651
|
Lu W, Song G, Sun Q, Peng L, Zhang Y, Wei Y, Han B, Lin J. Analysis of facial features and prediction of lip position in skeletal class III malocclusion adult patients undergoing surgical-orthodontic treatment. Clin Oral Investig 2021; 25:5227-5238. [PMID: 33590299 DOI: 10.1007/s00784-021-03830-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study presents a retrospective study aimed to analyze the facial features at each stage of surgical-orthodontic treatment for skeletal class III malocclusion, and predict the changes in the lips after treatment. MATERIALS AND METHODS There were 49 skeletal class III malocclusion patients treated with bimaxillary surgery and orthodontic treatment enrolled in this study. Lateral cephalograms were obtained before treatment (T0), 1 month before surgery (T1), 1 month after surgery (T2), and after debonding (T3) for cephalometric measurements. After the measurement of the required variables, paired t-test, Pearson's correlation analysis, and multiple linear regression were performed using SPSS 19.0. RESULTS The main factors associated with changes in the upper lip included ΔUIE-V, ΔA-V, ΔU1A-V, and ΔL1A-V, and those associated with changes in the lower lip included ΔLIE-V, ΔL1A-V, ΔB-V, ΔPog-V, and Δfacial angle. The predicted regression equation for the horizontal change in the upper lip was represented as ΔUL-vertical reference line (VRL) = 9.430 + 0.779 (ΔUIE-VRL) - 0.542(VULT) (P < 0.05) with a mean error of 1.04 mm; the corresponding equation for the lower lip was ΔLL-VRL = -1.670 + 0.530 (ΔB-VRL) + 0.360 (Ls-E) + 0.393 (ΔLIE-VRL) (P < 0.05), with a mean error of 1.51 mm. CONCLUSIONS This study explored the relationship between orthognathic surgery and changes in the lips and obtained the predictive equations of lip position after treatment by using multiple linear regression, which likely offers a reference for prediction of soft tissue changes before surgical-orthodontic treatment in patients with skeletal class III malocclusion. CLINICAL RELEVANCE The findings can help dentists to rapidly predict the lip changes after surgical-orthodontic treatment in patients with skeletal class III malocclusion. The study has been registered with the Chinese Clinical Trial Registration (No: ChiCTR1800017694).
Collapse
Affiliation(s)
- Wenhsuan Lu
- Department of Orthodontics, Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
- The Third Dental Clinic, Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Guangying Song
- Department of Orthodontics, Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Qiannan Sun
- Department of Orthodontics, Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Liying Peng
- Department of Orthodontics, Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Yunfan Zhang
- Department of Orthodontics, Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Bing Han
- Department of Orthodontics, Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China.
| | - Jiuxiang Lin
- Department of Orthodontics, Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| |
Collapse
|
652
|
Zhuang Y, Cui W. Biomaterial-based delivery of nucleic acids for tissue regeneration. Adv Drug Deliv Rev 2021; 176:113885. [PMID: 34324886 DOI: 10.1016/j.addr.2021.113885] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Gene therapy is a promising novel method of tissue regeneration by stimulating or inhibiting key signaling pathways. However, their therapeutic applications in vivo are largely limited by several physiological obstacles, such as degradation of nucleases, impermeability of cell membranes, and transport to the desired intracellular compartments. Biomaterial-based gene delivery systems can overcome the problems of stability and local drug delivery, and can temporarily control the overexpression of therapeutic genes, leading to the local production of physiologically relevant levels of regulatory factors. But the gene delivery of biomaterials for tissue regeneration relies on multi-factor design. This review aims to outline the impact of gene delivery methods, therapeutic genes and biomaterials selection on this strategy, emphatically introduce the latest developments in the design of gene delivery vehicles based on biomaterials, summarize the mechanism of nucleic acid for tissue regeneration, and explore the strategies of nucleic acid delivery vehicles for various tissue regeneration.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
653
|
Gao D, Zhang Y, Bowers DT, Liu W, Ma M. Functional hydrogels for diabetic wound management. APL Bioeng 2021; 5:031503. [PMID: 34286170 PMCID: PMC8272650 DOI: 10.1063/5.0046682] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic wounds often have a slow healing process and become easily infected owing to hyperglycemia in wound beds. Once planktonic bacterial cells develop into biofilms, the diabetic wound becomes more resistant to treatment. Although it remains challenging to accelerate healing in a diabetic wound due to complex pathology, including bacterial infection, high reactive oxygen species, chronic inflammation, and impaired angiogenesis, the development of multifunctional hydrogels is a promising strategy. Multiple functions, including antibacterial, pro-angiogenesis, and overall pro-healing, are high priorities. Here, design strategies, mechanisms of action, performance, and application of functional hydrogels are systematically discussed. The unique properties of hydrogels, including bactericidal and wound healing promotive effects, are reviewed. Considering the clinical need, stimuli-responsive and multifunctional hydrogels that can accelerate diabetic wound healing are likely to form an important part of future diabetic wound management.
Collapse
Affiliation(s)
- Daqian Gao
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yidan Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Daniel T. Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Wanjun Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
654
|
3D printed multicompartmental capsules for a progressive drug release. ANNALS OF 3D PRINTED MEDICINE 2021. [DOI: 10.1016/j.stlm.2021.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
655
|
Cheng YYS, Liu L, Huang Y, Shu L, Liu YX, Wei L, Li JF. All-Inorganic Flexible (K, Na)NbO 3-Based Lead-Free Piezoelectric Thin Films Spin-Coated on Metallic Foils. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39633-39640. [PMID: 34382760 DOI: 10.1021/acsami.1c11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible piezoelectric thin films are raising interest in energy harvesting and wearable electronics, although their direct fabrication is challenging in the selection of substrates and thermal processing. In this work, we developed direct fabrication of flexible lead-free (K, Na)NbO3 (KNN)-based piezoelectric films on commercially available metallic foils by sol-gel processing. Stainless steel and platinum foils are selected as flexible substrates because of their good thermal stability, robust flexibility, and cost-efficiency. The sol-gel-processed KNN-based thin films on both of the metallic foils show good flexibility, with the bending radii reaching ±3 mm. The flexible thin films grown on stainless steel and platinum foils present high breakdown electric fields that reach 1760 and 2530 kV/cm, respectively, resulting from the fine-grained dense structure, limited leakage current density, and suppressed mobility of charged carriers. Improved effective piezoelectric coefficient d33, eff* (75.4 pm/V) with a slight decrease after bending was obtained in the flexible thin films on Pt when compared to their rigid counterparts. The flexible lead-free piezoelectric thin films with combined high breakdown electric fields and piezoelectric and energy storage properties may pave the way for integrating KNN-based multifunctional thin films into flexible electronics.
Collapse
Affiliation(s)
- Yue-Yu-Shan Cheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lisha Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liang Shu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yi-Xuan Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liyu Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
656
|
Hu H, Yang Y, Jiang X, Wang J, Cao D, He L, Chen W, Song YF. Double-Shelled Hollow SiO 2 @N-C Nanofiber Boosts the Lithium Storage Performance of [PMo 12 O 40 ] 3. Chemistry 2021; 27:13367-13375. [PMID: 34319625 DOI: 10.1002/chem.202101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/08/2022]
Abstract
Polyoxometalates (POMs)-based materials, with high theoretical capacities and abundant reversible multi-electron redox properties, are considered as promising candidates in lithium-ion storage. However, the poor electronic conductivity, low specific surface area and high solubility in the electrolyte limited their practical applications. Herein, a double-shelled hollow PMo12 -SiO2 @N-C nanofiber (PMo12 -SiO2 @N-C, where PMo12 is [PMo12 O40 ]3- , N-C is nitrogen-doped carbon) was fabricated for the first time by combining coaxial electrospinning technique, thermal treatment and electrostatic adsorption. As an anode material for LIBs, the PMo12 -SiO2 @N-C delivered an excellent specific capacity of 1641 mA h g-1 after 1000 cycles under 2 A g-1 . The excellent electrochemical performance benefited from the unique double-shelled hollow structure of the material, in which the outermost N-C shell cannot only hinder the agglomeration of PMo12 , but also improve its electronic conductivity. The SiO2 inner shell can efficiently avoid the loss of active components. The hollow structure can buffer the volume expansion and accelerate Li+ diffusion during lithiation/delithiation process. Moreover, PMo12 can greatly reduce charge-resistance and facilitate electron transfer of the entire composites, as evidenced by the EIS kinetics study and lithium-ion diffusion analysis. This work paves the way for the fabrication of novel POM-based LIBs anode materials with excellent lithium storage performance.
