everted sac technique, suggested by the authors, was used to evaluate the in vitro permeation enhancement of the drug. To simulate the emulsification effect of the bile salt, a tween 80 was added to the perfusion solution. As a pharmacodynamic marker, blood glucose levels were measured in diabetic rats. Results The results showed that drug permeability increases in the presence of tween 80. Drug permeability from granules increased than that of the pure drug or pure drug with tween 80. The prepared granules decreased blood glucose levels of diabetic rats than the pure drug and drug plus tween 80. There was an excellent correlation between the results of the drug permeation percent in vitro and the dropping of blood glucose level percent in vivo. Conclusion Improving the drug permeation and consequently, the drug pharmacodynamic effect in addition to an excellent micromeritics property of the prepared drug granules showed the dual enhancement effect of the suggested industrial procedure. Therefore, we suggest the same industrial procedure for other class III drugs.
Collapse
Affiliation(s)
- Omar Y Mady
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Adam A Al-Shoubki
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Ahmed A Donia
- Department of Pharmaceutical Technology, Menoufia University, Shebeen El-Kom, Egypt
| |
Collapse
|
667
|
Targeting of Inhaled Therapeutics to the Small Airways: Nanoleucine Carrier Formulations. Pharmaceutics 2021; 13:pharmaceutics13111855. [PMID: 34834270 PMCID: PMC8624185 DOI: 10.3390/pharmaceutics13111855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Current dry powder formulations for inhalation deposit a large fraction of their emitted dose in the upper respiratory tract where they contribute to off-target adverse effects and variability in lung delivery. The purpose of the current study is to design a new formulation concept that more effectively targets inhaled dry powders to the large and small airways. The formulations are based on adhesive mixtures of drug nanoparticles and nanoleucine carrier particles prepared by spray drying of a co-suspension of leucine and drug particles from a nonsolvent. The physicochemical and aerosol properties of the resulting formulations are presented. The formulations achieve 93% lung delivery in the Alberta Idealized Throat model that is independent of inspiratory flow rate and relative humidity. Largely eliminating URT deposition with a particle size larger than solution pMDIs is expected to improve delivery to the large and small airways, while minimizing alveolar deposition and particle exhalation.
Collapse
|
668
|
Józefczak A, Kaczmarek K, Bielas R. Magnetic mediators for ultrasound theranostics. Theranostics 2021; 11:10091-10113. [PMID: 34815806 PMCID: PMC8581415 DOI: 10.7150/thno.62218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
The theranostics paradigm is based on the concept of combining therapeutic and diagnostic modalities into one platform to improve the effectiveness of treatment. Combinations of multiple modalities provide numerous medical advantages and are enabled by nano- and micron-sized mediators. Here we review recent advancements in the field of ultrasound theranostics and the use of magnetic materials as mediators. Several subdisciplines are described in detail, including controlled drug delivery and release, ultrasound hyperthermia, magneto-ultrasonic heating, sonodynamic therapy, magnetoacoustic imaging, ultrasonic wave generation by magnetic fields, and ultrasound tomography. The continuous progress and improvement in theranostic materials, methods, and physical computing models have created undeniable possibilities for the development of new approaches. We discuss the prospects of ultrasound theranostics and possible expansions of other studies to the theranostic context.
Collapse
Affiliation(s)
- Arkadiusz Józefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Katarzyna Kaczmarek
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, United Kingdom
| | - Rafał Bielas
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
669
|
Shinde A, Panchal K, Katke S, Paliwal R, Chaurasiya A. Tyrosine kinase inhibitors as next generation oncological therapeutics: Current strategies, limitations and future perspectives. Therapie 2021; 77:425-443. [PMID: 34823895 DOI: 10.1016/j.therap.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/09/2023]
Abstract
Protein kinases, a class of enzymes that govern various biological phenomena at a cellular level, are responsible for signal transduction in cells that regulate cellular proliferation, differentiation, and growth. Protein kinase enzyme mutation results in abnormal cell division leading to a pathological condition like cancer. Tyrosine kinase (TK) inhibitors, which helps as a potential drug candidate for the treatment of cancer, are continuously being developed. Majority of these drug candidates are being administered as conventional oral dosage form, which provides limited safety and efficacy due to non-specific delivery and uncontrolled biodistribution resulting into the adverse effects. A controlled drug delivery approach for the delivery of TK inhibitors may be a potential strategy with significant safety and efficacy profile. Novel drug delivery strategies provide target-specific drug delivery, improved pharmacokinetic behaviour, and sustained release leading to lower doses and dosing frequency with significantly reduced side effects. Along with basic aspects of tyrosine kinase, this review discusses various aspects related to the application of tyrosine kinase inhibitors in clinical oncological setting. Furthermore, the limitations/challenges and formulation advancements related to this class of candidates particularly for cancer management have been reviewed. It is expected that innovations in drug delivery approaches for TK inhibitors using novel techniques will surely provide a new insights for improved cancer treatment and patients' life quality.
Collapse
Affiliation(s)
- Aishwarya Shinde
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India
| | - Kanan Panchal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India
| | - Sumeet Katke
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484886, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India.
| |
Collapse
|
670
|
Zhang Z, Chen F, Feng J, Chen J, Chen L, Zhang Z, Wang H, Cheng X, Liu M, Liu C. −22-Fold of 1H signal enhancement in-situ low-field liquid NMR using nanodiamond as polarizer of overhauser dynamic nuclear polarization. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
671
|
Quarta E, Sonvico F, Bettini R, De Luca C, Dotti A, Catalucci D, Iafisco M, Degli Esposti L, Colombo G, Trevisi G, Rekkas DM, Rossi A, Wong TW, Buttini F, Colombo P. Inhalable Microparticles Embedding Calcium Phosphate Nanoparticles for Heart Targeting: The Formulation Experimental Design. Pharmaceutics 2021; 13:pharmaceutics13111825. [PMID: 34834240 PMCID: PMC8617656 DOI: 10.3390/pharmaceutics13111825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022] Open
Abstract
Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was selected as water soluble matrix excipient for constructing respirable dry microparticles by spray drying technique. A Quality by Design approach was applied for understanding the effect of the feed composition and spraying feed rate on typical quality attributes of inhalation powders. The in vitro aerodynamic behaviour of powders was evaluated using a medium resistance device. The inner structure and morphology of generated microparticles were also studied. The 1:4 ratio of CaPs/mannitol led to the generation of hollow microparticles, with the best aerodynamic performance. After microparticle dissolution, the released nanoparticles kept their original size.
