651
|
Automated correlation of single particle tilt pairs for Random Conical Tilt and Orthogonal Tilt Reconstructions. J Struct Biol 2013; 181:149-54. [DOI: 10.1016/j.jsb.2012.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 11/24/2022]
|
652
|
Glaves JP, Gorski PA, Alier K, Ma L, Renault L, Primeau JO, Jhamandas JH, Young HS. Distinct morphological and electrophysiological properties of an elk prion peptide. Peptides 2013; 40:49-56. [PMID: 23262353 DOI: 10.1016/j.peptides.2012.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/08/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
Abstract
A key event in prion diseases is the conversion of the prion protein (PrP) from its native α-helical conformation to a misfolded, β-sheet rich conformation. Thus, preventing or reversing PrP misfolding could provide a means to disrupt prion disease progression and transmission. However, determining the structure of misfolded PrP has been notoriously difficult due to its inherent heterogeneity and aggregation behavior. For these reasons, simplified peptide fragments have been used as models that recapitulate characteristics of full-length PrP, such as amyloid-like aggregation and fibril formation, and in vitro toxicity. We provide a biochemical and structural comparison of PrP(127-147) peptides from elk, bovine and hamster using electrophysiology, electron microscopy and fluorescence. Our results demonstrate that the PrP(127-147) peptides adopt distinct populations of fibril structures. In addition, the elk PrP(127-147) peptide is unique in its ability to enhance Thioflavin T fluorescence and its ability to modulate neuronal ion channel conductances.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | |
Collapse
|
653
|
A common structure for the potexviruses. Virology 2013; 436:173-8. [DOI: 10.1016/j.virol.2012.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/15/2012] [Accepted: 11/12/2012] [Indexed: 11/16/2022]
|
654
|
Ultrastructural analysis of the rugose cell envelope of a member of the Pasteurellaceae family. J Bacteriol 2013; 195:1680-8. [PMID: 23378507 DOI: 10.1128/jb.02149-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial membranes serve as selective environmental barriers and contain determinants required for bacterial colonization and survival. Cell envelopes of Gram-negative bacteria consist of an outer and an inner membrane separated by a periplasmic space. Most Gram-negative bacteria display a smooth outer surface (e.g., Enterobacteriaceae), whereas members of the Pasteurellaceae and Moraxellaceae families show convoluted surfaces. Aggregatibacter actinomycetemcomitans, an oral pathogen representative of the Pasteurellaceae family, displays a convoluted membrane morphology. This phenotype is associated with the presence of morphogenesis protein C (MorC). Inactivation of the morC gene results in a smooth membrane appearance when visualized by two-dimensional (2D) electron microscopy. In this study, 3D electron microscopy and atomic force microscopy of whole-mount bacterial preparations as well as 3D electron microscopy of ultrathin sections of high-pressure frozen and freeze-substituted specimens were used to characterize the membranes of both wild-type and morC mutant strains of A. actinomycetemcomitans. Our results show that the mutant strain contains fewer convolutions than the wild-type bacterium, which exhibits a higher curvature of the outer membrane and a periplasmic space with 2-fold larger volume/area ratio than the mutant bacterium. The inner membrane of both strains has a smooth appearance and shows connections with the outer membrane, as revealed by visualization and segmentation of 3D tomograms. The present studies and the availability of genetically modified organisms with altered outer membrane morphology make A. actinomycetemcomitans a model organism for examining membrane remodeling and its implications in antibiotic resistance and virulence in the Pasteurellaceae and Moraxellaceae bacterial families.
Collapse
|
655
|
Grob P, Bean D, Typke D, Li X, Nogales E, Glaeser RM. Ranking TEM cameras by their response to electron shot noise. Ultramicroscopy 2013; 133:1-7. [PMID: 23747527 DOI: 10.1016/j.ultramic.2013.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/08/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single-electron events are modeled as Kronecker delta functions located at the same pixels where the electrons were incident on the camera. Experimentally, the average width of the single-electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for three different types of scintillator-coupled camera plus a silicon-pixel (direct detection) camera.
Collapse
Affiliation(s)
- Patricia Grob
- Molecular and Cell Biology Department, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
656
|
Fotinou C, Aittoniemi J, de Wet H, Polidori A, Pucci B, Sansom MSP, Vénien-Bryan C, Ashcroft FM. Tetrameric structure of SUR2B revealed by electron microscopy of oriented single particles. FEBS J 2013; 280:1051-63. [PMID: 23253866 PMCID: PMC3599479 DOI: 10.1111/febs.12097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/26/2012] [Accepted: 12/03/2012] [Indexed: 12/25/2022]
Abstract
The ATP-sensitive potassium (KATP) channel is a hetero-octameric complex that links cell metabolism to membrane electrical activity in many cells, thereby controlling physiological functions such as insulin release, muscle contraction and neuronal activity. It consists of four pore-forming Kir6.2 and four regulatory sulfonylurea receptor (SUR) subunits. SUR2B serves as the regulatory subunit in smooth muscle and some neurones. An integrative approach, combining electron microscopy and homology modelling, has been used to obtain information on the structure of this large (megadalton) membrane protein complex. Single-particle electron microscopy of purified SUR2B tethered to a lipid monolayer revealed that it assembles as a tetramer of four SUR2B subunits surrounding a central hole. In the absence of an X-ray structure, a homology model for SUR2B based on the X-ray structure of the related ABC transporter Sav1866 was used to fit the experimental images. The model indicates that the central hole can readily accommodate the transmembrane domains of the Kir tetramer, suggests a location for the first transmembrane domains of SUR2B (which are absent in Sav1866) and suggests the relative orientation of the SUR and Kir6.2 subunits.
Collapse
Affiliation(s)
- Constantina Fotinou
- Department of Physiology, Henry Wellcome Centre for Gene Function, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
657
|
Tong H, Zhang L, Kaspar A, Rames MJ, Huang L, Woodnutt G, Ren G. Peptide-conjugation induced conformational changes in human IgG1 observed by optimized negative-staining and individual-particle electron tomography. Sci Rep 2013; 3:1089. [PMID: 23346347 PMCID: PMC3549606 DOI: 10.1038/srep01089] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/11/2012] [Indexed: 12/20/2022] Open
Abstract
Peptides show much promise as potent and selective drug candidates. Fusing peptides to a scaffold monoclonal antibody produces a conjugated antibody which has the advantages of peptide activity yet also has the pharmacokinetics determined by the scaffold antibody. However, the conjugated antibody often has poor binding affinity to antigens that may be related to unknown structural changes. The study of the conformational change is difficult by conventional techniques because structural fluctuation under equilibrium results in multiple structures co-existing. Here, we employed our two recently developed electron microscopy (EM) techniques: optimized negative-staining (OpNS) EM and individual-particle electron tomography (IPET). Two-dimensional (2D) image analyses and three-dimensional (3D) maps have shown that the domains of antibodies present an elongated peptide-conjugated conformational change, suggesting that our EM techniques may be novel tools to monitor the structural conformation changes in heterogeneous and dynamic macromolecules, such as drug delivery vehicles after pharmacological synthesis and development.
