651
|
Okamoto T, Suzuki T, Kusakabe S, Tokunaga M, Hirano J, Miyata Y, Matsuura Y. Regulation of Apoptosis during Flavivirus Infection. Viruses 2017; 9:v9090243. [PMID: 28846635 PMCID: PMC5618009 DOI: 10.3390/v9090243] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/19/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses.
Collapse
Affiliation(s)
- Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Tatsuya Suzuki
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Shinji Kusakabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Makoto Tokunaga
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Junki Hirano
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Yuka Miyata
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
652
|
Di Franco S, Turdo A, Todaro M, Stassi G. Role of Type I and II Interferons in Colorectal Cancer and Melanoma. Front Immunol 2017; 8:878. [PMID: 28798748 PMCID: PMC5526853 DOI: 10.3389/fimmu.2017.00878] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer can be considered an aberrant organ with a hierarchical composition of different cell populations. The tumor microenvironment, including the immune cells and related cytokines, is crucial during all the steps of tumor development. In particular, type I and II interferons (IFNs) are involved in a plethora of mechanisms that regulate immune responses in cancer, thus balancing immune escape versus immune surveillance. IFNs are involved in both the direct and indirect regulation of cancer cell proliferation and metastatic potential. The mutational background of genes involved in IFNs signaling could serve as a prognostic biomarker and a powerful tool to screen cancer patients eligible for checkpoint blocking therapies. We herewith describe the latest findings regarding the contribution of IFNs in colorectal cancer and melanoma by researching their dual role as either tumor promoter or suppressor, in diverse tumor types, and microenvironmental context. We are reporting the most innovative and promising approaches of IFN-based therapies that have achieved considerable outcomes in clinical oncology practice and explain the possible mechanisms responsible for their failure.
Collapse
Affiliation(s)
- Simone Di Franco
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Alice Turdo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,DiBiMIS, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
653
|
Yuan L, Mao Y, Luo W, Wu W, Xu H, Wang XL, Shen YH. Palmitic acid dysregulates the Hippo-YAP pathway and inhibits angiogenesis by inducing mitochondrial damage and activating the cytosolic DNA sensor cGAS-STING-IRF3 signaling mechanism. J Biol Chem 2017; 292:15002-15015. [PMID: 28698384 DOI: 10.1074/jbc.m117.804005] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/26/2022] Open
Abstract
Impaired angiogenesis and wound healing carry significant morbidity and mortality in diabetic patients. Metabolic stress from hyperglycemia and elevated free fatty acids have been shown to inhibit endothelial angiogenesis. However, the underlying mechanisms remain poorly understood. In this study, we show that dysregulation of the Hippo-Yes-associated protein (YAP) pathway, an important signaling mechanism in regulating tissue repair and regeneration, underlies palmitic acid (PA)-induced inhibition of endothelial angiogenesis. PA inhibited endothelial cell proliferation, migration, and tube formation, which were associated with increased expression of mammalian Ste20-like kinases 1 (MST1), YAP phosphorylation/inactivation, and nuclear exclusion. Overexpression of YAP or knockdown of MST1 prevented PA-induced inhibition of angiogenesis. When searching upstream signaling mechanisms, we found that PA dysregulated the Hippo-YAP pathway by inducing mitochondrial damage. PA treatment induced mitochondrial DNA (mtDNA) release to cytosol, and activated cytosolic DNA sensor cGAS-STING-IRF3 signaling. Activated IRF3 bound to the MST1 gene promoter and induced MST1 expression, leading to MST1 up-regulation, YAP inactivation, and angiogenesis inhibition. Thus, mitochondrial damage and cytosolic DNA sensor cGAS-STING-IRF3 signaling are critically involved in PA-induced Hippo-YAP dysregulation and angiogenesis suppression. This mechanism may have implication in impairment of angiogenesis and wound healing in diabetes.
Collapse
Affiliation(s)
- Liangshuai Yuan
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research
| | - Yun Mao
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research.,the Qilu Hospital of Shandong University, Jinan 250012, China.,the Department of Surgery, Baylor College of Medicine, Houston, Texas 70030, and.,the Department of Surgery, Texas Heart Institute, Houston, Texas 70030
| | - Wei Luo
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research.,the Qilu Hospital of Shandong University, Jinan 250012, China.,the Department of Surgery, Baylor College of Medicine, Houston, Texas 70030, and.,the Department of Surgery, Texas Heart Institute, Houston, Texas 70030
| | - Weiwei Wu
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research
| | - Hao Xu
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research
| | - Xing Li Wang
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, .,the Qilu Hospital of Shandong University, Jinan 250012, China.,the Department of Surgery, Baylor College of Medicine, Houston, Texas 70030, and.,the Department of Surgery, Texas Heart Institute, Houston, Texas 70030
| | - Ying H Shen
- the Qilu Hospital of Shandong University, Jinan 250012, China, .,the Department of Surgery, Baylor College of Medicine, Houston, Texas 70030, and.,the Department of Surgery, Texas Heart Institute, Houston, Texas 70030
| |
Collapse
|
654
|
Caspases control antiviral innate immunity. Cell Mol Immunol 2017; 14:736-747. [PMID: 28690332 DOI: 10.1038/cmi.2017.44] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
Caspases are a family of cysteine proteases whose functions have been scrutinized intensively in recent years. Beyond their established roles in programmed cell death and inflammatory response, some caspases are also fundamental players in antiviral immunity by fine-tuning the levels of antiviral signaling adapters and cytokines, such as type I interferons, which serves as a major, sophisticated weapon against viruses. Viral infections can result in inflammasome activation and the initiation of cell death, including apoptosis and pyroptosis, and multiple caspases are significantly involved in these processes. This review will focus on the cutting-edge discoveries regarding the multifaceted roles of caspases in antiviral innate immunity.