Collapse
Affiliation(s)
- Eride Quarta
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (R.B.); (A.R.)
- PlumeStars Srl., c/o Food & Drug Department, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (R.B.); (A.R.)
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (R.B.); (A.R.)
| | - Claudio De Luca
- Fin-Ceramica Faenza SPA, Via Granarolo 177/3, 48018 Faenza, Italy; (C.D.L.); (A.D.)
| | - Alessandro Dotti
- Fin-Ceramica Faenza SPA, Via Granarolo 177/3, 48018 Faenza, Italy; (C.D.L.); (A.D.)
| | - Daniele Catalucci
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
- Institute of Genetic and Biomedical Research (IRGB)-UOS Milan, National Research Council (CNR), 20138 Milan, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; (M.I.); (L.D.E.)
| | - Lorenzo Degli Esposti
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; (M.I.); (L.D.E.)
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy;
| | - Giovanna Trevisi
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy;
| | - Dimitrios M. Rekkas
- Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Athens, Greece;
| | - Alessandra Rossi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (R.B.); (A.R.)
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia;
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (R.B.); (A.R.)
- Correspondence: (F.B.); or (P.C.); Tel.: +39-0521-906008 (F.B.); +39-0521-905086 (P.C.)
| | - Paolo Colombo
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (R.B.); (A.R.)
- PlumeStars Srl., c/o Food & Drug Department, Parco Area delle Scienze 27A, 43124 Parma, Italy
- Correspondence: (F.B.); or (P.C.); Tel.: +39-0521-906008 (F.B.); +39-0521-905086 (P.C.)
| |
Collapse
|
672
|
Mei L, Wang H, Chen J, Zhang Z, Li F, Xie Y, Huang Y, Peng T, Cheng G, Pan X, Wu C. Self-assembled lyotropic liquid crystal gel for osteoarthritis treatment via anti-inflammation and cartilage protection. Biomater Sci 2021; 9:7205-7218. [PMID: 34554160 DOI: 10.1039/d1bm00727k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease with occurrence of articular inflammation and cartilage degeneration. An ideal drug delivery system for effective treatment of OA should integrate inflammation alleviation with cartilage protection. Herein, a lyotropic liquid crystal (LLC) precursor co-loading hyaluronic acid (HA) and celecoxib, formulated as the HLC precursor, was developed for the combined therapeutic efficacy. The in situ gelling property of the HLC precursor effectively prolongs drug retention in the articular cavity to achieve a long-term anti-inflammation effect. Based on the rheological tests, HLC gel with a cubic lattice structure endows it with a spring-like effect to buffer joint shock and shows great potential in providing cartilage protection by resisting mechanical destruction, lubricating joint, and decomposing intensive stress (about 50%). Meanwhile, the pharmacodynamics study on the OA-induced SD rats demonstrated that HLC gel was the most effective to reduce inflammation levels and to protect the cartilage against abrasion and degeneration. Furthermore, the in vivo degradation behavior and the intra-articular irritation results of LLC/HLC gel demonstrated that it was biodegradable and biocompatible. These results collectively demonstrated that HLC gel with anti-inflammation and cartilage protection performance provides a useful approach to treat OA.
Collapse
Affiliation(s)
- Liling Mei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jintian Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ziqian Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yecheng Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Guohua Cheng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
673
|
Baldassari S, Cirrincione P, Ailuno G, Drava G, Arpicco S, Caviglioli G. Towards a better understanding of thermally treated polycarbophil matrix tablets for controlled release. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100098. [PMID: 34661093 PMCID: PMC8503905 DOI: 10.1016/j.ijpx.2021.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 10/02/2021] [Indexed: 11/07/2022]
Abstract
Polycarbophil (POL), a polyacrylic acid cross-linked with divinyl glycol, is widely used in semisolid and solid dosage forms. When undergoing a thermal treatment in the range 120–160 °C, POL shows interesting morphological modifications, related to changes in physical properties, such as swelling of the powder granules, or hardening and matrix formation if included in the composition of a tablet. Thermal analysis conducted on POL highlighted a thermal event (Z) that can be correlated both to the shrinking of the powder granules and to the matrix formation in compacted POL powder. Modulated differential scanning calorimetry (MDSC) allowed to distinguish, inside event Z, an irreversible process overlapping with a reversible glass transition, attributable to the volatilization of residual solvents identified, through a complex TGA-FTIR-GC–MS interface, as acetate esters used for the polymer production as very fine powder. A specific interaction between acetates and POL, capable of stabilizing the polymer chains in a given conformation, was highlighted. The molecular rearrangement of the POL chains, following the volatilization of the solvent-stabilizers, is therefore ascribable to a loss of energetic stability of this material, which justifies the shrinking phenomena in the granules of the powder and the matrix formation when POL is compacted.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Paola Cirrincione
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, Via Giuria 9, 10125 Torino, Italy
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| |
Collapse
|
674
|
Hao L, Jiang Y, Zhang R, Zhang N, Yang Y, Gao Y, Song Y. Preparation and in vivo/in vitro characterization of Ticagrelor PLGA sustained-release microspheres for injection. Des Monomers Polym 2021; 24:305-319. [PMID: 34650328 PMCID: PMC8510617 DOI: 10.1080/15685551.2021.1984008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The objective of this paper was to develop a PLGA carrier Ticagrelor sustained-release microspheres preparation, which was expected to continue to release Ticagrelor for 14 days with a high encapsulation rate. Ticagrelor microspheres were prepared successfully with average diameter of 7.31 µm, drug loading of 12.49 ± 0.32% and EE up to 79.09 ± 1.69%. In the release medium of PH7.4 PBS, the microspheres showed good drug release behavior in vitro. In vivo release results also showed that the sustained-release microspheres could effectively control drug release in vivo and maintain a relatively stable blood drug concentration for about 2 weeks. The results indicate that Ticagrelor sustained-release microspheres can be used for long-term treatment of acute coronary syndrome.