Collapse
Affiliation(s)
- Huimin Tong
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | | | | | |
Collapse
|
658
|
Maiti S, Michelot A, Gould C, Blanchoin L, Sokolova O, Goode BL. Structure and activity of full-length formin mDia1. Cytoskeleton (Hoboken) 2013; 69:393-405. [PMID: 22605659 DOI: 10.1002/cm.21033] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Formins are a conserved family of actin assembly-promoting factors with essential and diverse biological roles. Most of our biochemical understanding of formin effects on actin dynamics is derived from studies using formin fragments. In addition, all structural information on formins has been limited to fragments. This has left open key questions about the structure, activity and regulation of intact formin proteins. Here, we isolated full-length mouse mDia1 (mDia1-FL) and found that it forms tightly autoinhibited dimers that can only be partially activated by RhoA. We solved the structure of autoinhibited mDia1-FL using electron microscopy and single particle analysis. Docking of crystal structures into the three dimensional reconstruction revealed that the fork-shaped N-terminal diaphanous inhibitory domain-coiled coil domain region hangs over the ring-shaped formin homology (FH)2 domain, suggesting that autoinhibition results from steric obstruction of actin binding. Deletion of the C-terminal diaphanous autoregulatory domain extended mDia1 structure and activated it for actin assembly. Using total internal reflection fluorescence microscopy, we observed that RhoA-activated mDia1-FL persistently accelerated filament elongation in the presence of profilin similar to mDia1 FH1-FH2 fragment. These observations validate the known activities of FH1-FH2 fragments as reflecting those of the intact molecule. Our results further suggest that mDia1-FL does not readily snap back into the autoinhibited conformation and dissociate from growing filament ends, and thus additional factors may be required to displace formins and restrict filament length.
Collapse
Affiliation(s)
- Sankar Maiti
- Biology Department, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|
659
|
Wang X, Xu F, Liu J, Gao B, Liu Y, Zhai Y, Ma J, Zhang K, Baker TS, Schulten K, Zheng D, Pang H, Sun F. Atomic model of rabbit hemorrhagic disease virus by cryo-electron microscopy and crystallography. PLoS Pathog 2013; 9:e1003132. [PMID: 23341770 PMCID: PMC3547835 DOI: 10.1371/journal.ppat.1003132] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/29/2012] [Indexed: 02/03/2023] Open
Abstract
Rabbit hemorrhagic disease, first described in China in 1984, causes hemorrhagic necrosis of the liver. Its etiological agent, rabbit hemorrhagic disease virus (RHDV), belongs to the Lagovirus genus in the family Caliciviridae. The detailed molecular structure of any lagovirus capsid has yet to be determined. Here, we report a cryo-electron microscopic (cryoEM) reconstruction of wild-type RHDV at 6.5 Å resolution and the crystal structures of the shell (S) and protruding (P) domains of its major capsid protein, VP60, each at 2.0 Å resolution. From these data we built a complete atomic model of the RHDV capsid. VP60 has a conserved S domain and a specific P2 sub-domain that differs from those found in other caliciviruses. As seen in the shell portion of the RHDV cryoEM map, which was resolved to ∼5.5 Å, the N-terminal arm domain of VP60 folds back onto its cognate S domain. Sequence alignments of VP60 from six groups of RHDV isolates revealed seven regions of high variation that could be mapped onto the surface of the P2 sub-domain and suggested three putative pockets might be responsible for binding to histo-blood group antigens. A flexible loop in one of these regions was shown to interact with rabbit tissue cells and contains an important epitope for anti-RHDV antibody production. Our study provides a reliable, pseudo-atomic model of a Lagovirus and suggests a new candidate for an efficient vaccine that can be used to protect rabbits from RHDV infection. Rabbit hemorrhagic disease (RHD), first described in China in 1984, causes hemorrhagic necrosis of the liver within three days after infection and with a mortality rate that exceeds 90%. RHD has spread to large parts of the world and threatens the rabbit industry and related ecology. Its etiological agent, rabbit hemorrhagic disease virus (RHDV), belongs to the Lagovirus genus in the family Caliciviridae. Currently, the absence of a high-resolution model of any lagovirus impedes our understanding of its molecular interactions with hosts and successful design of an efficient anti-RHDV vaccine. Here, we use hybrid structural approaches to construct a pseudo-atomic model of RHDV that reveals significant differences in the P2 sub-domain of the major capsid protein compared to that seen in other caliciviruses. We identified seven regions of high sequence variation in this sub-domain that dictate the binding specificities of histo-blood group antigens. In one of these regions, we identified an antigenic peptide that interacts with rabbit tissue cells and elicits a significant immune response in rabbits and, hence, protects them from RHDV infection. Our pseudo-atomic model provides a structural framework for developing new anti-RHDV vaccines and will also help guide use of the RHDV capsid as a vehicle to display human tumor antigens as part of anti-tumor therapy.
Collapse
Affiliation(s)
- Xue Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengting Xu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jiasen Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Bingquan Gao
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxin Liu
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yujia Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS), Beijing, China
| | - Jun Ma
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Timothy S. Baker
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, La Jolla, California, United States of America
| | - Klaus Schulten
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Dong Zheng
- Analytical and Testing Center, Beijing Normal University, Beijing, China
- * E-mail: (DZ); (HP); (FS)
| | - Hai Pang
- School of Medicine, Tsinghua University, Beijing, China
- * E-mail: (DZ); (HP); (FS)
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail: (DZ); (HP); (FS)
| |
Collapse
|
660
|
Zhao J, Brubaker MA, Rubinstein JL. TMaCS: a hybrid template matching and classification system for partially-automated particle selection. J Struct Biol 2013; 181:234-42. [PMID: 23333657 DOI: 10.1016/j.jsb.2012.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
Selection of particle images from electron micrographs presents a bottleneck in determining the structures of macromolecular assemblies by single particle electron cryomicroscopy (cryo-EM). The problem is particularly important when an experimentalist wants to improve the resolution of a 3D map by increasing by tens or hundreds of thousands of images the size of the dataset used for calculating the map. Although several existing methods for automatic particle image selection work well for large protein complexes that produce high-contrast images, it is well known in the cryo-EM community that small complexes that give low-contrast images are often refractory to existing automated particle image selection schemes. Here we develop a method for partially-automated particle image selection when an initial 3D map of the protein under investigation is already available. Candidate particle images are selected from micrographs by template matching with template images derived from projections of the existing 3D map. The candidate particle images are then used to train a support vector machine, which classifies the candidates as particle images or non-particle images. In a final step in the analysis, the selected particle images are subjected to projection matching against the initial 3D map, with the correlation coefficient between the particle image and the best matching map projection used to assess the reliability of the particle image. We show that this approach is able to rapidly select particle images from micrographs of a rotary ATPase, a type of membrane protein complex involved in many aspects of biology.
Collapse
Affiliation(s)
- Jianhua Zhao
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
661
|
Abstract
The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 10(13) transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 10(18) to 10(21) W cm(-2) or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.
Collapse
Affiliation(s)
- Anton Barty
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany.
| | | | | |
Collapse
|
662
|
Zhang Z, Yang J, Kong EH, Chao WCH, Morris EP, da Fonseca PCA, Barford D. Recombinant expression, reconstitution and structure of human anaphase-promoting complex (APC/C). Biochem J 2013; 449:365-71. [PMID: 23078409 DOI: 10.1042/bj20121374] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mechanistic and structural studies of large multi-subunit assemblies are greatly facilitated by their reconstitution in heterologous recombinant systems. In the present paper, we describe the generation of recombinant human APC/C (anaphase-promoting complex/cyclosome), an E3 ubiquitin ligase that regulates cell-cycle progression. Human APC/C is composed of 14 distinct proteins that assemble into a complex of at least 19 subunits with a combined molecular mass of ~1.2 MDa. We show that recombinant human APC/C is correctly assembled, as judged by its capacity to ubiquitinate the budding yeast APC/C substrate Hsl1 (histone synthetic lethal 1) dependent on the APC/C co-activator Cdh1 [Cdc (cell division cycle) 20 homologue 1], and its three-dimensional reconstruction by electron microscopy and single-particle analysis. Successful reconstitution validates the subunit composition of human APC/C. The structure of human APC/C is compatible with the Saccharomyces cerevisiae APC/C homology model, and in contrast with endogenous human APC/C, no evidence for conformational flexibility of the TPR (tetratricopeptide repeat) lobe is observed. Additional density present in the human APC/C structure, proximal to Apc3/Cdc27 of the TPR lobe, is assigned to the TPR subunit Apc7, a subunit specific to vertebrate APC/C.
