651
|
Liu CW, Jacobson AD. Functions of the 19S complex in proteasomal degradation. Trends Biochem Sci 2013; 38:103-10. [PMID: 23290100 DOI: 10.1016/j.tibs.2012.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/25/2012] [Accepted: 11/29/2012] [Indexed: 11/26/2022]
Abstract
The 26S proteasome degrades ubiquitylated proteins. It consists of the 20S proteasome and the PA700/19S complex. PA700 plays essential roles in processing ubiquitylated substrates; it can bind, deubiquitylate, and unfold ubiquitylated proteins, which then translocate into the proteolytic chamber of the 20S proteasome for degradation. Here, we summarize the current knowledge of PA700-mediated substrate binding and deubiquitylation, and provide models to explain how substrate binding and deubiquitylation could regulate proteasomal degradation. We also discuss the features and potential therapeutic uses of the two recently identified small molecule inhibitors of the proteasome-residing deubiquitylating enzymes.
Collapse
Affiliation(s)
- Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA.
| | | |
Collapse
|
652
|
Wolfe MS. The role of tau in neurodegenerative diseases and its potential as a therapeutic target. SCIENTIFICA 2012; 2012:796024. [PMID: 24278740 PMCID: PMC3820460 DOI: 10.6064/2012/796024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid- β protein of Alzheimer's disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Michael S. Wolfe
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, H.I.M. 754, Boston, MA 02115, USA
| |
Collapse
|
653
|
The role of deubiquitinating enzymes in synaptic function and nervous system diseases. Neural Plast 2012; 2012:892749. [PMID: 23316392 PMCID: PMC3536295 DOI: 10.1155/2012/892749] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/25/2012] [Indexed: 12/04/2022] Open
Abstract
Posttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs). The balance of activity of these enzymes determines the localization, function, and stability of target proteins. While some DUBs counter the action of specific ubiquitin ligases by removing ubiquitin and editing ubiquitin chains, other DUBs function more generally to maintain the cellular pool of free ubiquitin monomers. The importance of DUB function at the synapse is underscored by the association of specific mutations in DUB genes with several neurological disorders. Over the last decade, although much research has led to the identification and characterization of many ubiquitin ligases at the synapse, our knowledge of the relevant DUBs that act at the synapse has lagged. This review is focused on highlighting our current understanding of DUBs that regulate synaptic function and the diseases that result from dysfunction of these DUBs.
Collapse
|
654
|
|
655
|
A catalytically inactive mutant of the deubiquitylase YOD-1 enhances antigen cross-presentation. Blood 2012; 121:1145-56. [PMID: 23243279 DOI: 10.1182/blood-2012-08-447409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antigen presenting cells (APCs) that express a catalytically inactive version of the deubiquitylase YOD1 (YOD1-C160S) present exogenous antigens more efficiently to CD8(+) T cells, both in vitro and in vivo. Compared with controls, immunization of YOD1-C160S mice led to greater expansion of specific CD8(+) T cells and showed improved control of infection with a recombinant -herpes virus, MHV-68, engineered to express SIINFEKL peptide, the ligand for the ovalbumin-specific TCR transgenic OT-I cells. Enhanced expansion of specific CD8(+) T cells was likewise observed on infection of YOD1-C160S mice with a recombinant influenza A virus expressing SIINFEKL. YOD1-C160S APCs retained antigen longer than did control APCs. Enhanced crosspresentation by YOD1-C160S APCs was transporter associated with antigen processing (TAP1)-independent but sensitive to inclusion of inhibitors of acidification and of the proteasome. The activity of deubiquitylating enzymes may thus help control antigenspecific CD8(+) T-cell responses during immunization.
Collapse
|
656
|
Abstract
Tau aggregates are present in several neurodegenerative diseases and correlate with the severity of memory deficit in AD (Alzheimer's disease). However, the triggers of tau aggregation and tau-induced neurodegeneration are still elusive. The impairment of protein-degradation systems might play a role in such processes, as these pathways normally keep tau levels at a low level which may prevent aggregation. Some proteases can process tau and thus contribute to tau aggregation by generating amyloidogenic fragments, but the complete clearance of tau mainly relies on the UPS (ubiquitin-proteasome system) and the ALS (autophagy-lysosome system). In the present paper, we focus on the regulation of the degradation of tau by the UPS and ALS and its relation to tau aggregation. We anticipate that stimulation of these two protein-degradation systems might be a potential therapeutic strategy for AD and other tauopathies.