Collapse
Affiliation(s)
- Linkun Hao
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Yunying Jiang
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Ru Zhang
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Ningning Zhang
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Yang Yang
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Ying Gao
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Yimin Song
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| |
Collapse
|
675
|
Wang H, Peng T, Wu H, Chen J, Chen M, Mei L, Li F, Wang W, Wu C, Pan X. In situ biomimetic lyotropic liquid crystal gel for full-thickness cartilage defect regeneration. J Control Release 2021; 338:623-632. [PMID: 34481927 DOI: 10.1016/j.jconrel.2021.08.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
There is a great challenge in regenerating cartilage defects, which usually involve absent bearing capacity and poor adaptation to joint movement, further exacerbating subchondral bone damage. Therefore, ideal tissue-engineering cartilage scaffolds should be endowed with biomimetic and sustained-release function for promoting long-term chondrogenesis while protecting subchondral bone. Herein, in situ self-assembling gel based on glyceryl monooleate (GMO)-hyaluronic acid (HA) composite lyotropic liquid crystal (HLC) was developed as the biomimetic scaffold to deliver kartogenin for long-term cartilage regeneration. Compared to the GMO based (LLC) gel, HLC gel with modified lattice structure exhibited improved rheological properties for better joint protection by increasing mechanical strength, elasticity and lubrication. Besides, HLC gel successfully prolonged drug release and retention in the joint cavity over 4 weeks to provide combined effect of kartogenin and HA for cartilage repair. Pharmacodynamic studies demonstrated that HLC gel was the most effective to promote chondrogenesis and protect subchondral bone, making the damaged bone tissue restored to normal in divergent features as evidenced by the MRI, Micro-CT and histological results. Therefore, the HLC gel with joint protection and controlled drug release can serve as a firm scaffold for providing long-term cartilage repair.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Haofeng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jintian Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Liling Mei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
676
|
Yue X, Zhang X, Wang C, Huang Y, Hu P, Wang G, Cui Y, Xia X, Zhou Z, Pan X, Wu C. A bacteria-resistant and self-healing spray dressing based on lyotropic liquid crystals to treat infected post-operative wounds. J Mater Chem B 2021; 9:8121-8137. [PMID: 34494632 DOI: 10.1039/d1tb01201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The delayed healing of infected post-operative wounds has turned into a worldwide medical problem. In the clinical treatment, effective bacterial clearance and promoted wound healing were considered as two crucial aspects. However, the effect of current dressings with antibacterial activity was limited due to the declined efficacy against antibiotic-resistant bacteria, and poor mechanical property during skin extension and compression movement. In this project, a lyotropic liquid crystal (LLC)-based bacteria-resistant and self-healing spray dressing loaded with ε-polylysine (PLL) was designed. Owing to the unique antibacterial mechanism, PLL was expected to kill antibiotic-resistant bacteria efficiently, even the "superbug" methicillin-resistant Staphylococcus aureus (MRSA). The cubic cells of LLC were applied to encapsulate PLL to improve its stability and induce a sustained release, further realizing a long-term antibacterial effect. Meanwhile, the LLC precursor (LLCP) could extend to the irregular edges of the wound, and spontaneously transited to a cubic phase gel once exposed to physiological fluid. This 3D structure was also endowed with mechanically responsive viscoelasticity that formed a robust and flexible defense for wounds. An excellent antibacterial activity with more than 99% MRSA killed in 3 h was demonstrated by a killing kinetics study. The long-term effect was also proved by measuring the bacteriostatic circle test within 48 h. In addition, the unique sol-gel phase transition behavior and superior self-healing capacity of PLL-LLCP was verified with the rheological study and self-recoverable conformal deformation test in vivo. In the infected post-operative wound model, satisfactory bacterial clearance and prominent wound healing promotion were realized by PLL-LLCP, with the survival of the bacteria at lower than 0.1% and the wound closure at higher than 90%. Thus, PLL-LLCP was believed to be an excellent candidate for the therapy of infected post-operative wounds.