Collapse
Affiliation(s)
- Ziguo Zhang
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | |
Collapse
|
663
|
Takvorian PM, Buttle KF, Mankus D, Mannella CA, Weiss LM, Cali A. The multilayered interlaced network (MIN) in the sporoplasm of the microsporidium Anncaliia algerae is derived from Golgi. J Eukaryot Microbiol 2013; 60:166-78. [PMID: 23316714 DOI: 10.1111/jeu.12019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 11/28/2022]
Abstract
This study provides evidence for the Golgi-like activity of the multilayered interlaced network (MIN) and new ultrastructural observations of the MIN in the sporoplasm of Anncaliia algerae, a microsporidium that infects both insects and humans. The MIN is attached to the end of the polar tubule upon extrusion from the germinating spore. It surrounds the sporoplasm, immediately below its plasma membrane, and most likely maintains the integrity of the sporoplasm, as it is pulled through the everting polar tube. Furthermore, the MIN appears to deposit its dense contents on the surface of the sporoplasm within minutes of spore discharge thickening the plasma membrane. This thickening is characteristic of the developmental stages of the genus Anncaliia. The current study utilizes transmission electron microscopy (TEM), enzyme histochemistry, and high voltage TEM (HVEM) with 3D tomographic reconstruction to both visualize the structure of the MIN and demonstrate that the MIN is a Golgi-related structure. The presence of developmentally regulated Golgi in the Microsporidia has been previously documented. The current study extends our understanding of the microsporidial Golgi and is consistent with the MIN being involved in the extracellular secretion in Anncaliia algerae. This report further illustrates the unique morphology of the MIN as illustrated by HVEM using 3D tomography.
Collapse
Affiliation(s)
- Peter M Takvorian
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA.
| | | | | | | | | | | |
Collapse
|
664
|
Evans JE, Browning ND. Enabling direct nanoscale observations of biological reactions with dynamic TEM. Microscopy (Oxf) 2013; 62:147-56. [PMID: 23315566 DOI: 10.1093/jmicro/dfs081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biological processes occur on a wide range of spatial and temporal scales: from femtoseconds to hours and from angstroms to meters. Many new biological insights can be expected from a better understanding of the processes that occur on these very fast and very small scales. In this regard, new instruments that use fast X-ray or electron pulses are expected to reveal novel mechanistic details for macromolecular protein dynamics. To ensure that any observed conformational change is physiologically relevant and not constrained by 3D crystal packing, it would be preferable for experiments to utilize small protein samples such as single particles or 2D crystals that mimic the target protein's native environment. These samples are not typically amenable to X-ray analysis, but transmission electron microscopy has imaged such sample geometries for over 40 years using both direct imaging and diffraction modes. While conventional transmission electron microscopes (TEM) have visualized biological samples with atomic resolution in an arrested or frozen state, the recent development of the dynamic TEM (DTEM) extends electron microscopy into a dynamic regime using pump-probe imaging. A new second-generation DTEM, which is currently being constructed, has the potential to observe live biological processes with unprecedented spatiotemporal resolution by using pulsed electron packets to probe the sample on micro- and nanosecond timescales. This article reviews the experimental parameters necessary for coupling DTEM with in situ liquid microscopy to enable direct imaging of protein conformational dynamics in a fully hydrated environment and visualize reactions propagating in real time.
Collapse
Affiliation(s)
- James E Evans
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA.
| | | |
Collapse
|
665
|
Guo Q, Goto S, Chen Y, Feng B, Xu Y, Muto A, Himeno H, Deng H, Lei J, Gao N. Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process. Nucleic Acids Res 2013; 41:2609-20. [PMID: 23293003 PMCID: PMC3575805 DOI: 10.1093/nar/gks1256] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a tightly regulated, multi-stepped process. The assembly of ribosomal subunits is a central step of the complex biogenesis process, involving nearly 30 protein factors in vivo in bacteria. Although the assembly process has been extensively studied in vitro for over 40 years, very limited information is known for the in vivo process and specific roles of assembly factors. Such an example is ribosome maturation factor M (RimM), a factor involved in the late-stage assembly of the 30S subunit. Here, we combined quantitative mass spectrometry and cryo-electron microscopy to characterize the in vivo 30S assembly intermediates isolated from mutant Escherichia coli strains with genes for assembly factors deleted. Our compositional and structural data show that the assembly of the 3′-domain of the 30S subunit is severely delayed in these intermediates, featured with highly underrepresented 3′-domain proteins and large conformational difference compared with the mature 30S subunit. Further analysis indicates that RimM functions not only to promote the assembly of a few 3′-domain proteins but also to stabilize the rRNA tertiary structure. More importantly, this study reveals intriguing similarities and dissimilarities between the in vitro and the in vivo assembly pathways, suggesting that they are in general similar but with subtle differences.
Collapse
Affiliation(s)
- Qiang Guo
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
666
|
Agirre J, Goret G, LeGoff M, Sánchez-Eugenia R, Marti GA, Navaza J, Guérin DMA, Neumann E. Cryo-electron microscopy reconstructions of triatoma virus particles: a clue to unravel genome delivery and capsid disassembly. J Gen Virol 2013; 94:1058-1068. [PMID: 23288423 DOI: 10.1099/vir.0.048553-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triatoma virus (TrV) is a member of the insect virus family Dicistroviridae and consists of a small, non-enveloped capsid that encloses its positive-sense ssRNA genome. Using cryo-transmission electron microscopy and three-dimensional reconstruction techniques combined with fitting of the available crystallographic models, this study analysed the capsids corresponding to mature and several RNA-empty TrV particles. After genome release, the resulting reconstruction of the empty capsids displayed no prominent conformational changes with respect to the full virion capsid. The results showed that RNA delivery led to empty capsids with an apparent overall intact protein shell and suggested that, in a subsequent step, empty capsids disassemble into small symmetrical particles. Contrary to what is observed upon genome release in mammalian picornaviruses, the empty TrV capsid maintained a protein shell thickness and size identical to that in full virions.
Collapse
Affiliation(s)
- J Agirre
- Fundación Biofísica Bizkaia, B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain.,Unidad de Biofisica (CSIC, UPV/EHU), PO Box 644, E-48080 Bilbao, Spain
| | - G Goret
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | - M LeGoff
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | - R Sánchez-Eugenia
- Unidad de Biofisica (CSIC, UPV/EHU), PO Box 644, E-48080 Bilbao, Spain
| | - G A Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), 2#584 (1900) La Plata, Argentina
| | - J Navaza
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | - D M A Guérin
- Fundación Biofísica Bizkaia, B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain.,Unidad de Biofisica (CSIC, UPV/EHU), PO Box 644, E-48080 Bilbao, Spain
| | - E Neumann
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41 rue Jules Horowitz, F-38027 Grenoble, France
| |
Collapse
|
667
|
Allen GS, Stokes DL. Modeling, docking, and fitting of atomic structures to 3D maps from cryo-electron microscopy. Methods Mol Biol 2013; 955:229-241. [PMID: 23132064 PMCID: PMC3645293 DOI: 10.1007/978-1-62703-176-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electron microscopy (EM) and image analysis offer an effective approach for determining the three-dimensional structure of macromolecular complexes. The versatility of these methods means that molecular species not normally amenable to other structural methods, e.g., X-ray crystallography and NMR spectroscopy, can be analyzed. However, the resolution of EM structures is often too low to provide an atomic model directly by chain tracing. Instead, a combination of modeling and fitting can be an effective way to analyze the EM structure at an atomic level, thus allowing localization of subunits or evaluation of conformational changes. Here we describe the steps involved in this process: building a homology model, fitting this model to an EM map, and using computational methods for docking of additional domains to the model. As an example, we illustrate the methods using an integral membrane protein, CopA, which functions to pump copper across the membrane in an ATP-dependent manner. In this example, we build a homology model based on the published atomic coordinates for a related calcium pump from sarcoplasmic reticulum (SERCA). After fitting this homology model to a 17 Å resolution EM map, computational software is used to dock a metal-binding domain (MBD) that is unique to the copper pump. Although this software identifies a number of plausible interfaces for docking, the constraints of the EM map steer us to select a unique solution. Thus, the synergy of these two methods allows us to describe both the location of the unknown MBD relative to the other cytoplasmic domains and the atomic details of the domain interface.
