651
|
Abstract
Viral infection induces endoplasmic reticulum (ER) stress and interferon responses. While viral double-stranded RNA intermediates trigger interferon responses, viral polypeptides synthesized during infection stimulate ER stress. Among the interferon-regulated gene products, the double-stranded RNA-dependent protein kinase (PKR) plays a key role in limiting viral replication. Thus, to establish productive infection, viruses have evolved mechanisms to overcome the deleterious effects of PKR. It has become clear that ER stress causes translational attenuation and transcriptional upregulation of genes encoding proteins that facilitate folding or degradation of proteins. Notably, prolonged ER stress triggers apoptosis. Therefore, viruses are confronted with the consequences of ER stress. Emerging evidence suggests that viruses not only interfere with the interferon system involving PKR but also manipulate the programs emanating from the ER in a complex way, which may facilitate viral replication or pathogenesis. This review highlights recent progress in these areas.
Collapse
Affiliation(s)
- B He
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
652
|
Doherty PC, Turner SJ, Webby RG, Thomas PG. Influenza and the challenge for immunology. Nat Immunol 2006; 7:449-55. [PMID: 16622432 DOI: 10.1038/ni1343] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 02/22/2006] [Indexed: 01/15/2023]
Abstract
The continued westward dissemination of H5N1 influenza A viruses in avian populations and the nearly 50% mortality rate of humans infected with H5N1 are a source of great international concern. A mutant H5N1 virus with the capability to spread rapidly between humans could cause a global catastrophe. Governments have reacted by developing national response plans, stockpiling antiviral drugs and speeding up the development and approval of vaccines. Here we summarize what is known about the interaction between influenza A viruses and the mammalian host response, specifically emphasizing issues that might be of interest to the broader immunology community.
Collapse
Affiliation(s)
- Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne School of Medicine, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
653
|
López CB, Yount JS, Moran TM. Toll-like receptor-independent triggering of dendritic cell maturation by viruses. J Virol 2006; 80:3128-34. [PMID: 16537581 PMCID: PMC1440398 DOI: 10.1128/jvi.80.7.3128-3134.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Carolina B López
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
654
|
Abstract
Influenza viruses are a leading cause of morbidity and mortality worldwide despite the availability of an effective vaccine. The emergence of highly pathogenic avian influenza viruses in southeast Asia, which can infect and kill humans and for which there is no vaccine, has heightened the need to establish a supply of effective antivirals. Two effective classes of anti-influenza drugs are currently available, and many attractive targets exist for further development. This review presents the current status of antiviral therapy of, and highlights the challenges presented by, the threat of pandemic influenza.
Collapse
Affiliation(s)
- Jonathan A McCullers
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA.
| |
Collapse
|
655
|
Marjuki H, Alam MI, Ehrhardt C, Wagner R, Planz O, Klenk HD, Ludwig S, Pleschka S. Membrane accumulation of influenza A virus hemagglutinin triggers nuclear export of the viral genome via protein kinase Calpha-mediated activation of ERK signaling. J Biol Chem 2006; 281:16707-15. [PMID: 16608852 DOI: 10.1074/jbc.m510233200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication and transcription of the influenza virus genome takes place exclusively within the nucleus of the infected cells. The viral RNA genome, polymerase subunits, and nucleoprotein form ribonucleoprotein (RNP) complexes. Late in the infectious cycle RNPs have to be exported from the nucleus to be enwrapped into budding progeny virions at the cell membrane. This process requires viral activation of the cellular Raf/MEK/ERK (mitogen-activated protein kinase (MAPK)) signaling cascade that is activated late in the infection cycle. Accordingly, block of the cascade results in retardation of RNP export and reduced titers of progeny virus. In the present study we have analyzed the importance of cell-membrane association of the viral hemagglutinin glycoprotein for viral MAPK activation. We show that hemagglutinin membrane accumulation and its tight association with lipid-raft domains trigger activation of the MAPK cascade via protein kinase Calpha activation and induces RNP export. This may represent an auto-regulative mechanism that coordinates timing of RNP export to a point when all viral components are ready for virus budding.
Collapse
Affiliation(s)
- Henju Marjuki
- Institute for Medical Virology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
656
|
Marsh GA, Tannock GA. The role of reverse genetics in the development of vaccines against respiratory viruses. Expert Opin Biol Ther 2006; 5:369-80. [PMID: 15833074 PMCID: PMC7105756 DOI: 10.1517/14712598.5.3.369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Despite their significance, the only available vaccines against respiratory viruses are
those for the prevention of influenza. Attempts have been made to produce vaccines against
other respiratory viruses using traditional techniques, but have met with little success.
Reverse genetics, although still a r-elatively new tool for the manipulation of
negative-strand RNA viruses, has great potential for the preparation of vaccines against
many of the common respiratory viruses. In the preparation of live vaccines, reverse
genetics s-ystems allow the direct modification of the specific regions in the genomes of
negative-stranded RNA viruses concerned with attenuation; the ultimate goal is the
introduction of site-specific mutations through a cDNA intermediate in order to develop
strains with the requisite attenuation, antigenic and growth properties needed in a
vaccine. These techniques can also be used to disarm potentially highly pathogenic
viruses, such as emerging H5N1 avian influenza viruses, in order to facilitate large-scale
preparation of viruses for use in inactivated vaccines under conditions of manufacturing
safety. Before these vaccines become available, residual issues concerned with
intellectual property rights to the technology and its application will need to be
resolved.
Collapse
Affiliation(s)
- GA Marsh
- Mount Sinai School of Medicine, Department of
Microbiology, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - GA Tannock
- RMIT University, Department of Biotechnology and
Environmental Biology, PO Box 71, Bundoora Vic., 3083, Australia .
| |
Collapse
|
657
|
Palese P, Tumpey TM, Garcia-Sastre A. What can we learn from reconstructing the extinct 1918 pandemic influenza virus? Immunity 2006; 24:121-4. [PMID: 16473822 DOI: 10.1016/j.immuni.2006.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Peter Palese
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
658
|
Haller O, Kochs G, Weber F. The interferon response circuit: induction and suppression by pathogenic viruses. Virology 2006; 344:119-30. [PMID: 16364743 PMCID: PMC7125643 DOI: 10.1016/j.virol.2005.09.024] [Citation(s) in RCA: 527] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 09/10/2005] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFN-α/β) are potent antiviral cytokines and modulators of the adaptive immune system. They are induced by viral infection or by double-stranded RNA (dsRNA), a by-product of viral replication, and lead to the production of a broad range of antiviral proteins and immunoactive cytokines. Viruses, in turn, have evolved multiple strategies to counter the IFN system which would otherwise stop virus growth early in infection. Here we discuss the current view on the balancing act between virus-induced IFN responses and the viral counterplayers.
Collapse
Affiliation(s)
- Otto Haller
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | | | |
Collapse
|
659
|
Garaigorta U, Falcón AM, Ortín J. Genetic analysis of influenza virus NS1 gene: a temperature-sensitive mutant shows defective formation of virus particles. J Virol 2006; 79:15246-57. [PMID: 16306596 PMCID: PMC1316024 DOI: 10.1128/jvi.79.24.15246-15257.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To perform a genetic analysis of the influenza A virus NS1 gene, a library of NS1 mutants was generated by PCR-mediated mutagenesis. A collection of mutant ribonucleic proteins containing the nonstructural genes was generated from the library that were rescued for an infectious virus mutant library by a novel RNP competition virus rescue procedure. Several temperature-sensitive (ts) mutant viruses were obtained by screening of the mutant library, and the sequences of their NS1 genes were determined. Most of the mutations identified led to amino acid exchanges and concentrated in the N-terminal region of the protein, but some of them occurred in the C-terminal region. Mutant 11C contained three mutations that led to amino acid exchanges, V18A, R44K, and S195P, all of which were required for the ts phenotype, and was characterized further. Several steps in the infection were slightly altered: (i) M1, M2, NS1, and neuraminidase (NA) accumulations were reduced and (ii) NS1 protein was retained in the nucleus in a temperature-independent manner, but these modifications could not justify the strong virus titer reduction at restrictive temperature. The most dramatic phenotype was the almost complete absence of virus particles in the culture medium, in spite of normal accumulation and nucleocytoplasmic export of virus RNPs. The function affected in the 11C mutant was required late in the infection, as documented by shift-up and shift-down experiments. The defect in virion production was not due to reduced NA expression, as virus yield could not be rescued by exogenous neuraminidase treatment. All together, the analysis of 11C mutant phenotype may indicate a role for NS1 protein in a late event in virus morphogenesis.