Collapse
Affiliation(s)
- Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China. .,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Xiao Xia
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Ziqiang Zhou
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| |
Collapse
|
677
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
678
|
Zhang J, Lu A, Thakkar R, Zhang Y, Maniruzzaman M. Development and Evaluation of Amorphous Oral Thin Films Using Solvent-Free Processes: Comparison between 3D Printing and Hot-Melt Extrusion Technologies. Pharmaceutics 2021; 13:pharmaceutics13101613. [PMID: 34683906 PMCID: PMC8538498 DOI: 10.3390/pharmaceutics13101613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Conventional oral dosage forms may not always be optimal especially for those patients suffering from dysphasia or difficulty swallowing. Development of suitable oral thin films (OTFs), therefore, can be an excellent alternative to conventional dosage forms for these patient groups. Hence, the main objective of the current investigation is to develop oral thin film (OTF) formulations using novel solvent-free approaches, including additive manufacturing (AM), hot-melt extrusion, and melt casting. AM, popularly recognized as 3D printing, has been widely utilized for on-demand and personalized formulation development in the pharmaceutical industry. Additionally, in general active pharmaceutical ingredients (APIs) are dissolved or dispersed in polymeric matrices to form amorphous solid dispersions (ASDs). In this study, acetaminophen (APAP) was selected as the model drug, and Klucel™ hydroxypropyl cellulose (HPC) E5 and Soluplus® were used as carrier matrices to form the OTFs. Amorphous OTFs were successfully manufactured by hot-melt extrusion and 3D printing technologies followed by comprehensive studies on the physico-chemical properties of the drug and developed OTFs. Advanced physico-chemical characterizations revealed the presence of amorphous drug in both HME and 3D printed films whereas some crystalline traces were visible in solvent and melt cast films. Moreover, advanced surface analysis conducted by Raman mapping confirmed a more homogenous distribution of amorphous drugs in 3D printed films compared to those prepared by other methods. A series of mathematical models were also used to describe drug release mechanisms from the developed OTFs. Moreover, the in vitro dissolution studies of the 3D printed films demonstrated an improved drug release performance compared to the melt cast or extruded films. This study suggested that HME combined with 3D printing can potentially improve the physical properties of formulations and produce OTFs with preferred qualities such as faster dissolution rate of drugs.
Collapse
|
679
|
An ultrasonographic assisted investigation for the enhancement of duodenal/cecal motility of mosapride through a surfactant-based triple solid dispersion: In-vitro, in-vivo assessment of tablet formulation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
680
|
Ramachandran G, Sudheesh MS. Role of Permeability on the Biopredictive Dissolution of Amorphous Solid Dispersions. AAPS PharmSciTech 2021; 22:243. [PMID: 34595565 DOI: 10.1208/s12249-021-02125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
An ideal dissolution test for amorphous solid dispersions (ASDs) should reflect physicochemical, physiological, and hydrodynamic conditions which accurately represent in vivo dissolution. However, this is confounded by the evolution of different molecular and colloidal species during dissolution, generating a supersaturated state of the drug. The supersaturated state of a drug is thermodynamically unstable which drives the process of precipitation resulting in a loss of solubility advantage. Maintaining a supersaturated state of the drug with the help of precipitation inhibiting excipients is a key component in the design of ASDs. Therefore, a biopredictive dissolution test is critical for proper risk assessment during the development of an optimal ASD formulation. One of the overlooked components of biopredictive dissolution is the role of drug permeability. The kinetic changes in the phase behavior of a drug during dissolution of ASDs are influenced by drug permeability across a membrane. Conventionally, drug dissolution and permeation are analyzed separately although they occur simultaneously in vivo. The kinetic phase changes occurring during dissolution of ASDs can influence the thermodynamic activity and membrane flux of a drug. The present review evaluates the feasibility, predictability, and practicability of permeability/dissolution for the optimal development and risk assessment of ASD formulations.
Collapse
|
681
|
Shi X, Fan B, Zhou X, Chen Q, Shen S, Xing X, Deng Y. Preparation and Characterization of Ibrutinib Amorphous Solid Dispersions: a Discussion of Interaction Force. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
682
|
Al Ayoub Y, Buzgeia A, Almousawi G, Mazhar HRA, Alzouebi B, Gopalan RC, Assi KH. In-Vitro In-Vivo Correlation (IVIVC) of Inhaled Products Using Twin Stage Impinger. J Pharm Sci 2021; 111:395-402. [PMID: 34599997 DOI: 10.1016/j.xphs.2021.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
In vitro dissolution testing as a form of quality control has become a necessity in the pharmaceutical industry. As such, the need to establish a method that investigates the in vitro dissolution profile of inhaled products should be taken into account. The prime focus in this study was to examine the in-vitro in-vivo correlation utilising a modified version of the Twin Stage Impinger and to promote an in vitro dissolution model by enhancing the Fine Particle Dose (FPD) collection method for dry powder inhalers. The Twin Impinger was modified by inserting a stainless steel membrane holder disk in the base of the lower chamber. The design, with optimum drug deposition, was adopted for the dissolution study of budesonide and salbutamol. Afterwards, the membrane holder system was placed in the bottom of the dissolution vessel. Phosphate buffer saline (PBS), simulated lung fluid (SLF, Gamble solution) and Phosphate buffer (PB) were used in the study. The paddle dissolution apparatus, containing 300 mL of the medium, was operated at 75 rpm paddle speed. Samples were collected at defined time intervals and analysed using a validated HPLC method. The largest proportion of the budesonide dose was dissolved in PBS compared to PB and SLF. This was due to the presence of surfactant (0.2% w/v polysorbate), which enhances the wettability and the solubility of the poorly soluble drug (budesonide). The similarity factors for PBS and PB were 47.6 and 69.7, respectively, using SLF as a reference, whereas the similarity factor for salbutamol dissolution between PB and SLF was 81.3, suggesting PB is a suitable substitute. Comparison using both the predicted and actual in vivo pharmacokinetics (PK) values of the two drugs, as well as the pattern of their Concentration-Time (c-t) profiles, showed good similarity, which gave an indication of the validity of this in vitro dissolution method.
