651
|
Korf I, Fan Y, Strome S. The Polycomb group in Caenorhabditis elegans and maternal control of germline development. Development 1998; 125:2469-78. [PMID: 9609830 DOI: 10.1242/dev.125.13.2469] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four Caenorhabditis elegans genes, mes-2, mes-3, mes-4 and mes-6, are essential for normal proliferation and viability of the germline. Mutations in these genes cause a maternal-effect sterile (i.e. mes) or grandchildless phenotype. We report that the mes-6 gene is in an unusual operon, the second example of this type of operon in C. elegans, and encodes the nematode homolog of Extra sex combs, a WD-40 protein in the Polycomb group in Drosophila. mes-2 encodes another Polycomb group protein (see paper by Holdeman, R., Nehrt, S. and Strome, S. (1998). Development 125, 2457–2467). Consistent with the known role of Polycomb group proteins in regulating gene expression, MES-6 is a nuclear protein. It is enriched in the germline of larvae and adults and is present in all nuclei of early embryos. Molecular epistasis results predict that the MES proteins, like Polycomb group proteins in Drosophila, function as a complex to regulate gene expression. Database searches reveal that there are considerably fewer Polycomb group genes in C. elegans than in Drosophila or vertebrates, and our studies suggest that their primary function is in controlling gene expression in the germline and ensuring the survival and proliferation of that tissue.
Collapse
Affiliation(s)
- I Korf
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
652
|
Matthews LR, Carter P, Thierry-Mieg D, Kemphues K. ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J Cell Biol 1998; 141:1159-68. [PMID: 9606208 PMCID: PMC2137183 DOI: 10.1083/jcb.141.5.1159] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1997] [Revised: 04/17/1998] [Indexed: 02/07/2023] Open
Abstract
We describe the molecular characterization of zyg-9, a maternally acting gene essential for microtubule organization and function in early Caenorhabditis elegans embryos. Defects in zyg-9 mutants suggest that the zyg-9 product functions in the organization of the meiotic spindle and the formation of long microtubules. One-cell zyg-9 embryos exhibit both meiotic and mitotic spindle defects. Meiotic spindles are disorganized, pronuclear migration fails, and the mitotic apparatus forms at the posterior, orients incorrectly, and contains unusually short microtubules. We find that zyg-9 encodes a component of the meiotic and mitotic spindle poles. In addition to the strong staining of spindle poles, we consistently detect staining in the region of the kinetochore microtubules at metaphase and early anaphase in mitotic spindles. The ZYG-9 signal at the mitotic centrosomes is not reduced by nocodazole treatment, indicating that ZYG-9 localization to the mitotic centrosomes is not dependent upon long astral microtubules. Interestingly, in embryos lacking an organized meiotic spindle, produced either by nocodazole treatment or mutations in the mei-1 gene, ZYG-9 forms a halo around the meiotic chromosomes. The protein sequence shows partial similarity to a small set of proteins that also localize to spindle poles, suggesting a common activity of the proteins.
Collapse
Affiliation(s)
- L R Matthews
- Section of Genetics and Development, Cornell University, Ithaca, New York 14850, USA
| | | | | | | |
Collapse
|
653
|
Saifee O, Wei L, Nonet ML. The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol Biol Cell 1998; 9:1235-52. [PMID: 9614171 PMCID: PMC25346 DOI: 10.1091/mbc.9.6.1235] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 03/05/1998] [Indexed: 11/11/2022] Open
Abstract
We describe the molecular cloning and characterization of the unc-64 locus of Caenorhabditis elegans. unc-64 expresses three transcripts, each encoding a molecule with 63-64% identity to human syntaxin 1A, a membrane- anchored protein involved in synaptic vesicle fusion. Interestingly, the alternative forms of syntaxin differ only in their C-terminal hydrophobic membrane anchors. The forms are differentially expressed in neuronal and secretory tissues; genetic evidence suggests that these forms are not functionally equivalent. A complete loss-of-function mutation in unc-64 results in a worm that completes embryogenesis, but arrests development shortly thereafter as a paralyzed L1 larva, presumably as a consequence of neuronal dysfunction. The severity of the neuronal phenotypes of C. elegans syntaxin mutants appears comparable to those of Drosophila syntaxin mutants. However, nematode syntaxin appears not to be required for embryonic development, for secretion of cuticle from the hypodermis, or for the function of muscle, in contrast to Drosophila syntaxin, which appears to be required in all cells. Less severe viable unc-64 mutants exhibit a variety of behavioral defects and show strong resistance to the acetylcholinesterase inhibitor aldicarb. Extracellular physiological recordings from pharyngeal muscle of hypomorphic mutants show alterations in the kinetics of transmitter release. The lesions in the hypomorphic alleles map to the hydrophobic face of the H3 coiled-coil domain of syntaxin, a domain that in vitro mediates physical interactions with similar coiled-coil domains in SNAP-25 and synaptobrevin. Furthermore, the unc-64 syntaxin mutants exhibit allele-specific genetic interactions with mutants carrying lesions in the coiled-coil domain of synaptobrevin, providing in vivo evidence for the significance of these domains in regulating synaptic vesicle fusion.
Collapse
Affiliation(s)
- O Saifee
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
654
|
McKeown C, Praitis V, Austin J. sma-1 encodes a betaH-spectrin homolog required for Caenorhabditis elegans morphogenesis. Development 1998; 125:2087-98. [PMID: 9570773 DOI: 10.1242/dev.125.11.2087] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis transforms the C. elegans embryo from a ball of cells into a vermiform larva. During this transformation, the embryo increases fourfold in length; present data indicates this elongation results from contraction of the epidermal actin cytoskeleton. In sma-1 mutants, the extent of embryonic elongation is decreased and the resulting sma-1 larvae, although viable, are shorter than normal. We find that sma-1 mutants elongate for the same length of time as wild-type embryos, but at a decreased rate. The sma-1 mutants we have isolated vary in phenotypic severity, with the most severe alleles showing the greatest decrease in elongation rate. The sma-1 gene encodes a homolog of betaH-spectrin, a novel beta-spectrin isoform first identified in Drosophila. sma-1 RNA is expressed in epithelial tissues in the C. elegans embryo: in the embryonic epidermis at the start of morphogenesis and subsequently in the developing pharynx, intestine and excretory cell. In Drosophila, betaH-spectrin associates with the apical plasma membrane of epithelial cells; beta-spectrin is found at the lateral membrane. We propose that SMA-1 is a component of an apical membrane skeleton in the C. elegans embryonic epidermis that determines the rate of elongation during morphogenesis.
Collapse
Affiliation(s)
- C McKeown
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
655
|
Kostrouchova M, Krause M, Kostrouch Z, Rall JE. CHR3: a Caenorhabditis elegans orphan nuclear hormone receptor required for proper epidermal development and molting. Development 1998; 125:1617-26. [PMID: 9521900 DOI: 10.1242/dev.125.9.1617] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CHR3 is a Caenorhabditis elegans orphan nuclear hormone receptor highly homologous to Drosophila DHR3, an ecdysone-inducible gene product involved in metamorphosis. Related vertebrate factors include RORalpha/RZRalpha, RZRbeta and RevErb. Gel-shift studies show that CHR3 can bind the DR5-type hormone response sequence. CHR3 is a nuclear protein present in all blastomeres during early embryogenesis. During morphogenesis, both CHR3 protein and zygotically active reporter genes are detectable in epidermal cells and their precursors. Inhibition of the gene encoding CHR3 results in several larval defects associated with abnormal epidermal cell function, including molting and body size regulation, suggesting that CHR3 is an essential epidermal factor required for proper postembryonic development.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/embryology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/growth & development
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Helminth/genetics
- DNA, Helminth/metabolism
- Epidermis/chemistry
- Epidermis/embryology
- Gene Expression Regulation, Developmental/physiology
- Genes, Helminth/physiology
- Heat-Shock Proteins/genetics
- Larva
- Molting
- Promoter Regions, Genetic/genetics
- RNA, Antisense
- RNA, Helminth/analysis
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins
Collapse
|
656
|
Abstract
With the recent identification of intrinsic cell-fate determinants for asymmetric cell division in several systems, biologists have begun to gain insight into the cellular mechanisms by which these determinants are preferentially segregated into one of the two daughter cells during mitosis so that the daughter cells acquire different fates.