Collapse
Affiliation(s)
- Urtzi Garaigorta
- Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
660
|
Hayman A, Comely S, Lackenby A, Murphy S, McCauley J, Goodbourn S, Barclay W. Variation in the ability of human influenza A viruses to induce and inhibit the IFN-β pathway. Virology 2006; 347:52-64. [PMID: 16378631 DOI: 10.1016/j.virol.2005.11.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 12/01/2022]
Abstract
We investigated the ability of a selection of human influenza A viruses, including recent clinical isolates, to induce IFN-beta production in cultured cell lines. In contrast to the well-characterized laboratory strain A/PR/8/34, several, but not all, recent isolates of H3N2 viruses resulted in moderate IFN-beta stimulation. Through the generation of recombinant viruses, we were able to show that this is not due to a loss of the ability of the NS1 genes to suppress IFN-beta induction; indeed, the NS1 genes behaved similarly with respect to their abilities to block dsRNA signaling. Interestingly, replication of A/Sydney/5/97 virus was less susceptible to pre-treatment with IFN-alpha than the other viruses. In contrast to the universal effect on dsRNA signaling, we noted differences in the effect of NS1 proteins on expression of interferon stimulated genes and also genes induced by a distinct pathway. The majority of NS1 proteins blocked expression from both IFN-dependent and TNF-dependent promoters by an apparent post-transcriptional mechanism. The NS1 gene of A/PR/8/34 NS1 did not confer these blocks. We noted striking differences in the cellular localization of different influenza A virus NS1 proteins during infection, which might explain differences in biological activity.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Chlorocebus aethiops
- DNA, Viral/genetics
- Genes, Reporter
- Genes, Viral
- Humans
- Immunity, Innate
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/pathogenicity
- Interferon-beta/biosynthesis
- Interferon-beta/genetics
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- Recombination, Genetic
- Signal Transduction
- Vero Cells
- Viral Nonstructural Proteins/genetics
Collapse
Affiliation(s)
- A Hayman
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | | | | | | | | | | | | |
Collapse
|
661
|
Taubenberger JK. The virulence of the 1918 pandemic influenza virus: unraveling the enigma. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2006:101-15. [PMID: 16355870 DOI: 10.1007/3-211-29981-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The 1918 influenza pandemic caused acute illness in 25-30% of the world's population and resulted in the death of up to 40 million people. Using lung tissue of 1918 influenza victims, the complete genomic sequence of the 1918 influenza virus is being deduced. Neither the 1918 hemagglutinin nor neuraminidase genes possess mutations known to increase tissue tropicity that account for virulence of other influenza virus strains, such as A/WSN/33 or the highly pathogenic avian influenza H5 or H7 viruses. Using reverse genetics approaches, influenza virus constructs containing the 1918 hemagglutinin and neuraminidase on an A/WSN/33 virus background were lethal in mice. The genotypic basis of this virulence has not yet been elucidated. The complete sequence of the non-structural (NS) gene segment of the 1918 virus was deduced and also tested to determine the validity of the hypothesis that enhanced virulence in 1918 could have been due to type I interferon inhibition by the NS1 protein. Results from these experiments suggest that in human cells the 1918 NS1 is a very effective interferon antagonist. Sequence analysis of the 1918 influenza virus is allowing us to test hypotheses as to the origin and virulence of this strain. This information should help elucidate how pandemic influenza virus strains emerge and what genetic features contribute to virulence in humans.
Collapse
Affiliation(s)
- J K Taubenberger
- Department of Molecular Pathology, Armed Forces Institute of Pathology, Rockville, Maryland 20850-3125, USA.
| |
Collapse
|
662
|
Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW. Large-scale sequence analysis of avian influenza isolates. Science 2006; 311:1576-80. [PMID: 16439620 DOI: 10.1126/science.1121586] [Citation(s) in RCA: 472] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The spread of H5N1 avian influenza viruses (AIVs) from China to Europe has raised global concern about their potential to infect humans and cause a pandemic. In spite of their substantial threat to human health, remarkably little AIV whole-genome information is available. We report here a preliminary analysis of the first large-scale sequencing of AIVs, including 2196 AIV genes and 169 complete genomes. We combine this new information with public AIV data to identify new gene alleles, persistent genotypes, compensatory mutations, and a potential virulence determinant.
Collapse
MESH Headings
- Animals
- Birds/virology
- Computational Biology
- Genes, Viral
- Genome, Viral
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H2N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N8 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/chemistry
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N2 Subtype/genetics
- Influenza A Virus, H7N7 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A virus/chemistry
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza A virus/pathogenicity
- Influenza in Birds/virology
- Influenza, Human/virology
- Molecular Sequence Data
- Mutation
- Phylogeny
- RNA, Viral/genetics
- Reassortant Viruses/genetics
- Sequence Analysis, DNA
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Virulence Factors/chemistry
- Virulence Factors/genetics
Collapse
Affiliation(s)
- John C Obenauer
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
663
|
Nishio M, Tsurudome M, Ito M, Ito Y. Human parainfluenza virus type 4 is incapable of evading the interferon-induced antiviral effect. J Virol 2006; 79:14756-68. [PMID: 16282476 PMCID: PMC1287573 DOI: 10.1128/jvi.79.23.14756-14768.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The V proteins of some paramyxoviruses have developed the ability to efficiently inactivate STAT protein function as a countermeasure for evading interferon (IFN) responses. Human parainfluenza virus type 4 (hPIV4) is one of the rubulaviruses, which are members of the family Paramyxoviridae, and has a V protein with a highly conserved cysteine-rich domain that is the hallmark of paramyxovirus V proteins. In order to study the function of the hPIV4 V protein, we established HeLa cells expressing the hPIV4A V protein (HeLa/FlagPIV4V). The hPIV4 V protein had no ability to reduce the level of STAT1 or STAT2, although it associated with STAT1, STAT2, DDB1, and Cul4A. It interfered with neither STAT1 and STAT2 tyrosine phosphorylation nor IFN-induced STAT nuclear accumulation. In addition, HeLa/FlagPIV4V cells are fully sensitive to both beta interferon (IFN-beta) and IFN-gamma, indicating that the hPIV4 V protein has no ability to block IFN-induced signaling. We further established HeLa cells expressing various chimeric proteins between the hPIV2 and hPIV4A V proteins. The lack of IFN-antagonistic activity of the hPIV4 V protein is caused by both the P/V common and V-specific domains. At least two regions (amino acids [aa] 32 to 45 and aa 143 to 164) of hPIV4 V in the P/V common domain and one region (aa 200 to 212) of the C terminus are involved in the inability to evade the IFN-induced signaling. Moreover, we established HeLa cells persistently infected with hPIV4 to make sure of the inability to escape IFN and confirmed that hPIV4 is the only paramyxovirus analyzed to date that can't evade the IFN-induced antiviral responses.
Collapse
Affiliation(s)
- Machiko Nishio
- Department of Microbiology, Mie University School of Medicine, 2-174, Edobashi, Tsu-shi, Mie Prefecture, 514-8507 Japan.
| | | | | | | |
Collapse
|
664
|
Abstract
The outcome of viral infections depends on a complex set of interactions between the viruses and their hosts. Particularly, viral infection triggers specific signaling programs within the infected cells that results in substantial changes in host gene expression. While some of these changes might be beneficial for viral replication, others represent the induction of a host antiviral response. In this respect, viruses have evolved genes that counteract this initial innate antiviral response. These viral-host interactions shape the subsequent phases of the disease and influence the adaptive immune response. In influenza viruses, the nonstructural protein 1 inhibits the interferon-mediated antiviral response. The regulatory activities of this viral protein play a major role in the pathogenicity of influenza virus and appear partially responsible for the ability of influenza viruses to infect multiple animal species, which likely contributes to the generation of new pandemic viruses in humans.
Collapse
|
665
|
Vieira Machado A, Naffakh N, Gerbaud S, van der Werf S, Escriou N. Recombinant influenza A viruses harboring optimized dicistronic NA segment with an extended native 5' terminal sequence: induction of heterospecific B and T cell responses in mice. Virology 2005; 345:73-87. [PMID: 16271378 DOI: 10.1016/j.virol.2005.09.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 06/23/2005] [Accepted: 09/23/2005] [Indexed: 11/27/2022]
Abstract
We generated novel recombinant influenza A viruses (vNA38) harboring dicistronic NA segments with an extended native 5' terminal sequence of 70 nucleotides comprised of the last 42 nucleotides of the NA ORF and the 5' noncoding region (5' NCR). vNA38 viruses replicated stably and more efficiently than vNA35 viruses with a dicistronic NA segment comprised of the native 5' NCR only, that we described previously (Vieira Machado, A., Naffakh, N., van der Werf, S., Escriou, N., 2003. Expression of a foreign gene by stable recombinant influenza viruses harboring a dicistronic genomic segment with an internal promoter. Virology 313, 235-249). In addition, vNA38 viruses drove the expression of higher levels of encoded heterologous proteins than corresponding vNA35 viruses, both in cell culture and in the pulmonary tissue of infected mice. These data demonstrate that a sequence overlapping 5' coding and noncoding regions of the NA segment determines efficient replication and/or propagation of the vRNA. Intranasal immunization of mice with live vNA38 viruses induced B and T cell responses specific for the heterologous protein expressed, establishing the usefulness of such recombinant influenza viruses with a dicistronic segment for the development of live bivalent vaccines.