Collapse
Affiliation(s)
- Hanbin Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yixin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiao Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiaxin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongwei Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
657
|
Yan M, Xie L, Qiu B, Zhou S, Liu T, Zeng J, Liang Q, Tang J, Liang K, Zhao D, Kong B. Ligand-Mediated Spatially Controllable Superassembly of Asymmetric Hollow Nanotadpoles with Fine-Tunable Cavity as Smart H 2O 2-Sensitive Nanoswimmers. ACS NANO 2021; 15:11451-11460. [PMID: 33861933 DOI: 10.1021/acsnano.1c01159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ligand-mediated interface control has been broadly applied as a powerful tool in constructing sophisticated nanocomposites. However, the resultant morphologies are usually limited to solid structures. Now, a facile spatially controllable ligand-mediated superassembly strategy is explored to construct monodispersed, asymmetric, hollow, open Au-silica (SiO2) nanotadpoles (AHOASTs). By manipulating the spatial density of ligands, the degree of diffusion of silica can be precisely modulated; thus the diameters of the cavity can be continuously tuned. Due to their highly anisotropic, hollow, open morphologies, we construct a multicompartment nanocontainer with enzymes held and isolated inside the cavity. Furthermore, the resulting enzyme-AHOASTs are used as biocompatible smart H2O2-sensitive nanoswimmers and demonstrate a higher diffusion coefficient than other nanoscaled swimmers. We believe that this strategy is critical not only in designing sophisticated hollow nanosystem but also in providing great opportunities for applications in nanomaterial assembly, catalysis, sensors, and nanoreactors.
Collapse
Affiliation(s)
- Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China
| | - Beilei Qiu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China
| | - Jie Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China
| |
Collapse
|
658
|
Es-Souni M, Es-Souni M, Bakhti H, Gülses A, Fischer-Brandies H, Açil Y, Wiltfang J, Flörke C. A Bacteria and Cell Repellent Zwitterionic Polymer Coating on Titanium Base Substrates towards Smart Implant Devices. Polymers (Basel) 2021; 13:2472. [PMID: 34372075 PMCID: PMC8347386 DOI: 10.3390/polym13152472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Biofouling and biofilm formation on implant surfaces are serious issues that more than often lead to inflammatory reactions and the necessity of lengthy post-operation treatments or the removal of the implant, thus entailing a protracted healing process. This issue may be tackled with a biocompatible polymeric coating that at the same time prevents biofouling. In this work, oxygen plasma-activated silanized titanium substrates are coated with poly(sulfobetaine methacrylate), a zwitterionic antibiofouling polymer, using photopolymerization. The characterization of polymer films includes FT-IR, AFM, and adhesion strength measurements, where adhesion strength is analyzed using a cylindrical flat punch indenter and water contact angle (WCA) measurements. Both cytotoxicity analysis with primary human fibroblasts and fluorescence microscopy with fibroblasts and plaque bacteria are also performed is this work, with each procedure including seeding on coated and control surfaces. The film morphology obtained by the AFM shows a fine structure akin to nanoropes. The coatings can resist ultrasonic and sterilization treatments. The adhesion strength properties substantially increase when the films are soaked in 0.51 M of NaCl prior to testing when compared to deionized water. The coatings are superhydrophilic with a WCA of 10° that increases to 15° after dry aging. The viability of fibroblasts in the presence of coated substrates is comparable to that of bare titanium. When in direct contact with fibroblasts or bacteria, marginal adhesion for both species occurs on coating imperfections. Because photopolymerization can easily be adapted to surface patterning, smart devices that promote both osseointegration (in non-coated areas) and prevent cell overgrowth and biofilm formation (in coated areas) demonstrate practical potential.
Collapse
Affiliation(s)
- Mona Es-Souni
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, CAU, 24103 Kiel, Germany; (M.E.-S.); (A.G.); (Y.A.); (J.W.); (C.F.)
| | - Martha Es-Souni
- Department of Orthodontics, Faculty of Dentistry, CAU, 24103 Kiel, Germany;
| | - Hamzah Bakhti
- Department of Mathematics, University of Hamburg, 20146 Hamburg, Germany;
| | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, CAU, 24103 Kiel, Germany; (M.E.-S.); (A.G.); (Y.A.); (J.W.); (C.F.)
| | | | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, CAU, 24103 Kiel, Germany; (M.E.-S.); (A.G.); (Y.A.); (J.W.); (C.F.)
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, CAU, 24103 Kiel, Germany; (M.E.-S.); (A.G.); (Y.A.); (J.W.); (C.F.)
| | - Christian Flörke
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, CAU, 24103 Kiel, Germany; (M.E.-S.); (A.G.); (Y.A.); (J.W.); (C.F.)
| |
Collapse
|
659
|
Lumelsky N. Creating a Pro-Regenerative Tissue Microenvironment: Local Control is the Key. Front Bioeng Biotechnol 2021; 9:712685. [PMID: 34368106 PMCID: PMC8334550 DOI: 10.3389/fbioe.2021.712685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023] Open
Affiliation(s)
- Nadya Lumelsky
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
660
|
Chen Z, Wu Q, Guo W, Niu M, Tan L, Wen N, Zhao L, Fu C, Yu J, Ren X, Liang P, Meng X. Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment. Biomaterials 2021; 276:121016. [PMID: 34274778 DOI: 10.1016/j.biomaterials.2021.121016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
The microwave dynamic therapy (MDT) mediated by cytotoxic reactive oxygen species (ROS) is a promising anticancer therapeutic method. However, the therapeutic efficiency of MDT is restricted by several limitations including insufficient ROS generation, strong proangiogenic response, and low tumor-targeting efficiency. Herein, we find that Cu-based nanoparticles can produce oxygen under microwave (MW) irradiation to raise the generation of ROS, such as •O2, •OH and 1O2, especially •O2. On this basis, a nanoengineered biomimetic strategy is designed to improve the efficiency of MDT. After intravenous administration, the nanoparticles accumulate to the tumor site through targeting effect mediated by biomimetic modification, and it can continuously produce oxygen to raise the levels of ROS in tumor microenvironment under MW irradiation for MDT. Additionally, Apatinib is incorporated as antiangiogenic drug to downregulate the expression of vascular endothelial growth factor (VEGF), which can effectively inhibit the tumor angiogenesis after MDT. Hence, the tumor inhibition rate is as high as 96.79%. This study provides emerging strategies to develop multifunctional nanosystems for efficient tumor therapy by MDT.
Collapse
Affiliation(s)
- Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, People's Republic of China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Ning Wen
- Department of Stomatology, the General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Lisheng Zhao
- Department of Stomatology, the General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China.
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China.
| |
Collapse
|
661
|
Zhao D, Yang N, Xu L, Du J, Yang Y, Wang D. Hollow structures as drug carriers: Recognition, response, and release. NANO RESEARCH 2021; 15:739-757. [PMID: 34254012 PMCID: PMC8262765 DOI: 10.1007/s12274-021-3595-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 05/19/2023]
Abstract
Hollow structures have demonstrated great potential in drug delivery owing to their privileged structure, such as high surface-to-volume ratio, low density, large cavities, and hierarchical pores. In this review, we provide a comprehensive overview of hollow structured materials applied in targeting recognition, smart response, and drug release, and we have addressed the possible chemical factors and reactions in these three processes. The advantages of hollow nanostructures are summarized as follows: hollow cavity contributes to large loading capacity; a tailored structure helps controllable drug release; variable compounds adapt to flexible application; surface modification facilitates smart responsive release. Especially, because the multiple physical barriers and chemical interactions can be induced by multishells, hollow multishelled structure is considered as a promising material with unique loading and releasing properties. Finally, we conclude this review with some perspectives on the future research and development of the hollow structures as drug carriers.