Collapse
Affiliation(s)
- Y N Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, 94143-0725, USA
| | | |
Collapse
|
657
|
Abstract
Caenorhabditis elegans hermaphrodites switch from making sperm to oocytes. This switch involves repression of fem-3 mRNA, mediated by a protein that binds RNA through a conserved motif; a similar motif mediates RNA binding by the Drosophila pattern-regulatory protein Pumilio.
Collapse
Affiliation(s)
- P E Kuwabara
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.
| |
Collapse
|
658
|
Costa M, Raich W, Agbunag C, Leung B, Hardin J, Priess JR. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 1998; 141:297-308. [PMID: 9531567 PMCID: PMC2132712 DOI: 10.1083/jcb.141.1.297] [Citation(s) in RCA: 323] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During morphogenesis of the Caenorhabditis elegans embryo, hypodermal (or epidermal) cells migrate to enclose the embryo in an epithelium and, subsequently, change shape coordinately to elongate the body (Priess, J.R., and D.I. Hirsh. 1986. Dev. Biol. 117:156- 173; Williams-Masson, E.M., A.N. Malik, and J. Hardin. 1997. Development [Camb.]. 124:2889-2901). We have isolated mutants defective in morphogenesis that identify three genes required for both cell migration during body enclosure and cell shape change during body elongation. Analyses of hmp-1, hmp-2, and hmr-1 mutants suggest that products of these genes anchor contractile actin filament bundles at the adherens junctions between hypodermal cells and, thereby, transmit the force of bundle contraction into cell shape change. The protein products of all three genes localize to hypodermal adherens junctions in embryos. The sequences of the predicted HMP-1, HMP-2, and HMR-1 proteins are related to the cell adhesion proteins alpha-catenin, beta-catenin/Armadillo, and classical cadherin, respectively. This putative catenin-cadherin system is not essential for general cell adhesion in the C. elegans embryo, but rather mediates specific aspects of morphogenetic cell shape change and cytoskeletal organization.
Collapse
Affiliation(s)
- M Costa
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | | | | | |
Collapse
|
659
|
Shestakova E, Vandekerckhove J, De Mey JR. Epithelial and fibroblastoid cells contain numerous cell-type specific putative microtubule-regulating proteins, among which are ezrin and fodrin. Eur J Cell Biol 1998; 75:309-20. [PMID: 9628317 DOI: 10.1016/s0171-9335(98)80064-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Upon cell junction formation, the microtubules of polarizing epithelial cells become reorganized by unknown signaling mechanisms and regulating proteins. Microtubule-associated (MAPs) and other types of proteins are likely to be involved in this process, but most of these are unknown. Such proteins are called here collectively microtubule-regulating proteins (MRPs). As a first step towards their characterization, we used co-sedimentation of cytosolic proteins of MDCK cells and A72, a dog fibroblastoid line, with an excess of taxol-stabilized MTs, to obtain a cell fraction enriched in putative MRPs ("MRPs"). Additional tests have led to the inventory of around 40 "MRPs" among the 80 proteins present in the microtubule pellet. We also found that "MRPs" are recovered in higher amounts from MDCK cytosol, and that half of these are cell-type specific. These results corroborate data from yeast cells and insect eggs, and show that in mammalian somatic cells too, a large number of proteins seems to be involved in microtubule regulation, and that different cell types use a specific set of MRPs. "MRPs" found in both cell types are the intermediate chain of cytoplasmic dynein, Arp1, the major subunit of the dynactin complex, and CLIP-170. Two MDCK-specific "MRPs" were identified as the actin-binding proteins ezrin and alpha-fodrin. These results are discussed with regard to a possible involvement of ezrin and fodrin in morphogenetic interactions of microtubules with the membrane cytoskeleton in polarizing epithelia upon junction formation.
Collapse
Affiliation(s)
- E Shestakova
- Institut Jacques Monod, Department of Supramolecular and Cellular Biology, Université Paris VII, France
| | | | | |
Collapse
|
660
|
Pulkkinen L, Uitto J. Hemidesmosomal variants of epidermolysis bullosa. Mutations in the alpha6beta4 integrin and the 180-kD bullous pemphigoid antigen/type XVII collagen genes. Exp Dermatol 1998; 7:46-64. [PMID: 9583744 DOI: 10.1111/j.1600-0625.1998.tb00304.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epidermolysis bullosa (EB), a heterogeneous group of genodermatoses, is characterized by fragility and blistering of the skin, associated with characteristic extracutaneous manifestations. Based on clinical severity, constellation of the phenotypic manifestations, and the level of tissue separation within the cutaneous basement membrane zone, EB has been divided into distinct subcategories. Traditionally, these include the simplex, junctional and dystrophic variants of EB. Recent attention has been drawn to variants of EB demonstrating tissue separation at the level of hemidesmosomes, ultrastructurally recognizable adhesion complexes within the cutaneous basement membrane zone. Clinically, these hemidesmosomal variants manifest either as generalized atrophic benign epidermolysis bullosa (GABEB), EB with pyloric atresia, or EB with late-onset muscular dystrophy. Elucidation of basement membrane zone components by molecular cloning and development of mutation detection strategies have revealed that the hemidesmosomal variants of EB result from mutations in the genes encoding the subunit polypeptides of the 180-kD bullous pemphigoid antigen/type XVII collagen, the alpha6beta4 integrin, or plectin, respectively. Collectively, these data add to the understanding of the molecular complexity of the cutaneous basement membrane zone in EB, as attested by the fact that mutations in 10 different genes can underlie different variants of EB. Elucidation of mutations in different forms of EB has direct application to genetic counseling and DNA-based prenatal testing in families with EB.
Collapse
Affiliation(s)
- L Pulkkinen
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
661
|
Rose LS, Kemphues K. The let-99 gene is required for proper spindle orientation during cleavage of the C. elegans embryo. Development 1998; 125:1337-46. [PMID: 9477332 DOI: 10.1242/dev.125.7.1337] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The orientation of cell division is a critical aspect of development. In 2-cell C. elegans embryos, the spindle in the posterior cell is aligned along the long axis of the embryo and contributes to the unequal partitioning of cytoplasm, while the spindle in the anterior cell is oriented transverse to the long axis. Differing spindle alignments arise from blastomere-specific rotations of the nuclear-centrosome complex at prophase. We have found that mutations in the maternally expressed gene let-99 affect spindle orientation in all cells during the first three cleavages. During these divisions, the nuclear-centrosome complex appears unstable in position. In addition, in almost half of the mutant embryos, there are reversals of the normal pattern of spindle orientations at second cleavage: the spindle of the anterior cell is aligned with the long axis of the embryo and nuclear rotation fails in the posterior cell causing the spindle to form transverse to the long axis. In most of the remaining embryos, spindles in both cells are transverse at second cleavage. The distributions of several asymmetrically localized proteins, including P granules and PAR-3, are normal in early let-99 embryos, but are perturbed by the abnormal cell division orientations at second cleavage. The accumulation of actin and actin capping protein, which marks the site involved in nuclear rotation in 2-cell wild-type embryos, is abnormal but is not reversed in let-99 mutant embryos. Based on these data, we conclude that let-99(+) is required for the proper orientation of spindles after the establishment of polarity, and we postulate that let-99(+) plays a role in interactions between the astral microtubules and the cortical cytoskeleton.