Collapse
|
655
|
Baker PJ, De Nardo D, Moghaddas F, Tran LS, Bachem A, Nguyen T, Hayman T, Tye H, Vince JE, Bedoui S, Ferrero RL, Masters SL. Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiol Rev 2017; 97:1165-1209. [DOI: 10.1152/physrev.00026.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Cell surface innate immune receptors can directly detect a variety of extracellular pathogens to which cytoplasmic innate immune sensors are rarely exposed. Instead, within the cytoplasm, the environment is rife with cellular machinery and signaling pathways that are indirectly perturbed by pathogenic microbes to activate intracellular sensors, such as pyrin, NLRP1, NLRP3, or NLRC4. Therefore, subtle changes in key intracellular processes such as phosphorylation, ubiquitination, and other pathways leading to posttranslational protein modification are key determinants of innate immune recognition in the cytoplasm. This concept is critical to establish the “guard hypothesis” whereby otherwise homeostatic pathways that keep innate immune sensors at bay are released in response to alterations in their posttranslational modification status. Originally identified in plants, evidence that a similar guardlike mechanism exists in humans has recently been identified, whereby a mutation that prevents phosphorylation of the innate immune sensor pyrin triggers a dominantly inherited autoinflammatory disease. It is also noteworthy that even when a cytoplasmic innate immune sensor has a direct ligand, such as bacterial peptidoglycan (NOD1 or NOD2), RNA (RIG-I or MDA5), or DNA (cGAS or IFI16), it can still be influenced by posttranslational modification to dramatically alter its response. Therefore, due to their existence in the cytoplasmic milieu, posttranslational modification is a key determinant of intracellular innate immune receptor functionality.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Le Son Tran
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Annabell Bachem
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Tan Nguyen
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Thomas Hayman
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Hazel Tye
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - James E. Vince
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Sammy Bedoui
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Richard L. Ferrero
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
656
|
MITA modulated autophagy flux promotes cell death in breast cancer cells. Cell Signal 2017; 35:73-83. [DOI: 10.1016/j.cellsig.2017.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/12/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022]
|
657
|
Sun B, Sundström KB, Chew JJ, Bist P, Gan ES, Tan HC, Goh KC, Chawla T, Tang CK, Ooi EE. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci Rep 2017; 7:3594. [PMID: 28620207 PMCID: PMC5472572 DOI: 10.1038/s41598-017-03932-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Cyclic GMP-AMP synthetase (cGAS) is a DNA-specific cytosolic sensor, which detects and initiates host defense responses against microbial DNA. It is thus curious that a recent study identified cGAS as playing important roles in inhibiting positive-sense single-stranded RNA (+ssRNA) viral infection, especially since RNA is not known to activate cGAS. Using a dengue virus serotype 2 (DENV-2) vaccine strain (PDK53), we show that infection creates an endogenous source of cytosolic DNA in infected cells through the release of mitochondrial DNA (mtDNA) to drive the production of cGAMP by cGAS. Innate immune responses triggered by cGAMP contribute to limiting the spread of DENV to adjacent uninfected cells through contact dependent gap junctions. Our result thus supports the notion that RNA virus indirectly activates a DNA-specific innate immune signaling pathway and highlights the breadth of the cGAS-induced antiviral response.
Collapse
Affiliation(s)
- Bo Sun
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore.,Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karin B Sundström
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Jun Jie Chew
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Pradeep Bist
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Esther S Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Kenneth C Goh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tanu Chawla
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Choon Kit Tang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore. .,Singapore MIT Alliance in Research and Technology, Infectious Diseases Interdisciplinary Group, Singapore, Singapore.
| |
Collapse
|
658
|
Fink SL, Jayewickreme TR, Molony RD, Iwawaki T, Landis CS, Lindenbach BD, Iwasaki A. IRE1α promotes viral infection by conferring resistance to apoptosis. Sci Signal 2017; 10:eaai7814. [PMID: 28588082 PMCID: PMC5535312 DOI: 10.1126/scisignal.aai7814] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The unfolded protein response (UPR) is an ancient cellular pathway that detects and alleviates protein-folding stresses. The UPR components X-box binding protein 1 (XBP1) and inositol-requiring enzyme 1α (IRE1α) promote type I interferon (IFN) responses. We found that Xbp1-deficient mouse embryonic fibroblasts and macrophages had impaired antiviral resistance. However, this was not because of a defect in type I IFN responses but rather an inability of Xbp1-deficient cells to undergo viral-induced apoptosis. The ability to undergo apoptosis limited infection in wild-type cells. Xbp1-deficient cells were generally resistant to the intrinsic pathway of apoptosis through an indirect mechanism involving activation of the nuclease IRE1α. We observed an IRE1α-dependent reduction in the abundance of the proapoptotic microRNA miR-125a and a corresponding increase in the amounts of the members of the antiapoptotic Bcl-2 family. The activation of IRE1α by the hepatitis C virus (HCV) protein NS4B in XBP1-proficient cells also conferred apoptosis resistance and promoted viral replication. Furthermore, we found evidence of IRE1α activation and decreased miR-125a abundance in liver biopsies from patients infected with HCV compared to those in the livers of healthy controls. Our results reveal a prosurvival role for IRE1α in virally infected cells and suggest a possible target for IFN-independent antiviral therapy.
Collapse
Affiliation(s)
- Susan L Fink
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Ryan D Molony
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Charles S Landis
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale University, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20814, USA
| |
Collapse
|
659
|
Mao Y, Luo W, Zhang L, Wu W, Yuan L, Xu H, Song J, Fujiwara K, Abe JI, LeMaire SA, Wang XL, Shen YH. STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity. Arterioscler Thromb Vasc Biol 2017; 37:920-929. [PMID: 28302626 PMCID: PMC5408305 DOI: 10.1161/atvbaha.117.309017] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/06/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Metabolic stress in obesity induces endothelial inflammation and activation, which initiates adipose tissue inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms underlying endothelial inflammation induction are not completely understood. Stimulator of interferon genes (STING) is an important molecule in immunity and inflammation. In the present study, we sought to determine the role of STING in palmitic acid-induced endothelial activation/inflammation. APPROACH AND RESULTS In cultured endothelial cells, palmitic acid treatment activated STING, as indicated by its perinuclear translocation and binding to interferon regulatory factor 3 (IRF3), leading to IRF3 phosphorylation and nuclear translocation. The activated IRF3 bound to the promoter of ICAM-1 (intercellular adhesion molecule 1) and induced ICAM-1 expression and monocyte-endothelial cell adhesion. When analyzing the upstream signaling, we found that palmitic acid activated STING by inducing mitochondrial damage. Palmitic acid treatment caused mitochondrial damage and leakage of mitochondrial DNA into the cytosol. Through the cytosolic DNA sensor cGAS (cyclic GMP-AMP synthase), the mitochondrial damage and leaked cytosolic mitochondrial DNA activated the STING-IRF3 pathway and increased ICAM-1 expression. In mice with diet-induced obesity, the STING-IRF3 pathway was activated in adipose tissue. However, STING deficiency (Stinggt/gt ) partially prevented diet-induced adipose tissue inflammation, obesity, insulin resistance, and glucose intolerance. CONCLUSIONS The mitochondrial damage-cGAS-STING-IRF3 pathway is critically involved in metabolic stress-induced endothelial inflammation. STING may be a potential therapeutic target for preventing cardiovascular diseases and insulin resistance in obese individuals.