Collapse
Affiliation(s)
- Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lekai Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Jiang Du
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433 China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
662
|
Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021; 11:693939. [PMID: 34277473 PMCID: PMC8283567 DOI: 10.3389/fcimb.2021.693939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Implants are widely used in orthopedic surgery and are gaining attention of late. However, their use is restricted by implant-associated infections (IAI), which represent one of the most serious and dangerous complications of implant surgeries. Various strategies have been developed to prevent and treat IAI, among which the closest to clinical translation is designing metal materials with antibacterial functions by alloying methods based on existing materials, including titanium, cobalt, tantalum, and biodegradable metals. This review first discusses the complex interaction between bacteria, host cells, and materials in IAI and the mechanisms underlying the antibacterial effects of biomedical metals and alloys. Then, their applications for the prevention and treatment of IAI are highlighted. Finally, new insights into their clinical translation are provided. This review also provides suggestions for further development of antibacterial metals and alloys.
Collapse
Affiliation(s)
- Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
663
|
Chen X, Zhang H, Yang X, Zhang W, Jiang M, Wen T, Wang J, Guo R, Liu H. Preparation and Application of Quaternized Chitosan- and AgNPs-Base Synergistic Antibacterial Hydrogel for Burn Wound Healing. Molecules 2021; 26:molecules26134037. [PMID: 34279375 PMCID: PMC8271850 DOI: 10.3390/molecules26134037] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/20/2023] Open
Abstract
Infection is the major reason that people die from burns; however, traditional medical dressings such as gauze cannot restrain bacterial growth and enhance the healing process. Herein, an organic- and inorganic-base hydrogel with antibacterial activities was designed and prepared to treat burn wounds. Oxidized dextran (ODex) and adipic dihydrazide grafted hyaluronic acid (HA-ADH) were prepared, mixed with quaternized chitosan (HACC) and silver nanoparticles to fabricate Ag@ODex/HA-ADH/HACC hydrogel. The hydrogel, composed of nature biomaterials, has a good cytocompatibility and biodegradability. Moreover, the hydrogel has an excellent antibacterial ability and presents fast healing for burn wounds compared with commercial Ag dressings. The Ag@ODex/HA-ADH/HACC hydrogel will be a promising wound dressing to repair burn wounds and will significantly decrease the possibility of bacterial infection.
Collapse
Affiliation(s)
- Xushan Chen
- Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen 518133, China; (X.C.); (H.Z.); (W.Z.)
| | - Huimin Zhang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen 518133, China; (X.C.); (H.Z.); (W.Z.)
| | - Xin Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Wuhong Zhang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen 518133, China; (X.C.); (H.Z.); (W.Z.)
| | - Ming Jiang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China;
| | - Ting Wen
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (T.W.); (J.W.)
| | - Jie Wang
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (T.W.); (J.W.)
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China;
- Correspondence: (R.G.); (H.L.)
| | - Hanjiao Liu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen 518133, China; (X.C.); (H.Z.); (W.Z.)
- Correspondence: (R.G.); (H.L.)
| |
Collapse
|
664
|
Fu X, Liu X, Hao D, Xiao W, Nie Q, Meng J. Nickel-Catcher-Doped Zwitterionic Hydrogel Coating on Nickel-Titanium Alloy Toward Capture and Detection of Nickel Ions. Front Bioeng Biotechnol 2021; 9:698745. [PMID: 34249892 PMCID: PMC8264594 DOI: 10.3389/fbioe.2021.698745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nickel-titanium (NiTi) alloys show broad applicability in biomedical fields. However, the unexpected aggregation of bacteria and the corrosion of body fluid on NiTi-based medical devices often lead to the leakage of nickel ions, resulting in inevitable allergic and cytotoxic activities. Therefore, the capture and detection of nickel ions are important to avoid serious adverse reactions caused by NiTi-based medical devices. Herein, we presented a nickel ion capture strategy by the combination of zwitterionic hydrogels as anti-bacteria layers and carbon disulfide (CS2) components as nickel-catchers (Ni-catchers). On the one hand, the hydration layer of zwitterionic hydrogel can efficiently inhibit bacteria adhesion and reduce nickel ions leakage from NiTi corrosion. On the other hand, Ni-catchers can capture leaked nickel ions from NiTi alloy actively by chelation reaction. Therefore, this strategy shows great capabilities in resisting bacteria adhesion and capturing nickel ions, providing the potential possibility for the detection of nickel ion leakage for implantable biomedical materials and devices.
Collapse
Affiliation(s)
- Xiaoyi Fu
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xi Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dezhao Hao
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wuyi Xiao
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Nie
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
665
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
666
|
Li B, Ouchi T, Cao Y, Zhao Z, Men Y. Dental-Derived Mesenchymal Stem Cells: State of the Art. Front Cell Dev Biol 2021; 9:654559. [PMID: 34239870 PMCID: PMC8258348 DOI: 10.3389/fcell.2021.654559] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be identified in mammalian teeth. Currently, dental-derived MSCs (DMSCs) has become a collective term for all the MSCs isolated from dental pulp, periodontal ligament, dental follicle, apical papilla, and even gingiva. These DMSCs possess similar multipotent potential as bone marrow-derived MSCs, including differentiation into cells that have the characteristics of odontoblasts, cementoblasts, osteoblasts, chondrocytes, myocytes, epithelial cells, neural cells, hepatocytes, and adipocytes. Besides, DMSCs also have powerful immunomodulatory functions, which enable them to orchestrate the surrounding immune microenvironment. These properties enable DMSCs to have a promising approach in injury repair, tissue regeneration, and treatment of various diseases. This review outlines the most recent advances in DMSCs' functions and applications and enlightens how these advances are paving the path for DMSC-based therapies.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Men
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
667
|
Wang FF, Ding H, Tan G, Liu Z, Cheng ZL. Study on dispersibility and tribological behaviors of 2D ZnBDC MOFs as additive in oil. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1942897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fei-Fei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Haiyang Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Guang Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Zan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Zhi-Lin Cheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
668
|
Maureira M, Cuadra F, Cádiz M, Torres M, Marttens AV, Covarrubias C. Preparation and osteogenic properties of nanocomposite hydrogel beads loaded with nanometric bioactive glass particles. Biomed Mater 2021; 16. [PMID: 34077913 DOI: 10.1088/1748-605x/ac0764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
Bone reconstruction in the oral and maxillofacial region presents particular challenges related to the development of biomaterials with osteoinductive properties and suitable physical characteristics for their surgical use in irregular bony defects. In this work, the preparation and bioactivity of chitosan-gelatin (ChG) hydrogel beads loaded with either bioactive glass nanoparticles (nBG) or mesoporous bioactive glass nanospheres (nMBG) were studied.In vitrotesting of the bionanocomposite beads was carried out in simulated body fluid, and through viability and osteogenic differentiation assays using dental pulp stem cells (DPSCs).In vivobone regenerative properties of the biomaterials were assessed using a rat femoral defect model and compared with a traditional maxillary allograft (Puros®). ChG hydrogel beads containing homogeneously distributed BG nanoparticles promoted rapid bone-like apatite mineralization and induced the osteogenic differentiation of DPSCsin vitro. The bionanocomposite beads loaded with either nBG or nMBG also produced a greater bone tissue formationin vivoas compared to Puros® after 8 weeks of implantation. The osteoinductivity capacity of the bionanocomposite hydrogel beads coupled with their physical properties make them promissory for the reconstruction of irregular and less accessible maxillary bone defects.
Collapse
Affiliation(s)
- Miguel Maureira
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Independencia, Santiago, Chile
| | - Felipe Cuadra
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Independencia, Santiago, Chile
| | - Monserrat Cádiz
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Independencia, Santiago, Chile
| | - Margarita Torres
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Independencia, Santiago, Chile
| | - Alfredo von Marttens
- Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Independencia, Santiago, Chile
| |
Collapse
|
669
|
Wilson AJ, Rahman M, Kosmas P, Thanou M. Nanomaterials responding to microwaves: an emerging field for imaging and therapy. NANOSCALE ADVANCES 2021; 3:3417-3429. [PMID: 34527861 PMCID: PMC8388194 DOI: 10.1039/d0na00840k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/12/2021] [Indexed: 05/05/2023]
Abstract
In recent years, new microwave-based imaging, sensing and hyperthermia applications have emerged in the field of diagnostics and therapy. For diagnosis, this technology involves the application of low power microwaves, utilising contrast between the relative permittivity of tissues to identify pathologies. This contrast can be further enhanced through the implementation of nanomaterials. For therapy, this technology can be applied in tissues either through hyperthermia, which can help anti-cancer drug tumour penetration or as ablation to destroy malignant tissues. Nanomaterials can absorb electromagnetic radiation and can enhance the microwave hyperthermic effect. In this review we aim to introduce this area of renewed interest and provide insights into current developments in its technologies and companion nanoparticles, as well as presenting an overview of applications for diagnosis and therapy.