Collapse
Affiliation(s)
- Alexandre Vieira Machado
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
666
|
Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 2005. [PMID: 16160183 DOI: 10.1128/jvi.19.12554-12565.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rabies virus (RV) induces encephalomyelitis in humans and animals. However, the pathogenic mechanism of rabies is not fully understood. To investigate the host responses to RV infection, we examined and compared the pathology, particularly the inflammatory responses, and the gene expression profiles in the brains of mice infected with wild-type (wt) virus silver-haired bat RV (SHBRV) or laboratory-adapted virus B2C, using a mouse genomic array (Affymetrix). Extensive inflammatory responses were observed in animals infected with the attenuated RV, but little or no inflammatory responses were found in mice infected with wt RV. Furthermore, attenuated RV induced the expression of the genes involved in the innate immune and antiviral responses, especially those related to the alpha/beta interferon (IFN-alpha/beta) signaling pathways and inflammatory chemokines. For the IFN-alpha/beta signaling pathways, many of the interferon regulatory genes, such as the signal transduction activation transducers and interferon regulatory factors, as well as the effector genes, for example, 2'-5'-oligoadenylate synthetase and myxovirus proteins, are highly induced in mice infected with attenuated RV. However, many of these genes were not up-regulated in mice infected with wt SHBRV. The data obtained by microarray analysis were confirmed by real-time PCR. Together, these data suggest that attenuated RV activates, while pathogenic RV evades, the host innate immune and antiviral responses.
Collapse
|
667
|
Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF. Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 2005; 79:12554-65. [PMID: 16160183 PMCID: PMC1211539 DOI: 10.1128/jvi.79.19.12554-12565.2005] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rabies virus (RV) induces encephalomyelitis in humans and animals. However, the pathogenic mechanism of rabies is not fully understood. To investigate the host responses to RV infection, we examined and compared the pathology, particularly the inflammatory responses, and the gene expression profiles in the brains of mice infected with wild-type (wt) virus silver-haired bat RV (SHBRV) or laboratory-adapted virus B2C, using a mouse genomic array (Affymetrix). Extensive inflammatory responses were observed in animals infected with the attenuated RV, but little or no inflammatory responses were found in mice infected with wt RV. Furthermore, attenuated RV induced the expression of the genes involved in the innate immune and antiviral responses, especially those related to the alpha/beta interferon (IFN-alpha/beta) signaling pathways and inflammatory chemokines. For the IFN-alpha/beta signaling pathways, many of the interferon regulatory genes, such as the signal transduction activation transducers and interferon regulatory factors, as well as the effector genes, for example, 2'-5'-oligoadenylate synthetase and myxovirus proteins, are highly induced in mice infected with attenuated RV. However, many of these genes were not up-regulated in mice infected with wt SHBRV. The data obtained by microarray analysis were confirmed by real-time PCR. Together, these data suggest that attenuated RV activates, while pathogenic RV evades, the host innate immune and antiviral responses.
Collapse
Affiliation(s)
- Zhi W Wang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
668
|
McBeath AJA, Collet B, Paley R, Duraffour S, Aspehaug V, Biering E, Secombes CJ, Snow M. Identification of an interferon antagonist protein encoded by segment 7 of infectious salmon anaemia virus. Virus Res 2005; 115:176-84. [PMID: 16202469 DOI: 10.1016/j.virusres.2005.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 08/12/2005] [Accepted: 08/12/2005] [Indexed: 01/12/2023]
Abstract
Infectious salmon anaemia virus (ISAV) is an orthomyxovirus and member of the genus Isavirus, which contains eight genomic segments coding for ten viral proteins. This study focussed on identifying the function of the largest protein encoded by ISAV genomic segment 7 (7i), which like influenza A segment 7 encodes two proteins, one of which is based on removal of an intron from the primary transcript. Using two independent methods, an Mx1 promoter-driven reporter system and real-time PCR of FACS-sorted transfected cells, we demonstrate that the non-structural ISAV 7i protein is an interferon-signalling antagonist. Other transfection studies indicated a predominantly cytoplasmic localisation of the expressed protein, which is consistent with this role. The demonstration that ISAV segment 7 encodes a putative non-structural IFN system antagonist reveals a difference with influenza A virus, where segment 7, which shares a similar coding strategy, encodes the structural matrix proteins.
Collapse
|
669
|
Falcón AM, Fernandez-Sesma A, Nakaya Y, Moran TM, Ortín J, García-Sastre A. Attenuation and immunogenicity in mice of temperature-sensitive influenza viruses expressing truncated NS1 proteins. J Gen Virol 2005; 86:2817-2821. [PMID: 16186237 DOI: 10.1099/vir.0.80991-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was previously shown that two mutant influenza A viruses expressing C-terminally truncated forms of the NS1 protein (NS1-81 and NS1-110) were temperature sensitive in vitro. These viruses contain HA, NA and M genes derived from influenza A/WSN/33 H1N1 virus (mouse-adapted), and the remaining five genes from human influenza A/Victoria/3/75 virus. Mice intranasally infected with the NS1 mutant viruses showed undetectable levels of virus in lungs at day 3, whereas those infected with the NS1 wild-type control virus still had detectable levels of virus at this time. Nevertheless, the temperature-sensitive mutant viruses induced specific cellular and humoral immune responses similar to those induced by the wild-type virus. Mice immunized with the NS1 mutant viruses were protected against a lethal challenge with influenza A/WSN/33 virus. These results indicate that truncations in the NS1 protein resulting in temperature-sensitive phenotypes in vitro correlate with attenuation in vivo without compromising viral immunogenicity, an ideal characteristic for live attenuated viral vaccines.
Collapse
Affiliation(s)
- Ana M Falcón
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Ana Fernandez-Sesma
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Yurie Nakaya
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Thomas M Moran
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Juan Ortín
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
670
|
Zamarin D, García-Sastre A, Xiao X, Wang R, Palese P. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog 2005; 1:e4. [PMID: 16201016 PMCID: PMC1238739 DOI: 10.1371/journal.ppat.0010004] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 06/23/2005] [Indexed: 12/01/2022] Open
Abstract
The influenza virus PB1-F2 is an 87-amino acid mitochondrial protein that previously has been shown to induce cell death, although the mechanism of apoptosis induction has remained unclear. In the process of characterizing its mechanism of action we found that the viral PB1-F2 protein sensitizes cells to apoptotic stimuli such as tumor necrosis factor alpha, as demonstrated by increased cleavage of caspase 3 substrates in PB1-F2-expressing cells. Moreover, treatment of purified mouse liver mitochondria with recombinant PB1-F2 protein resulted in cytochrome c release, loss of the mitochondrial membrane potential, and enhancement of tBid-induced mitochondrial permeabilization, suggesting a possible mechanism for the observed cellular sensitization to apoptosis. Using glutathione-S-transferase pulldowns with subsequent mass spectrometric analysis, we identified the mitochondrial interactors of the PB1-F2 protein and showed that the viral protein uniquely interacts with the inner mitochondrial membrane adenine nucleotide translocator 3 and the outer mitochondrial membrane voltage-dependent anion channel 1, both of which are implicated in the mitochondrial permeability transition during apoptosis. Consistent with this interaction, blockers of the permeability transition pore complex (PTPC) inhibited PB1-F2-induced mitochondrial permeabilization. Based on our findings, we propose a model whereby the proapoptotic PB1-F2 protein acts through the mitochondrial PTPC and may play a role in the down-regulation of the host immune response to infection. PB1-F2 is a short polypeptide encoded by influenza viruses. While the role of this viral protein is not completely understood, it is known to localize in the mitochodria of the infected cell and to promote cell death. The authors found that PB1-F2 sensitizes cells to death through interactions with two mitochondrial proteins, ANT3 and VDAC1. These interactions promote the permeabilization of the mitochodria and facilitate the release of mitochondrial products that trigger cell death (apoptosis). PB1-F2-mediated cell death through the mitochondria is likely to contribute to the pathogenicity of the influenza virus.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Xiaoyao Xiao
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Rong Wang
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Peter Palese
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
671
|
Kibenge MJT, Munir K, Kibenge FSB. Constitutive expression of Atlantic salmon Mx1 protein in CHSE-214 cells confers resistance to infectious salmon anaemia virus. Virol J 2005; 2:75. [PMID: 16124877 PMCID: PMC1224881 DOI: 10.1186/1743-422x-2-75] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 08/26/2005] [Indexed: 11/23/2022] Open
Abstract
Infectious salmon anaemia (ISA) is a highly fatal viral disease affecting marine-farmed Atlantic salmon which is caused by ISA virus (ISAV), a fish orthomyxovirus that has recently been assigned to the new genus Isavirus within the family Orthomyxoviridae. Mx proteins are among the interferon (IFN)-induced proteins responsible for the development of an antiviral state in vertebrate cells. We used real-time reverse transcription-polymerase chain reaction (RT-PCR) and Chinook salmon embryo (CHSE-214) cells constitutively expressing Atlantic salmon Mx1 protein (ASMx1) to examine the antiviral properties of ASMx1 against two ISAV strains, NBISA01 and HKS-36, having phenotypically different growth properties (cytopathic vs non-cytopathic) in the CHSE-214 cell line. We present evidence that ISAV is sensitive to ASMx1. CHSE-214 cells constitutively expressing ASMx1 showed increased resistance to infection with the cytopathic ISAV strain NBISA01, manifested as delayed development of cytopathic effects (CPE) and significant reduction in the severity of CPE, as well as a 10-fold reduction in virus yield. However, by real-time RT-PCR we observed no significant difference in the mean threshold cycle (Ct) values of ISAV RNA levels, suggesting that the ASMx1 activity on ISAV occurs at the post-transcription steps of virus replication, possibly in the cytoplasm.