Collapse
Affiliation(s)
- Yun Mao
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Wei Luo
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Lin Zhang
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Weiwei Wu
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Liangshuai Yuan
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Hao Xu
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Juhee Song
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Keigi Fujiwara
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Jun-Ichi Abe
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Scott A LeMaire
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Xing Li Wang
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston
| | - Ying H Shen
- From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research (Y.M., W.L., W.W., L.Y., H.X., X.L.W.), Jinan, P.R. China; Department of Surgery, Baylor College of Medicine, Houston, TX (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Surgery, Texas Heart Institute, Houston (Y.M., W.L., L.Z., S.A.L., X.L.W., Y.H.S.); Department of Biostatistics (J.S.) and Division of Internal Medicine, Department of Cardiology - Research (K.F., J.-I.A.), The University of Texas MD Anderson Cancer Center, Houston.
| |
Collapse
|
660
|
Abstract
Apoptosis is an important component of normal tissue physiology, and the prompt removal of apoptotic cells is equally essential to avoid the undesirable consequences of their accumulation and disintegration. Professional phagocytes are highly specialized for engulfing apoptotic cells. The recent ability to track cells that have undergone apoptosis in situ has revealed a division of labor among the tissue resident phagocytes that sample them. Macrophages are uniquely programmed to process internalized apoptotic cell-derived fatty acids, cholesterol and nucleotides, as a reflection of their dominant role in clearing the bulk of apoptotic cells. Dendritic cells carry apoptotic cells to lymph nodes where they signal the emergence and expansion of highly suppressive regulatory CD4 T cells. A broad suppression of inflammation is executed through distinct phagocyte-specific mechanisms. A clever induction of negative regulatory nodes is notable in dendritic cells serving to simultaneously shut down multiple pathways of inflammation. Several of the genes and pathways modulated in phagocytes in response to apoptotic cells have been linked to chronic inflammatory and autoimmune diseases such as atherosclerosis, inflammatory bowel disease and systemic lupus erythematosus. Our collective understanding of old and new phagocyte functions after apoptotic cell phagocytosis demonstrates the enormity of ways to mediate immune suppression and enforce tissue homeostasis.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
661
|
Daley SR, Teh C, Hu DY, Strasser A, Gray DH. Cell death and thymic tolerance. Immunol Rev 2017; 277:9-20. [DOI: 10.1111/imr.12532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stephen R. Daley
- Infection and Immunity Program; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology; Monash University; Melbourne VIC Australia
| | - Charis Teh
- The Walter and Eliza Hall Institute of Medical Research; Melbourne VIC Australia
- Department of Medical Biology; The University of Melbourne; Parkville VIC Australia
| | | | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research; Melbourne VIC Australia
- Department of Medical Biology; The University of Melbourne; Parkville VIC Australia
| | - Daniel H.D. Gray
- The Walter and Eliza Hall Institute of Medical Research; Melbourne VIC Australia
- Department of Medical Biology; The University of Melbourne; Parkville VIC Australia
| |
Collapse
|
662
|
Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017; 17:363-375. [PMID: 28393922 DOI: 10.1038/nri.2017.21] [Citation(s) in RCA: 720] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial DNA (mtDNA) - which is well known for its role in oxidative phosphorylation and maternally inherited mitochondrial diseases - is increasingly recognized as an agonist of the innate immune system that influences antimicrobial responses and inflammatory pathology. On entering the cytoplasm, extracellular space or circulation, mtDNA can engage multiple pattern-recognition receptors in cell-type- and context-dependent manners to trigger pro-inflammatory and type I interferon responses. Here, we review the expanding research field of mtDNA in innate immune responses to highlight new mechanistic insights and discuss the physiological and pathological relevance of this exciting area of mitochondrial biology.
Collapse
|
663
|
Kato K, Omura H, Ishitani R, Nureki O. Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Annu Rev Biochem 2017; 86:541-566. [PMID: 28399655 DOI: 10.1146/annurev-biochem-061516-044813] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system functions as the first line of defense against invading bacteria and viruses. In this context, the cGAS/STING [cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase/STING] signaling axis perceives the nonself DNA associated with bacterial and viral infections, as well as the leakage of self DNA by cellular dysfunction and stresses, to elicit the host's immune responses. In this pathway, the noncanonical cyclic dinucleotide 2',3'-cyclic GMP-AMP (2',3'-cGAMP) functions as a second messenger for signal transduction: 2',3'-cGAMP is produced by the enzyme cGAS upon its recognition of double-stranded DNA, and then the 2',3'-cGAMP is recognized by the receptor STING to induce the phosphorylation of downstream factors, including TBK1 (TANK binding kinase 1) and IRF3 (interferon regulatory factor 3). Numerous crystal structures of the components of this cGAS/STING signaling axis have been reported and these clarify the structural basis for their signal transduction mechanisms. In this review, we summarize recent progress made in the structural dissection of this signaling pathway and indicate possible directions of forthcoming research.
Collapse
Affiliation(s)
- Kazuki Kato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; ,
| | - Hiroki Omura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; ,
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; ,
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; ,
| |
Collapse
|
664
|
Musella M, Manic G, De Maria R, Vitale I, Sistigu A. Type-I-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications. Oncoimmunology 2017. [PMID: 28638743 DOI: 10.1080/2162402x.2017.1314424] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
If there is a great new hope in the treatment of cancer, the immune system is it. Innate and adaptive immunity either promote or attenuate tumorigenesis and so can have opposing effects on the therapeutic outcome. Originally described as potent antivirals, Type-I interferons (IFNs) were quickly recognized as central coordinators of tumor-immune system interactions. Type-I-IFNs are produced by, and act on, both tumor and immune cells being either host-protecting or tumor-promoting. Here, we discuss Type-I-IFNs in infectious and cancer diseases highlighting their dichotomous role and raising the importance to deeply understand the underlying mechanisms so to reshape the way we can exploit Type-I-IFNs therapeutically.