Collapse
Affiliation(s)
- Gregory S Allen
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
668
|
Garewal M, Zhang L, Ren G. Optimized negative-staining protocol for examining lipid-protein interactions by electron microscopy. Methods Mol Biol 2013; 974:111-8. [PMID: 23404274 PMCID: PMC10546916 DOI: 10.1007/978-1-62703-275-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A large number of proteins are capable of inserting themselves into lipids, and interacting with membranes, such as transmembrane proteins and apolipoproteins. Protein-lipid interactions have been identified as one of the keys in understanding biological processes, while the structure of proteins at the lipid-binding stage can provide evidence to help identify their roles and critical functions. However, structure determination of proteins at the lipid-binding stage is rather difficult, because conformational and compositional heterogeneities of the protein-lipid complexes are major barriers to unravel their structures using traditional methods, such as X-ray crystallography. Electron microscopy (EM) is an alternative approach to determine protein structure and has demonstrated a capability in visualizing lipid-protein interactions directly. Among various EM techniques, negative-staining (NS) is an easy, rapid, qualitative approach that is a well-established technique, frequently used in research laboratories. Conventional NS protocols, unfortunately, often generate artifacts with lipid-related proteins, such as the rouleau formation of lipoproteins. To overcome this artifact formation, Ren and his colleagues recently developed an optimized NS protocol that was validated by comparing images of lipoproteins from cryo-electron microscopy (cryo-EM). The optimized NS protocol could produce "near native-state" particle images and high contrast images of the protein in its lipid-binding state that is favorable for three-dimensional (3D) reconstruction by single-particle analysis and individual-particle electron tomography (IPET), suggesting this optimized protocol can be used widely to examine the structure of proteins at lipid-binding stage.
Collapse
Affiliation(s)
- Mark Garewal
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | |
Collapse
|
669
|
Bui KH, Ishikawa T. 3D Structural Analysis of Flagella/Cilia by Cryo-Electron Tomography. Methods Enzymol 2013; 524:305-23. [DOI: 10.1016/b978-0-12-397945-2.00017-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
670
|
Tubular crystals and helical arrays: structural determination of HIV-1 capsid assemblies using iterative helical real-space reconstruction. Methods Mol Biol 2013; 955:381-99. [PMID: 23132072 DOI: 10.1007/978-1-62703-176-9_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helical structures are important in many different life forms and are well-suited for structural studies by cryo-EM. A unique feature of helical objects is that a single projection image contains all the views needed to perform a three-dimensional (3D) crystallographic reconstruction. Here, we use HIV-1 capsid assemblies to illustrate the detailed approaches to obtain 3D density maps from helical objects. Mature HIV-1 particles contain a conical- or tubular-shaped capsid that encloses the viral RNA genome and performs essential functions in the virus life cycle. The capsid is composed of capsid protein (CA) oligomers which are helically arranged on the surface. The N-terminal domain (NTD) of CA is connected to its C-terminal domain (CTD) through a flexible hinge. Structural analysis of two- and three-dimensional crystals provided molecular models of the capsid protein (CA) and its oligomer forms. We determined the 3D density map of helically assembled HIV-1 CA hexamers at 16 Å resolution using an iterative helical real-space reconstruction method. Docking of atomic models of CA-NTD and CA-CTD dimer into the electron density map indicated that the CTD dimer interface is retained in the assembled CA. Furthermore, molecular docking revealed an additional, novel CTD trimer interface.
Collapse
|
671
|
Arheit M, Castaño-Díez D, Thierry R, Gipson BR, Zeng X, Stahlberg H. Image processing of 2D crystal images. Methods Mol Biol 2013; 955:171-194. [PMID: 23132061 DOI: 10.1007/978-1-62703-176-9_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to image frozen-hydrated 2D crystals. The processing of recorded images exploits the periodic arrangement of the structures in the images to extract the amplitudes and phases of diffraction spots in Fourier space. However, image imperfections require a crystal unbending procedure to be applied to the image before evaluation in Fourier space. We here describe the process of 2D crystal image unbending, using the 2dx software system.
Collapse
Affiliation(s)
- Marcel Arheit
- C-CINA, Biozentrum, University Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
672
|
Semiautomatic, high-throughput, high-resolution protocol for three-dimensional reconstruction of single particles in electron microscopy. Methods Mol Biol 2013; 950:171-93. [PMID: 23086876 DOI: 10.1007/978-1-62703-137-0_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In this chapter we describe the steps needed for reconstructing the three-dimensional structure of a macromolecular complex starting from its projections collected in electron micrographs. The concepts are shown through the use of Xmipp 3.0, a software suite specifically designed for the image processing of biological structures imaged with electron or X-ray microscopy. We illustrate the image processing workflow by applying it to the images of Bovine Papilloma virus published in Wolf et al. (Proc Natl Acad Sci USA 107:6298-6303, 2010). We show that in the case of high-quality, homogeneous datasets with a priori knowledge about the initial volume, we can have a high-resolution 3D reconstruction in less than 1 day using a computer cluster with only 32 processors.
Collapse
|
673
|
|
674
|
Fourniol F, Perderiset M, Houdusse A, Moores C. Structural Studies of the Doublecortin Family of MAPs. Methods Cell Biol 2013; 115:27-48. [DOI: 10.1016/b978-0-12-407757-7.00003-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
675
|
Diao J, Grob P, Cipriano DJ, Kyoung M, Zhang Y, Shah S, Nguyen A, Padolina M, Srivastava A, Vrljic M, Shah A, Nogales E, Chu S, Brunger AT. Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. eLife 2012; 1:e00109. [PMID: 23240085 PMCID: PMC3514886 DOI: 10.7554/elife.00109] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 09/18/2012] [Indexed: 12/18/2022] Open
Abstract
The molecular underpinnings of synaptic vesicle fusion for fast neurotransmitter release are still unclear. Here, we used a single vesicle-vesicle system with reconstituted SNARE and synaptotagmin-1 proteoliposomes to decipher the temporal sequence of membrane states upon Ca(2+)-injection at 250-500 μM on a 100-ms timescale. Furthermore, detailed membrane morphologies were imaged with cryo-electron microscopy before and after Ca(2+)-injection. We discovered a heterogeneous network of immediate and delayed fusion pathways. Remarkably, all instances of Ca(2+)-triggered immediate fusion started from a membrane-membrane point-contact and proceeded to complete fusion without discernible hemifusion intermediates. In contrast, pathways that involved a stable hemifusion diaphragm only resulted in fusion after many seconds, if at all. When complexin was included, the Ca(2+)-triggered fusion network shifted towards the immediate pathway, effectively synchronizing fusion, especially at lower Ca(2+)-concentration. Synaptic proteins may have evolved to select this immediate pathway out of a heterogeneous network of possible membrane fusion pathways.DOI:http://dx.doi.org/10.7554/eLife.00109.001.