Collapse
Affiliation(s)
- Yuosef Al Ayoub
- Eurofins Professional Scientific Services UK Limited, Unit G1 Valiant Way, I54 Business Park, Wolverhampton, WV9 5GB, UK
| | - Asma Buzgeia
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Ghadeer Almousawi
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | | | - B Alzouebi
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Rajendran C Gopalan
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - K H Assi
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
683
|
Haris NIN, Sobri S, Yusof YA, Kassim NK. Innovative Method for Longer Effective Corrosion Inhibition Time: Controlled Release Oil Palm Empty Fruit Bunch Hemicellulose Inhibitor Tablet. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5657. [PMID: 34640054 PMCID: PMC8510072 DOI: 10.3390/ma14195657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
This study aims to develop a controlled release oil palm empty fruit bunch hemicellulose (EFB-H) inhibitor tablet for mild steel in 1 M HCl. As plant extracts tend to deteriorate at longer immersion time, limiting its industrial applicability, we attempted to lengthen the inhibition time by forming a controlled release inhibitor tablet. Electrochemical methods (potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS)) were employed to investigate the efficiency and mechanism of the inhibition. An optimum dosage and immersion time was determined via Response Surface Methodology (RSM). EFB-H tablet was formulated using D-optimal mixture design, and its anticorrosion action at extended immersion time was compared with EFB-H powder. PDP measurement revealed that EFB-H is a mixed type inhibitor. RSM optimization unveiled that the optimum point for a maximum inhibition efficiency (87.11%) was at 0.33 g of EFB-H and 120 h of immersion time. Tablet T3 with EFB-H to gum Arabic to hydroxypropyl methylcellulose ratio of 66:0:34 portrayed the best tensile strength (0.243 MPa), disintegration time (152 min) and dissolution behavior. EFB-H tablet exhibited a longer-lasting inhibition effect than powder, which was 360 h as compared to 120 h for powder. Overall, EFB-H tablet has been successfully developed, and its enhanced effective inhibition time has been experimentally proven.
Collapse
Affiliation(s)
| | - Shafreeza Sobri
- Institute of Advanced Technology, Universiti Putra Malaysia, Selangor 43400, Malaysia;
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Nur Kartinee Kassim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| |
Collapse
|
684
|
Zhou H, Wang Y, Li S, Lu M. Improving chemical stability of resveratrol in hot melt extrusion based on formation of eutectic with nicotinamide. Int J Pharm 2021; 607:121042. [PMID: 34450224 DOI: 10.1016/j.ijpharm.2021.121042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
Hot melt extrusion (HME) is a technique applied in the preparation of pharmaceutical amorphous solid dispersions (ASD). Notably it is important to prevent thermal degradation of heat-sensitive drugs during HME. In this study, we present a new strategy to improve chemical stability of pharmaceutical compounds during HME through the formation of eutectics with small molecules. Resveratrol (RES) was selected as the model compound because it is a heat-liable natural product with a very high melting point of 267 °C. When heated at its melting point for 3 min, it degrades by 40%. RES can co-crystallize with nicotinamide (NIC) in solution, however, it can only form a eutectic with NIC during heating. HPMCAS was selected as the polymer matrix and the drug loading of RES was fixed as 20% (weight ratio). The lowest extrusion temperature that can result to RES-HPMCAS ASD is 215 °C. At this temperature, RES shows 7.36% degradation during extrusion. Replacement of 21.4% HPMCAS with NIC decreased the melting temperature of NIC and thus lowered the minimal extrusion temperature to 155 °C. This effectively prevented thermal degradation of RES without negatively affecting non-sink dissolution. The only extra cost for this method is stricter storage conditions (low temperature and low humidity) due to the low glass transition temperature of NIC. Similar strategy may be applied to other heat-liable drugs in similar ways. This study demonstrates the use of eutectic formation for preventing thermal degradation of drug during extrusion of ASD.
Collapse
Affiliation(s)
- Huanyue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuting Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
685
|
Fu F, Li X, Zheng T, Xia X, Du M, Huang Z, Huang Y, Pan X, Wu C. Stability Evaluation of Lyotropic Liquid Crystalline Precursor for the Co-delivery of Chlorhexidine and Silver Nanoparticles. AAPS PharmSciTech 2021; 22:237. [PMID: 34545436 DOI: 10.1208/s12249-021-02102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Sealing the therapeutic agents in the root canal is considered to be an essential step in root canal therapy. The lyotropic liquid crystalline precursor (LLCP) incorporated with chlorhexidine (CHX) and silver nanoparticles (Ag-NPs) has been confirmed as a promising candidate for root canal therapy in the previous study. Importantly, the stability of the LLCP system was a significant determinant for its therapeutic effect and further application. The objective of this study was to comprehensively investigate the stability of the LLCP incorporated with CHX and Ag-NPs. The oil-water partition coefficient of CHX and Ag-NPs was measured. The water absorption and the physical stability of drug-loaded LLCP solution were studied. Stability under high temperature, high humidity, and strong light irradiation was also investigated. The results demonstrated that CHX and Ag-NPs could be entrapped in the water channel of LLCP, indicating the low tendency of drugs leakage. The drug-loaded LLCP was a pseudoplastic fluid and it showed an excellent physical stability with a sedimentation rate of 0.981 and a settling time of 26~28 h. The payload of LLCP was confirmed to weaken the water absorption behavior, which facilitated its transformation to cubic liquid crystal. The stress testing under high temperature, high humidity, and strong light irradiation also manifested that the LLCP was stable when stored under moisture-proof condition. In conclusion, the developed LLCP incorporated with CHX and Ag-NPs was highly stable during storage and qualified for further application.
Collapse
Affiliation(s)
- Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China
| | - Xin Li
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Tengyi Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiao Xia
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China
| | - Minqun Du
- Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China.