Collapse
Affiliation(s)
- Martina Musella
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Ruggero De Maria
- Department of General Pathology and Physiopathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilio Vitale
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
665
|
Poli C, Augusto JF, Dauvé J, Adam C, Preisser L, Larochette V, Pignon P, Savina A, Blanchard S, Subra JF, Chevailler A, Procaccio V, Croué A, Créminon C, Morel A, Delneste Y, Fickenscher H, Jeannin P. IL-26 Confers Proinflammatory Properties to Extracellular DNA. THE JOURNAL OF IMMUNOLOGY 2017; 198:3650-3661. [DOI: 10.4049/jimmunol.1600594] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
|
666
|
Abstract
Dying cells have an important role in the initiation of CD8+ T cell-mediated immunity. The cross-presentation of antigens derived from dying cells enables dendritic cells to present exogenous tissue-restricted or tumour-restricted proteins on MHC class I molecules. Importantly, this pathway has been implicated in multiple autoimmune diseases and accounts for the priming of tumour antigen-specific T cells. Recent data have revealed that in addition to antigen, dying cells provide inflammatory and immunogenic signals that determine the efficiency of CD8+ T cell cross-priming. The complexity of these signals has been evidenced by the multiple molecular pathways that result in cell death and that have now been shown to differentially influence antigen transfer and immunity. In this Review, we provide a detailed summary of both the passive and active signals that are generated by dying cells during their initiation of CD8+ T cell-mediated immunity. We propose that molecules generated alongside cell death pathways - inducible damage-associated molecular patterns (iDAMPs) - are upstream immunological cues that actively regulate adaptive immunity.
Collapse
|
667
|
Wang Q, Huang L, Hong Z, Lv Z, Mao Z, Tang Y, Kong X, Li S, Cui Y, Liu H, Zhang L, Zhang X, Jiang L, Wang C, Zhou Q. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. PLoS Pathog 2017; 13:e1006264. [PMID: 28273161 PMCID: PMC5358892 DOI: 10.1371/journal.ppat.1006264] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/20/2017] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS), upon cytosolic DNA stimulation, catalyzes the formation of the second messenger 2'3'-cGAMP, which then binds to stimulator of interferon genes (STING) and activates downstream signaling. It remains to be elucidated how the cGAS enzymatic activity is modulated dynamically. Here, we reported that the ER ubiquitin ligase RNF185 interacted with cGAS during HSV-1 infection. Ectopic-expression or knockdown of RNF185 respectively enhanced or impaired the IRF3-responsive gene expression. Mechanistically, RNF185 specifically catalyzed the K27-linked poly-ubiquitination of cGAS, which promoted its enzymatic activity. Additionally, Systemic Lupus Erythematosus (SLE) patients displayed elevated expression of RNF185 mRNA. Collectively, this study uncovers RNF185 as the first E3 ubiquitin ligase of cGAS, shedding light on the regulation of cGAS activity in innate immune responses.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, the Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liyuan Huang
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, the Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ze Hong
- School of Life Science and Technology, China Pharmaceutical University, Jiangning District, Nanjing, China
| | - Zhongshi Lv
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, the Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zhaomin Mao
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, the Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yijun Tang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Senlin Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye Cui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lele Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojie Zhang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, China Pharmaceutical University, Jiangning District, Nanjing, China
| | - Qin Zhou
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, the Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
668
|
Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection. Immunity 2017; 46:393-404. [DOI: 10.1016/j.immuni.2017.02.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/21/2016] [Accepted: 02/17/2017] [Indexed: 01/14/2023]
|
669
|
Boyapati RK, Tamborska A, Dorward DA, Ho GT. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Res 2017; 6:169. [PMID: 28299196 PMCID: PMC5321122 DOI: 10.12688/f1000research.10397.1] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2017] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities.
Collapse
Affiliation(s)
- Ray K Boyapati
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; Department of Gastroenterology, Monash Health, Clayton, VIC, Australia
| | - Arina Tamborska
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - David A Dorward
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gwo-Tzer Ho
- MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
670
|
Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proc Natl Acad Sci U S A 2017; 114:2681-2686. [PMID: 28213497 DOI: 10.1073/pnas.1621508114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The innate immune system senses RNA viruses by pattern recognition receptors (PRRs) and protects the host from virus infection. PRRs mediate the production of immune modulatory factors and direct the elimination of RNA viruses. Here, we show a unique PRR that mediates antiviral response. Tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP ribose) polymerase (TIPARP), a Cysteine3 Histidine (CCCH)-type zinc finger-containing protein, binds to Sindbis virus (SINV) RNA via its zinc finger domain and recruits an exosome to induce viral RNA degradation. TIPARP typically localizes in the nucleus, but it accumulates in the cytoplasm after SINV infection, allowing targeting of cytoplasmic SINV RNA. Redistribution of TIPARP is induced by reactive oxygen species (ROS)-dependent oxidization of the nuclear pore that affects cytoplasmic-nuclear transport. BCL2-associated X protein (BAX) and BCL2 antagonist/killer 1 (BAK1), B-cell leukemia/lymphoma 2 (BCL2) family members, mediate mitochondrial damage to generate ROS after SINV infection. Thus, TIPARP is a viral RNA-sensing PRR that mediates antiviral responses triggered by BAX- and BAK1-dependent mitochondrial damage.
Collapse
|
671
|
|
672
|
Li K, Qu S, Chen X, Wu Q, Shi M. Promising Targets for Cancer Immunotherapy: TLRs, RLRs, and STING-Mediated Innate Immune Pathways. Int J Mol Sci 2017; 18:E404. [PMID: 28216575 PMCID: PMC5343938 DOI: 10.3390/ijms18020404] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
Malignant cancers employ diverse and intricate immune evasion strategies, which lead to inadequately effective responses of many clinical cancer therapies. However, emerging data suggest that activation of the tolerant innate immune system in cancer patients is able, at least partially, to counteract tumor-induced immunosuppression, which indicates triggering of the innate immune response as a novel immunotherapeutic strategy may result in improved therapeutic outcomes for cancer patients. The promising innate immune targets include Toll-like Receptors (TLRs), RIG-I-like Receptors (RLRs), and Stimulator of Interferon Genes (STING). This review discusses the antitumor properties of TLRs, RLRs, and STING-mediated innate immune pathways, as well as the promising innate immune targets for potential application in cancer immunotherapy.
Collapse
Affiliation(s)
- Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| | - Shuai Qu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| | - Xi Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
673
|
Brumatti G, Lalaoui N, Wei AH, Silke J. 'Did He Who Made the Lamb Make Thee?' New Developments in Treating the 'Fearful Symmetry' of Acute Myeloid Leukemia. Trends Mol Med 2017; 23:264-281. [PMID: 28196625 DOI: 10.1016/j.molmed.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Malignant cells must circumvent endogenous cell death pathways to survive and develop into cancers. Acquired cell death resistance also sets up malignant cells to survive anticancer therapies. Acute Myeloid Leukemia (AML) is an aggressive blood cancer characterized by high relapse rate and resistance to cytotoxic therapies. Recent collaborative profiling projects have led to a greater understanding of the 'fearful symmetry' of the genomic landscape of AML, and point to the development of novel potential therapies that can overcome factors linked to chemoresistance. We review here the most recent research in the genetics of AML and how these discoveries have led, or might lead, to therapies that specifically activate cell death pathways to substantially challenge this 'fearful' disease.