Collapse
Affiliation(s)
- L S Rose
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
662
|
Shi Y, Mello C. A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev 1998; 12:943-55. [PMID: 9531533 PMCID: PMC316678 DOI: 10.1101/gad.12.7.943] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian p300 and CBP are related transcriptional cofactors that possess histone acetyltransferase activity. Inactivation of CBP/p300 is critical for adenovirus E1A to induce oncogenic transformation and to inhibit differentiation, suggesting that these proteins are likely to play a role in cell growth and differentiation. Here we show that a Caenorhabditis elegans gene closely related to CBP/p300, referred to as cbp-1, is required during early embryogenesis to specify several major differentiation pathways. Inhibition of cbp-1 expression causes developmental arrest of C. elegans embryos with no evidence of body morphogenesis but with nearly twice the normal complement of embryonic cells. Mesodermal, endodermal, and hypodermal cells appear to be completely absent in most embryos, however, all of the embryos exhibit evidence of neuronal differentiation. Our analysis of this phenotype suggests a critical role for CBP-1 in promoting all non-neuronal pathways of somatic differentiation in the C. elegans embryo. In contrast, we show that C. elegans genes related to components of a conserved mammalian histone deacetylase, appear to have a role in repressing somatic differentiation. Our findings suggest a model in which CBP-1 may activate transcription and differentiation in C. elegans by directly or indirectly antagonizing a repressive effect of histone deacetylase.
Collapse
Affiliation(s)
- Y Shi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | | |
Collapse
|
663
|
Frank DJ, Roth MB. ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J Cell Biol 1998; 140:1321-9. [PMID: 9508766 PMCID: PMC2132676 DOI: 10.1083/jcb.140.6.1321] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/1997] [Revised: 01/21/1998] [Indexed: 02/06/2023] Open
Abstract
Regulation of ribosome synthesis is an essential aspect of growth control. Thus far, little is known about the factors that control and coordinate these processes. We show here that the Caenorhabditis elegans gene ncl-1 encodes a zinc finger protein and may be a repressor of RNA polymerase I and III transcription and an inhibitor of cell growth. Loss of function mutations in ncl-1, previously shown to result in enlarged nucleoli, result in increased rates of rRNA and 5S RNA transcription and enlarged cells. Furthermore, ncl-1 adult worms are larger, have more protein, and have twice as much rRNA as wild-type worms. Localization studies show that the level of NCL-1 protein is independently regulated in different cells of the embryo. In wild-type embryos, cells with the largest nucleoli have the lowest level of NCL-1 protein. Based on these results we propose that ncl-1 is a repressor of ribosome synthesis and cell growth.
Collapse
Affiliation(s)
- D J Frank
- Division of Basic Sciences and Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
664
|
Vatcher GP, Thacker CM, Kaletta T, Schnabel H, Schnabel R, Baillie DL. Serine hydroxymethyltransferase is maternally essential in Caenorhabditis elegans. J Biol Chem 1998; 273:6066-73. [PMID: 9497323 DOI: 10.1074/jbc.273.11.6066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mel-32 gene in the free living soil nematode Caenorhabditis elegans encodes a serine hydroxymethyltransferase (SHMT) isoform. Seventeen ethylmethanesulfonate (EMS)-induced mutant alleles of mel-32(SHMT) have been generated, each of which causes a recessive maternal effect lethal phenotype. Animals homozygous for the SHMT mutations have no observable mutant phenotype, but their offspring display an embryonic lethal phenotype. The Mel-32 phenotype has been rescued with a transgenic array containing only mel-32(SHMT) genomic DNA. Heteroduplex analysis of the 17 alleles allowed 14 of the mutations to be positioned to small regions. Subsequent sequence analysis has shown that 16 of the alleles alter highly conserved amino acids, while one allele introduces a stop codon that truncates two thirds of the predicted protein. mel-32(SHMT) has a 55-60% identity at the amino acid level with both isoforms of SHMT found in yeast and humans and a 50% identity with the Escherichia coli isoform. The C. elegans mel-32 mutation represents the first case where SHMT has been shown to be an essential gene.
Collapse
Affiliation(s)
- G P Vatcher
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | |
Collapse
|
665
|
Abstract
Caenorhabditis elegans has become a popular model system for genetic and molecular research, since it is easy to maintain and has a very fast life-cycle. Its genome is small and a virtually complete physical map in the form of cosmids and YAC clones exists. Thus it was chosen as a model system by the Genome Project for sequencing, and it is expected that by 1998 the complete sequence (100 million bp) will be available. The accumulated wealth of information about C. elegans should be a boon for nematode parasitologists, as many aspects of gene regulation and function can be studied in this simple model system. A large array of techniques is available to study many aspects of C. elegans biology. In combination with genome projects for parasitic nematodes, conserved genes can be identified rapidly. We expect many new areas of fertile research that will lead to new insights in helminth parasitology, which are based not only on the information gained from C. elegans per se, but also from its use as a heterologous system to study parasitic genes.
Collapse
Affiliation(s)
- T R Bürglin
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland.
| | | | | |
Collapse
|
666
|
Abstract
Genetic screens for recessive, maternal-effect, embryonic-lethal mutations have identified about 25 genes that control early steps of pattern formation in the nematode Caenorhabditis elegans. These maternal genes are discussed as belonging to one of three groups. The par group genes establish and maintain polarity in the one-cell zygote in response to sperm entry, defining an anterior/posterior body axis at least in part through interactions with the cyto-skeleton mediated by cortically localized proteins. Blastomere identity group genes act down-stream of the par group to specify the identities of individual embryonic cells, or blastomeres, using both cell autonomous and non-cell autonomous mechanisms. Requirements for the blastomere identity genes are consistent with previous studies suggesting that early asymmetric cleavages in the C. elegans embryo generate six "founder" cells that account for much of the C. elegans body plan. Intermediate group genes, most recently identified, may link the establishment of polarity in the zygote by par group genes to the localization of blastomere identity group gene functions. This review summarizes the known requirements for the members of each group, although it seems clear that additional regulatory genes controlling pattern formation in the early embryo have yet to be identified. An emerging challenge is to link the function of the genes in these three groups into interacting pathways that can account for the specification of the six founder cell identities in the early embryo, five of which produce somatic cell types and one of which produces the germline.
Collapse
Affiliation(s)
- B Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA
| |
Collapse
|
667
|
Clandinin TR, DeModena JA, Sternberg PW. Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans. Cell 1998; 92:523-33. [PMID: 9491893 DOI: 10.1016/s0092-8674(00)80945-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activity of LET-23, the C. elegans homolog of the epidermal growth factor receptor, is required in multiple tissues. RAS activation is necessary and sufficient for certain LET-23 functions. We show that an inositol trisphosphate receptor can act as a RAS-independent, tissue-specific positive effector of LET-23. Moreover, an inositol trisphosphate kinase negatively regulates this transduction pathway. Signals transduced by LET-23 control ovulation through changes in spermathecal dilation, possibly dependent upon calcium release regulated by both IP3 and IP4. Our results demonstrate that one mechanism by which receptor tyrosine kinases can evoke tissue-specific responses is through activation of distinct signal transduction cascades in different tissues.