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China
| |
Collapse
|
686
|
Bahrainian S, Mirmoeini MS, Gilani Z, Gilani K. Engineering of levodopa inhalable microparticles in combination with leucine and dipalmitoylphosphatidylcholine by spray drying technique. Eur J Pharm Sci 2021; 167:106008. [PMID: 34530077 DOI: 10.1016/j.ejps.2021.106008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/05/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
The aim of this work was to study the effect of concomitant use of leucine and dipalmitoylphosphatidylcholine, in different ratios, on aerosolization performance of levodopa. Three-component formulations were selected based on a central composite design using percentages of leucine and dipalmitoylphosphatidylcholine as the independent variables. Particle size, surface roughness index, surface phosphorus and fine particle fraction were considered as dependent variables in the model. The spray dried samples were also characterized to determine their particle shape and solid state nature. levodopa was spray dried with 10-40% w/w of the excipients to prepare two- or three-component formulations. A crystalline nature was determined for levodopa in all samples spray dried from water:ethanol (30:70 v/v). Roughness in surface of the processed particles increased with increasing total concentration of the excipients, specially above 25% w/w. Analysis of phosphorus on the surface demonstrated that three-component formulations prepared with combination of 12.5% w/w leucine had the highest amount of dipalmitoylphosphatidylcholine in the surface, regardless of its percentage used in the initial feed. A combination of 12.43% w/w of leucine and 9.80% w/w of dipalmitoylphosphatidylcholine used in formulation exhibited the highest fine particle fraction (72.63%). It can be concluded that spray drying of levodopa with a suitable combination of both excipients leads to production of a three-component formulation of crystalline levodopa, with an aerosolization performance which is significantly higher than two-component formulations composed of the drug with either leucine or dipalmitoylphosphatidylcholine.
Collapse
Affiliation(s)
- Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Mirmoeini
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medicinal Plants Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
687
|
Mathews PD, Mertins O, Angelov B, Angelova A. Cubosomal lipid nanoassemblies with pH-sensitive shells created by biopolymer complexes: A synchrotron SAXS study. J Colloid Interface Sci 2021; 607:440-450. [PMID: 34509118 DOI: 10.1016/j.jcis.2021.08.187] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
We report a strategy for sustainable development of pH-responsive cubic liquid crystalline nanoparticles (cubosomes), in which the structure-defining lyotropic nonlamellar lipid and the eventually encapsulated guest molecules can be protected by pH-sensitive polyelectrolyte shells with mucoadhesive properties. Bulk non-lamellar phases as well as pH-responsive polyelectrolyte-modified nanocarriers were formed by spontaneous assembly of the nonlamellar lipid monoolein and two biopolymers tailored in nanocomplexes with pH-dependent net charge. The mesophase particles involved positively charged N-arginine-modified chitosan (CHarg) and negatively charged alginate (ALG) chains assembled at different biopolymer concentrations and charge ratios into a series of pH-responsive complexes. The roles of Pluronic F127 as a dispersing agent and a stabilizer of the nanoscale dispersions were examined. Synchrotron small-angle X-ray scattering (SAXS) investigations were performed at several N-arginine-modified chitosan/alginate ratios (CHarg/ALG with 10, 15 and 20 wt% ALG relative to CHarg) and varying pH values mimicking the pH conditions of the gastrointestinal route. The structural parameters characterizing the inner cubic liquid crystalline organizations of the nanocarriers were determined as well as the particle sizes and stability on storage. The surface charge variations, influencing the measured zeta-potentials, evidenced the inclusion of the CHarg/ALG biopolymer complexes into the lipid nanoassemblies. The polyelectrolyte shells rendered the hybrid cubosome nanocarriers pH-sensitive and influenced the swelling of their lipid-phase core as revealed by the acquired SAXS patterns. The pH-responsiveness and the mucoadhesive features of the cubosomal lipid/polyelectrolyte nanocomplexes may be of interest for in vivo drug delivery applications.
Collapse
Affiliation(s)
- Patrick D Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil; Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, F-92296 Châtenay-Malabry, France.
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic
| | - Angelina Angelova
- Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, F-92296 Châtenay-Malabry, France.
| |
Collapse
|
688
|
Zhai J, Ou Z, Zhong L, Wang YE, Cao LP, Guan S. Exenatide-loaded inside-porous poly(lactic-co-glycolic acid) microspheres as a long-acting drug delivery system with improved release characteristics. Drug Deliv 2021; 27:1667-1675. [PMID: 33241694 PMCID: PMC7875555 DOI: 10.1080/10717544.2020.1850919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The glucagon-like peptide-1 receptor agonist exenatide (EXT) is an effective treatment for type 2 diabetes. However, this peptide has a short biological half-life and the delayed release characteristic of current formulations limit its clinical application. Herein, we prepared EXT-loaded inside-porous poly(d,l-lactic-co-glycolic acid (PLGA) microspheres with outside layers (EXT-PMS) using a W1/O/W2 emulsion method with a microfluidic technique and its fabrication and formulation conditions were systematically investigated. In vitro dissolution experiments showed that the PLGA concentration, proportion of drug and oil phase, and the number and size of pores strongly affected the release behaviors of EXT-PMS. In vitro, the optimized EXT-PMS with large internal pores exhibited rapid and stable release without a lag phase. In a rat model, subcutaneous administration of the product yielded plasma concentrations of EXT that was sustained for 30 days with low burst and no delayed-release effect. The preparation of inside-porous microspheres is lighting up the development of long-acting drug delivery systems for other drugs with favorable release characteristics.
Collapse
Affiliation(s)
- Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanlun Ou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liuting Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-E Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Ping Cao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, China
| | - Shixia Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
689
|
Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11:2609-2644. [PMID: 34589385 PMCID: PMC8463292 DOI: 10.1016/j.apsb.2021.07.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.