Collapse
Affiliation(s)
- Gabriela Brumatti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
674
|
Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 2017; 17:208-214. [PMID: 28163301 DOI: 10.1038/nri.2016.151] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.
Collapse
|
675
|
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol 2017; 17:151-164. [PMID: 28138137 DOI: 10.1038/nri.2016.147] [Citation(s) in RCA: 726] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic cells can die from physical trauma, which results in necrosis. Alternatively, they can die through programmed cell death upon the stimulation of specific signalling pathways. In this Review, we discuss the role of different cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary 'arms race' with pathogens. Finally, we describe how the resulting cell corpses - apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) - promote the clearance of infection.
Collapse
Affiliation(s)
- Ine Jorgensen
- Department of Immunology, Oslo University Hospital, Sognsvannsveien 20, Rikshospitalet 0372, Oslo, Norway
| | - Manira Rayamajhi
- Camargo Pharmaceutical Services, 2505 Meridian Parkway, Suite 175, Durham, North Carolina 27713, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
676
|
Qiao J, Tang H, Fu YX. DNA sensing and immune responses in cancer therapy. Curr Opin Immunol 2017; 45:16-20. [PMID: 28088707 DOI: 10.1016/j.coi.2016.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/08/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
Abstract
The identification of critical DNA sensors and their pathways has led to revealing the central role of DNA sensing in immune system. It has been initially demonstrated that DNA sensing and immune responses have high impacts on the development and prevention of infection and inflammatory. In addition to toll-like receptor pathways, there is now also emerging evidence that cytosolic enzyme cyclic GMP-AMP synthase (cGAS) is essential for the recognition of not only pathogen-derived DNA but also tumor DNA for innate sensing. The strategies through activating DNA sensing pathways toward enhancing antitumor immunity have shown promise and are further tested in clinical studies. Here, we highlight recent progresses in understanding mechanisms activated by DNA sensing mediated immune responses in cancer therapy.
Collapse
Affiliation(s)
- Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Haidong Tang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
677
|
Pépin G, Gantier MP. cGAS-STING Activation in the Tumor Microenvironment and Its Role in Cancer Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:175-194. [PMID: 28921470 DOI: 10.1007/978-981-10-5987-2_8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimulator of interferon (IFN) genes (STING) is a key mediator in the immune response to cytoplasmic DNA sensed by cyclic GMP-AMP (cGAMP) synthase (cGAS). After synthesis by cGAS, cGAMP acts as a second messenger activating STING in the cell harboring cytoplasmic DNA but also in adjacent cells through gap junction transfer. While the role of the cGAS-STING pathway in pathogen detection is now well established, its importance in cancer immunity has only recently started to emerge. Nonetheless, STING appears to be an essential component in the recruitment of immune cells to the tumor microenvironment, which is paramount to immune clearance of the tumor. This review presents an overview of the growing literature around the role of the cGAS-STING pathway in the tumor microenvironment, with a specific focus on the role that cancer cells may play in the direct activation of this pathway, and its amplification through cell-cell transfer of cGAMP.
Collapse
Affiliation(s)
- Geneviève Pépin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia.
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
678
|
Roles of Mitochondrial DNA Signaling in Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:39-53. [PMID: 29178068 DOI: 10.1007/978-981-10-6674-0_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) plays an important role in immune responses during the evolution. The present chapter systemically describes its role on immune-related diseases and its interaction on immune responses. It is important to explore the main function and mechanisms of mtDNA in immune responses by which mtDNA regulates the signaling pathways of Toll-like receptor 9, autophagy, and STING. There are potentials to discover therapeutic targets of mtDNA in immune diseases and inflammation. It will be more exciting if the CRISPR-Cas9 method can be applied for mtDNA gene editing to cure diseases and provide a novel insight of mtDNA in immune responses as well as new therapies.
Collapse
|
679
|
Abstract
The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.
Collapse
|
680
|
Herzner AM, Wolter S, Zillinger T, Schmitz S, Barchet W, Hartmann G, Bartok E, Schlee M. G-rich DNA-induced stress response blocks type-I-IFN but not CXCL10 secretion in monocytes. Sci Rep 2016; 6:38405. [PMID: 27941826 PMCID: PMC5150577 DOI: 10.1038/srep38405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022] Open
Abstract
Excessive inflammation can cause damage to host cells and tissues. Thus, the secretion of inflammatory cytokines is tightly regulated at transcriptional, post-transcriptional and post-translational levels and influenced by cellular stress responses, such as endoplasmic reticulum (ER) stress or apoptosis. Here, we describe a novel type of post-transcriptional regulation of the type-I-IFN response that was induced in monocytes by cytosolic transfection of a short immunomodulatory DNA (imDNA), a G-tetrad forming CpG-free derivative of the TLR9 agonist ODN2216. When co-transfected with cytosolic nucleic acid stimuli (DNA or 3P-dsRNA), imDNA induced caspase-3 activation, translational shutdown and upregulation of stress-induced genes. This stress response inhibited the type-I-IFN induction at the translational level. By contrast, the induction of most type-I-IFN-associated chemokines, including Chemokine (C-X-C Motif) Ligand (CXCL)10 was not affected, suggesting a differential translational regulation of chemokines and type-I-IFN. Pan-caspase inhibitors could restore IFN-β secretion, yet, strikingly, caspase inhibition did not restore global translation but instead induced a compensatory increase in the transcription of IFN-β but not CXCL10. Altogether, our data provide evidence for a differential regulation of cytokine release at both transcriptional and post-transcriptional levels which suppresses type-I-IFN induction yet allows for CXCL10 secretion during imDNA-induced cellular stress.