Collapse
Affiliation(s)
- Jiajie Diao
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, Photon Science and Howard Hughes Medical Institute , Stanford University , Stanford , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
676
|
Nurse P, Marians KJ. Purification and characterization of Escherichia coli MreB protein. J Biol Chem 2012; 288:3469-75. [PMID: 23235161 DOI: 10.1074/jbc.m112.413708] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μM.
Collapse
Affiliation(s)
- Pearl Nurse
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | |
Collapse
|
677
|
Affinity grid-based cryo-EM of PKC binding to RACK1 on the ribosome. J Struct Biol 2012; 181:190-4. [PMID: 23228487 DOI: 10.1016/j.jsb.2012.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 11/23/2022]
Abstract
Affinity grids (AG) are specialized EM grids that bind macromolecular complexes containing tagged proteins to obtain maximum occupancy for structural analysis through single-particle EM. In this study, utilizing AG, we show that His-tagged activated PKC βII binds to the small ribosomal subunit (40S). We reconstructed a cryo-EM map which shows that PKC βII interacts with RACK1, a seven-bladed β-propeller protein present on the 40S and binds in two different regions close to blades 3 and 4 of RACK1. This study is a first step in understanding the molecular framework of PKC βII/RACK1 interaction and its role in translation.
Collapse
|
678
|
Armache JP, Anger AM, Márquez V, Franckenberg S, Fröhlich T, Villa E, Berninghausen O, Thomm M, Arnold GJ, Beckmann R, Wilson DN. Promiscuous behaviour of archaeal ribosomal proteins: implications for eukaryotic ribosome evolution. Nucleic Acids Res 2012; 41:1284-93. [PMID: 23222135 PMCID: PMC3553981 DOI: 10.1093/nar/gks1259] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In all living cells, protein synthesis occurs on ribonucleoprotein particles called ribosomes. Molecular models have been reported for complete bacterial 70S and eukaryotic 80S ribosomes; however, only molecular models of large 50S subunits have been reported for archaea. Here, we present a complete molecular model for the Pyrococcus furiosus 70S ribosome based on a 6.6 Å cryo-electron microscopy map. Moreover, we have determined cryo-electron microscopy reconstructions of the Euryarchaeota Methanococcus igneus and Thermococcus kodakaraensis 70S ribosomes and Crenarchaeota Staphylothermus marinus 50S subunit. Examination of these structures reveals a surprising promiscuous behavior of archaeal ribosomal proteins: We observe intersubunit promiscuity of S24e and L8e (L7ae), the latter binding to the head of the small subunit, analogous to S12e in eukaryotes. Moreover, L8e and L14e exhibit intrasubunit promiscuity, being present in two copies per archaeal 50S subunit, with the additional binding site of L14e analogous to the related eukaryotic r-protein L27e. Collectively, these findings suggest insights into the evolution of eukaryotic ribosomal proteins through increased copy number and binding site promiscuity.
Collapse
Affiliation(s)
- Jean-Paul Armache
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
679
|
Bradatsch B, Leidig C, Granneman S, Gnädig M, Tollervey D, Böttcher B, Beckmann R, Hurt E. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nat Struct Mol Biol 2012; 19:1234-41. [PMID: 23142978 PMCID: PMC3678077 DOI: 10.1038/nsmb.2438] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/09/2012] [Indexed: 12/24/2022]
Abstract
Preribosomal particles evolve in the nucleus through transient interaction with biogenesis factors before export to the cytoplasm. Here, we report the architecture of the late pre-60S particle, purified from Saccharomyces cerevisiae, through Arx1, a nuclear export factor with structural homology to methionine aminopeptidases, or its binding partner Alb1. Cryo-EM reconstruction of the Arx1 particle at 11.9-Å resolution reveals regions of extra density on the pre-60S particle attributed to associated biogenesis factors, confirming the immature state of the nascent subunit. One of these densities could be unambiguously assigned to Arx1. Immunoelectron microscopy and UV cross-linking localize Arx1 close to the ribosomal exit tunnel, in direct contact with ES27, a highly dynamic eukaryotic rRNA expansion segment. The binding of Arx1 at the exit tunnel may position this export factor to prevent premature recruitment of ribosome-associated factors active during translation.
Collapse
|
680
|
Elmlund D, Elmlund H. SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles. J Struct Biol 2012; 180:420-7. [DOI: 10.1016/j.jsb.2012.07.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
|
681
|
Kawata M, Sato C. Multi-reference-based multiple alignment statistics enables accurate protein-particle pickup from noisy images. Microscopy (Oxf) 2012; 62:303-15. [PMID: 23172700 DOI: 10.1093/jmicro/dfs075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Data mining from noisy data/images is one of the most important themes in modern science and technology. Statistical image processing is a promising technique for analysing such data. Automation of particle pickup from noisy electron micrographs is essential, especially when improvement of the resolution of single particle analysis requires a huge number of particle images. For such a purpose, reference-based matching using primary three-dimensional (3D) model projections is mainly adopted. In the matching, however, the highest peaks of the correlation may not accurately indicate particles when the image is very noisy. In contrast, the density and the heights of the peaks should reflect the probability distribution of the particles. To statistically determine the particle positions from the peak distributions, we have developed a density-based peak search followed by a peak selection based on average peak height, using multi-reference alignment (MRA). Its extension, using multi-reference multiple alignment (MRMA), was found to enable particle pickup at higher accuracy even from extremely noisy images with a signal-to-noise ratio of 0.001. We refer to these new methods as stochastic pickup with MRA (MRA-StoPICK) or with MRMA (MRMA-StoPICK). MRMA-StoPICK has a higher pickup accuracy and furthermore, is almost independent of parameter settings. They were successfully applied to cryo-electron micrographs of Rice dwarf virus. Because current computational resources and parallel data processing environments allow somewhat CPU-intensive MRA-StoPICK and MRMA-StoPICK to be performed in a short period, these methods are expected to allow high-resolution analysis of the 3D structure of particles.
Collapse
Affiliation(s)
- Masaaki Kawata
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, Tsukuba 305-8568, Japan
| | | |
Collapse
|
682
|
Moeller A, Kirchdoerfer RN, Potter CS, Carragher B, Wilson IA. Organization of the influenza virus replication machinery. Science 2012. [PMID: 23180774 DOI: 10.1126/science.1227270] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template.
Collapse
Affiliation(s)
- Arne Moeller
- National Resource for Automated Molecular Microscopy, Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
683
|
The structure of the CS1 pilus of enterotoxigenic Escherichia coli reveals structural polymorphism. J Bacteriol 2012; 195:1360-70. [PMID: 23175654 DOI: 10.1128/jb.01989-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a bacterial pathogen that causes diarrhea in children and travelers in developing countries. ETEC adheres to host epithelial cells in the small intestine via a variety of different pili. The CS1 pilus is a prototype for a family of related pili, including the CFA/I pili, present on ETEC and other Gram-negative bacterial pathogens. These pili are assembled by an outer membrane usher protein that catalyzes subunit polymerization via donor strand complementation, in which the N terminus of each incoming pilin subunit fits into a hydrophobic groove in the terminal subunit, completing a β-sheet in the Ig fold. Here we determined a crystal structure of the CS1 major pilin subunit, CooA, to a 1.6-Å resolution. CooA is a globular protein with an Ig fold and is similar in structure to the CFA/I major pilin CfaB. We determined three distinct negative-stain electron microscopic reconstructions of the CS1 pilus and generated pseudoatomic-resolution pilus structures using the CooA crystal structure. CS1 pili adopt multiple structural states with differences in subunit orientations and packing. We propose that the structural perturbations are accommodated by flexibility in the N-terminal donor strand of CooA and by plasticity in interactions between exposed flexible loops on adjacent subunits. Our results suggest that CS1 and other pili of this class are extensible filaments that can be stretched in response to mechanical stress encountered during colonization.