Collapse
Affiliation(s)
- Molly JT Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE. C1A 4P3. Canada
| | - Khalid Munir
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE. C1A 4P3. Canada
| | - Frederick SB Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE. C1A 4P3. Canada
| |
Collapse
|
672
|
Quinlivan M, Zamarin D, García-Sastre A, Cullinane A, Chambers T, Palese P. Attenuation of equine influenza viruses through truncations of the NS1 protein. J Virol 2005; 79:8431-9. [PMID: 15956587 PMCID: PMC1143746 DOI: 10.1128/jvi.79.13.8431-8439.2005] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine influenza is a common disease of the horse, causing significant morbidity worldwide. Here we describe the establishment of a plasmid-based reverse genetics system for equine influenza virus. Utilizing this system, we generated three mutant viruses encoding carboxy-terminally truncated NS1 proteins. We have previously shown that a recombinant human influenza virus lacking the NS1 gene (delNS1) could only replicate in interferon (IFN)-incompetent systems, suggesting that the NS1 protein is responsible for IFN antagonist activity. Contrary to previous findings with human influenza virus, we found that in the case of equine influenza virus, the length of the NS1 protein did not correlate with the level of attenuation of that virus. With equine influenza virus, the mutant virus with the shortest NS1 protein turned out to be the least attenuated. We speculate that the basis for attenuation of the equine NS1 mutant viruses generated is related to their level of NS1 protein expression. Our findings show that the recombinant mutant viruses are impaired in their ability to inhibit IFN production in vitro and they do not replicate as efficiently as the parental recombinant strain in embryonated hen eggs, in MDCK cells, or in vivo in a mouse model. Therefore, these attenuated mutant NS1 viruses may have potential as candidates for a live equine influenza vaccine.
Collapse
Affiliation(s)
- Michelle Quinlivan
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
673
|
Reid SP, Cárdenas WB, Basler CF. Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein. Virology 2005; 341:179-89. [PMID: 16095644 PMCID: PMC3955989 DOI: 10.1016/j.virol.2005.06.044] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/14/2005] [Accepted: 06/23/2005] [Indexed: 11/30/2022]
Abstract
We have identified a putative coiled-coil motif within the amino-terminal half of the ebolavirus VP35 protein. Cross-linking studies demonstrated the ability of VP35 to form trimers, consistent with the presence of a functional coiled-coil motif. VP35 mutants lacking the coiled-coil motif or possessing a mutation designed to disrupt coiled-coil function were defective in oligomerization, as deduced by co-immunoprecipitation studies. VP35 inhibits signaling that activates interferon regulatory factor 3 (IRF-3) and inhibits (IFN)-alpha/beta production. Experiments comparing the ability of VP35 mutants to block IFN responses demonstrated that the VP35 amino-terminus, which retains the putative coiled-coil motif, was unable to inhibit IFN responses, whereas the VP35 carboxy-terminus weakly inhibited the activation of IFN responses. IFN-antagonist function was restored when a heterologous trimerization motif was fused to the carboxy-terminal half of VP35, suggesting that an oligomerization function at the amino-terminus facilitates an "IFN-antagonist" function exerted by the carboxy-terminal half of VP35.
Collapse
Affiliation(s)
| | | | - Christopher F. Basler
- Corresponding Author: Christopher F. Basler, PhD, Assistant Professor, Dept. Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, Tel (212) 241-4847, Fax (212) 534-1684,
| |
Collapse
|
674
|
Spiegel M, Pichlmair A, Martínez-Sobrido L, Cros J, García-Sastre A, Haller O, Weber F. Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol 2005; 79:2079-86. [PMID: 15681410 PMCID: PMC546554 DOI: 10.1128/jvi.79.4.2079-2086.2005] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus termed SARS-CoV. We and others have previously shown that the replication of SARS-CoV can be suppressed by exogenously added interferon (IFN), a cytokine which is normally synthesized by cells as a reaction to virus infection. Here, we demonstrate that SARS-CoV escapes IFN-mediated growth inhibition by preventing the induction of IFN-beta. In SARS-CoV-infected cells, no endogenous IFN-beta transcripts and no IFN-beta promoter activity were detected. Nevertheless, the transcription factor interferon regulatory factor 3 (IRF-3), which is essential for IFN-beta promoter activity, was transported from the cytoplasm to the nucleus early after infection with SARS-CoV. However, at a later time point in infection, IRF-3 was again localized in the cytoplasm. By contrast, IRF-3 remained in the nucleus of cells infected with the IFN-inducing control virus Bunyamwera delNSs. Other signs of IRF-3 activation such as hyperphosphorylation, homodimer formation, and recruitment of the coactivator CREB-binding protein (CBP) were found late after infection with the control virus but not with SARS-CoV. Our data suggest that nuclear transport of IRF-3 is an immediate-early reaction to virus infection and may precede its hyperphosphorylation, homodimer formation, and binding to CBP. In order to escape activation of the IFN system, SARS-CoV appears to block a step after the early nuclear transport of IRF-3.
Collapse
Affiliation(s)
- Martin Spiegel
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
675
|
Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 2005; 3:591-600. [PMID: 16064053 DOI: 10.1038/nrmicro1208] [Citation(s) in RCA: 504] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent outbreaks of highly pathogenic avian influenza A virus infections (H5 and H7 subtypes) in poultry and in humans (through direct contact with infected birds) have had important economic repercussions and have raised concerns that a new influenza pandemic will occur in the near future. The eradication of pathogenic avian influenza viruses seems to be the most effective way to prevent influenza pandemics, although this strategy has not proven successful so far. Here, we review the molecular factors that contribute to the emergence of pandemic strains.
Collapse
Affiliation(s)
- Taisuke Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
676
|
Turpin E, Luke K, Jones J, Tumpey T, Konan K, Schultz-Cherry S. Influenza virus infection increases p53 activity: role of p53 in cell death and viral replication. J Virol 2005; 79:8802-11. [PMID: 15994774 PMCID: PMC1168730 DOI: 10.1128/jvi.79.14.8802-8811.2005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 03/28/2005] [Indexed: 11/20/2022] Open
Abstract
The induction of apoptotic cell death is a hallmark of influenza virus infection. Although a variety of cellular and viral proteins have been implicated in this process, to date no conserved cellular pathway has been identified. In this study, we report that the tumor suppressor protein p53 is essential for the induction of cell death in influenza virus-infected cells. In primary human lung cells, influenza virus increased p53 protein levels. This was also noted in the human lung cell line A549, along with the up-regulation of p53-dependent gene transcription. Reduction of p53 activity in A549 cells inhibited influenza virus-induced cell death as measured by trypan blue exclusion and caspase activity. These findings were not cell type specific. Influenza virus-induced cell death was absent in mouse embryo fibroblasts isolated from p53 knockout mice, which was not the case in wild-type mouse embryo fibroblasts, suggesting that p53 is a common cellular pathway leading to influenza virus-induced cell death. Surprisingly, inhibiting p53 activity led to elevated virus replication. Mechanistically, this may be due to the decrease in interferon signaling in p53-deficient cells, suggesting that functional p53 is involved in the interferon response to influenza infection. To our knowledge, these are the first studies demonstrating that p53 is involved in influenza virus-induced cell death and that inhibiting p53 leads to increased viral titers, potentially through modulation of the interferon response.
Collapse
Affiliation(s)
- Elizabeth Turpin
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
677
|
Hengel H, Koszinowski UH, Conzelmann KK. Viruses know it all: new insights into IFN networks. Trends Immunol 2005; 26:396-401. [PMID: 15922665 DOI: 10.1016/j.it.2005.05.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/22/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
Co-evolution of viruses with their hosts for millions of years has led to a host immune system of high complexity and, likewise, sophisticated viral mechanisms to antagonize immunity. Early cytokines, such as interferons (IFNs), which integrate innate and adaptive immune responses, are essential targets for viruses. Viral antagonists that interfere with numerous components of the IFN system provide superb tools to explore the pathways and the connectivity of the IFN network. Here, the inhibition of type I IFN production by negative strand RNA viruses and IFN signaling by cytomegalovirus are discussed, illustrating unappreciated links between type I and type II IFN signaling. Viral principles might pave the way to develop new therapeutics to modulate immune functions.
Collapse
Affiliation(s)
- Hartmut Hengel
- Institute for Virology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
678
|
Solórzano A, Webby RJ, Lager KM, Janke BH, García-Sastre A, Richt JA. Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs. J Virol 2005; 79:7535-43. [PMID: 15919908 PMCID: PMC1143661 DOI: 10.1128/jvi.79.12.7535-7543.2005] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown previously that the nonstructural protein NS1 of influenza virus is an alpha/beta interferon (IFN-alpha/beta) antagonist, both in vitro and in experimental animal model systems. However, evidence of this function in a natural host has not yet been obtained. Here we investigated the role of the NS1 protein in the virulence of a swine influenza virus (SIV) isolate in pigs by using reverse genetics. The virulent wild-type A/Swine/Texas/4199-2/98 (TX/98) virus and various mutants encoding carboxy-truncated NS1 proteins were rescued. Growth properties of TX/98 viruses with mutated NS1, induction of IFN in tissue culture, and virulence-attenuation in pigs were analyzed and compared to those of the recombinant wild-type TX/98 virus. Our results indicate that deletions in the NS1 protein decrease the ability of the TX/98 virus to prevent IFN-alpha/beta synthesis in pig cells. Moreover, all NS1 mutant viruses were attenuated in pigs, and this correlated with the amount of IFN-alpha/beta induced in vitro. These data suggest that the NS1 protein of SIV is a virulence factor. Due to their attenuation, NS1-mutated swine influenza viruses might have a great potential as live attenuated vaccine candidates against SIV infections of pigs.