Collapse
Affiliation(s)
- Anna-Maria Herzner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Steven Wolter
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Cologne-Bonn, Germany
| | - Saskia Schmitz
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Cologne-Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
681
|
Moore E, Clavijo PE, Davis R, Cash H, Van Waes C, Kim Y, Allen C. Established T Cell-Inflamed Tumors Rejected after Adaptive Resistance Was Reversed by Combination STING Activation and PD-1 Pathway Blockade. Cancer Immunol Res 2016; 4:1061-1071. [PMID: 27821498 PMCID: PMC5134907 DOI: 10.1158/2326-6066.cir-16-0104] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/08/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022]
Abstract
Patients with head and neck squamous cell carcinoma harbor T cell-inflamed and non-T cell-inflamed tumors. Despite this, only 20% of patients respond to checkpoint inhibitor immunotherapy. Lack of induction of innate immunity through pattern-recognition receptors, such as the stimulator of interferon (IFN) genes (STING) receptor, may represent a significant barrier to the development of effective antitumor immunity. Here, we demonstrate robust control of a T cell-inflamed (MOC1), but not non-T cell-inflamed (MOC2), model of head and neck cancer by activation of the STING pathway with the synthetic cyclic dinucleotide RP,RP dithio-c-di-GMP. Rejection or durable tumor control of MOC1 tumors was dependent upon a functional STING receptor and CD8 T lymphocytes. STING activation resulted in increased tumor microenvironment type 1 and type 2 IFN and greater expression of PD-1 pathway components in vivo Established MOC1 tumors were rejected and distant tumors abscopally controlled, after adaptive immune resistance had been reversed by the addition of PD-L1 mAb. These findings suggest that PD-1 pathway blockade may reverse adaptive immune resistance following cyclic dinucleotide treatment, enhancing both local and systemic antitumor immunity. Cancer Immunol Res; 4(12); 1061-71. ©2016 AACR.
Collapse
Affiliation(s)
- Ellen Moore
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Paul E Clavijo
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ruth Davis
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Harrison Cash
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Young Kim
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Clint Allen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
682
|
Silke J, Johnstone RW. In the Midst of Life-Cell Death: What Is It, What Is It Good for, and How to Study It. Cold Spring Harb Protoc 2016; 2016:2016/12/pdb.top070508. [PMID: 27934692 DOI: 10.1101/pdb.top070508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell death, one of the most fundamental biological processes, has not made it into the public consciousness in the same way that genetic inheritance, cell division, or DNA replication has. Everyone knows they get their genes from their parents, but few would be aware that even before they were born a lot of essential cell death has shaped their development. The greater population, for the most part, is blissfully unaware that every day millions of their own cells die in a programmed way and that this is essential for normal human physiology-their well-being, in fact. Nowhere is the burial liturgy, "In the midst of life we are in death," more apt. Despite this public underappreciation, cell death research is a major industry. A search in PubMed for "apoptosis," a special form of cell death that is caused by caspases, returns approximately 280,000 hits. The intense research interest arises from the realization that abnormal cell death responses play an important role in two of the biggest killers in the western world: cancer and cardio/cerebrovascular disease. Furthermore, the manner in which cells die can also influence the development of autoimmune and autoinflammatory diseases. It is therefore of paramount importance to ensure that experiments accurately quantitate and correctly identify cell death in all its guises. That is the goal of this protocol collection.
Collapse
Affiliation(s)
- John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Victoria 3050, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3052, Australia
| |
Collapse
|
683
|
Bose D, Su Y, Marcus A, Raulet DH, Hammond MC. An RNA-Based Fluorescent Biosensor for High-Throughput Analysis of the cGAS-cGAMP-STING Pathway. Cell Chem Biol 2016; 23:1539-1549. [PMID: 27889408 DOI: 10.1016/j.chembiol.2016.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/02/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022]
Abstract
In mammalian cells, the second messenger (2'-5',3'-5') cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP), is produced by the cytosolic DNA sensor cGAMP synthase (cGAS), and subsequently bound by the stimulator of interferon genes (STING) to trigger interferon response. Thus, the cGAS-cGAMP-STING pathway plays a critical role in pathogen detection, as well as pathophysiological conditions including cancer and autoimmune disorders. However, studying and targeting this immune signaling pathway has been challenging due to the absence of tools for high-throughput analysis. We have engineered an RNA-based fluorescent biosensor that responds to 2',3'-cGAMP. The resulting "mix-and-go" cGAS activity assay shows excellent statistical reliability as a high-throughput screening (HTS) assay and distinguishes between direct and indirect cGAS inhibitors. Furthermore, the biosensor enables quantitation of 2',3'-cGAMP in mammalian cell lysates. We envision this biosensor-based assay as a resource to study the cGAS-cGAMP-STING pathway in the context of infectious diseases, cancer immunotherapy, and autoimmune diseases.
Collapse
Affiliation(s)
- Debojit Bose
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Yichi Su
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Assaf Marcus
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David H Raulet
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
684
|
Chacon JA, Schutsky K, Powell DJ. The Impact of Chemotherapy, Radiation and Epigenetic Modifiers in Cancer Cell Expression of Immune Inhibitory and Stimulatory Molecules and Anti-Tumor Efficacy. Vaccines (Basel) 2016; 4:E43. [PMID: 27854240 PMCID: PMC5192363 DOI: 10.3390/vaccines4040043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.
Collapse
Affiliation(s)
- Jessica Ann Chacon
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keith Schutsky
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
685
|
Ong L, Morison IM, Ledgerwood EC. Megakaryocytes fromCYCSmutation-associated thrombocytopenia release platelets by both proplatelet-dependent and -independent processes. Br J Haematol 2016; 176:268-279. [DOI: 10.1111/bjh.14421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Lily Ong
- Department of Biochemistry; Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Ian M. Morison
- Department of Pathology; Dunedin School of Medicine; University of Otago; Dunedin New Zealand
| | - Elizabeth C. Ledgerwood
- Department of Biochemistry; Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| |
Collapse
|
686
|
Yu EPK, Bennett MR. The role of mitochondrial DNA damage in the development of atherosclerosis. Free Radic Biol Med 2016; 100:223-230. [PMID: 27320189 DOI: 10.1016/j.freeradbiomed.2016.06.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Mitochondria are the cellular powerhouses, fuelling metabolic processes through their generation of ATP. However we now recognise that these organelles also have pivotal roles in producing reactive oxygen species (ROS) and in regulating cell death, inflammation and metabolism. Mitochondrial dysfunction therefore leads to oxidative stress, cell death, metabolic dysfunction and inflammation, which can all promote atherosclerosis. Recent evidence indicates that mitochondrial DNA (mtDNA) damage is present and promotes atherosclerosis through mitochondrial dysfunction. We will review the mechanisms that link mtDNA damage with atherosclerotic disease, and identify mitochondrial processes that may have therapeutic benefit.
Collapse
Affiliation(s)
- Emma P K Yu
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom.
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| |
Collapse
|
687
|
Gack MU, Diamond MS. Innate immune escape by Dengue and West Nile viruses. Curr Opin Virol 2016; 20:119-128. [PMID: 27792906 DOI: 10.1016/j.coviro.2016.09.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022]
Abstract
Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells.