Collapse
|
684
|
Chambers MG, Pyburn TM, González-Rivera C, Collier SE, Eli I, Yip CK, Takizawa Y, Lacy DB, Cover TL, Ohi MD. Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin. J Mol Biol 2012. [PMID: 23178866 DOI: 10.1016/j.jmb.2012.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human stomach and contributes to peptic ulceration and gastric adenocarcinoma. H. pylori secretes a pore-forming exotoxin known as vacuolating toxin (VacA). VacA contains two distinct domains, designated p33 and p55, and assembles into large "snowflake"-shaped oligomers. Thus far, no structural data are available for the p33 domain, which is essential for membrane channel formation. Using single-particle electron microscopy and the random conical tilt approach, we have determined the three-dimensional structures of six VacA oligomeric conformations at ~15-Å resolution. The p55 domain, composed primarily of β-helical structures, localizes to the peripheral arms, while the p33 domain consists of two globular densities that localize within the center of the complexes. By fitting the VacA p55 crystal structure into the electron microscopy densities, we have mapped inter-VacA interactions that support oligomerization. In addition, we have examined VacA variants/mutants that differ from wild-type (WT) VacA in toxin activity and/or oligomeric structural features. Oligomers formed by VacA∆6-27, a mutant that fails to form membrane channels, lack an organized p33 central core. Mixed oligomers containing both WT and VacA∆6-27 subunits also lack an organized core. Oligomers formed by a VacA s2m1 chimera (which lacks cell-vacuolating activity) and VacAΔ301-328 (which retains vacuolating activity) each contain p33 central cores similar to those of WT oligomers. By providing the most detailed view of the VacA structure to date, these data offer new insights into the toxin's channel-forming component and the intermolecular interactions that underlie oligomeric assembly.
Collapse
Affiliation(s)
- Melissa G Chambers
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
685
|
Greber BJ, Boehringer D, Montellese C, Ban N. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nat Struct Mol Biol 2012; 19:1228-33. [PMID: 23142985 DOI: 10.1038/nsmb.2425] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/24/2012] [Indexed: 11/09/2022]
Abstract
Eukaryotic ribosome biogenesis requires many protein factors that facilitate the assembly, nuclear export and final maturation of 40S and 60S particles. We have biochemically characterized ribosomal complexes of the yeast 60S-biogenesis factor Arx1 and late-maturation factors Rei1 and Jjj1 and determined their cryo-EM structures. Arx1 was visualized bound to the 60S subunit together with Rei1, at 8.1-Å resolution, to reveal the molecular details of Arx1 binding whereby Arx1 arrests the eukaryotic-specific rRNA expansion segment 27 near the polypeptide tunnel exit. Rei1 and Jjj1, which have been implicated in Arx1 recycling, bind in the vicinity of Arx1 and form a network of interactions. We suggest that, in addition to the role of Arx1 during pre-60S nuclear export, the binding of Arx1 conformationally locks the pre-60S subunit and inhibits the premature association of nascent chain-processing factors to the polypeptide tunnel exit.
Collapse
Affiliation(s)
- Basil J Greber
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
686
|
Benlekbir S, Bueler SA, Rubinstein JL. Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-Å resolution. Nat Struct Mol Biol 2012; 19:1356-62. [PMID: 23142977 DOI: 10.1038/nsmb.2422] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 09/21/2012] [Indexed: 11/09/2022]
Abstract
Vacuolar-type ATPases (V-type ATPases) in eukaryotic cells are large membrane protein complexes that acidify various intracellular compartments. The enzymes are regulated by dissociation of the V(1) and V(O) regions of the complex. Here we present the structure of the Saccharomyces cerevisiae V-type ATPase at 11-Å resolution by cryo-EM of protein particles in ice. The structure explains many cross-linking and protein interaction studies. Docking of crystal structures suggests that inhibition of ATPase activity by the dissociated V(1) region involves rearrangement of the N- and C-terminal domains of subunit H and also suggests how this inhibition is triggered upon dissociation. We provide support for this model by demonstrating that mutation of subunit H to increase the rigidity of the linker between its two domains decreases its ability to inhibit ATPase activity.
Collapse
Affiliation(s)
- Samir Benlekbir
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
687
|
Goulet A, Behnke-Parks WM, Sindelar CV, Major J, Rosenfeld SS, Moores CA. The structural basis of force generation by the mitotic motor kinesin-5. J Biol Chem 2012; 287:44654-66. [PMID: 23135273 DOI: 10.1074/jbc.m112.404228] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinesin-5 is required for forming the bipolar spindle during mitosis. Its motor domain, which contains nucleotide and microtubule binding sites and mechanical elements to generate force, has evolved distinct properties for its spindle-based functions. In this study, we report subnanometer resolution cryoelectron microscopy reconstructions of microtubule-bound human kinesin-5 before and after nucleotide binding and combine this information with studies of the kinetics of nucleotide-induced neck linker and cover strand movement. These studies reveal coupled, nucleotide-dependent conformational changes that explain many of this motor's properties. We find that ATP binding induces a ratchet-like docking of the neck linker and simultaneous, parallel docking of the N-terminal cover strand. Loop L5, the binding site for allosteric inhibitors of kinesin-5, also undergoes a dramatic reorientation when ATP binds, suggesting that it is directly involved in controlling nucleotide binding. Our structures indicate that allosteric inhibitors of human kinesin-5, which are being developed as anti-cancer therapeutics, bind to a motor conformation that occurs in the course of normal function. However, due to evolutionarily defined sequence variations in L5, this conformation is not adopted by invertebrate kinesin-5s, explaining their resistance to drug inhibition. Together, our data reveal the precision with which the molecular mechanism of kinesin-5 motors has evolved for force generation.
Collapse
Affiliation(s)
- Adeline Goulet
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | | | | | | | | | |
Collapse
|
688
|
Berke IC, Yu X, Modis Y, Egelman EH. MDA5 assembles into a polar helical filament on dsRNA. Proc Natl Acad Sci U S A 2012; 109:18437-41. [PMID: 23090998 PMCID: PMC3494895 DOI: 10.1073/pnas.1212186109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling.
Collapse
Affiliation(s)
- Ian C. Berke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; and
| | - Xiong Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Yorgo Modis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; and
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
689
|
Lis1 acts as a "clutch" between the ATPase and microtubule-binding domains of the dynein motor. Cell 2012; 150:975-86. [PMID: 22939623 PMCID: PMC3438448 DOI: 10.1016/j.cell.2012.07.022] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/23/2012] [Accepted: 07/10/2012] [Indexed: 11/21/2022]
Abstract
The lissencephaly protein Lis1 has been reported to regulate the mechanical behavior of cytoplasmic dynein, the primary minus-end-directed microtubule motor. However, the regulatory mechanism remains poorly understood. Here, we address this issue using purified proteins from Saccharomyces cerevisiae and a combination of techniques, including single-molecule imaging and single-particle electron microscopy. We show that rather than binding to the main ATPase site within dynein's AAA+ ring or its microtubule-binding stalk directly, Lis1 engages the interface between these elements. Lis1 causes individual dynein motors to remain attached to microtubules for extended periods, even during cycles of ATP hydrolysis that would canonically induce detachment. Thus, Lis1 operates like a “clutch” that prevents dynein's ATPase domain from transmitting a detachment signal to its track-binding domain. We discuss how these findings provide a conserved mechanism for dynein functions in living cells that require prolonged microtubule attachments.