Collapse
Affiliation(s)
- Annah J Wilson
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | - Mohammed Rahman
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | | | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
| |
Collapse
|
670
|
Mallakpour S, Azadi E, Hussain CM. Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and after pandemic: Coating, packaging, and textile applications. Curr Opin Colloid Interface Sci 2021; 55:101480. [PMID: 34149297 PMCID: PMC8196516 DOI: 10.1016/j.cocis.2021.101480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The global epidemic owing to COVID-19 has generated awareness to ensuring best practices for avoiding the microorganism spread. Indeed, because of the increase in infections caused by bacteria and viruses such as SARS-CoV-2, the global demand for antimicrobial materials is growing. New technologies by using polymeric systems are of great interest. Virus transmission by contaminated surfaces leads to the spread of infectious diseases, so antimicrobial coatings are significant in this regard. Moreover, antimicrobial food packaging is beneficial to prevent the spread of microorganisms during food processing and transportation. Furthermore, antimicrobial textiles show an effective role. We aim to provide a review of prepared antimicrobial polymeric materials for use in coating, food packaging, and textile during the COVID-19 pandemic and after pandemic.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
671
|
Zhang L, Ma Z, Wang R, Zhu M. Synthesis and Characterization of Methacrylate-Functionalized Betulin Derivatives as Antibacterial Comonomer for Dental Restorative Resins. ACS Biomater Sci Eng 2021; 7:3132-3140. [PMID: 34114805 DOI: 10.1021/acsbiomaterials.1c00563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Secondary caries is the primary cause of composite restoration failures, resulting from marginal leakage and bacterial accumulation in the oral environment. Antibacterial dental composites, especially antibacterial monomers, have emerged as a promising strategy to inhibit secondary caries, which is pivotal to prolonging the lifespan of dental restorations. In this work, monomethacrylate- and dimethacrylate-functionalized betulin derivatives (M1Bet and M2Bet) were synthesized via an esterification reaction and served as antibacterial comonomers to develop novel dental resin formulations, in which M1Bet and M2Bet were incorporated to partially or completely replace bisphenol A glycerolate dimethacrylate (Bis-GMA). The control resin was a mixture based on Bis-GMA and tri(ethyleneglycol) dimethacrylate (TEGDMA) with a weight ratio of 50:50 (5B5T). The effect of the resin compositions and the chemical structures of M1Bet and M2Bet on the rheology behavior, optical property, polymerization kinetics, mechanical performance, cell viability, and antibacterial activity of dental resins were systematically investigated. Among all materials, the 1M2Bet4B5T resin with 10 wt % substitution of Bis-GMA by M2Bet exhibited comparable viscosity, higher light transmittance, improved degree of conversion, and mechanical properties compared with 5B5T. After incubation for 24 h, this optimal resin also possessed the best antibacterial activity against Streptococcus mutans, which had a significantly lower bacterial concentration (1.53 × 109 CFU/mL) than 5B5T (9.03 × 109 CFU/mL). Introducing betulin-based comonomers into dental resins is a potential strategy to develop antibacterial dental materials without sacrificing physical-mechanical properties.
Collapse
Affiliation(s)
- Lusi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
672
|
Picavet PP, Balligand M, Crigel MH, Antoine N, Claeys S. In vivo evaluation of deer antler trabecular bone as a reconstruction material for bone defects. Res Vet Sci 2021; 138:116-124. [PMID: 34129994 DOI: 10.1016/j.rvsc.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Availability of graft materials to fill up osseous defects has always been a concern in orthopaedic surgeries. Deer antler material is a primary bone structure that is easy to collect and could serve as a xenograft. This study examines the behaviour of red deer antler trabecular cylinders in critical size distal femoral epiphyseal defects in 11 rabbits, and evaluates the effect of the decellularization protocols. Two preparation regimes (A and B) were used, with and without lipids and proteins. Radiographs were taken immediately after surgery and after euthanasia 12 weeks post-implantation. Histological evaluation was performed on non-decalcified 10-μm sections with a van Gieson picro-fuchsin staining protocol. A region of interest was defined for each histological section, evaluating the inflammatory reaction, the fibrosis process, and the osteogenesis. Each histological section was microradiographed to evaluate bone contact, presence of synostosis, remodelling and ossification processes. All antler cylinders were successfully implanted. Final radiographic analysis demonstrated osteointegration of most implants at various stages. Light to moderate inflammation around the grafts was noted with only one case showing full encapsulation. A variable degree of intimacy between implant and host bone was evidenced, with bone remodelling and osteogenesis of various intensity being present in all implanted sites. No differences were found between group A and B. Removal of lipids and proteins in the grafts surprisingly did not seem to matter. Decellularization and sterilization protocols may be advocated. Although it presents several limitations, this study shows some promising results regarding antler trabecular bone osteointegration.
Collapse
Affiliation(s)
- Pierre P Picavet
- Department of Clinical Sciences, FARAH, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 1 - B67, Liège, Belgium.
| | - Marc Balligand
- Department of Clinical Sciences, FARAH, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 1 - B67, Liège, Belgium
| | | | - Nadine Antoine
- Department of Clinical Sciences, FARAH, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 1 - B67, Liège, Belgium
| | - Stéphanie Claeys
- Department of Clinical Sciences, FARAH, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 1 - B67, Liège, Belgium
| |
Collapse
|
673
|
Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Strategies for Interfering With Bacterial Early Stage Biofilms. Front Microbiol 2021; 12:675843. [PMID: 34168632 PMCID: PMC8217469 DOI: 10.3389/fmicb.2021.675843] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related bacteria show high resistance to antimicrobial treatments, posing a remarkable challenge to human health. Given bacterial dormancy and high expression of efflux pumps, persistent infections caused by mature biofilms are not easy to treat, thereby driving researchers toward the discovery of many anti-biofilm molecules that can intervene in early stage biofilms formation to inhibit further development and maturity. Compared with mature biofilms, early stage biofilms have fragile structures, vigorous metabolisms, and early attached bacteria are higher susceptibility to antimicrobials. Thus, removing biofilms at the early stage has evident advantages. Many reviews on anti-biofilm compounds that prevent biofilms formation have already been done, but most of them are based on compound classifications to introduce anti-biofilm effects. This review discusses the inhibitory effects of anti-biofilm compounds on early stage biofilms formation from the perspective of the mechanisms of action, including hindering reversible adhesion, reducing extracellular polymeric substances production, interfering in the quorum sensing, and modifying cyclic di-GMP. This information can be exploited further to help researchers in designing new molecules with anti-biofilm activity.
Collapse
Affiliation(s)
- Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
674
|
Li N, Xu Z, Zheng S, Dai H, Wang L, Tian Y, Dong Z, Jiang L. Superamphiphilic TiO 2 Composite Surface for Protein Antifouling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003559. [PMID: 33984172 DOI: 10.1002/adma.202003559] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Unwanted protein adsorption deteriorates fouling processes and reduces analytical device performance. Wettability plays an important role in protein adsorption by affecting interactions between proteins and surfaces. However, the principles of protein adsorption are not completely understood, and surface coatings that exhibit resistance to protein adsorption and long-term stability still need to be developed. Here, a nanostructured superamphiphilic TiO2 composite (TiO2 /SiO2 ) coating that can effectively prevent nonspecific protein adsorption on water/solid interfaces is reported. The confined water on the superamphiphilic surface enables a low adhesion force and the formation of an energy barrier that plays a key role in preventing protein adsorption. This adaptive design protects the capillary wall from fouling in a harsh environment during the bioanalysis of capillary electrophoresis and is further extended to applications in multifunctional microfluidics for liquid transportation. This facile approach is not only perfectly applied in channels with complicated configurations but may also offer significant insights into the design of advanced superwetting materials to control biomolecule adhesion in biomedical devices, microfluidics, and biological assays.