Collapse
Affiliation(s)
- Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
688
|
Moos WH, Pinkert CA, Irwin MH, Faller DV, Kodukula K, Glavas IP, Steliou K. Epigenetic Treatment of Persistent Viral Infections. Drug Dev Res 2016; 78:24-36. [PMID: 27761936 DOI: 10.1002/ddr.21366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preclinical Research Approximately 2,500 years ago, Hippocrates used the word herpes as a medical term to describe lesions that appeared to creep or crawl on the skin, advocating heat as a possible treatment. During the last 50 years, pharmaceutical research has made great strides, and therapeutic options have expanded to include small molecule antiviral agents, protease inhibitors, preventive vaccines for a handful of the papillomaviruses, and even cures for hepatitis C virus infections. However, effective treatments for persistent and recurrent viral infections, particularly the highly prevalent herpesviruses, continue to represent a significant unmet medical need, affecting the majority of the world's population. Exploring the population diversity of the human microbiome and the effects its compositional variances have on the immune system, health, and disease are the subjects of intense investigational research and study. Among the collection of viruses, bacteria, fungi, and single-cell eukaryotes that comprise the human microbiome, the virome has been grossly understudied relative to the influence it exerts on human pathophysiology, much as mitochondria have until recently failed to receive the attention they deserve, given their critical biomedical importance. Fortunately, cellular epigenetic machinery offers a wealth of druggable targets for therapeutic intervention in numerous disease indications, including those outlined above. With advances in synthetic biology, engineering our body's commensal microorganisms to seek out and destroy pathogenic species is clearly on the horizon. This is especially the case given recent breakthroughs in genetic manipulation with tools such as the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) gene-editing platforms. Tying these concepts together with our previous work on the microbiome and neurodegenerative and neuropsychiatric diseases, we suggest that, because mammalian cells respond to a viral infection by triggering a cascade of antiviral innate immune responses governed substantially by the cell's mitochondria, small molecule carnitinoids represent a new class of therapeutics with potential widespread utility against many infectious insults. Drug Dev Res 78 : 24-36, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Boston University School of Medicine, Cancer Research Center, Boston, Massachusetts
| | | | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York
| | - Kosta Steliou
- Boston University School of Medicine, Cancer Research Center, Boston, Massachusetts.,PhenoMatriX, Boston, Massachusetts
| |
Collapse
|
689
|
Fang C, Wei X, Wei Y. Mitochondrial DNA in the regulation of innate immune responses. Protein Cell 2016; 7:11-6. [PMID: 26498951 PMCID: PMC4707157 DOI: 10.1007/s13238-015-0222-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/24/2015] [Indexed: 12/25/2022] Open
Abstract
Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA) activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production, mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity.
Collapse
Affiliation(s)
- Chunju Fang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041 China
| | - Xiawei Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041 China
| | - Yuquan Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041 China
| |
Collapse
|
690
|
Tao J, Zhou X, Jiang Z. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. IUBMB Life 2016; 68:858-870. [PMID: 27706894 DOI: 10.1002/iub.1566] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/11/2016] [Indexed: 12/19/2022]
Abstract
Innate immunity is the first line of host defense against invading pathogens. The detection of aberrant nucleic acids which represent some conserved PAMPs triggers robust type I IFN-mediated innate immune responses. Host- or pathogen-derived cytosolic DNA binds and activates the DNA sensor cGAS, which synthesizes the second messenger 2'3'-cGAMP and triggers STING-dependent downstream signaling. Here, we highlight recent progress in cGAS-cGAMP-STING, the Three Musketeers of cytosolic DNA sensing and signaling, and their essential roles in infection, autoimmune diseases, and cancer. We also focus on the regulation of these critical signal components by variant host/pathogen proteins and update our understanding of this indispensable pathway to provide new insights for drug discovery. © 2016 IUBMB Life, 68(11):858-870, 2016.
Collapse
Affiliation(s)
- Jianli Tao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiang Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Zhengfan Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. .,Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
691
|
Kursunel MA, Esendagli G. The untold story of IFN-γ in cancer biology. Cytokine Growth Factor Rev 2016; 31:73-81. [DOI: 10.1016/j.cytogfr.2016.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
|
692
|
Abstract
The host takes use of pattern recognition receptors (PRRs) to defend against pathogen invasion or cellular damage. Among microorganism-associated molecular patterns detected by host PRRs, nucleic acids derived from bacteria or viruses are tightly supervised, providing a fundamental mechanism of host defense. Pathogenic DNAs are supposed to be detected by DNA sensors that induce the activation of NFκB or TBK1-IRF3 pathway. DNA sensor cGAS is widely expressed in innate immune cells and is a key sensor of invading DNAs in several cell types. cGAS binds to DNA, followed by a conformational change that allows the synthesis of cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) from adenosine triphosphate and guanosine triphosphate. cGAMP is a strong activator of STING that can activate IRF3 and subsequent type I interferon production. Here we describe recent progresses in DNA sensors especially cGAS in the innate immune responses against pathogenic DNAs.
Collapse
|
693
|
Spiotto M, Fu YX, Weichselbaum RR. The intersection of radiotherapy and immunotherapy: mechanisms and clinical implications. Sci Immunol 2016; 1. [PMID: 28018989 DOI: 10.1126/sciimmunol.aag1266] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
By inducing DNA damage, radiotherapy both reduces tumor burden and enhances anti-tumor immunity. Here, we will review the mechanisms by which radiation induces anti-tumor immune responses that can be augmented using immunotherapies to facilitate tumor regression. Radiotherapy increases inflammation in tumors by activating the NF-κB and the Type I interferon response pathways to induce expression of pro-inflammatory cytokines. This inflammation coupled with antigen release from irradiated cells facilitates dendritic cell maturation and cross-presentation of tumor antigens to prime tumor-specific T cell responses. Radiation also sensitizes tumors to these T cell responses by enhancing T cell infiltration into tumors and the recognition of both malignant cancer cells and non-malignant stroma that present cognate antigen. Yet, these anti-tumor immune responses may be blunted by several mechanisms including regulatory T cells and checkpoint molecules that promote T cell tolerance and exhaustion. Consequently, the combination of immunotherapy using vaccines and/or checkpoint inhibitors with radiation is demonstrating early clinical potential. Overall, this review will provide a global view for how radiation and the immune system converge to target cancers and the early attempts to exploit this synergy in clinical practice.