Collapse
|
690
|
Alushin GM, Musinipally V, Matson D, Tooley J, Stukenberg PT, Nogales E. Multimodal microtubule binding by the Ndc80 kinetochore complex. Nat Struct Mol Biol 2012; 19:1161-7. [PMID: 23085714 PMCID: PMC3492541 DOI: 10.1038/nsmb.2411] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/12/2012] [Indexed: 01/13/2023]
Abstract
The Ndc80 complex is a key site of kinetochore-microtubule attachment during cell division. The human complex engages microtubules with a globular 'head' formed by tandem calponin-homology domains and an 80-amino-acid unstructured 'tail' that contains sites of phosphoregulation by the Aurora B kinase. Using biochemical, cell biological and electron microscopy analyses, we dissected the roles of the tail in binding of microtubules and mediation of cooperative interactions between Ndc80 complexes. Two segments of the tail that contain Aurora B phosphorylation sites become ordered at interfaces; one with tubulin and the second with an adjacent Ndc80 head on the microtubule surface, forming interactions that are disrupted by phosphorylation. We propose a model in which Ndc80's interaction with either growing or shrinking microtubule ends can be tuned by the phosphorylation state of its tail.
Collapse
Affiliation(s)
- Gregory M Alushin
- Biophysics Graduate Group, University of California Berkeley, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
691
|
Gayathri P, Fujii T, Møller-Jensen J, van den Ent F, Namba K, Löwe J. A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation. Science 2012; 338:1334-7. [PMID: 23112295 DOI: 10.1126/science.1229091] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To ensure their stable inheritance by daughter cells during cell division, bacterial low-copy-number plasmids make simple DNA segregating machines that use an elongating protein filament between sister plasmids. In the ParMRC system of the Escherichia coli R1 plasmid, ParM, an actinlike protein, forms the spindle between ParRC complexes on sister plasmids. By using a combination of structural work and total internal reflection fluorescence microscopy, we show that ParRC bound and could accelerate growth at only one end of polar ParM filaments, mechanistically resembling eukaryotic formins. The architecture of ParM filaments enabled two ParRC-bound filaments to associate in an antiparallel orientation, forming a bipolar spindle. The spindle elongated as a bundle of at least two antiparallel filaments, thereby pushing two plasmid clusters toward the poles.
Collapse
Affiliation(s)
- P Gayathri
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
692
|
Henche AL, Ghosh A, Yu X, Jeske T, Egelman E, Albers SV. Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius. Environ Microbiol 2012; 14:3188-202. [PMID: 23078543 DOI: 10.1111/j.1462-2920.2012.02898.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/17/2012] [Accepted: 09/15/2012] [Indexed: 11/26/2022]
Abstract
Archaea display a variety of type IV pili on their surface and employ them in different physiological functions. In the crenarchaeon Sulfolobus acidocaldarius the most abundant surface structure is the aap pilus (archaeal adhesive pilus). The construction of in frame deletions of the aap genes revealed that all the five genes (aapA, aapX, aapE, aapF, aapB) are indispensible for assembly of the pilus and an impact on surface motility and biofilm formation was observed. Our analyses revealed that there exists a regulatory cross-talk between the expression of aap genes and archaella (formerly archaeal flagella) genes during different growth phases. The structure of the aap pilus is entirely different from the known bacterial type IV pili as well as other archaeal type IV pili. An aap pilus displayed 3 stranded helices where there is a rotation per subunit of ∼138° and a rise per subunit of ∼5.7 Å. The filaments have a diameter of ∼110 Å and the resolution was judged to be ∼9 Å. We concluded that small changes in sequence might be amplified by large changes in higher-order packing. Our finding of an extraordinary stability of aap pili possibly represents an adaptation to harsh environments that S. acidocaldarius encounters.
Collapse
Affiliation(s)
- Anna-Lena Henche
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
693
|
Whiteley G, Collins RF, Kitmitto A. Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor. J Biol Chem 2012; 287:40302-16. [PMID: 23071107 PMCID: PMC3504746 DOI: 10.1074/jbc.m112.377085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caveolin-3 (cav-3), an integral membrane protein, is a building block of caveolae as well as a regulator of a number of physiological processes by facilitating the formation of multiprotein signaling complexes. We report that the expression of cav-3 in insect (Sf9) cells induces caveola formation, comparable in size with those observed in native tissue. We have also purified the recombinant cav-3 determining that it forms an oligomer of ∼220 kDa. We present the first three-dimensional structure for cav-3 (using transmission electron microscopy and single particle analysis methods) and show that nine cav-3 monomers assemble to form a complex that is toroidal in shape, ∼16.5 nm in diameter and ∼ 5.5 nm in height. Labeling experiments and reconstitution of the purified cav-3 into liposomes have allowed a proposal for the orientation of the protein with respect to the membrane. We have identified multiple caveolin-binding motifs within the ryanodine receptor (RyR1) sequence employing a bioinformatic analysis. We have then shown experimentally that there is a direct interaction between recombinant cav-3 nonamers and purified RyR1 homotetramers that would imply that at least one of the predicted cav-3-binding sites is exposed within the fully assembled RyR1 structure. The cav-3 three-dimensional model provides new insights as to how a cav-3 oligomer can bind multiple partners in close proximity to form signaling complexes. Furthermore, a direct interaction with RyR1 suggests a possible role for cav-3 as a modifier of muscle excitation-contraction coupling and/or for localization of the receptor to regions of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Gareth Whiteley
- School of Biomedicine, Cardiovascular Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9NT, UK
| | | | | |
Collapse
|
694
|
Maisel T, Joseph S, Mielke T, Bürger J, Schwarzinger S, Meyer O. The CoxD protein, a novel AAA+ ATPase involved in metal cluster assembly: hydrolysis of nucleotide-triphosphates and oligomerization. PLoS One 2012; 7:e47424. [PMID: 23077613 PMCID: PMC3471820 DOI: 10.1371/journal.pone.0047424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
CoxD of the α-proteobacterium Oligotropha carboxidovorans is a membrane protein which is involved in the posttranslational biosynthesis of the [CuSMoO₂] cluster in the active site of the enzyme CO dehydrogenase. The bacteria synthesize CoxD only in the presence of CO. Recombinant CoxD produced in E. coli K38 pGP1-2/pETMW2 appeared in inclusion bodies from where it was solubilized by urea and refolded by stepwise dilution. Circular dichroism spectroscopy revealed the presence of secondary structural elements in refolded CoxD. CoxD is a P-loop ATPase of the AAA-protein family. Refolded CoxD catalyzed the hydrolysis of MgATP yielding MgADP and inorganic phosphate at a 1∶1∶1 molar ratio. The reaction was inhibited by the slow hydrolysable MgATP-γ-S. GTPase activity of CoxD did not exceed 2% of the ATPase activity. Employing different methods (non linear regression, Hanes and Woolf, Lineweaver-Burk), preparations of CoxD revealed a mean K(M) value of 0.69±0.14 mM ATP and an apparent V(max) value of 19.3±2.3 nmol ATP hydrolyzed min⁻¹ mg⁻¹. Sucrose density gradient centrifugation and gel filtration showed that refolded CoxD can exist in various multimeric states (2-mer, 4-mer or 6-mer), preferentially as hexamer or dimer. Within weeks the hexamer dissociates into the dimer, a process which can be reversed by MgATP or MgATP-γ-S within hours. Only the hexamers and the dimers exhibited MgATPase activity. Transmission electron microscopy of negatively stained CoxD preparations revealed distinct particles within a size range of 10-16 nm, which further corroborates the oligomeric organization. The 3D structure of CoxD was modeled with the 3D structure of BchI from Rhodobacter capsulatus as template. It has the key elements of an AAA+ domain in the same arrangement and at same positions as in BchI and displays the characteristic inserts of the PS-II-insert clade. Possible functions of CoxD in [CuSMoO₂] cluster assembly are discussed.