Collapse
Affiliation(s)
- Ning Li
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhe Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shuang Zheng
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haoyu Dai
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
675
|
Aerden T, Verstraete L, Politis C. The need for secondary orthognathic surgery after high condylectomy in patients with active unilateral condylar hyperplasia. Int J Oral Maxillofac Surg 2021; 51:206-213. [PMID: 34074575 DOI: 10.1016/j.ijom.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
The need for secondary orthognathic surgery (OS) after a high condylectomy (HC) in patients with active unilateral condylar hyperplasia was assessed in 25 patients, reviewing patient characteristics and treatment planning. At 6-12 months after HC, 13 patients (52%) required secondary OS. The amount of mandibular dental midline shift before the HC (P=0.037), and a dental crossbite that was present before the HC (P=0.017) were significantly associated with the need for secondary OS. Overall, the mandibular dental midline coincided with the facial midline in eight patients (32%) at 2 weeks after HC. In 16% of the patients, no additional OS was needed despite this being the initial treatment plan. Additionally, the initially planned type of secondary OS was modified in six other patients. Early HC in skeletally immature patients provided very good results, both aesthetic and functional, with only two of them needing supplementary OS at 6-12 months after HC. The HC remains a valuable treatment in patients with active unilateral condylar hyperplasia, as it can eliminate the need for secondary OS and is very well tolerated by most patients.
Collapse
Affiliation(s)
- T Aerden
- OMFS-IMPATH Research Group and Department of Oral and Maxillofacial Surgery University Hospitals Leuven, Leuven, Belgium.
| | - L Verstraete
- OMFS-IMPATH Research Group and Department of Oral and Maxillofacial Surgery University Hospitals Leuven, Leuven, Belgium
| | - C Politis
- OMFS-IMPATH Research Group and Department of Oral and Maxillofacial Surgery University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
676
|
Zhou C, Xu Q, Ren Y, Sun X, Xu Z, Han J, Guo R. Benzoate ester as a new species for supramolecular chiral assembly. SOFT MATTER 2021; 17:5137-5147. [PMID: 33881132 DOI: 10.1039/d1sm00188d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a benzoate ester molecule, dodecamethylnonacosane-2,28-diyl dibenzoate (DMNDB), has been discovered as a new species that aggregates into chiral nano-assemblies. In the tetrahydrofuran (THF)/water system, the benzoate ester, DMNDB, could self-assemble into left-handed twisted nanowires, and the most suitable THF/water volume ratio to obtain uniform twisted nanowires was 3 : 7. The driving forces of assembly and the molecular packing type in assemblies for the twisted nanowires were explored, and a possible assembly mechanism was proposed to understand the generation of chiral assemblies. Interestingly, the left-handed nanowires could cross-link and immobilize the solvent in the isopropanol (iPrOH)/water (2 : 8) system to form chiral gels. When the iPrOH/water ratio was increased to 6 : 4, the left-handed nanowires as structural units were found to evolve to right-handed nanofibers. Accordingly, the intermolecular interactions and the molecular packing type also changed with the solvent ratio. What is more, the xerogel could be obtained by drying the gel and left-handed twisted nanowires could form in the THF/water system again, showing the recyclability of chiral nanoassemblies. Also, these DMNDB chiral nanostructures exhibited potential for application in enantioselective separation by co-assembling with tetra-aniline.
Collapse
Affiliation(s)
- Chuanqiang Zhou
- Testing Center, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Qianqian Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Yuanyuan Ren
- Testing Center, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| |
Collapse
|
677
|
Sun Q, Zhang L, Bai R, Zhuang Z, Zhang Y, Yu T, Peng L, Xin T, Chen S, Han B. Recent Progress in Antimicrobial Strategies for Resin-Based Restoratives. Polymers (Basel) 2021; 13:1590. [PMID: 34069312 PMCID: PMC8156482 DOI: 10.3390/polym13101590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Repairing tooth defects with dental resin composites is currently the most commonly used method due to their tooth-colored esthetics and photocuring properties. However, the higher than desirable failure rate and moderate service life are the biggest challenges the composites currently face. Secondary caries is one of the most common reasons leading to repair failure. Therefore, many attempts have been carried out on the development of a new generation of antimicrobial and therapeutic dental polymer composite materials to inhibit dental caries and prolong the lifespan of restorations. These new antimicrobial materials can inhibit the formation of biofilms, reduce acid production from bacteria and the occurrence of secondary caries. These results are encouraging and open the doors to future clinical studies on the therapeutic value of antimicrobial dental resin-based restoratives. However, antimicrobial resins still face challenges such as biocompatibility, drug resistance and uncontrolled release of antimicrobial agents. In the future, we should focus on the development of more efficient, durable and smart antimicrobial dental resins. This article focuses on the most recent 5 years of research, reviews the current antimicrobial strategies of composite resins, and introduces representative antimicrobial agents and their antimicrobial mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| | | | | | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| |
Collapse
|
678
|
Evaluating the Mechanical Properties of Zinc-Coated Stainless Steel Orthodontic Wires Using Physical Vapor Deposition. Int J Dent 2021; 2021:6651289. [PMID: 34054962 PMCID: PMC8112955 DOI: 10.1155/2021/6651289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to evaluate the mechanical properties of stainless steel (SS) orthodontic wires coated with zinc (Zn), using a Physical Vapored Deposition (PVD) machine. A total of 100 straight SS orthodontic wires were cut into pieces of 5 centimeters in length and were divided into two groups. Half of the wires were coated with Zn using a PVD machine, and the others remained uncoated. Tensile strength (n = 15), three-point bending (n = 15), and frictional resistance at 0° (n = 10) and 10° (n = 10) were measured to compare the mechanical properties of the Zn-coated and uncoated orthodontic wires using the universal testing machine. The surface of the coated wires was observed by SEM and AFM. An independent t-test, multivariate ANOVA, and measurement ANOVA were used for data analysis. SEM and AFM showed a homogenous Zn layer of 0.28 ± 0.006 µm on the SS wires. The tensile strength and three-point bending strength significantly increased after Zn coating of wires with the PVD method (P < 0.05). The friction resistance significantly reduced at both angulations following the coating procedure. The angle between the wire and bracket had no significant effect on the frictional resistance (P > 0.05). Coating with Zn improved the tensile and load-bending strength of SS orthodontic wires and reduced their frictional resistance which might be advantageous in terms of reducing the risk of root resorption during the orthodontic treatment.
Collapse
|
679
|
Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021; 6:e10206. [PMID: 34027093 PMCID: PMC8126827 DOI: 10.1002/btm2.10206] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical terms, bone grafting currently involves the application of autogenous, allogeneic, or xenogeneic bone grafts, as well as natural or artificially synthesized materials, such as polymers, bioceramics, and other composites. Many of these are associated with limitations. The ideal scaffold for bone tissue engineering should provide mechanical support while promoting osteogenesis, osteoconduction, and even osteoinduction. There are various structural complications and engineering difficulties to be considered. Here, we describe the biomimetic possibilities of the modification of natural or synthetic materials through physical and chemical design to facilitate bone tissue repair. This review summarizes recent progresses in the strategies for constructing biomimetic scaffolds, including ion-functionalized scaffolds, decellularized extracellular matrix scaffolds, and micro- and nano-scale biomimetic scaffold structures, as well as reactive scaffolds induced by physical factors, and other acellular scaffolds. The fabrication techniques for these scaffolds, along with current strategies in clinical bone repair, are described. The developments in each category are discussed in terms of the connection between the scaffold materials and tissue repair, as well as the interactions with endogenous cells. As the advances in bone tissue engineering move toward application in the clinical setting, the demonstration of the therapeutic efficacy of these novel scaffold designs is critical.