Collapse
|
679
|
Brzózka K, Finke S, Conzelmann KK. Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol 2005; 79:7673-81. [PMID: 15919920 PMCID: PMC1143667 DOI: 10.1128/jvi.79.12.7673-7681.2005] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rabies virus (RV) of the Rhabdoviridae family grows in alpha/beta interferon (IFN)-competent cells, suggesting the existence of viral mechanisms preventing IFN gene expression. We here identify the viral phosphoprotein P as the responsible IFN antagonist. The critical involvement of P was first suggested by the observation that an RV expressing an enhanced green fluorescent protein (eGFP)-P fusion protein (SAD eGFP-P) (S. Finke, K. Brzozka, and K. K. Conzelmann, J. Virol. 78:12333-12343, 2004) was eliminated in IFN-competent HEp-2 cell cultures, in contrast to wild-type (wt) RV or an RV replicon lacking the genes for matrix protein and glycoprotein. SAD eGFP-P induced transcription of the IFN-beta gene and expression of the IFN-responsive MxA and STAT-1 genes. Similarly, an RV expressing low levels of P, which was generated by moving the P gene to a promoter-distal gene position (SAD DeltaPLP), lost the ability to prevent IFN induction. The analysis of RV mutants lacking expression of truncated P proteins P2, P3, or P4, which are expressed from internal AUG codons of the wt RV P open reading frame, further showed that full-length P is competent in suppressing IFN-beta gene expression. In contrast to wt RV, the IFN-inducing SAD DeltaPLP caused S386 phosphorylation, dimerization, and transcriptional activity of IFN regulatory factor 3 (IRF-3). Phosphorylation of IRF-3 by TANK-binding kinase-1 expressed from transfected plasmids was abolished in wt RV-infected cells or by cotransfection of P-encoding plasmids. Thus, RV P is necessary and sufficient to prevent a critical IFN response in virus-infected cells by targeting activation of IRF-3 by an upstream kinase.
Collapse
Affiliation(s)
- Krzysztof Brzózka
- Max-von-Pettenkofer Institute & Gene Center, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | | | | |
Collapse
|
680
|
Tumpey TM, Alvarez R, Swayne DE, Suarez DL. Diagnostic approach for differentiating infected from vaccinated poultry on the basis of antibodies to NS1, the nonstructural protein of influenza A virus. J Clin Microbiol 2005; 43:676-83. [PMID: 15695663 PMCID: PMC548100 DOI: 10.1128/jcm.43.2.676-683.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccination programs for the control of avian influenza (AI) in poultry have limitations due to the problem of differentiating between vaccinated and virus-infected birds. We have used NS1, the conserved nonstructural protein of influenza A virus, as a differential diagnostic marker for influenza virus infection. Experimentally infected poultry were evaluated for the ability to induce antibodies reactive to NS1 recombinant protein produced in Escherichia coli or to chemically synthesized NS1 peptides. Immune sera were obtained from chickens and turkeys inoculated with live AI virus, inactivated purified vaccines, or inactivated commercial vaccines. Seroconversion to positivity for antibodies to the NS1 protein was achieved in birds experimentally infected with multiple subtypes of influenza A virus, as determined by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. In contrast, animals inoculated with inactivated gradient-purified vaccines had no seroconversion to positivity for antibodies to the NS1 protein, and animals vaccinated with commercial vaccines had low, but detectable, levels of NS1 antibodies. The use of a second ELISA with diluted sera identified a diagnostic test that results in seropositivity for antibodies to the NS1 protein only in infected birds. For the field application phase of this study, serum samples were collected from vaccinated and infected poultry, diluted, and screened for anti-NS1 antibodies. Field sera from poultry that received commercial AI vaccines were found to possess antibodies against AI virus, as measured by the standard agar gel precipitin (AGP) test, but they were negative by the NS1 ELISA. Conversely, diluted field sera from AI-infected poultry were positive for both AGP and NS1 antibodies. These results demonstrate the potential benefit of a simple, specific ELISA for anti-NS1 antibodies that may have diagnostic value for the poultry industries.
Collapse
Affiliation(s)
- Terrence M Tumpey
- Southwest Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, College of Veterinary Medicine, University of Georgia, Athens, Georgia.
| | | | | | | |
Collapse
|
681
|
Shaw ML, Cardenas WB, Zamarin D, Palese P, Basler CF. Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. J Virol 2005; 79:6078-88. [PMID: 15857993 PMCID: PMC1091709 DOI: 10.1128/jvi.79.10.6078-6088.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Nipah virus V and W proteins, which are encoded by the P gene via RNA editing, have a common N-terminal domain but unique C-terminal domains. They localize to the cytoplasm and nucleus, respectively, and have both been shown to function as inhibitors of JAK/STAT signaling. Here we report that V and W proteins also block virus activation of the beta interferon (IFN-beta) promoter and the IFN regulatory factor 3 (IRF3)-responsive IFN-stimulated gene 54 promoter. Surprisingly, only W protein shows strong inhibition of promoter activation in response to stimulation of Toll-like receptor 3 (TLR3) by extracellular double-stranded RNA. This activity is dependent on the nuclear localization of W protein. Within the unique C-terminal domain of W protein, we have identified a nuclear localization signal (NLS) that requires basic residues at positions 439, 440, and 442. This NLS is responsible for mediating the preferential interaction of W protein with karyopherin-alpha 3 and karyopherin-alpha 4. Nuclear localization of W protein therefore enables it to target both virus and TLR3 pathways, whereas the cytoplasmic V protein is restricted to inhibiting the virus pathway. We propose that this discrepancy is in part due to the V protein being less able to block signaling in response to the kinase, TBK-1, whereas both V and W can prevent promoter activation in response to IKKepsilon. We demonstrate that, when the TLR3 pathway is stimulated, the levels of phosphorylated IRF3 are reduced in the presence of W protein but not V protein, confirming the differential effects of these proteins and illustrating that W protein-mediated inhibition is due to a loss of active IRF3.
Collapse
Affiliation(s)
- Megan L Shaw
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, One Gustave L. Levy Pl., New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
682
|
Peltola VT, Murti KG, McCullers JA. Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis 2005; 192:249-57. [PMID: 15962219 PMCID: PMC2715995 DOI: 10.1086/430954] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 02/24/2005] [Indexed: 11/03/2022] Open
Abstract
Secondary bacterial pneumonia is a common cause of death during influenza epidemics. We hypothesized that virus-specific factors could contribute to differences in annual excess mortality. Recombinant influenza viruses with neuraminidases from representative strains from the past 50 years were created and characterized. The specific level of their neuraminidase activity correlated with their ability to support secondary bacterial pneumonia. Recombinant viruses with neuraminidases from 1957 and 1997 influenza strains had the highest level of activity, whereas a virus with the neuraminidase from a 1968 strain had the lowest level of activity. The high level of activity of the neuraminidase from the 1957 strain, compared with that of other neuraminidases, more strongly supported the adherence of Streptococcus pneumoniae and the development of secondary bacterial pneumonia in a mouse model. These data lend support to our hypothesis that the influenza virus neuraminidase contributes to secondary bacterial pneumonia and subsequent excess mortality.
Collapse
Affiliation(s)
- Ville T Peltola
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | | |
Collapse
|
683
|
Conzelmann KK. Transcriptional activation of alpha/beta interferon genes: interference by nonsegmented negative-strand RNA viruses. J Virol 2005; 79:5241-8. [PMID: 15827138 PMCID: PMC1082782 DOI: 10.1128/jvi.79.9.5241-5248.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Karl-Klaus Conzelmann
- Max-von-Pettenkofer Institute and Gene Center, Feodor-Lynen-Str. 25, D-81377 Munich, Germany.
| |
Collapse
|
684
|
Lipatov AS, Andreansky S, Webby RJ, Hulse DJ, Rehg JE, Krauss S, Perez DR, Doherty PC, Webster RG, Sangster MY. Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. J Gen Virol 2005; 86:1121-1130. [PMID: 15784906 DOI: 10.1099/vir.0.80663-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The severity of disease caused in humans by H5N1 influenza viruses remains unexplained. The NS gene of Hong Kong H5N1/97 viruses was shown to contribute to high pathogenicity of reassortants in a pig model. However, the molecular pathogenesis and host immune response underlying this phenomenon remain unclear. Here, in a mouse model, H1N1 A/Puerto Rico/8/34 (PR/8) reassortants that contained the H5N1/97 NS gene, the H5N1/01 NS gene, or an altered H5N1/97 NS gene encoding a Glu92→Asp substitution in NS1 was studied. The pathogenicity of reassortant viruses, the induction of cytokines and chemokine CXCL1 (KC) in the lungs and specific B- and T-cell responses was characterized. In mice infected with reassortant virus containing the H5N1/97 NS gene, the mouse lethal dose (50 %) and lung virus titres were similar to those of PR/8, which is highly pathogenic to mice. This reassortant virus required two more days than PR/8 to be cleared from the lungs of infected mice. Reassortants containing the altered H5N1/97 NS gene or the H5N1/01 NS gene demonstrated attenuated pathogenicity and lower lung titres in mice. Specific B- and T-cell responses were consistent with viral pathogenicity and did not explain the delayed clearance of the H5N1/97 NS reassortant. The reassortant induced elevated pulmonary concentrations of the inflammatory cytokines IL1α, IL1β, IL6, IFN-γand chemokine KC, and decreased concentrations of the anti-inflammatory cytokine IL10. This cytokine imbalance is reminiscent of the clinical findings in two humans who died of H5N1/97 infection and may explain the unusual severity of the disease.