Collapse
Affiliation(s)
- Tobias Maisel
- Chair of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Stephanie Joseph
- Chair of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Thorsten Mielke
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Jörg Bürger
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Stephan Schwarzinger
- Chair of Biopolymers, University of Bayreuth, Bayreuth, Germany
- The Bayreuth Research Center for Bio-Macromolecules, Bayreuth, Germany
| | - Ortwin Meyer
- Chair of Microbiology, University of Bayreuth, Bayreuth, Germany
- The Bayreuth Research Center for Bio-Macromolecules, Bayreuth, Germany
- * E-mail:
| |
Collapse
|
695
|
Mancour LV, Daghestani HN, Dutta S, Westfield GH, Schilling J, Oleskie AN, Herbstman JF, Chou SZ, Skiniotis G. Ligand-induced architecture of the leptin receptor signaling complex. Mol Cell 2012; 48:655-61. [PMID: 23063524 DOI: 10.1016/j.molcel.2012.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/17/2012] [Accepted: 09/05/2012] [Indexed: 11/20/2022]
Abstract
Despite the crucial impact of leptin signaling on metabolism and body weight, little is known about the structure of the liganded leptin receptor (LEP-R) complex. Here, we applied single-particle electron microscopy (EM) to characterize the architecture of the extracellular region of LEP-R alone and in complex with leptin. We show that unliganded LEP-R displays significant flexibility in a hinge region within the cytokine homology region 2 (CHR2) that is connected to rigid membrane-proximal FnIII domains. Leptin binds to CHR2 in order to restrict the flexible hinge and the disposition of the FnIII "legs." Through a separate interaction, leptin engages the Ig-like domain of a second liganded LEP-R, resulting in the formation of a quaternary signaling complex. We propose that the membrane proximal domain rigidification in the context of a liganded cytokine receptor dimer is a key mechanism for the transactivation of Janus kinases (Jaks) bound at the intracellular receptor region.
Collapse
Affiliation(s)
- Liliya V Mancour
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
696
|
Zhou Q, Sun S, Tai P, Sui SF. Structural characterization of the complex of SecB and metallothionein-labeled proOmpA by cryo-electron microscopy. PLoS One 2012; 7:e47015. [PMID: 23056562 PMCID: PMC3464278 DOI: 10.1371/journal.pone.0047015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
ProOmpA is a preprotein that is translocated across the plasma membrane by the general secretory pathway in Escherichia coli. The molecular chaperon SecB in Sec pathway can recognize and bind proOmpA for its translocation. However, the structure of the SecB/proOmpA complex remains unknown. Here, we constructed an uncleavable proOmpA fused with metallothionein at its C-terminus and labeled it with metals in vitro for the study of cryo-electron microscopy. Using single particle cryo-electron microscopy, we reconstructed 3D structure of the stable SecB/proOmpA complex. The structure shows that the major portion of preprotein locates on one side of SecB tetramer, resulting in an asymmetric binding pattern. This work also provides a possible approach to the structure determination of small protein complexes by cryo-electron microscopy.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Phang Tai
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
697
|
Fernandez JJ. Computational methods for electron tomography. Micron 2012; 43:1010-30. [DOI: 10.1016/j.micron.2012.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023]
|
698
|
Abstract
Ribosome protection proteins (RPPs) confer tetracycline resistance by binding to the ribosome and chasing the drug from its binding site. The current model for the mechanism of action of RPPs proposes that drug release is indirect and achieved via conformational changes within the drug-binding site induced upon binding of the RPP to the ribosome. Here we report a cryo-EM structure of the RPP TetM in complex with the 70S ribosome at 7.2-Å resolution. The structure reveals the contacts of TetM with the ribosome, including interaction between the conserved and functionally critical C-terminal extension of TetM and the decoding center of the small subunit. Moreover, we observe direct interaction between domain IV of TetM and the tetracycline binding site and identify residues critical for conferring tetracycline resistance. A model is presented whereby TetM directly dislodges tetracycline to confer resistance.
Collapse
|
699
|
Enchev RI, Scott DC, da Fonseca PCA, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP. Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep 2012; 2:616-27. [PMID: 22959436 PMCID: PMC3703508 DOI: 10.1016/j.celrep.2012.08.019] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022] Open
Abstract
Skp1-Cul1-Fbox (SCF) E3 ligases are activated by ligation to the ubiquitin-like protein Nedd8, which is reversed by the deneddylating Cop9 signalosome (CSN). However, CSN also promotes SCF substrate turnover through unknown mechanisms. Through biochemical and electron microscopy analyses, we determined molecular models of CSN complexes with SCF(Skp2/Cks1) and SCF(Fbw7) and found that CSN occludes both SCF functional sites-the catalytic Rbx1-Cul1 C-terminal domain and the substrate receptor. Indeed, CSN binding prevents SCF interactions with E2 enzymes and a ubiquitination substrate, and it inhibits SCF-catalyzed ubiquitin chain formation independent of deneddylation. Importantly, CSN prevents neddylation of the bound cullin, unless binding of a ubiquitination substrate triggers SCF dissociation and neddylation. Taken together, the results provide a model for how reciprocal regulation sensitizes CSN to the SCF assembly state and inhibits a catalytically competent SCF until a ubiquitination substrate drives its own degradation by displacing CSN, thereby promoting cullin neddylation and substrate ubiquitination.
Collapse
Affiliation(s)
- Radoslav I. Enchev
- ETH-Zurich, Institute of Biochemistry, Department of Biology, Schafmattstr. 18, CH-8093 Zurich, Switzerland
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Daniel C. Scott
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Paula C. A. da Fonseca
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Anne Schreiber
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Julie K. Monda
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brenda A. Schulman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matthias Peter
- ETH-Zurich, Institute of Biochemistry, Department of Biology, Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | - Edward P. Morris
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
700
|
Lu C, Mi LZ, Schürpf T, Walz T, Springer TA. Mechanisms for kinase-mediated dimerization of the epidermal growth factor receptor. J Biol Chem 2012; 287:38244-53. [PMID: 22988250 DOI: 10.1074/jbc.m112.414391] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We study a mechanism by which dimerization of the EGF receptor (EGFR) cytoplasmic domain is transmitted to the ectodomain. Therapeutic and other small molecule antagonists to the kinase domain that stabilize its active conformation, but not those that stabilize an inactive conformation, stabilize ectodomain dimerization. Inhibitor-induced dimerization requires an asymmetric kinase domain interface associated with activation. EGF and kinase inhibitors stimulate formation of identical dimer interfaces in the EGFR transmembrane domain, as shown by disulfide cross-linking. Disulfide cross-linking at an interface in domain IV in the ectodomain was also stimulated similarly; however, EGF but not inhibitors stimulated cross-linking in domain II. Inhibitors similarly induced noncovalent dimerization in nearly full-length, detergent-solubilized EGFR as shown by gel filtration. EGFR ectodomain deletion resulted in spontaneous dimerization, whereas deletion of exons 2-7, in which extracellular domains III and IV are retained, did not. In EM, kinase inhibitor-induced dimers lacked any well defined orientation between the ectodomain monomers. Fab of the therapeutic antibody cetuximab to domain III confirmed a variable position and orientation of this domain in inhibitor-induced dimers but suggested that the C termini of domain IV of the two monomers were in close proximity, consistent with dimerization in the transmembrane domains. The results provide insights into the relative energetics of intracellular and extracellular dimerization in EGFR and have significance for physiologic dimerization through the asymmetric kinase interface, bidirectional signal transmission in EGFR, and mechanism of action of therapeutics.
Collapse
Affiliation(s)
- Chafen Lu
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|