Collapse
Affiliation(s)
- T R Clandinin
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
668
|
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806-11. [PMID: 9486653 DOI: 10.1038/35888] [Citation(s) in RCA: 10100] [Impact Index Per Article: 374.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene. Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts. RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression. Here we investigate the requirements for structure and delivery of the interfering RNA. To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually. After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference. The effects of this interference were evident in both the injected animals and their progeny. Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Collapse
Affiliation(s)
- A Fire
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA.
| | | | | | | | | | | |
Collapse
|
669
|
Abstract
Special cytoplasm, called germ plasm, that is essential for the differentiation of germ cells is localized in a particular region of Caenorhabditis elegans, Drosophila and Xenopus eggs. The mode of founder cell formation of germline, the origin and behavior of the germline granules, and the molecules localized in germline cells are compared in these organisms. The common characteristics of the organisms are mainly as follows. First, the founder cells of germline are established before the initiation of gastrulation. Second, the germline granules or their derivatives are always present in germline cells or germ cells throughout the life cycle in embryos, larvae, and adults. Lastly, among the proteins localized in the germ plasm, only Vasa protein or its homolog is detected in the germline cells or germ cells throughout the life cycle. As the protein of vasa homolog has been reported to be also localized in the germline-specific structure or nuage in some of the organisms without the germ plasm, the possibility that the mechanism for differentiation of primordial germ cells is basically common in all organisms with or without the germ plasm is discussed.
Collapse
Affiliation(s)
- K Ikenishi
- Department of Biology, Faculty of Science, Osaka City University, Sumiyoshi, Osaka, Japan
| |
Collapse
|
670
|
Fowler JE, Quatrano RS. Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu Rev Cell Dev Biol 1998; 13:697-743. [PMID: 9442885 DOI: 10.1146/annurev.cellbio.13.1.697] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because plants are composed of immobile cells, plant morphogenesis requires mechanisms allowing precise control of cell expansion and cell division patterns. Cortical domains, localized in response to directional cues, are of central importance in establishing cell polarity, orienting cell division, and determining daughter cell fates in a wide variety of prokaryotic and eukaryotic organisms. Such domains consist of localized macromolecular complexes that, in plant cells, provide spatial control of cell expansion and cell division functions. The role of the cytoskeleton, plasma membrane, and targeted secretion to the cell wall in the spatial regulation of cell morphogenesis in plants is discussed in light of recent results from model organisms, including brown algal zygotes (e.g. Fucus). A general model, emphasizing the importance of cortical sites and targeted secretion, is proposed for morphogenesis in higher plant cells based on current knowledge and principles derived from analysis of the establishment of a stable cortical asymmetry in Fucus. The model illustrates mechanisms to direct the orientation of an asymmetric division resulting in daughter cells with different fates.
Collapse
Affiliation(s)
- J E Fowler
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|
671
|
Abstract
Blastomeres in C. elegans embryos execute lineage programs wherein the fate of a cell is correlated reproducibly with the division sequence by which that cell is born. We provide evidence that the pop-1 gene functions to link anterior-posterior cell divisions with cell fate decisions. Each anterior cell resulting from an anterior-posterior division appears to have a higher level of nuclear POP-1 protein than does its posterior sister. Genes in the C. elegans Wnt pathway are required for this inequality in POP-1 levels. We show that loss of pop-1(+) activity leads to several types of anterior cells adopting the fates of their posterior sisters. These results suggest a mechanism for the invariance of blastomere lineages.
Collapse
Affiliation(s)
- R Lin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
672
|
Chien CT, Wang S, Rothenberg M, Jan LY, Jan YN. Numb-associated kinase interacts with the phosphotyrosine binding domain of Numb and antagonizes the function of Numb in vivo. Mol Cell Biol 1998; 18:598-607. [PMID: 9418906 PMCID: PMC121527 DOI: 10.1128/mcb.18.1.598] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During asymmetric cell division, the membrane-associated Numb protein localizes to a crescent in the mitotic progenitor and is segregated predominantly to one of the two daughter cells. We have identified a putative serine/threonine kinase, Numb-associated kinase (Nak), which interacts physically with the phosphotyrosine binding (PTB) domain of Numb. The PTB domains of Shc and insulin receptor substrate bind to an NPXY motif which is not present in the region of Nak that interacts with Numb PTB domain. We found that the Numb PTB domain but not the Shc PTB domain interacts with Nak through a peptide of 11 amino acids, implicating a novel and specific protein-protein interaction. Overexpression of Nak in the sensory organs causes both daughters of a normally asymmetric cell division to adopt the same cell fate, a transformation similar to the loss of numb function phenotype and opposite the cell fate transformation caused by overexpression of Numb. The frequency of cell fate transformation is sensitive to the numb gene dosage, as expected from the physical interaction between Nak and Numb. These findings indicate that Nak may play a role in cell fate determination during asymmetric cell divisions.
Collapse
Affiliation(s)
- C T Chien
- Howard Hughes Medical Institute and Department of Physiology and Biochemistry, University of California at San Francisco, 94143-0724, USA
| | | | | | | | | |
Collapse
|
673
|
Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, Wickens MP. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 1997; 390:477-84. [PMID: 9393998 DOI: 10.1038/37297] [Citation(s) in RCA: 410] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nematode Caenorhabditis elegans has two sexes, males and hermaphrodites. Hermaphrodites Initially produce sperm but switch to producing oocytes. This switch appears to be controlled by the 3' untranslated region of fem-3 messenger RNA. We have now identified a binding factor (FBF) which is a cytoplasmic protein that binds specifically to the regulatory region of fem-3 3'UTR and mediates the sperm/oocyte switch. The RNA-binding domain of FBF consists of a stretch of eight tandem repeats and two short flanking regions. This structural element is conserved in several proteins including Drosophila Pumilio, a regulatory protein that controls pattern formation in the fly by binding to a 3'UTR. We propose that FBF and Pumilio are members of a widespread family of sequence-specific RNA-binding proteins.
Collapse
Affiliation(s)
- B Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | | | |
Collapse
|
674
|
Abstract
The 100 Mb sequence of the nematode Caenorhabditis elegans genome will be completed in 1998. More than 10,000 predicted genes have been identified to date, so it should come as no surprise to find a C. elegans homologue of your favourite gene in current databases. For some investigators, the discovery of a C. elegans homologue represents a unique opportunity to adopt a genetic approach and to take advantage of the extensive repertoire of C. elegans gene characterization and manipulation tools. RNA injection provides a quick and efficient method for obtaining clues about wild-type gene function. Reverse genetic approaches also make it feasible to screen de novo for mutations in specific gene sequences. This review highlights the resources available for analysing a C. elegans homologue, starting from the gene sequence and proceeding to the biological function.
Collapse
Affiliation(s)
- P E Kuwabara
- MRC Laboratory of Molecular Biology, Division of Cell Biology, Cambridge, UK.
| |
Collapse
|
675
|
Zhu J, Hill RJ, Heid PJ, Fukuyama M, Sugimoto A, Priess JR, Rothman JH. end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev 1997; 11:2883-96. [PMID: 9353257 PMCID: PMC316658 DOI: 10.1101/gad.11.21.2883] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The endoderm in the nematode Caenorhabditis elegans is clonally derived from the E founder cell. We identified a single genomic region (the endoderm-determining region, or EDR) that is required for the production of the entire C. elegans endoderm. In embryos lacking the EDR, the E cell gives rise to ectoderm and mesoderm instead of endoderm and appears to adopt the fate of its cousin, the C founder cell. end-1, a gene from the EDR, restores endoderm production in EDR deficiency homozygotes. end-1 transcripts are first detectable specifically in the E cell, consistent with a direct role for end-1 in endoderm development. The END-1 protein is an apparent zinc finger-containing GATA transcription factor. As GATA factors have been implicated in endoderm development in other animals, our findings suggest that endoderm may be specified by molecularly conserved mechanisms in triploblastic animals. We propose that end-1, the first zygotic gene known to be involved in the specification of germ layer and founder cell identity in C. elegans, may link maternal genes that regulate the establishment of the endoderm to downstream genes responsible for endoderm differentiation.