Collapse
Affiliation(s)
- Sijing Jiang
- Department of Plastic SurgeryFirst Affiliated Hospital of Anhui Medical University, Anhui Medical UniversityHefeiChina
| | - Mohan Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| |
Collapse
|
680
|
Yu X, Hou Y, Zheng M, Zhu M. Multiscale Heterogeneity Strategy in Piezoceramics for Enhanced Energy Harvesting Performances. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17800-17808. [PMID: 33826294 DOI: 10.1021/acsami.1c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Piezoelectric energy harvesters (PEHs) with piezoceramics as the core can convert low-frequency vibration energy that is ubiquitous in the environment into electrical energy and are at the frontier of research in the field of energy. The high piezoelectric charge coefficient (d) together with the large piezoelectric voltage coefficient (g) are essential for enhancing the energy harvesting performances of PEHs working on a nonresonant state. However, conventional doping and solid solution design strategies lead to the same increase or decrease trend of d and dielectric permittivity ε, making it difficult to obtain a high g value because g = d/ε. Herein, exceptionally well-balanced performances of high d and large g are achieved simultaneously in modified Pb(Zr, Ti)O3(PZT)-based ceramics via a multiscale heterogeneity strategy, which involves coordination among the defect dipole, hierarchical domain, and composite. The electromechanical parameters of the optimal specimen are not only superior to those of many state-of-the-art commercial counterparts but also exhibit good thermal stability. Most importantly, the assembled PEH with the optimal specimen shows excellent variable temperature power generation characteristics. This work provides a paradigm for building PEH material through a multiscale heterogeneity strategy, expected to benefit a wide range of electromechanical coupling materials.
Collapse
Affiliation(s)
- Xiaole Yu
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Yudong Hou
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Mupeng Zheng
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Mankang Zhu
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
681
|
Möhlhenrich SC, Kötter F, Peters F, Kniha K, Chhatwani S, Danesh G, Hölzle F, Modabber A. Effects of different surgical techniques and displacement distances on the soft tissue profile via orthodontic-orthognathic treatment of class II and class III malocclusions. Head Face Med 2021; 17:13. [PMID: 33853633 PMCID: PMC8048257 DOI: 10.1186/s13005-021-00264-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/25/2021] [Indexed: 11/11/2022] Open
Abstract
Background Orthognathic surgery can be carried out using isolated mandibular or maxillary movement and bimaxillary procedures. In cases of moderate skeletal malocclusion, camouflage treatment by premolar extraction is another treatment option. All these surgical procedures can have a different impact on the soft tissue profile. Methods The changes in the soft tissue profile of 187 patients (Class II: 53, Class III: 134) were investigated. The treatment approaches were differentiated as follows: Class II: mandible advancement (MnA), bimaxillary surgery (MxS/MnA), upper extraction (UpEX), or Class III: maxillary advancement (MxA), mandible setback (MnS), bimaxillary surgery (MxA/MnS), and lower extraction (LowEX) as well as the extent of skeletal deviation (moderate Wits appraisal: − 7 mm to 7 mm, pronounced: Wits <− 7 mm, > 7 mm, respectively). This resulted in five groups for Class II treatment and seven groups for Class III treatment. Results In the Class II patients, a statistically significant difference (p ≤ 0.05) between UpEX and moderate MnA was found for facial profile (N′-Prn-Pog’), soft tissue profile (N′-Sn-Pog’), and mentolabial angle (Pog’-B′-Li). In the Class III patients, a statistically significant differences (p ≤ 0.05) occurred between LowEX and moderate MxA for facial profile (N′-Prn-Pog’), soft tissue profile (N′-Sn-Pog’), upper and lower lip distacne to esthetic line (Ls/Li-E-line), and lower lip length (Sto-Gn’). Only isolated significant differences (p < 0.05) were recognized between the moderate surgical Class II and III treatments as well between the pronounced Class III surgeries. No statistical differences were noticed between moderate and pronounced orthognathic surgery. Conclusions When surgery is required, the influence of orthognathic surgical techniques on the profile seems to be less significant. However, it must be carefully considered if orthognathic or camouflage treatment should be done in moderate malocclusions as a moderate mandibular advancement in Class II therapy will straighten the soft tissue profile much more by increasing the facial and soft tissue profile angle and reducing the mentolabial angle than camouflage treatment. In contrast, moderate maxillary advancement in Class III therapy led to a significantly more convex facial and soft tissue profile by decreasing distances of the lips to the E-Line as well as the lower lip length. Supplementary Information The online version contains supplementary material available at 10.1186/s13005-021-00264-4.
Collapse
Affiliation(s)
- Stephan Christian Möhlhenrich
- Department of Orthodontics, University Witten/Herdecke, Alfred-Herrhausen-Straße 45, 58448, Witten, Germany. .,Department of Oral and Maxillofacial Surgery, University Hospital of Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Florian Kötter
- Department of Oral and Maxillofacial Surgery, University Hospital of Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Florian Peters
- Department of Oral and Maxillofacial Surgery, University Hospital of Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Kristian Kniha
- Department of Oral and Maxillofacial Surgery, University Hospital of Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sachin Chhatwani
- Department of Orthodontics, University Witten/Herdecke, Alfred-Herrhausen-Straße 45, 58448, Witten, Germany
| | - Gholamreza Danesh
- Department of Orthodontics, University Witten/Herdecke, Alfred-Herrhausen-Straße 45, 58448, Witten, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital of Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital of Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
682
|
Ihlenburg RBJ, Mai T, Thünemann AF, Baerenwald R, Saalwächter K, Koetz J, Taubert A. Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure. J Phys Chem B 2021; 125:3398-3408. [PMID: 33769825 DOI: 10.1021/acs.jpcb.0c10601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers.
Collapse
Affiliation(s)
- Ramona B J Ihlenburg
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Tobias Mai
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| | - Ruth Baerenwald
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle, Germany
| | - Kay Saalwächter
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle, Germany
| | - Joachim Koetz
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| |
Collapse
|
683
|
Zhang J, Chen L, Chen L, Qian S, Mou X, Feng J. Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate. Carbohydr Polym 2021; 257:117627. [PMID: 33541653 DOI: 10.1016/j.carbpol.2021.117627] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Because of resistance to bio-macromolecular adhesion, antifouling hydrogels have attracted great attention in biomedical field. But traditional antifouling hydrogels made by hydrophilic polymers are always poor of mechanical properties. Herein, a new hybrid ionic-covalent cross-linked double network (DN) hydrogel was prepared by a simple one-pot method based on sodium alginate and the zwitterionic material carboxybetaine acrylamide (CBAA). The DN hydrogel has good mechanical properties, including high elastic modulus (0.28 MPa), high tensile strength (0.69 MPa), as well as good self-recovery capability. More importantly, the DN hydrogel is highly resistance to the adsorption of non-specific protein, cells, bacteria and algae, exhibiting an outstanding antifouling property. The in vitro and in vivo experiments prove that the DN hydrogel is highly biocompatible. This study provides a new strategy for the preparation of antifouling DN hydrogels with good mechanical properties for different needs, such as tissue scaffolds, wound dressings, implantable devices, and other fields.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
| | - Lingdong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Liqun Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Sunxiang Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China.
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
684
|
Longo R, Gorrasi G, Guadagno L. Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:848. [PMID: 33810343 PMCID: PMC8065448 DOI: 10.3390/nano11040848] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) in the biomedical field are known for many decades as carriers for drugs that are used to overcome biological barriers and reduce drug doses to be administrated. Some types of NPs can interact with external stimuli, such as electromagnetic radiations, promoting interesting effects (e.g., hyperthermia) or even modifying the interactions between electromagnetic field and the biological system (e.g., electroporation). For these reasons, at present these nanomaterial applications are intensively studied, especially for drugs that manifest relevant side effects, for which it is necessary to find alternatives in order to reduce the effective dose. In this review, the main electromagnetic-induced effects are deeply analyzed, with a particular focus on the activation of hyperthermia and electroporation phenomena, showing the enhanced biological performance resulting from an engineered/tailored design of the nanoparticle characteristics. Moreover, the possibility of integrating these nanofillers in polymeric matrices (e.g., electrospun membranes) is described and discussed in light of promising applications resulting from new transdermal drug delivery systems with controllable morphology and release kinetics controlled by a suitable stimulation of the interacting systems (nanofiller and interacting cells).