Collapse
Affiliation(s)
- Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yilang Yan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yuwei Zheng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Daojun Liu
- Shantou University Medical College, Shantou 515041, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
690
|
Lyotropic liquid crystalline nanoparticles: Scaffolds for delivery of myriad therapeutics and diagnostics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
691
|
Li J, Cao F, Wu B, Yang J, Xu W, Wang W, Wei X, Liu G, Zhao D. Immobilization of bioactive vascular endothelial growth factor onto Ca-deficient hydroxyapatite-coated Mg by covalent bonding using polydopamine. J Orthop Translat 2021; 30:82-92. [PMID: 34660198 PMCID: PMC8487887 DOI: 10.1016/j.jot.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Bone tissue engineering (BTE) is considered a promising technology for repairing bone defects. Mg2+ promotes osteogenesis, which makes Mg-based scaffolds popular for research on orthopedic implant materials. Angiogenesis plays an important role in the process of bone tissue repair and regeneration, and it is one of the important problems in BTE urgently needs to be solved. METHODS Mg was firstly coated with Ca-deficient hydroxyapatite (CDHA) via hydrothermal treatment, and polydopamine (DOPA) was then used as the connecting medium to immobilize vascular endothelial growth factor (VEGF) on the CDHA coating. The physicochemical properties of the coatings were characterized by SEM, EDS, XPS, FTIR and immersion experiment in SBF. The ahesion, proliferation, and angiogenesis potential of the coatings were determined in vitro. RESULTS The composite coating significantly improved the corrosion resistance of Mg and prohibited excessively high local alkalinity. VEGF could be firmly immobilized on Mg via polydopamine. The CCK-8, live/dead staining and adhesion test results showed that the VEGF-DOPA-CDHA coating exhibited excellent biocompatibility and could significantly improve the adhesion and proliferation of MC3T3-E1 cells on Mg. Microtubule formation, immunofluorescence and Quantitative Real-Time PCR (qRT-PCR) experiments showed that VEGF immobilized on Mg still possessed bioactivity in promoting the differentiation of rat mesenchymal stem cells into endothelial cells. CONCLUSION In this study, we enabled the angiogenic biological activity of Mg by immobilizing VEGF on Mg. Mg was successfully coated with a functional VEGF-DOPA-CDHA composite coating. The CDHA coating significantly increased the corrosion resistance of Mg and prohibited the negative effect of excessively high local alkalinity on the biological activity of VEGF. As an intermediate layer, the DOPA coating protects Mg, and DOPA provides a binding site for VEGF so that VEGF can be firmly immobilized on Mg and give Mg angiogenic bioactivity during the initial period of implantation. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE The treatment of large bone defect is still one of the orthopedic trauma diseases that are difficult to be completely treated in clinic. The development of tissue engineering technology provides a new option for the treatment of large bone defects. The regeneration of blood vessels is of great significance for the repair of bone defects. In this study, VEGF was connected on the surface of degradable magnesium by covalent bonding. Vascular biofunctionalized magnesium scaffolds are expected to regenerate bone tissue with blood transport and be used in the clinical treatment of large bone defects.
Collapse
Affiliation(s)
- Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Fang Cao
- Department of Biomedical Engineering, Faculty of Electronic Information and Electronical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Bin Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jiahui Yang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Wenwu Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Weidan Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiaowei Wei
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Ge Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
692
|
Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm 2021; 47:1011-1028. [PMID: 33818224 DOI: 10.1080/03639045.2021.1908342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of active pharmaceutical compounds from the biopharmaceutical classification system (BCS) belonging to Class II and IV have significantly increased in recent years. These compounds have high therapeutic potential but are difficult to formulate as oral dosage forms due to their poor aqueous solubility. The solubility and bioavailability of these poorly water-soluble compounds can be increased by various formulation approaches, such as amorphous solid dispersions (ASD), salt formation, complexations, etc. Out of these techniques, the ASD approach, where compounds are converted into amorphous form and embedded in the hydrophilic matrix, have been successfully used in many marketed preparations. The recent advancement of this ASD approach is the design of ternary solid dispersions (TSD), where an additional component is added to further improve their performance in terms of solubility, stability, and processability. This review discusses the classification, mechanism of performance improvement, preparation techniques, and characterizations for TSD.
Collapse
Affiliation(s)
- Shambhavi Borde
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Sagar Kumar Paul
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Harsh Chauhan
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| |
Collapse
|
693
|
An Assessment of Occasional Bio-Inequivalence for BCS1 and BCS3 Drugs: What are the Underlying Reasons? J Pharm Sci 2021; 111:124-134. [PMID: 34363838 DOI: 10.1016/j.xphs.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Despite having adequate solubility properties, bioequivalence (BE) studies performed on immediate release formulations containing BCS1/3 drugs occasionally fail. By systematically evaluating a set of 17 soluble drugs where unexpected BE failures have been reported and comparing to a set of 29 drugs where no such reports have been documented, a broad assessment of the risk factors leading to BE failure was performed. BE failures for BCS1/3 drugs were predominantly related to changes in Cmax rather than AUC. Cmax changes were typically modest, with minimal clinical significance for most drugs. Overall, drugs with a sharp plasma peak were identified as a key factor in BE failure risk. A new pharmacokinetic term (t½Cmax) is proposed to identify drugs at higher risk due to their peak plasma profile shape. In addition, the analysis revealed that weak acids, and drugs with particularly high gastric solubility are potentially more vulnerable to BE failure, particularly when these features are combined with a sharp Cmax peak. BCS3 drugs, which are often characterised as being more vulnerable to BE failure due to their potential for permeation and transit to be altered, particularly by excipient change, were not in general at greater risk of BE failures. These findings will help to inform how biowaivers may be optimally applied in the future.
Collapse
|
694
|
The rough inhalable ciprofloxacin hydrochloride microparticles based on silk fibroin for non-cystic fibrosis bronchiectasis therapy with good biocompatibility. Int J Pharm 2021; 607:120974. [PMID: 34358540 DOI: 10.1016/j.ijpharm.2021.120974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 01/03/2023]
Abstract
Non-cystic fibrosis bronchiectasis (NCFB) is a chronic respiratory disease, and the thick and viscous mucus covering on respiratory epithelia can entrap the inhaled drugs, resulting in compromised therapeutic efficiency. In order to solve this problem, the inhalable ciprofloxacin hydrochloride microparticles (CMs) based on silk fibroin (SF) and mannitol (MAN) were designed and developed. SF was applied to increase the loading efficiency of ciprofloxacin hydrochloride by strong electrostatic interactions. MAN could facilitate the penetration of drugs through mucus, which ensured the drugs could reach their targets before clearance. Furthermore, the aerodynamic performance of the inhalable microparticles could be tuned by changing the surface roughness to achieve a high fine particle fraction value (45.04%). The antibacterial effects of CMs were also confirmed by measuring the minimum inhibitory concentration against four different bacteria strains. Moreover, a series of experiments both in vitro and in vivo showed that CMs would not affect the lung function and induce the secretion of inflammatory cytokines in lungs, demonstrating their excellent biocompatibility and biosafety. Therefore, CMs might be a promising pulmonary drug delivery system for the treatment of NCFB.