Collapse
Affiliation(s)
- J Zhu
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
676
|
Li X, Greenwald I. HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc Natl Acad Sci U S A 1997; 94:12204-9. [PMID: 9342387 PMCID: PMC23751 DOI: 10.1073/pnas.94.22.12204] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutant presenilins have been found to cause Alzheimer disease. Here, we describe the identification and characterization of HOP-1, a Caenorhabditis elegans presenilin that displays much more lower sequence identity with human presenilins than does the other C. elegans presenilin, SEL-12. Despite considerable divergence, HOP-1 appears to be a bona fide presenilin, because HOP-1 can rescue the egg-laying defect caused by mutations in sel-12 when hop-1 is expressed under the control of sel-12 regulatory sequences. HOP-1 also has the essential topological characteristics of the other presenilins. Reducing hop-1 activity in a sel-12 mutant background causes synthetic lethality and terminal phenotypes associated with reducing the function of the C. elegans lin-12 and glp-1 genes. These observations suggest that hop-1 is functionally redundant with sel-12 and underscore the intimate connection between presenilin activity and LIN-12/Notch activity inferred from genetic studies in C. elegans and mammals.
Collapse
Affiliation(s)
- X Li
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
677
|
Goldmuntz E, Fedon J, Roe B, Budarf ML. Molecular characterization of a serine/threonine kinase in the DiGeorge minimal critical region. Gene X 1997; 198:379-86. [PMID: 9370305 DOI: 10.1016/s0378-1119(97)00341-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The majority of patients with DiGeorge, velocardiofacial or conotruncal anomaly facial syndromes share a common genetic etiology, deletion of chromosomal region 22q11.2. This report describes a computational approach toward the identification and molecular characterization of a newly identified serine/threonine kinase from the minimal critical deleted region (MDGCR). A cosmid contig of the minimal critical region has been assembled and sequenced in its entirety. Database searches and computer analysis of one cosmid (111f11) for coding sequences identified two regions with high similarity to the mouse serine/threonine kinase, Tsk1. Our investigations demonstrate that one of these regions contains a testis-specific gene that undergoes differential splicing, while the other region is most likely a pseudogene. Northern blot analysis and cDNA cloning demonstrate that there is alternate processing of the 3'UTR without altering the conserved kinase domains within the open reading frame. Serine/threonine kinases can play a regulatory role and have been found to be expressed during early embryogenesis. Based on its position in the MDGCR and possible function, the gene reported here is a candidate for the features seen in the 22q11 deletion syndrome.
Collapse
Affiliation(s)
- E Goldmuntz
- The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, The Department of Pediatrics, 19104, USA.
| | | | | | | |
Collapse
|
678
|
Bowerman B, Ingram MK, Hunter CP. The maternal par genes and the segregation of cell fate specification activities in early Caenorhabditis elegans embryos. Development 1997; 124:3815-26. [PMID: 9367437 DOI: 10.1242/dev.124.19.3815] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
After fertilization in C. elegans, activities encoded by the maternally expressed par genes appear to establish cellular and embryonic polarity. Loss-of-function mutations in the par genes disrupt anterior-posterior (a-p) asymmetries in early embryos and result in highly abnormal patterns of cell fate. Little is known about how the early asymmetry defects are related to the cell fate patterning defects in par mutant embryos, or about how the par gene products affect the localization and activities of developmental regulators known to specify the cell fate patterns made by individual blastomeres. Examples of such regulators of blastomere identity include the maternal proteins MEX-3 and GLP-1, expressed at high levels anteriorly, and SKN-1 and PAL-1, expressed at high levels posteriorly in early embryos. To better define par gene functions, we examined the expression patterns of MEX-3, PAL-1 and SKN-1, and we analyzed mex-3, pal-1, skn-1 and glp-1 activities in par mutant embryos. We have found that mutational inactivation of each par gene results in a unique phenotype, but in no case do we observe a complete loss of a-p asymmetry. We conclude that no one par gene is required for all a-p asymmetry and we suggest that, in some cases, the par genes act independently of each other to control cell fate patterning and polarity. Finally, we discuss the implications of our findings for understanding how the initial establishment of polarity in the zygote by the par gene products leads to the proper localization of more specifically acting regulators of blastomere identity.
Collapse
Affiliation(s)
- B Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA.
| | | | | |
Collapse
|
679
|
Ashe HL, Monks J, Wijgerde M, Fraser P, Proudfoot NJ. Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev 1997; 11:2494-509. [PMID: 9334315 PMCID: PMC316561 DOI: 10.1101/gad.11.19.2494] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1997] [Accepted: 08/13/1997] [Indexed: 02/05/2023]
Abstract
We have identified novel nuclear transcripts in the human beta-globin locus using nuclear run-on analysis in erythroid cell lines and in situ hybridization analysis of erythroid tissue. These transcripts extend across the LCR and intergenic regions but are undetectable in nonerythroid cells. Surprisingly, transient transfection of a beta-globin gene (epsilon, gamma, or beta) induces transcription of the LCR and intergenic regions from the chromosomal beta-globin locus in nonerythroid cell lines. The beta-globin genes themselves, however, remain transcriptionally silent. Induction is dependent on transcription of the globin gene in the transfected plasmid but does not require protein expression. Using in situ hybridization analysis, we show that the plasmid colocalizes with the endogenous beta-globin locus providing insight into the mechanism of transinduction.
Collapse
Affiliation(s)
- H L Ashe
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | | | |
Collapse
|
680
|
Starr DA, Williams BC, Li Z, Etemad-Moghadam B, Dawe RK, Goldberg ML. Conservation of the centromere/kinetochore protein ZW10. J Cell Biol 1997; 138:1289-301. [PMID: 9298984 PMCID: PMC2132553 DOI: 10.1083/jcb.138.6.1289] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations in the essential Drosophila melanogaster gene zw10 disrupt chromosome segregation, producing chromosomes that lag at the metaphase plate during anaphase of mitosis and both meiotic divisions. Recent evidence suggests that the product of this gene, DmZW10, acts at the kinetochore as part of a tension-sensing checkpoint at anaphase onset. DmZW10 displays an intriguing cell cycle-dependent intracellular distribution, apparently moving from the centromere/kinetochore at prometaphase to kinetochore microtubules at metaphase, and back to the centromere/kinetochore at anaphase (Williams, B.C., M. Gatti, and M.L. Goldberg. 1996. J. Cell Biol. 134:1127-1140). We have identified ZW10-related proteins from widely diverse species with divergent centromere structures, including several Drosophilids, Caenorhabditis elegans, Arabidopsis thaliana, Mus musculus, and humans. Antibodies against the human ZW10 protein display a cell cycle-dependent staining pattern in HeLa cells strikingly similar to that previously observed for DmZW10 in dividing Drosophila cells. Injections of C. elegans ZW10 antisense RNA phenocopies important aspects of the mutant phenotype in Drosophila: these include a strong decrease in brood size, suggesting defects in meiosis or germline mitosis, a high percentage of lethality among the embryos that are produced, and the appearance of chromatin bridges at anaphase. These results indicate that at least some aspects of the functional role of the ZW10 protein in ensuring proper chromosome segregation are conserved across large evolutionary distances.