Collapse
Affiliation(s)
- Aleksandr S Lipatov
- Department of Infectious Diseases (Division of Virology), St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | - Samita Andreansky
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | - Richard J Webby
- Department of Infectious Diseases (Division of Virology), St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | - Diane J Hulse
- Department of Infectious Diseases (Division of Virology), St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | - Jerold E Rehg
- Department of Pathology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | - Scott Krauss
- Department of Infectious Diseases (Division of Virology), St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | - Daniel R Perez
- Department of Infectious Diseases (Division of Virology), St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | - Robert G Webster
- Department of Pathology, University of Tennessee, Memphis, TN 38163, USA
- Department of Infectious Diseases (Division of Virology), St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | - Mark Y Sangster
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| |
Collapse
|
685
|
Marcus PI, Rojek JM, Sekellick MJ. Interferon induction and/or production and its suppression by influenza A viruses. J Virol 2005; 79:2880-90. [PMID: 15709007 PMCID: PMC548469 DOI: 10.1128/jvi.79.5.2880-2890.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 11/18/2004] [Indexed: 02/06/2023] Open
Abstract
Developmentally aged chicken embryo cells which hyperproduce interferon (IFN) when induced were used to quantify IFN production and its suppression by eight strains of type A influenza viruses (AIV). Over 90% of the IFN-inducing or IFN induction-suppressing activity of AIV populations resided in noninfectious particles. The IFN-inducer moiety of AIV appears to preexist in, or be generated by, virions termed IFN-inducing particles (IFP) and was detectable under conditions in which a single molecule of double-stranded RNA introduced into a cell via endocytosis induced IFN, whereas single-stranded RNA did not. Some AIV strains suppressed IFN production, an activity that resided in a noninfectious virion termed an IFN induction-suppressing particle (ISP). The ISP phenotype was dominant over the IFP phenotype. Strains of AIV varied 100-fold in their capacity to induce IFN. AIV genetically compromised in NS1 expression induced about 20 times more IFN than NS1-competent parental strains. UV irradiation further enhanced the IFN-inducing capacity of AIV up to 100-fold, converting ISP into IFP and IFP into more efficient IFP. AIV is known to prevent IFN induction and/or production by expressing NS1 from a small UV target (gene NS). Evidence is presented for an additional downregulator of IFN production, identified as a large UV target postulated to consist of AIV polymerase genes PB1 + PB2 + PA, through the ensuing action of their cap-snatching endonuclease on pre-IFN-mRNA. The products of both the small and large UV targets act in concert to regulate IFN induction and/or production. Knowledge of the IFP/ISP phenotype may be useful in the development of attenuated AIV strains that maximally induce cytokines favorable to the immune response.
Collapse
Affiliation(s)
- Philip I Marcus
- Department of Molecular and Cell Biology, 91 North Eagleville Rd., U-3125, University of Connecticut, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
686
|
Weber F, Kochs G, Haller O. Inverse interference: how viruses fight the interferon system. Viral Immunol 2005; 17:498-515. [PMID: 15671747 DOI: 10.1089/vim.2004.17.498] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viruses need to multiply extensively in the infected host in order to ensure transmission to new hosts and survival as a population. This is a formidable task, given the powerful innate and adaptive immune responses of the host. In particular, the interferon (IFN) system plays an important role in limiting virus spread at an early stage of infection. It has become increasingly clear that viruses have evolved multiple strategies to escape the IFN system. They either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. The molecular mechanisms involved range from a broad shut-off of the host cell metabolism to fine-tuned elimination of key components of the IFN system. Type I (alpha/beta) IFNs are produced in direct response to virus infection and double-stranded RNA (dsRNA) molecules that are sensed as a danger signal by infected cells. IFNs induce the expression of a number of antiviral proteins, some of which are again activated by dsRNA. Therefore, many viruses produce dsRNA-binding proteins to sequester the danger signal or express virulence genes that target specific components of the IFN system, such as members of the IFN regulatory factor (IRF) family or components of the JAK-STAT signaling pathway. Finally, some viruses have adopted means to directly suppress the very antiviral effector proteins of the IFN-induced antiviral state directed against them. Evidently, viruses and their host's innate immune responses have coevolved, leading to a subtle balance between virus-promoting and virus-inhibiting factors. A better understanding of virus-host interactions is now emerging with great implications for vaccine development and drug design.
Collapse
Affiliation(s)
- Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
687
|
Sainz B, LaMarca HL, Garry RF, Morris CA. Synergistic inhibition of human cytomegalovirus replication by interferon-alpha/beta and interferon-gamma. Virol J 2005; 2:14. [PMID: 15727684 PMCID: PMC554982 DOI: 10.1186/1743-422x-2-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 02/23/2005] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recent studies have shown that gamma interferon (IFN-gamma) synergizes with the innate IFNs (IFN-alpha and IFN-beta) to inhibit herpes simplex virus type 1 (HSV-1) replication in vitro. To determine whether this phenomenon is shared by other herpesviruses, we investigated the effects of IFNs on human cytomegalovirus (HCMV) replication. RESULTS We have found that as with HSV-1, IFN-gamma synergizes with the innate IFNs (IFN-alpha/beta) to potently inhibit HCMV replication in vitro. While pre-treatment of human foreskin fibroblasts (HFFs) with IFN-alpha, IFN-beta or IFN-gamma alone inhibited HCMV plaque formation by approximately 30 to 40-fold, treatment with IFN-alpha and IFN-gamma or IFN-beta and IFN-gamma inhibited HCMV plaque formation by 163- and 662-fold, respectively. The generation of isobole plots verified that the observed inhibition of HCMV plaque formation and replication in HFFs by IFN-alpha/beta and IFN-gamma was a synergistic interaction. Additionally, real-time PCR analyses of the HCMV immediate early (IE) genes (IE1 and IE2) revealed that IE mRNA expression was profoundly decreased in cells stimulated with IFN-alpha/beta and IFN-gamma (approximately 5-11-fold) as compared to vehicle-treated cells. Furthermore, decreased IE mRNA expression was accompanied by a decrease in IE protein expression, as demonstrated by western blotting and immunofluorescence. CONCLUSION These findings suggest that IFN-alpha/beta and IFN-gamma synergistically inhibit HCMV replication through a mechanism that may involve the regulation of IE gene expression. We hypothesize that IFN-gamma produced by activated cells of the adaptive immune response may potentially synergize with endogenous type I IFNs to inhibit HCMV dissemination in vivo.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-38, New Orleans, LA, 70112, USA
| | - Heather L LaMarca
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-38, New Orleans, LA, 70112, USA
| | - Robert F Garry
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-38, New Orleans, LA, 70112, USA
| | - Cindy A Morris
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-38, New Orleans, LA, 70112, USA
| |
Collapse
|
688
|
Stasakova J, Ferko B, Kittel C, Sereinig S, Romanova J, Katinger H, Egorov A. Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1beta and 18. J Gen Virol 2005; 86:185-195. [PMID: 15604446 DOI: 10.1099/vir.0.80422-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several NS1 mutant viruses of human influenza A/PR/8/34 (H1N1) virus were tested for their ability to induce pro-inflammatory cytokines in primary human macrophages. The findings revealed a pronounced difference in the virus-induced cytokine pattern, depending on the functionality of the NS1 protein-encoded domains. The PR8/NS1-125 mutant virus, which encodes the first 125 aa of the NS1 protein, thus lacking the C-terminal domains, induced significantly higher amounts of beta interferon, interleukin (IL) 6, tumour necrosis factor alpha and CCL3 (MIP-1alpha) when compared with the A/PR/8/34 wild-type virus. However, this mutant virus was as efficient as wild-type virus in the inhibition of IL1beta and IL18 release from infected macrophages. Another group of viral mutants either lacking or possessing non-functional RNA-binding and dimerization domains induced 10-50 times more biologically active IL1beta and five times more biologically active IL18 than the wild-type or PR8/NS1-125 viruses. The hallmark of infection with this group of mutant viruses was the induction of rapid apoptosis in infected macrophages, which correlated with the enhanced activity of caspase-1. These results indicated that the NS1 protein, through the function of its N-terminal domains, might control caspase-1 activation, thus repressing the maturation of pro-IL1beta-, pro-IL18- and caspase-1-dependent apoptosis in infected primary human macrophages.