Collapse
Affiliation(s)
- Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy;
| | | | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy;
| |
Collapse
|
685
|
Chen P, Xie J, Zhu J, Hu Y. Design of two natural deproteinized bovine bone scaffolds and evaluation of the effect of initial cell seeding density on repairing bone defects. Microsc Res Tech 2021; 84:1612-1620. [PMID: 33768719 DOI: 10.1002/jemt.23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/07/2022]
Abstract
Engineering functional bone using combinations of cells, scaffolds, and bioactive factors is a promising strategy for the bone-tissue regeneration, while challenge remains. Chemical methods deproteinizing natural bovine cancellous bone to remove immunogenic are poorly understood, and the cell seeding density to promote bone formation still needs to be clarified. In this study, 8.0 × 8.0 × 2.0 mm bovine cancellous bones were either treated with H2 O2 for 8 hr or pepsin for 24 hr and then inoculated with MC3T3-E1 osteoblasts with two cell densities (1 × 106 cells/ml or 4 × 106 cells/ml)separately. We compared the appearance of the bones treated by the two chemical deproteinizing methods, as well as the proliferation ability of the inoculating cell density at 1 × 106 cells/ml. Moreover, scanning electron microscopy was done to analyze the growth of cells on the surface of the material, and an alkaline phosphatase assay was performed to assess osteogenic differentiation. We showed that both treated bones treatments are biocompatible, but bones treated with H2 O2 were more conducive to osteoblast differentiation and ALP secretion, especially when seeded at the higher cell density at 4 × 106 cells/ml. We concluded that chemical deproteinized bovine cancellous bones met the basic bone graft material requirements. Cell seeding density is an important factor to promote the material's osteogenic ability, with H2 O2 -deproteinized bones exhibiting enhanced osteoblast differentiation.
Collapse
Affiliation(s)
- Peng Chen
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianxi Zhu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
686
|
Hou P, Li D, Yang N, Wan J, Zhang C, Zhang X, Jiang H, Zhang Q, Gu L, Wang D. Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. Angew Chem Int Ed Engl 2021; 60:6926-6931. [PMID: 33496361 DOI: 10.1002/anie.202016285] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 01/02/2023]
Abstract
In the study of structure-property relationships for rational materials design, hollow multishell structures (HoMSs) have attracted tremendous attention owing to the optimal balance between mass transfer and surface exposure. Considering the shell structure can significantly affect the properties of HoMSs, in this paper, we provide a novel one-step strategy to continually regulate the shell structures of HoMSs. Through a simple phosphorization process, we can effectively modify the shell from solid to bubble-like and even duplicate the shells with a narrow spacing. Benefitting from the structure merits, the fabricated CoP HoMSs with close duplicated shells can promote gas release owing to the unbalanced Laplace pressure, while accelerating liquid transfer for enhanced capillary force. It can provide effective channels for water and gas and thus exhibits a superior electrocatalytic performance in the hydrogen and oxygen evolution reaction.
Collapse
Affiliation(s)
- Ping Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 10049, P. R. China
| | - Dan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 10049, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| | - Chunhui Zhang
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiqi Zhang
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongyu Jiang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 10049, P. R. China
| |
Collapse
|
687
|
Hou P, Li D, Yang N, Wan J, Zhang C, Zhang X, Jiang H, Zhang Q, Gu L, Wang D. Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ping Hou
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 10049 P. R. China
| | - Dan Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 10049 P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
| | - Chunhui Zhang
- Laboratory of Bio-Inspired Materials and Interface Sciences Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiqi Zhang
- Laboratory of Bio-Inspired Materials and Interface Sciences Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hongyu Jiang
- Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qinghua Zhang
- Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lin Gu
- Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 10049 P. R. China
| |
Collapse
|
688
|
Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021; 123:123-153. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
Collapse
Affiliation(s)
- Léa Dejob
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France; Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Bérangère Toury
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Solène Tadier
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Laurent Grémillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Claire Gaillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France.
| |
Collapse
|
689
|
d’Avanzo N, Bruno MC, Giudice A, Mancuso A, Gaetano FD, Cristiano MC, Paolino D, Fresta M. Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules 2021; 26:1643. [PMID: 33804244 PMCID: PMC7999474 DOI: 10.3390/molecules26061643] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases are multifactorial disorders, mainly due to severe infections and inflammation which affect the tissues (i.e., gum and dental bone) that support and surround the teeth. These pathologies are characterized by bleeding gums, pain, bad breath and, in more severe forms, can lead to the detachment of gum from teeth, causing their loss. To date it is estimated that severe periodontal diseases affect around 10% of the population worldwide thus making necessary the development of effective treatments able to both reduce the infections and inflammation in injured sites and improve the regeneration of damaged tissues. In this scenario, the use of 3D scaffolds can play a pivotal role by providing an effective platform for drugs, nanosystems, growth factors, stem cells, etc., improving the effectiveness of therapies and reducing their systemic side effects. The aim of this review is to describe the recent progress in periodontal regeneration, highlighting the influence of materials' properties used to realize three-dimensional (3D)-scaffolds, their bio-physical characteristics and their ability to provide a biocompatible platform able to embed nanosystems.
Collapse
Affiliation(s)
- Nicola d’Avanzo
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
- Department of Pharmacy, University of Chieti−Pescara “G. d’Annunzio”, I-66100 Chieti, Italy
| | - Maria Chiara Bruno
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Amerigo Giudice
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Antonia Mancuso
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| |
Collapse
|
690
|
Negrescu AM, Cimpean A. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1357. [PMID: 33799681 PMCID: PMC7999637 DOI: 10.3390/ma14061357] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.
Collapse
Affiliation(s)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
691
|
Song L, Meng Y, Lv P, Liu W, Pang H. Preparation of a Dmap-Catalysis Lignin Epoxide and the Study of Its High Mechanical-Strength Epoxy Resins with High-Biomass Content. Polymers (Basel) 2021; 13:750. [PMID: 33670910 PMCID: PMC7957740 DOI: 10.3390/polym13050750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
The depletion of limited petroleum resources used for the fabrication of epoxy resins calls for the development of biomass-based epoxides as promising alternatives to petroleum-derived epoxides. However, it is challenging to obtain an epoxy resin with both high lignin content and excellent mechanical performance. Herein, a 4-dimethylaminopyridine (DMAP)-lignin epoxide with a certain epoxy value and a small molecular weight is obtained by the catalysis of DMAP for the macromolecular lignin. It was discovered that compared to the prepared composite resin of benzyltriethylammonium chloride (BTEAC)-lignin epoxide, there is a better low-temperature storage modulus for the DMAP-lignin epoxide resin and its composite resins with high-biomass contents, and higher tensile strength for its composite resins. In particular, the DMAP-lignin epoxide/ bisphenol A diglycidyl ether (BADGE) (DB) composite resin with DMAP-lignin epoxide replacement of 80 wt% BADGE, containing up to 58.0 wt% the lignin epoxide, exhibits the tensile strength of 76.3 ± 3.2 MPa. Its tensile strength is 110.2% of BTEAC-lignin epoxide/BADGE (BB) composite resins and is comparable to that of petroleum-based epoxy resins. There are good application prospects for the DB composite resin in the engineering plastics, functional composite, grouting, and other fields.
Collapse
Affiliation(s)
- Lingxia Song
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China; (L.S.); (Y.M.); (P.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- CASH GCC(Nanxiong) Research Institute of New Materials Co., Ltd., Nanxiong 512400, China
| | - Yeyun Meng
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China; (L.S.); (Y.M.); (P.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lv
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China; (L.S.); (Y.M.); (P.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqu Liu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China; (L.S.); (Y.M.); (P.L.)
| | - Hao Pang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China; (L.S.); (Y.M.); (P.L.)
| |
Collapse
|
692
|
Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021; 9:12. [PMID: 33574225 PMCID: PMC7878740 DOI: 10.1038/s41413-020-00131-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
The demand for biomaterials that promote the repair, replacement, or restoration of hard and soft tissues continues to grow as the population ages. Traditionally, smart biomaterials have been thought as those that respond to stimuli. However, the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials. This review presents a redefinition of the term "Smart Biomaterial" and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration. To clarify the use of the term "smart biomaterials", we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit, defining these materials as inert, active, responsive, and autonomous. Then, we present an up-to-date survey of applications of smart biomaterials for hard tissues, based on the materials' responses (external and internal stimuli) and their use as immune-modulatory biomaterials. Finally, we discuss the limitations and obstacles to the translation from basic research (bench) to clinical utilization that is required for the development of clinically relevant applications of these technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Yu Du
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anthony L Gianforcaro
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Peter I Lelkes
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA.