Collapse
Affiliation(s)
- D A Starr
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | | | |
Collapse
|
681
|
Abstract
The nematode PAR-1 gene is required for asymmetric cell divisions during development. Recently identified mammalian Par-1 homologues are kinases that phosphorylate microtubule-associated proteins; their overexpression disrupts the microtubule cytoskeleton, and alters cellular structure and organization.
Collapse
Affiliation(s)
- W J Nelson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5426, USA.
| | | |
Collapse
|
682
|
Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha YH, Ali M, Priess JR, Mello CC. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 1997; 90:707-16. [PMID: 9288750 DOI: 10.1016/s0092-8674(00)80531-0] [Citation(s) in RCA: 529] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In a 4-cell stage C. elegans embryo, signaling by the P2 blastomere induces anterior-posterior polarity in the adjacent EMS blastomere, leading to endoderm formation. We have taken genetic and reverse genetic approaches toward understanding the molecular basis for this induction. These studies have identified a set of genes with sequence similarity to genes that have been shown to be, or are implicated in, Wnt/Wingless signaling pathways in other systems. The C. elegans genes described here are related to wnt/wingless, porcupine, frizzled, beta-catenin/armadillo, and the human adenomatous polyposis coli gene, APC. We present evidence that there may be partially redundant inputs into endoderm specification and that a subset of these genes appear also to function in determining cytoskeletal polarity in certain early blastomeres.
Collapse
Affiliation(s)
- C E Rocheleau
- Department of Cell Biology, Program in Molecular Medicine, University of Massachusetts Cancer Center, Worcester 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
683
|
Shen CP, Jan LY, Jan YN. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 1997; 90:449-58. [PMID: 9267025 DOI: 10.1016/s0092-8674(00)80505-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Asymmetric division of Drosophila neuroblasts, sensory organ precursor cells, and cells in the procephalic neurogenic region involves the segregation of Numb and Prospero proteins into one of the two daughter cells. We have isolated a novel gene, miranda, based on the ability of its gene product to interact with the Prospero asymmetric localization domain. miranda expression coincides spatially and temporally with asymmetric cell divisions and asymmetric localization of Prospero. Miranda protein is localized asymmetrically, along with Prospero, to the basal cell membrane during mitosis. Loss of miranda gene function abolishes asymmetric Prospero localization during mitosis. The asymmetric localization of Miranda protein requires inscuteable. Our results suggest that miranda functions downstream of inscuteable and works as an adapter that connects Prospero to the basal cell membrane during asymmetric cell division.
Collapse
Affiliation(s)
- C P Shen
- Howard Hughes Medical Institute and Department of Physiology, University of California at San Francisco, 94143-0724, USA
| | | | | |
Collapse
|
684
|
Böhm H, Brinkmann V, Drab M, Henske A, Kurzchalia TV. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity. Curr Biol 1997; 7:603-6. [PMID: 9259552 DOI: 10.1016/s0960-9822(06)00260-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The establishment of polarity in the embryo is fundamental for the correct development of an organism [1]. The first cleavage of the Caenorhabditis elegans embryo is asymmetric with certain cytoplasmic components being distributed unequally between the daughter cells [2-4]. Using a genetic screen, Kemphues and co-workers have identified six par genes (partition-defective) [5,6], which are involved in the process of asymmetric division. One of these genes encodes a highly conserved protein, PAR-1, which is a serine/threonine kinase that localizes asymmetrically to the posterior part of the zygote and to those blastocysts that give rise to the germ line [7-9]. We reasoned that the mammalian homologue of PAR-1 (mPAR-1) might be involved in the process of polarization of epithelial cells, which consist of apical and basolateral membrane domains. We found that mPAR-1 was expressed in a wide variety of epithelial tissues and cell lines and was associated with the cellular cortex. In polarized epithelial cells, mPAR-1 was asymmetrically localized to the lateral domain. A fusion protein lacking the kinase domain had the same localization as the full-length protein but its prolonged expression acted in a dominant-negative fashion: lateral adhesion of the transfected cells to neighbouring cells was diminished, resulting in the former cells being 'squeezed out' from the monolayer. Moreover, the polarity of these cells was disturbed resulting in mislocalization of E-cadherin. Thus, in the C. elegans embryo and in epithelial cells, polarity appears to be governed by similar mechanisms.
Collapse
Affiliation(s)
- H Böhm
- Department of Cell Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
685
|
Page BD, Zhang W, Steward K, Blumenthal T, Priess JR. ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos. Genes Dev 1997; 11:1651-61. [PMID: 9224715 DOI: 10.1101/gad.11.13.1651] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epidermal cells are generated during Caenorhabditis elegans embryogenesis by several distinct lineage patterns. These patterns are controlled by maternal genes that determine the identities of early embryonic blastomeres. We show that the embryonically expressed gene elt-1, which was shown previously to encode a GATA-like transcription factor, is required for the production of epidermal cells by each of these lineages. Depending on their lineage history, cells that become epidermal in wild-type embryos become either neurons or muscle cells in elt-1 mutant embryos. The ELT-1 protein is expressed in epidermal cells and in their precursors. We propose that elt-1 functions at an early step in the specification of epidermal cell fates.
Collapse
Affiliation(s)
- B D Page
- Fred Hutchinson Cancer Research Center (FHCRC) and Howard Hughes Medical Institute, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
686
|
McGrail M, Hays TS. The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 1997; 124:2409-19. [PMID: 9199367 DOI: 10.1242/dev.124.12.2409] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During animal development cellular differentiation is often preceded by an asymmetric cell division whose polarity is determined by the orientation of the mitotic spindle. In the fruit fly, Drosophila melanogaster, the oocyte differentiates in a 16-cell syncytium that arises from a cystoblast which undergoes 4 synchronous divisions with incomplete cytokinesis. During these divisions, spindle orientation is highly ordered and is thought to impart a polarity to the cyst that is necessary for the subsequent differentiation of the oocyte. Using mutations in the Drosophila cytoplasmic dynein heavy chain gene, Dhc64C, we show that cytoplasmic dynein is required at two stages of oogenesis. Early in oogenesis, dynein mutations disrupt spindle orientation in dividing cysts and block oocyte determination. The localization of dynein in mitotic cysts suggests spindle orientation is mediated by the microtubule motor cytoplasmic dynein. Later in oogenesis, dynein function is necessary for proper differentiation, but does not appear to participate in morphogen localization within the oocyte. These results provide evidence for a novel developmental role for the cytoplasmic dynein motor in cellular determination and differentiation.
Collapse
Affiliation(s)
- M McGrail
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
687
|
Krause M, Park M, Zhang JM, Yuan J, Harfe B, Xu SQ, Greenwald I, Cole M, Paterson B, Fire A. A C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development 1997; 124:2179-89. [PMID: 9187144 DOI: 10.1242/dev.124.11.2179] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The E proteins of mammals, and the related Daughterless (DA) protein of Drosophila, are ubiquitously expressed helix-loop-helix (HLH) transcription factors that play a role in many developmental processes. We report here the characterization of a related C. elegans protein, CeE/DA, which has a dynamic and restricted distribution during development. CeE/DA is present embryonically in neuronal precursors, some of which are marked by promoter activity of a newly described Achaete-scute-like gene hlh-3. In contrast, we have been unable to detect CeE/DA in CeMyoD-positive striated muscle cells. In vitro gel mobility shift analysis detects dimerization of CeE/DA with HLH-3 while efficient interaction of CeE/DA with CeMyoD is not seen. These studies suggest multiple roles for CeE/DA in C. elegans development and provide evidence that both common and alternative strategies have evolved for the use of related HLH proteins in controlling cell fates in different species.