Collapse
Affiliation(s)
- Jana Stasakova
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18B, A-1190 Vienna, Austria
| | - Boris Ferko
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18B, A-1190 Vienna, Austria
| | - Christian Kittel
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18B, A-1190 Vienna, Austria
| | - Sabine Sereinig
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18B, A-1190 Vienna, Austria
| | - Julia Romanova
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18B, A-1190 Vienna, Austria
| | - Hermann Katinger
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18B, A-1190 Vienna, Austria
| | - Andrej Egorov
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18B, A-1190 Vienna, Austria
| |
Collapse
|
689
|
Jennings S, Martínez-Sobrido L, García-Sastre A, Weber F, Kochs G. Thogoto virus ML protein suppresses IRF3 function. Virology 2005; 331:63-72. [PMID: 15582653 DOI: 10.1016/j.virol.2004.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 08/04/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
The Thogoto virus (THOV) is a member of the family Orthomyxoviridae. It prevents induction of alpha/beta interferons (IFN) in cell culture and in vivo via the action of the viral ML protein. Phenotypically, the effect of THOV ML resembles that of the NS1 protein of influenza A virus (FLUAV) in that it blocks the expression of IFN genes. IFN expression depends on IFN regulatory factor 3 (IRF3). Upon activation, IRF3 forms homodimers and accumulates in the nucleus where it binds the transcriptional coactivator CREB-binding protein (CBP). Here, we show that expression of ML blocked the transcriptional activity of IRF3 after stimulation by virus infection. Further biochemical analysis revealed that ML acts by blocking IRF3 dimerization and association with CBP. Surprisingly, however, ML did not interfere with the nuclear transport of IRF3. Thus, the action of ML differs strikingly from that of FLUAV NS1 that prevents IFN induction by retaining IRF3 in the cytoplasm.
Collapse
Affiliation(s)
- Stephanie Jennings
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | | | | | | |
Collapse
|
690
|
Ferko B, Stasakova J, Romanova J, Kittel C, Sereinig S, Katinger H, Egorov A. Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J Virol 2004; 78:13037-45. [PMID: 15542655 PMCID: PMC524997 DOI: 10.1128/jvi.78.23.13037-13045.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We explored the immunogenic properties of influenza A viruses with altered NS1 genes (NS1 mutant viruses). NS1 mutant viruses expressing NS1 proteins with an impaired RNA-binding function or insertion of a longer foreign sequence did not replicate in murine lungs but still were capable of inducing a Th1-type immune response resulting in significant titers of virus-specific serum and mucosal immunoglobulin G2 (IgG2) and IgA, but with lower titers of IgG1. In contrast, replicating viruses elicited high titers of serum and mucosal IgG1 but less serum IgA. Replication-deficient NS1 mutant viruses induced a rapid local release of proinflammatory cytokines such as interleukin-1beta (IL-1beta) and IL-6. Moreover, these viruses also elicited markedly higher levels of IFN-alpha/beta in serum than the wild-type virus. Comparable numbers of virus-specific primary CD8(+) T cells were determined in all of the groups of immunized mice. The most rapid onset of the recall CD8(+)-T-cell response upon the wild-type virus challenge was detected in mice primed with NS1 mutant viruses eliciting high levels of cytokines. It is noteworthy that there was one NS1 mutant virus encoding NS1 protein with a deletion of 40 amino acids predominantly in the RNA-binding domain that induced the highest levels of IFN-alpha/beta, IL-6 and IL-1beta after infection. Mice that were immunized with this virus were completely protected from the challenge infection. These findings indicate that a targeted modification of the RNA-binding domain of the NS1 protein is a valuable technique to generate replication-deficient, but immunogenic influenza virus vaccines.
Collapse
Affiliation(s)
- Boris Ferko
- Institute of Applied Microbiology, Muthgasse 18B, A-1190 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
691
|
Hagmaier K, Gelderblom HR, Kochs G. Functional comparison of the two gene products of Thogoto virus segment 6. J Gen Virol 2004; 85:3699-3708. [PMID: 15557243 DOI: 10.1099/vir.0.80300-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sixth genomic segment of Thogoto virus (THOV) encodes two proteins, the viral matrix protein (M) and an accessory protein with an interferon (IFN)-antagonistic function named ML. M and ML are shown in this study to be structural components of the virion. Using an in vivo system based on the reconstitution of functional THOV ribonucleoprotein complexes from cloned cDNAs, it was demonstrated that M has an inhibitory effect on the viral RNA-dependent RNA polymerase (RdRP) and is essential for the formation of virus-like particles (VLPs). The functional domain responsible for the regulation of RdRP activity resides within the C-terminal half of M, while full-length M protein is required for VLP formation. The ML protein cannot complement M with respect to either RdRP downregulation or particle formation, although it is identical to M apart from a 38 aa extension at the C terminus. In contrast, ML, but not M, is able to prevent the induction of IFN-beta by double-stranded RNA. This function is contained within the C-terminal half of ML. These data suggest major structural differences between M and ML that could explain the different activities of the two proteins.
Collapse
Affiliation(s)
- Kathrin Hagmaier
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | - Georg Kochs
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| |
Collapse
|
692
|
Abstract
The successful replication of a viral pathogen in a host is a complex process involving many interactions. These interactions develop from the coevolution of pathogen and host and often lead to a species specificity of the virus that can make interspecies transmissions difficult. Nevertheless, viruses do sporadically cross species barriers into other host populations, including humans. In zoonotic infections, many of these interspecies transfer events are dead end, where transmission is confined only to the animal-to-human route but sometimes viruses adapt to enable spread from human to human. A pathogen must overcome many hurdles to replicate successfully in a foreign host. The viral pathogen must enter the host cell, replicate with the assistance of host factors, evade inhibitory host products, exit the first cell and move on to the next, and possibly leave the initial host and transmit to another. Each of these stages may require adaptive changes in the pathogen. Although the factors that influence each stage of the replication and transmission of most agents have not been resolved, the genomics of both hosts and pathogens are now at hand and we have begun to understand some of the molecular changes that enable some viruses to adapt to a new host.
Collapse
Affiliation(s)
- Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, 38105 Tennessee USA
| | - Erich Hoffmann
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, 38105 Tennessee USA
| | - Robert Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, 38105 Tennessee USA
| |
Collapse
|
693
|
Zhou Y, Chan JH, Chan AY, Chak RKF, Wong EYL, Chye ML, Peiris JSM, Poon LLM, Lam E. Transgenic plant-derived siRNAs can suppress propagation of influenza virus in mammalian cells. FEBS Lett 2004; 577:345-50. [PMID: 15556607 DOI: 10.1016/j.febslet.2004.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 10/05/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
As an example of the cost-effective large-scale generation of small-interfering RNA (siRNAs), we have created transgenic tobacco plants that produce siRNAs targeted to the mRNA of the non-structural protein NS1 from the influenza A virus subtype H1N1. We have investigated if these siRNAs, specifically targeted to the 5'-portion of the NS1 transcripts (5mNS1), would suppress viral propagation in mammalian cells. Agroinfiltration of transgenic tobacco with an Agrobacterium strain harboring a 5mNS1-expressing binary vector caused a reduction in 5mNS1 transcripts in the siRNA-accumulating transgenic plants. Further, H1N1 infection of siRNA-transfected mammalian cells resulted in significant suppression of viral replication. These results demonstrate that plant-derived siRNAs can inhibit viral propagation through RNA interference and could potentially be applied in control of viral-borne diseases.
Collapse
Affiliation(s)
- Yuanxiang Zhou
- Department of Botany, University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
694
|
Donelan NR, Dauber B, Wang X, Basler CF, Wolff T, García-Sastre A. The N- and C-terminal domains of the NS1 protein of influenza B virus can independently inhibit IRF-3 and beta interferon promoter activation. J Virol 2004; 78:11574-82. [PMID: 15479798 PMCID: PMC523269 DOI: 10.1128/jvi.78.21.11574-11582.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The NS1 proteins of influenza A and B viruses (A/NS1 and B/NS1 proteins) have only approximately 20% amino acid sequence identity. Nevertheless, these proteins show several functional similarities, such as their ability to bind to the same RNA targets and to inhibit the activation of protein kinase R in vitro. A critical function of the A/NS1 protein is the inhibition of synthesis of alpha/beta interferon (IFN-alpha/beta) during viral infection. Recently, it was also found that the B/NS1 protein inhibits IFN-alpha/beta synthesis in virus-infected cells. We have now found that the expression of the B/NS1 protein complements the growth of an influenza A virus with A/NS1 deleted. Expression of the full-length B/NS1 protein (281 amino acids), as well as either its N-terminal RNA-binding domain (amino acids 1 to 93) or C-terminal domain (amino acids 94 to 281), in the absence of any other influenza B virus proteins resulted in the inhibition of IRF-3 nuclear translocation and IFN-beta promoter activation. A mutational analysis of the truncated B/NS1(1-93) protein showed that RNA-binding activity correlated with IFN-beta promoter inhibition. In addition, a recombinant influenza B virus with NS1 deleted induces higher levels of IRF-3 activation, as determined by its nuclear translocation, and of IFN-alpha/beta synthesis than wild-type influenza B virus. Our results support the hypothesis that the NS1 protein of influenza B virus plays an important role in antagonizing the IRF-3- and IFN-induced antiviral host responses to virus infection.