Collapse
Affiliation(s)
- Michael Spiotto
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL; Ludwig Center for Metastases Research, The University of Chicago, Chicago, IL
| | - Yang-Xin Fu
- Department of Pathology, University of Texas - Southwestern, Dallas, TX
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL; Ludwig Center for Metastases Research, The University of Chicago, Chicago, IL
| |
Collapse
|
694
|
Pépin G, Nejad C, Thomas BJ, Ferrand J, McArthur K, Bardin PG, Williams BRG, Gantier MP. Activation of cGAS-dependent antiviral responses by DNA intercalating agents. Nucleic Acids Res 2016; 45:198-205. [PMID: 27694309 PMCID: PMC5224509 DOI: 10.1093/nar/gkw878] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/11/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells.
Collapse
Affiliation(s)
- Geneviève Pépin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Charlotte Nejad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Belinda J Thomas
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.,Monash Lung and Sleep, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Jonathan Ferrand
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Kate McArthur
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Philip G Bardin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Monash Lung and Sleep, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Bryan R G Williams
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia .,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
695
|
Roers A, Hiller B, Hornung V. Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity 2016; 44:739-54. [PMID: 27096317 DOI: 10.1016/j.immuni.2016.04.002] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/14/2016] [Accepted: 04/01/2016] [Indexed: 12/25/2022]
Abstract
Recognition of DNA and RNA by endosomal and cytosolic sensors constitutes a central element in the detection of microbial invaders by the innate immune system. However, the capacity of these sensors to discriminate between microbial and endogenous nucleic acids is limited. Over the past few years, evidence has accumulated to suggest that endogenous DNA or RNA species can engage nucleic-acid-sensing pattern-recognition receptors that can trigger or sustain detrimental pathology. Here, we review principles of how the activation of innate sensors by host nucleic acids is prevented in the steady state and discuss four important determinants of whether a nucleic-acid-driven innate response is mounted. These include structural features of the ligand being sensed, the subcellular location and quantity of pathogen-derived or endogenous nucleic acids, and the regulation of sensor-activation thresholds. Furthermore, we emphasize disease mechanisms initiated by failure to discriminate self from non-self in nucleic acid detection.
Collapse
Affiliation(s)
- Axel Roers
- Institute for Immunology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01069 Dresden, Germany
| | - Björn Hiller
- Institute of Molecular Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital Bonn, 53127 Bonn, Germany; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Center for Integrated Protein Science Munich, 81377 Munich, Germany.
| |
Collapse
|
696
|
McGaha TL, Karlsson MCI. Apoptotic cell responses in the splenic marginal zone: a paradigm for immunologic reactions to apoptotic antigens with implications for autoimmunity. Immunol Rev 2016; 269:26-43. [PMID: 26683143 DOI: 10.1111/imr.12382] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apoptotic cells drive innate regulatory responses that result in tolerogenic immunity. This is a critical aspect of cell physiology as apoptotic cells expose potentially dangerous nuclear antigens on the surface in apoptotic blebs, and failure in their recognition, phagocytosis, or destruction can cause dramatic autoimmunity in experimental models and is linked to development and progression of systemic pathology in human. The marginal zone is a specialized splenic environment that serves as a transitional site from circulation to peripheral lymphoid structures. The marginal zone serves a key role in trapping of particulates and initiation of innate responses against systemic microbial pathogens. However in recent years, it has become clear the marginal zone is also important for initiation of immune tolerance to apoptotic cells, driving a coordinated response involving multiple phagocyte and lymphocyte subsets. Recent reports linking defects in splenic macrophage function to systemic lupus erythematosus in a manner analogous to marginal zone macrophages in lupus-prone mice provide an impetus to better understand the mechanistic basis of the apoptotic cell response in the marginal zone and its general applicability to apoptotic cell-driven tolerance at other tissue sites. In this review, we discuss immune responses to apoptotic cells in the spleen in general and the marginal zone in particular, the relationship of these responses to autoimmune disease, and comparisons to apoptotic cell immunity in humans.
Collapse
Affiliation(s)
- Tracy L McGaha
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
697
|
Can the cargo control the car? Mitochondrial DNA as a stimulator of TLR9-mediated autophagosome-lysosome fusion. Cell Death Differ 2016; 23:1737-1738. [PMID: 27564588 DOI: 10.1038/cdd.2016.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/13/2016] [Indexed: 01/04/2023] Open
|
698
|
Affiliation(s)
- Tomohiko Okazaki
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
699
|
Minn AJ. Interferons and the Immunogenic Effects of Cancer Therapy. Trends Immunol 2016; 36:725-737. [PMID: 26604042 DOI: 10.1016/j.it.2015.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
Much of our understanding on resistance mechanisms to conventional cancer therapies such as chemotherapy and radiation has focused on cell intrinsic properties that antagonize the detrimental effects of DNA and other cellular damage. However, it is becoming clear that the immune system and/or innate immune signaling pathways can integrate with these intrinsic mechanisms to profoundly influence treatment efficacy. In this context, recent evidence indicates that interferon (IFN) signaling has an important role in this integration by influencing immune and intrinsic/non-immune determinants of therapy response. However, IFN signaling can be both immunostimulatory and immunosuppressive, and the factors determining these outcomes in different disease settings are unclear. Here I discuss the regulation and molecular events in cancer that are associated with these dichotomous functions.
Collapse
Affiliation(s)
- Andy J Minn
- Department of Radiation Oncology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
700
|
Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front Immunol 2016; 7:302. [PMID: 27570525 PMCID: PMC4981595 DOI: 10.3389/fimmu.2016.00302] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/26/2016] [Indexed: 02/05/2023] Open
Abstract
Recent data suggest that NETosis plays a crucial role in the innate immune response and disturbs the homeostasis of the immune system. NETosis is a form of neutrophil-specific cell death characterized by the release of large web-like structures referred to as neutrophil extracellular traps (NETs). NETs are composed of DNA strands associated with histones and decorated with about 20 different proteins, including neutrophil elastase, myeloperoxidase, cathepsin G, proteinase 3, high mobility group protein B1, and LL37. Reportedly, NETosis can be induced by several microbes, and particulate matter including sterile stimuli, via distinct cellular mechanisms. Meanwhile, suicidal NETosis and vital NETosis are controversial. As we enter the second decade of research on NETosis, we have partly understood NETs as double-edged swords of innate immunity. In this review, we will discuss the mechanisms of NETosis, its antimicrobial action, and role in autoimmune diseases, as well as the relatively new field of NET-associated mitochondrial DNA.
Collapse
Affiliation(s)
- Hang Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Mona Helena Biermann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Jan Markus Brauner
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| |
Collapse
|