Collapse
Affiliation(s)
- M Krause
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892-0510, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
688
|
Abstract
Caenorhabditis elegans will be the first multicellular animal to have its entire genome sequenced. This is not just good news for those currently working in the field, but also for those trying to understand the biology of more complex animals, including humans. C elegans is a relatively simple animal that is amenable to studies of genetics and developmental processes that are common to all animals, making this an attractive model in which to study basic processes that are altered in human disease. Powerful forward and reverse genetics mean that virtually any gene of interest can be studied at the functional level.
Collapse
Affiliation(s)
- J Ahringer
- Department of Genetics, University of Cambridge, UK.
| |
Collapse
|
689
|
Heyer BS, Warsowe J, Solter D, Knowles BB, Ackerman SL. New member of the Snf1/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo. Mol Reprod Dev 1997; 47:148-56. [PMID: 9136115 DOI: 10.1002/(sici)1098-2795(199706)47:2<148::aid-mrd4>3.0.co;2-m] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The initial phase of mammalian preimplantation development is directed by stored maternal mRNAs and their encoded proteins, yet most of the molecules controlling this process have not been described. We have used differential display analysis of cDNA libraries prepared from unfertilized eggs and preimplantation embryos to isolate three maternal cDNAs that represent novel genes exhibiting different patterns of expression during this developmental period. One of these, Melk, encodes a protein with a kinase catalytic domain and a leucine zipper motif, a new member of the Snf1/AMPK family of kinases. This gene product may play a role in the signal transduction events in the egg and early embryo.
Collapse
Affiliation(s)
- B S Heyer
- Max-Planck-Institut, Freiburg, Germany
| | | | | | | | | |
Collapse
|
690
|
Seydoux G, Dunn MA. Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 1997; 124:2191-201. [PMID: 9187145 DOI: 10.1242/dev.124.11.2191] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early embryonic germ cells in C. elegans and D. melanogaster fail to express many messenger RNAs expressed in somatic cells. In contrast, we find that ribosomal RNAs are expressed in both cell types. We show that this deficiency in mRNA production correlates with the absence of a specific phosphoepitope on the carboxy-terminal domain of RNA polymerase II. In both C. elegans and Drosophila embryos, this phosphoepitope appears in somatic nuclei coincident with the onset of embryonic transcription, but remains absent from germ cells until these cells associate with the gut primordium during gastrulation. In contrast, a second distinct RNA polymerase II phosphoepitope is present continuously in both somatic and germ cells. The germ-line-specific factor PIE-1 is required to block mRNA production in the germ lineage of early C. elegans embryos (Seydoux, G., Mello, C. C., Pettitt, J., Wood, W. B., Priess, J. R. and Fire, A. (1996) Nature 382, 713–716). We show here that PIE-1 is also required for the germ-line-specific pattern of RNA polymerase II phosphorylation. These observations link inhibition of mRNA production in embryonic germ cells to a specific modification in the phosphorylation pattern of RNA polymerase II and suggest that repression of RNA polymerase II activity may be part of an evolutionarily conserved mechanism that distinguishes germ line from soma during early embryogenesis. In addition, these studies also suggest that different phosphorylated isoforms of RNA polymerase II perform distinct functions.
Collapse
Affiliation(s)
- G Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD 21205-2185, USA.
| | | |
Collapse
|
691
|
Abstract
Asymmetric distribution of cytoplasmic proteins and messenger RNAs has been implicated in several instances of cell differentiation. Microtubules have been suggested to direct mRNA localization in Drosophila and Xenopus oocytes but motor proteins that might transport mRNAs have not yet been identified. Recent data imply that in Drosophila, Caenorhabditis elegans and budding yeast, proteins of the actin cytoskeleton, including unconventional myosins, play active roles in the segregation of differentiation factors and mRNAs.
Collapse
Affiliation(s)
- K Nasmyth
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030, Vienna, Austria.
| | | |
Collapse
|
692
|
Wang W, Shakes DC. Expression patterns and transcript processing of ftt-1 and ftt-2, two C. elegans 14-3-3 homologues. J Mol Biol 1997; 268:619-30. [PMID: 9171285 DOI: 10.1006/jmbi.1997.1002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A wide diversity of biological functions have been attributed to the highly conserved and ubiquitous 14-3-3 protein family. Yet how much of this diversity is inherent in the basic structure of 14-3-3 and how much is due to isoform specific functions is not yet fully understood. Here, two Caenorhabditis elegans 14-3-3 isoforms whose protein sequences are 90% similar were found to differ significantly in both their genomic structure and expression patterns. The two genes, ftt-1 (IV) (fourteen-three-three) and ftt-2 (X), differ in both the position and sequence of their introns. Since the various intron/exon boundaries respect neither functional nor structural protein motifs, the introns appear to be relatively recent evolutionary additions. ftt-1(IV) encodes three germline enhanced transcripts, two of which are related through the differential use of alternative poly(A) addition sites. RNA in situ hybridization studies reveal high levels of ftt-1 throughout the gonad with particularly high levels in the distal arm. In contrast, ftt-2 (X) encodes a single transcript which is expressed somatically. In embryos, high levels of ftt-1 transcripts appear to be maternally supplied, whereas ftt-2 is expressed as an early zygotic transcript whose expression pattern later localizes to the posterior region of post-proliferative embryos. These expression pattern differences between ftt-1 and ftt-2 suggest that these two 14-3-3 isoforms perform distinct biological roles within the worm.
Collapse
Affiliation(s)
- W Wang
- Department of Biology, University of Houston, TX 22304-5513, USA
| | | |
Collapse
|
693
|
Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 1997; 89:297-308. [PMID: 9108484 DOI: 10.1016/s0092-8674(00)80208-1] [Citation(s) in RCA: 682] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
MARK phosphorylates the microtubule-associated proteins tau, MAP2, and MAP4 on their microtubule-binding domain, causing their dissociation from microtubules and increased microtubule dynamics. We describe the molecular cloning, distribution, activation mechanism, and overexpression of two MARK proteins from rat that arise from distinct genes. They encode Ser/Thr kinases of 88 and 81 kDa, respectively, and show similarity to the yeast kin1+ and C. elegans par-1 genes that are involved in the establishment of cell polarity. Expression of both isoforms is ubiquitous, and homologous genes are present in humans. Catalytic activity depends on phosphorylation of two residues in subdomain VIII. Overexpression of MARK in cells leads to hyperphosphorylation of MAPs on KXGS motifs and to disruption of the microtubule array, resulting in morphological changes and cell death.