Collapse
Affiliation(s)
- Nicola R Donelan
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L. Levy Pl., New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
695
|
Pichlmair A, Buse J, Jennings S, Haller O, Kochs G, Staeheli P. Thogoto virus lacking interferon-antagonistic protein ML is strongly attenuated in newborn Mx1-positive but not Mx1-negative mice. J Virol 2004; 78:11422-4. [PMID: 15452266 PMCID: PMC521850 DOI: 10.1128/jvi.78.20.11422-11424.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Thogoto virus ML protein suppresses interferon synthesis in infected cells. Nevertheless, a virus mutant lacking ML remained highly pathogenic in standard laboratory mice. It was strongly attenuated, however, in mice carrying the interferon-responsive Mx1 gene found in wild mice, demonstrating that enhanced interferon synthesis is protective only if appropriate antiviral effector molecules are present. Our study shows that the virulence-enhancing effects of some viral interferon antagonists may escape detection in conventional animal models.
Collapse
Affiliation(s)
- Andreas Pichlmair
- Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
696
|
Schwarz H, Harlin O, Ohnemus A, Kaspers B, Staeheli P. Synthesis of IFN-beta by virus-infected chicken embryo cells demonstrated with specific antisera and a new bioassay. J Interferon Cytokine Res 2004; 24:179-84. [PMID: 15035851 DOI: 10.1089/107999004322917025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcripts of interferon-alpha (IFN-alpha) and IFN-beta genes are present in virus-infected chicken cells, but because of a lack of appropriate assays and reagents, it was unclear if biologically active IFN-beta is secreted. We have established a nonviral bioassay for the sensitive detection of chicken IFN (ChIFN). This assay is based on a quail cell line that carries a luciferase gene that is controlled by the IFN-responsive chicken Mx promoter. Luciferase activity was strongly stimulated when the indicator cells were incubated with ChIFN-alpha, ChIFN-beta, or ChIFN-gamma but not with chicken interleukin-1beta (ChIL-1beta). Unlike the classic antiviral assay that preferentially detects ChIFN-alpha, the Mx-luciferase assay detected ChIFN-alpha and ChIFN-beta with similar sensitivity. With the help of this novel assay and with rabbit antisera specific for either IFN-alpha or IFN-beta, we analyzed the composition of IFN in supernatants of virus-infected chicken embryo cells. Virtually all IFN produced in response to Newcastle disease virus (NDV) was IFN-alpha. However, IFN produced in response to influenza A or vaccinia virus (VV) was a mixture of usually more than 80% IFN-alpha and up to 20% IFN-beta. Thus, IFN-alpha and IFN-beta both contribute to the cytokine activity in supernatants of virus-infected chicken cells. Furthermore, the infecting virus appears to determine the IFN subtype composition.
Collapse
Affiliation(s)
- Heike Schwarz
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
697
|
Kash JC, Basler CF, García-Sastre A, Carter V, Billharz R, Swayne DE, Przygodzki RM, Taubenberger JK, Katze MG, Tumpey TM. Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J Virol 2004; 78:9499-511. [PMID: 15308742 PMCID: PMC506954 DOI: 10.1128/jvi.78.17.9499-9511.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To understand more fully the molecular events associated with highly virulent or attenuated influenza virus infections, we have studied the effects of expression of the 1918 hemagglutinin (HA) and neuraminidase (NA) genes during viral infection in mice under biosafety level 3 (agricultural) conditions. Using histopathology and cDNA microarrays, we examined the consequences of expression of the HA and NA genes of the 1918 pandemic virus in a recombinant influenza A/WSN/33 virus compared to parental A/WSN/33 virus and to an attenuated virus expressing the HA and NA genes from A/New Caledonia/20/99. The 1918 HA/NA:WSN and WSN recombinant viruses were highly lethal for mice and displayed severe lung pathology in comparison to the nonlethal New Caledonia HA/NA:WSN recombinant virus. Expression microarray analysis performed on lung tissues isolated from the infected animals showed activation of many genes involved in the inflammatory response, including cytokine, apoptosis, and lymphocyte genes that were common to all three infection groups. However, consistent with the histopathology studies, the WSN and 1918 HA/NA:WSN recombinant viruses showed increased up-regulation of genes associated with activated T cells and macrophages, as well as genes involved in apoptosis, tissue injury, and oxidative damage that were not observed in the New Caledonia HA/NA:WSN recombinant virus-infected mice. These studies document clear differences in gene expression profiles that were correlated with pulmonary disease pathology induced by virulent and attenuated influenza virus infections.
Collapse
Affiliation(s)
- John C Kash
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-8070, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
698
|
Abstract
Influenza viruses cause annual epidemics and occasional pandemics of acute respiratory disease. Vaccination is the primary means to prevent and control the disease. However, influenza viruses undergo continual antigenic variation, which requires the annual reformulation of trivalent influenza vaccines, making influenza unique among pathogens for which vaccines have been developed. The segmented nature of the influenza virus genome allows for the traditional reassortment between two viruses in a coinfected cell. This technique has long been used to generate strains for the preparation of either inactivated or live attenuated influenza vaccines. Recent advancements in reverse genetics techniques now make it possible to generate influenza viruses entirely from cloned plasmid DNA by cotransfection of appropriate cells with 8 or 12 plasmids encoding the influenza virion sense RNA and/or mRNA. Once regulatory issues have been addressed, this technology will enable the routine and rapid generation of strains for either inactivated or live attenuated influenza vaccine. In addition, the technology offers the potential for new vaccine strategies based on the generation of genetically engineered donors attenuated through directed mutation of one or more internal genes. Reverse genetics techniques are also proving to be important for the development of pandemic influenza vaccines, because the technology provides a means to modify genes to remove virulence determinants found in highly pathogenic avian strains. The future of influenza prevention and control lies in the application of this powerful technology for the generation of safe and more effective influenza vaccines.
Collapse
Affiliation(s)
- K Subbarao
- Influenza Branch, Centers for Disease Control and Prevention, Mailstop G-16, 1600 Clifton Road, Atlanta, GA 30333, USA
| | | |
Collapse
|
699
|
Sirén J, Sareneva T, Pirhonen J, Strengell M, Veckman V, Julkunen I, Matikainen S. Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 2004; 85:2357-2364. [PMID: 15269377 DOI: 10.1099/vir.0.80105-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NK cells participate in innate immune responses by secreting gamma interferon (IFN-gamma) and by destroying virus-infected cells. Here the interaction between influenza A or Sendai virus-infected macrophages and NK cells has been studied. A rapid, cell-cell contact-dependent production of IFN-gamma from NK cells cultured with virus-infected macrophages was observed. Expression of the MHC class I-related chain B (MICB) gene, a ligand for NK cell-activating receptor NKG2D, was upregulated in virus-infected macrophages suggesting a role for MICB in the activation of the IFN-gamma gene in NK cells. IL12Rbeta2, IL18R and T-bet mRNA synthesis was enhanced in NK cells cultured with virus-infected macrophages. Upregulation of these genes was dependent on macrophage-derived IFN-alpha. In contrast to IL12Rbeta2, expression of WSX-1/TCCR, a receptor for IL27, was reduced in NK cells in response to virus-induced IFN-alpha. In conclusion, these results show that virus-infected macrophages activate NK cells via cytokines and direct cellular interactions and further emphasize the role of IFN-alpha in the activation of innate immunity.
Collapse
Affiliation(s)
- Jukka Sirén
- Department of Microbiology, National Public Health Institute, Helsinki, Finland
| | - Timo Sareneva
- Department of Microbiology, National Public Health Institute, Helsinki, Finland
| | - Jaana Pirhonen
- Department of Microbiology, National Public Health Institute, Helsinki, Finland
| | - Mari Strengell
- Department of Microbiology, National Public Health Institute, Helsinki, Finland
| | - Ville Veckman
- Department of Microbiology, National Public Health Institute, Helsinki, Finland
| | - Ilkka Julkunen
- Department of Microbiology, National Public Health Institute, Helsinki, Finland
| | - Sampsa Matikainen
- Department of Microbiology, National Public Health Institute, Helsinki, Finland
| |
Collapse
|
700
|
Johnson KL, Price BD, Eckerle LD, Ball LA. Nodamura virus nonstructural protein B2 can enhance viral RNA accumulation in both mammalian and insect cells. J Virol 2004; 78:6698-704. [PMID: 15163762 PMCID: PMC416532 DOI: 10.1128/jvi.78.12.6698-6704.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During infection of both vertebrate and invertebrate cell lines, the alphanodavirus Nodamura virus (NoV) expresses two nonstructural proteins of different lengths from the B2 open reading frame. The functions of these proteins have yet to be determined, but B2 of the related Flock House virus suppresses RNA interference both in Drosophila cells and in transgenic plants. To examine whether the NoV B2 proteins had similar functions, we compared the replication of wild-type NoV RNA with that of mutants unable to make the B2 proteins. We observed a defect in the accumulation of mutant viral RNA that varied in extent from negligible in some cell lines (e.g., baby hamster kidney cells) to severe in others (e.g., human HeLa and Drosophila DL-1 cells). These results are consistent with the notion that the NoV B2 proteins act to circumvent an innate antiviral response such as RNA interference that differs in efficacy among different host cells.
Collapse
Affiliation(s)
- Kyle L Johnson
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. South, Birmingham, AL 35294-2170, USA.
| | | | | | | |
Collapse
|