Collapse
|
695
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
696
|
Abdulbaqi IM, Assi RA, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T, Saqallah FG, Wahab HA. Pulmonary Delivery of Anticancer Drugs via Lipid-Based Nanocarriers for the Treatment of Lung Cancer: An Update. Pharmaceuticals (Basel) 2021; 14:725. [PMID: 34451824 PMCID: PMC8400724 DOI: 10.3390/ph14080725] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths, responsible for approximately 18.4% of all cancer mortalities in both sexes combined. The use of systemic therapeutics remains one of the primary treatments for LC. However, the therapeutic efficacy of these agents is limited due to their associated severe adverse effects, systemic toxicity and poor selectivity. In contrast, pulmonary delivery of anticancer drugs can provide many advantages over conventional routes. The inhalation route allows the direct delivery of chemotherapeutic agents to the target LC cells with high local concertation that may enhance the antitumor activity and lead to lower dosing and fewer systemic toxicities. Nevertheless, this route faces by many physiological barriers and technological challenges that may significantly affect the lung deposition, retention, and efficacy of anticancer drugs. The use of lipid-based nanocarriers could potentially overcome these problems owing to their unique characteristics, such as the ability to entrap drugs with various physicochemical properties, and their enhanced permeability and retention (EPR) effect for passive targeting. Besides, they can be functionalized with different targeting moieties for active targeting. This article highlights the physiological, physicochemical, and technological considerations for efficient inhalable anticancer delivery using lipid-based nanocarriers and their cutting-edge role in LC treatment.
Collapse
Affiliation(s)
- Ibrahim M. Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Reem Abou Assi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark;
| | - Yusrida Darwis
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Fadi G. Saqallah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| |
Collapse
|
697
|
Okur NÜ, Yağcılar AP, Siafaka PI. Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels. Curr Drug Deliv 2021; 17:675-693. [PMID: 32510291 DOI: 10.2174/1567201817666200608145748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/28/2020] [Accepted: 04/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy. OBJECTIVE in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases. METHODS This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route. RESULTS Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable. CONCLUSION To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ayşe Pınar Yağcılar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
698
|
Al-Obaidi H, Granger A, Hibbard T, Opesanwo S. Pulmonary Drug Delivery of Antimicrobials and Anticancer Drugs Using Solid Dispersions. Pharmaceutics 2021; 13:1056. [PMID: 34371747 PMCID: PMC8309119 DOI: 10.3390/pharmaceutics13071056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023] Open
Abstract
It is well established that currently available inhaled drug formulations are associated with extremely low lung deposition. Currently available technologies alleviate this low deposition problem via mixing the drug with inert larger particles, such as lactose monohydrate. Those inert particles are retained in the inhalation device or impacted in the throat and swallowed, allowing the smaller drug particles to continue their journey towards the lungs. While this seems like a practical approach, in some formulations, the ratio between the carrier to drug particles can be as much as 30 to 1. This limitation becomes more critical when treating lung conditions that inherently require large doses of the drug, such as antibiotics and antivirals that treat lung infections and anticancer drugs. The focus of this review article is to review the recent advancements in carrier free technologies that are based on coamorphous solid dispersions and cocrystals that can improve flow properties, and help with delivering larger doses of the drug to the lungs.
Collapse
Affiliation(s)
- Hisham Al-Obaidi
- The School of Pharmacy, University of Reading, Reading RG6 6AD, UK; (A.G.); (T.H.); (S.O.)
| | | | | | | |
Collapse
|
699
|
Singhal K, Kaushik N, Kumar A. Cubosomes: Versatile Nanosized Formulation for Efficient Delivery of Therapeutics. Curr Drug Deliv 2021; 19:644-657. [PMID: 34238187 DOI: 10.2174/1567201818666210708123855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Cubosomes are bicontinuous cubic phase nanoparticles with a size range from 10-500 nm. They offer various advantages with some limitations at the production level, e.g., cubosomes have the feature to encapsulate a large amount of the drug due to its large internal area owing to cuboidal shape thus has a larger area but limited in large scale production due to its high viscosity which is associated with the problem in homogenization. This nanoparticulate formulation is compatible for administration by various routes like oral, transdermal, topical, buccal, etc. The drug release mechanism from cubosomes was reported to be dependent on the partition coefficient and diffusion process. Compared with liposomes, cubosomes show many differences in various aspects like shape, size, ingredients, and mode of action. The main ingredients for the preparation of cubosomes include lipids, stabilizer, aqueous phases, and therapeutic agents. Several methods have been reported for cubosomes, including the top-down method, the bottom-up method, and the adopted coarse method. For the optimization of cubosomes, the key factors to be considered, which will affect the cubosomes characteristics include; the concentration of lipid, temperature, and pH. At present, many research groups are exploring the potential of cubosomes as biosensors and nanocarriers. Based on the latest reports and research, this review illuminates the structure of the Cubosomes, mechanism of the drug release, different methods of preparation with factors affecting the cubosomes, application of cubosomes in different sectors, differences from the liposomes, and advantages.
Collapse
Affiliation(s)
- Keshav Singhal
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, India
| | - Amrish Kumar
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, India
| |
Collapse
|
700
|
Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021; 174:425-446. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.
Collapse
|