Collapse
Affiliation(s)
- G Drewes
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
694
|
Sluder AE, Lindblom T, Ruvkun G. The Caenorhabditis elegans orphan nuclear hormone receptor gene nhr-2 functions in early embryonic development. Dev Biol 1997; 184:303-19. [PMID: 9133437 DOI: 10.1006/dbio.1997.8544] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified a Caenorhabditis elegans gene, nhr-2, that is a member of the nuclear hormone receptor superfamily of transcription factors and defines a new subclass of the superfamily. nhr-2 messenger RNA is expressed in the maternal germline and during the first half of embryogenesis. Zygotic expression of nhr-2 begins by the 16-cell stage, making it one of the earliest genes known to be transcribed in the embryo. Immunolocalization detects NHR-2 protein in embryonic nuclei as early as the 2-cell stage. The protein is present in every nucleus until the 16- to 20-cell stage. Subsequently, expression continues in many, but not all, cell lineages, becoming progressively restricted to the anterior and dorsal regions of the embryo and disappearing during the initial stages of morphogenesis. Disruption of nhr-2 function with antisense RNA results in embryonic and early larval arrest, indicating that the gene has an essential function in embryonic development. nhr-2 does not correspond to known mutations mapped to the same genetic interval, and will provide an entry point for further study of a heretofore uncharacterized zygotic gene regulatory pathway.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Caenorhabditis elegans/embryology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/growth & development
- Caenorhabditis elegans Proteins
- Chromosome Mapping
- Cloning, Molecular
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Gene Expression Regulation, Developmental
- Genes, Helminth
- Microscopy, Fluorescence
- Molecular Sequence Data
- Morphogenesis
- Mutation
- Promoter Regions, Genetic
- RNA, Antisense/genetics
- RNA, Antisense/pharmacology
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Sequence Alignment
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Zinc Fingers/genetics
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- A E Sluder
- Department of Cellular Biology, University of Georgia, Athens 30602, USA.
| | | | | |
Collapse
|
695
|
Jiang R, Carlson M. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 1997; 17:2099-106. [PMID: 9121458 PMCID: PMC232057 DOI: 10.1128/mcb.17.4.2099] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Snf1 protein kinase plays a central role in the response to glucose starvation in the yeast Saccharomyces cerevisiae. Previously, we showed that two-hybrid interaction between Snf1 and its activating subunit, Snf4, is inhibited by high levels of glucose. These findings, together with biochemical evidence that Snf1 and Snf4 remain associated in cells grown in glucose, suggested that another protein (or proteins) anchors Snf1 and Snf4 into a complex. Here, we examine the possibility that a family of proteins, comprising Sip1, Sip2, and Gal83, serves this purpose. We first show that the fraction of cellular Snf4 protein that is complexed with Snf1 is reduced in a sip1delta sip2delta gal83delta triple mutant. We then present evidence that Sip1, Sip2, and Gal83 each interact independently with both Snf1 and Snf4 via distinct domains. A conserved internal region binds to the Snf1 regulatory domain, and the conserved C-terminal ASC domain binds to Snf4. Interactions were mapped by using the two-hybrid system and were confirmed by in vitro binding studies. These findings indicate that the Sip1/Sip2/Gal83 family anchors Snf1 and Snf4 into a complex. Finally, the interaction of the yeast Sip2 protein with a plant Snf1 homolog suggests that this function is conserved in plants.
Collapse
Affiliation(s)
- R Jiang
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
696
|
Guedes S, Priess JR. The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development 1997; 124:731-9. [PMID: 9043088 DOI: 10.1242/dev.124.3.731] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the nematode Caenorhabditis elegans, germ cells arise from early embryonic cells called germline blastomeres. Cytoplasmic structures called P granules are present in the fertilized egg and are segregated into each of the germline blastomeres during the first few cleavages of the embryo. Mutations in the maternally expressed gene mex-1 disrupt the segregation of P granules, prevent the formation of germ cells, and cause inappropriate patterns of somatic cell differentiation. We have cloned the mex-1 gene and determined the distribution pattern of the mex-1 gene products. The MEX-1 protein contains two copies of an unusual ‘finger’ domain also found in the PIE-1 protein of C. elegans. PIE-1 has been shown to be expressed in germline blastomeres, and is a component of P granules. We show here that MEX-1 also is present in germline blastomeres and is a P granule component, although MEX-1 is a cytoplasmic protein while PIE-1 is present in both the nucleus and cytoplasm. We further show that MEX-1 is required to restrict PIE-1 expression and activity to the germline blastomeres during the early embryonic cleavages.
Collapse
Affiliation(s)
- S Guedes
- Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
697
|
Regulation of Germline Proliferation in Caenorhabditis Elegans. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1566-3116(08)60035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
698
|
Jiang R, Carlson M. Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev 1996; 10:3105-15. [PMID: 8985180 DOI: 10.1101/gad.10.24.3105] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The SNF1 protein kinase is broadly conserved in eukaryotes and has been implicated in responses to environmental and nutritional stress. In yeast, the SNF1 kinase has a central role in the response to glucose starvation. SNF1 is associated with its activating subunit, SNF4, and other proteins in complexes. Using the two-hybrid system, we show that interaction between SNF1 and SNF4 is strongly regulated by the glucose signal. Moreover, this interaction is appropriately affected by mutations in regulators, including protein phosphatase 1. We show that SNF4 binds to the SNF1 regulatory domain in low glucose, whereas in high glucose the regulatory domain binds to the kinase domain of SNF1 itself. Genetic analysis further suggests that the SNF1 regulatory domain autoinhibits the kinase activity and that in low glucose SNF4 antagonizes this inhibition. Finally, these interactions have been conserved from yeast to plants, indicating that homologs of the SNF1 kinase complex respond to regulatory signals by analogous mechanisms.
Collapse
Affiliation(s)
- R Jiang
- Department of Genetics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
699
|
Gruidl ME, Smith PA, Kuznicki KA, McCrone JS, Kirchner J, Roussell DL, Strome S, Bennett KL. Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc Natl Acad Sci U S A 1996; 93:13837-42. [PMID: 8943022 PMCID: PMC19442 DOI: 10.1073/pnas.93.24.13837] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1996] [Accepted: 09/23/1996] [Indexed: 02/03/2023] Open
Abstract
Two components of the germ-line-specific P granules of the nematode Caenorhabditis elgans have been identified using polyclonal antibodies specific for each. Both components are putative germ-line RNA helicases (GLHs) that contain CCHC zinc fingers of the type found in the RNA-binding nucleocapsid proteins of retroviruses. The predicted GLH-1 protein has four CCHC fingers; GLH-2 has six. Both GLH proteins localize in the P granules at all stage of germ-line development. However, the two glh genes display different patterns of RNA and protein accumulation in the germ lines of hermaphrodites and males. Injection of antisense glh-1 or glh-2 RNA into wild-type worms causes some offspring to develop into sterile adults, suggesting that either or both genes are required for normal germ-line development. As these very similar glh genes physically map within several hundred kilobases of one another, it seems likely that they represent a fairly recent gene duplication event.
Collapse
Affiliation(s)
- M E Gruidl
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia 65212, USA
| | | | | | | | | | | | | | | |
Collapse
|
700
|
Guenther C, Garriga G. Asymmetric distribution of the C. elegans HAM-1 protein in neuroblasts enables daughter cells to adopt distinct fates. Development 1996; 122:3509-18. [PMID: 8951066 DOI: 10.1242/dev.122.11.3509] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One mechanism of generating cellular diversity is to distribute developmental potential asymmetrically to daughter cells at mitosis. Two observations described in this report suggest that the C. elegans HAM-1 protein functions in dividing neuroblasts to produce daughter cells that adopt distinct fates. First, HAM-1 is asymmetrically distributed to the periphery of certain mitotic cells, ensuring that it will be inherited by only one daughter cell. Second, ham-1 mutations disrupt the asymmetric divisions of five neuroblasts. In one of these divisions, loss of ham-1 function causes the daughter cell that does not inherit HAM-1 to adopt the fate of the daughter cell that normally inherits HAM-1. We propose that asymmetric distribution of HAM-1 enables daughter cells to adopt distinct fates.
Collapse
Affiliation(s)
- C Guenther
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | |
Collapse
|