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
693
|
Odagiri N, Shirasu K, Kawagoe Y, Kikugawa G, Oya Y, Kishimoto N, Ohuchi FS, Okabe T. Amine/epoxy stoichiometric ratio dependence of crosslinked structure and ductility in
amine‐cured
epoxy thermosetting resins. J Appl Polym Sci 2021. [DOI: 10.1002/app.50542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nobuyuki Odagiri
- Technology Collaboration Toray Composite Materials America, Inc Tacoma Washington USA
| | - Keiichi Shirasu
- Department of Aerospace Engineering Tohoku University Sendai Japan
| | - Yoshiaki Kawagoe
- Department of Aerospace Engineering Tohoku University Sendai Japan
| | - Gota Kikugawa
- Institute of Fluid Science Tohoku University Sendai Japan
| | - Yutaka Oya
- Department of Physics Tohoku University Sendai Japan
| | | | - Fumio S. Ohuchi
- Department of Materials Science and Engineering University of Washington Seattle Washington USA
- Organization for International Initiatives Tohoku University Sendai Japan
| | - Tomonaga Okabe
- Department of Aerospace Engineering Tohoku University Sendai Japan
- Department of Materials Science and Engineering University of Washington Seattle Washington USA
| |
Collapse
|
694
|
Wang S, Liu Z, Tong Y, Zhai Y, Zhao X, Yue X, Qiao Y, Liu Y, Yin Y, Xi R, Zhao W, Meng M. Improved cancer phototheranostic efficacy of hydrophobic IR780 via parenteral route by association with tetrahedral nanostructured DNA. J Control Release 2021; 330:483-492. [DOI: 10.1016/j.jconrel.2020.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/17/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022]
|
695
|
Characterization and estimation of dielectric constant of electrospun BaTiO3 nanofibers at different calcination temperatures using theoretical models. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.09.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
696
|
Chen H, Han B, Jiang R, Su H, Feng T, Teng F, Xu T. PASS versus MBT™ for evaluation of anchorage control in three-dimensional measurements: a randomized controlled trial. Eur J Orthod 2021; 43:113-119. [PMID: 32255178 DOI: 10.1093/ejo/cjaa021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Growth and development might lead to anchorage loss during orthodontic treatment, such as the mesial drift of molars, the compensation characteristics of upper molars following mandibular growth, or the angulation of molars before treatment. Different anchorage reinforcement devices have been developed to prevent mechanical anchorage loss, but the anchorage loss resulting from physiological factors should also be taken into account. OBJECTIVE To explore the efficacy of a new strategy to control physiologic anchorage compared with that of the conventional straight-wire appliance. TRIAL DESIGN Randomized controlled trial (RCT). METHODS Participants of Han ethnicity were randomized into the physiologic anchorage spee-wire system (PASS) group or McLaughlin-Bennett-Trevisi (MBT™) straight-wire group by minimization random allocation. The eligibility criteria were patients with a Class I or II molar relationship, permanent dentition (11-35 years old), fixed appliances involving the extraction of at least two upper first premolars, and medium or maximum anchorage requirements. Pre-treatment and post-treatment dental casts were scanned into digital casts and measured using a blinded method. Mesial displacements of the upper first molars were considered as the primary outcome for evaluating anchorage control. Measurements were taken for subgroups based on age. RESULTS Data from 60 participants were analysed. The baseline characteristics were not significantly different between groups. Mesial displacement of the upper first molar (in mm) was 2.96 ± 1.52 in the PASS group and 2.70 ± 1.66 in the MBT group (P = 0.521). The variation in incisor torque was -6.94 ± 6.35 degree in the PASS group and -11.76 ± 7.65 degree in the MBT group (P = 0. 010). The incisor retraction (in mm) was 4.24 ± 1.99 and 5.67 ± 2.27 in the PASS and MBT groups, respectively (P = 0.012). Adverse effects were not documented in any patient. LIMITATION The study was a single-centre study. CONCLUSIONS Compared with the MBT group, the PASS group without additional anchorage devices could attain well anchorage control by considering the dentoalveolar compensation of anchor teeth. REGISTRATION This RCT was registered at the Chinese Clinical Trial Registry (Chictr.org.cn) ChiCTR-TRC-13003260.
Collapse
Affiliation(s)
- Huizhong Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ruoping Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hong Su
- Department of Orthodontics, First Dental Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tingting Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Fei Teng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tianmin Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
697
|
Samprasit W, Opanasopit P, Chamsai B. Mucoadhesive chitosan and thiolated chitosan nanoparticles containing alpha mangostin for possible Colon-targeted delivery. Pharm Dev Technol 2021; 26:362-372. [PMID: 33423571 DOI: 10.1080/10837450.2021.1873370] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
α-Mangostin-loaded mucoadhesive nanoparticles (NPs) were prepared for colon-targeted drug delivery against colorectal cancer cells using pH-dependent composite mucoadhesive NPs. Chitosan (CS) and thiolated chitosan (TCS) were used to form the NPs, following by genipin (GP) crosslinking and the surface modification by Eudragit® L100 (L100). The particle size, morphologies and characteristics of NPs were observed. The α-mangostin loading and release patterns were investigated. In vitro mucoadhesive properties were examined by the wash-off method. In addition, the anti-tumour activity was tested on colorectal cancer cells. The results showed that NPs were slightly oblong in shape with particle size ranging between 300 and 900 nm. The small size of NPs was found with TCS and larger NPs were observed by GP and L100 process. However, GP and L100 provided an increase in α-mangostin loading, limited the release of α-mangostin in the upper gastrointestinal tract, and enhanced α-mangostin delivery to the colon. The TCS-based NPs with GP and L100 exhibited strong mucoadhesion to colon mucosa, more than uncoated-NPs and CS-based NPs. Moreover, NPs exhibited the anti-tumour activity. Therefore, the mucoadhesive TCS-based NPs could be a promising candidate for a controlled-release drug delivery system of α-mangostin to the colon.
Collapse
Affiliation(s)
- Wipada Samprasit
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Praneet Opanasopit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Benchawan Chamsai
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|
698
|
Abstract
This review paper examines the current state-of-the-art in fabrication of aligned fibers via electrospinning techniques and the effects of these techniques on the mechanical and dielectric properties of electrospun fibers. Molecular orientation, system configuration to align fibers, and post-drawing treatment, like hot/cold drawing process, contribute to better specific strength and specific stiffness properties of nanofibers. The authors suggest that these improved, aligned nanofibers, when applied in composites, have better mechanical and dielectric properties for many structural and multifunctional applications, including advanced aerospace applications and energy storage devices. For these applications, most fiber alignment electrospinning research has focused on either mechanical property improvement or dielectric property improvement alone, but not both simultaneously. Relative to many other nanofiber formation techniques, the electrospinning technique exhibits superior nanofiber formation when considering cost and manufacturing complexity for many situations. Even though the dielectric property of pure nanofiber mat may not be of general interest, the analysis of the combined effect of mechanical and dielectric properties is relevant to the present analysis of improved and aligned nanofibers. A plethora of nanofibers, in particular, polyacrylonitrile (PAN) electrospun nanofibers, are discussed for their mechanical and dielectric properties. In addition, other types of electrospun nanofibers are explored for their mechanical and dielectric properties. An exploratory study by the author demonstrates the relationship between mechanical and dielectric properties for specimens obtained from a rotating mandrel horizontal setup.
Collapse
|
699
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
700
|
Ercal P, Pekozer GG. A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:61-85. [PMID: 32185698 DOI: 10.1007/5584_2020_505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone defects due to trauma or diseases still pose a clinical challenge to be resolved in the current tissue engineering approaches. As an alternative to traditional methods to restore bone defects, such as autografts, bone tissue engineering aims to achieve new bone formation via novel biomaterials used in combination with multipotent stem cells and bioactive molecules. Mesenchymal stem cells (MSCs) can be successfully isolated from various dental tissues at different stages of development including dental pulp, apical papilla, dental follicle, tooth germ, deciduous teeth, periodontal ligament and gingiva. A wide range of biomaterials including polymers, ceramics and composites have been investigated for their potential as an ideal bone scaffold material. This article reviews the properties and the manufacturing methods of biomaterials used in bone tissue engineering, and provides an overview of bone tissue regeneration approaches of scaffold and dental stem cell combinations as well as their limitations.
Collapse
Affiliation(s)
- Pınar Ercal
- Faculty of Dentistry, Department of Oral Surgery, Altinbas University, Istanbul, Turkey.
| | - Gorke Gurel Pekozer
- Faculty of Electrical and Electronics Engineering, Department of Biomedical Engineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|