Collapse
|
657
|
Yang WC, Shih HM. The deubiquitinating enzyme USP37 regulates the oncogenic fusion protein PLZF/RARA stability. Oncogene 2012. [PMID: 23208507 DOI: 10.1038/onc.2012.537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) is predominantly characterized by chromosomal translocations between the retinoic acid receptor, alpha (RARA) gene and the promyelocytic leukemia (PML) or promyelocytic leukemia zinc finger (PLZF) gene. In APL cells with PML/RARA fusions, arsenic trioxide and all-trans retinoic acid treatments specifically target the fusion protein for proteasome-dependent degradation, thereby promoting cellular differentiation and clinical remission of disease. In contrast, APL cells expressing PLZF/RARA fusion proteins are largely resistant to similar treatments and prognosis for patients with this translocation is poor. Understanding the molecular mechanisms regulating PLZF/RARA protein stability would provide novel therapeutic targets for PLZF/RARA-associated APL. Toward this end, we have performed an RNAi-based screen to identify factors affecting PLZF/RARA stability. Among the factors identified was the ubiquitin-specific peptidase 37 (USP37). We showed that USP37 interacted with PLZF/RARA through the PLZF moiety and sustained PLZF/RARA steady state levels. Domain mapping study revealed that N-terminal domain of USP37 is required for the PLZF/RARA interaction and protein regulation. Furthermore, overexpression or depletion of USP37 caused an increase or decrease of PLZF/RARA protein half-life, correlating with down- or upregulation of PLZF/RARA poly-ubiquitination, respectively. By PLZF/RARA-transduced primary mouse hematopoietic progenitor cells, we demonstrated that Usp37 knockdown alleviated PLZF/RARA-mediated target gene suppression and cell transformation potential. Altogether, our findings of USP37-modulating PLZF/RARA stability and cell transformation suggest that USP37 is a potential therapeutic target for PLZF/RARA-associated APL.
Collapse
Affiliation(s)
- W-C Yang
- 1] Molecular Medicine Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan [2] Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan [3] Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
658
|
Lee BH, Finley D, King RW. A High-Throughput Screening Method for Identification of Inhibitors of the Deubiquitinating Enzyme USP14. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2012; 4:311-30. [PMID: 23788557 PMCID: PMC3690187 DOI: 10.1002/9780470559277.ch120078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deubiquitinating enzymes (DUBs) reverse the process of ubiquitination, and number nearly 100 in humans. In principle, DUBs represent promising drug targets, as several of the enzymes have been implicated in human diseases. The isopeptidase activity of DUBs can be selectively inhibited by targeting the catalytic site with drug-like compounds. Notably, the mammalian 26S proteasome is associated with three major DUBs: RPN11, UCH37, and USP14. Because the ubiquitin 'chain-trimming' activity of USP14 can inhibit proteasome function, inhibitors of USP14 can stimulate proteasomal degradation. We recently established a high-throughput screening (HTS) method to identify small-molecule inhibitors specific for USP14. The protocols in this article cover the necessary procedures for preparing assay reagents, performing HTS for USP14 inhibitors, and carrying out post-HTS analysis. Curr. Protoc. Chem. Biol. 4:311-330 © 2012 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Byung-Hoon Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
659
|
Jin YN, Chen PC, Watson JA, Walters BJ, Phillips SE, Green K, Schmidt R, Wilson JA, Johnson GV, Roberson ED, Dobrunz LE, Wilson SM. Usp14 deficiency increases tau phosphorylation without altering tau degradation or causing tau-dependent deficits. PLoS One 2012; 7:e47884. [PMID: 23144711 PMCID: PMC3483306 DOI: 10.1371/journal.pone.0047884] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/24/2012] [Indexed: 01/08/2023] Open
Abstract
Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3. Using Usp14-deficient axJ mice, we investigated if loss of Usp14 results in decreased levels of endogenous tau and ataxin-3 in the nervous system of mice. Although loss of Usp14 did not alter the overall neuronal levels of tau and ataxin-3, we found increased levels of phosphorylated tau that correlated with the onset of axonal varicosities in the Usp14-deficient mice. These changes in tau phosphorylation were accompanied by increased levels of activated phospho-Akt, phosphorylated MAPKs, and inactivated phospho-GSK3β. However, genetic ablation of tau did not alter any of the neurological deficits in the Usp14-deficient mice, demonstrating that increased levels of phosphorylated tau do not necessarily lead to neurological disease. Due to the widespread activation of intracellular signaling pathways induced by the loss of Usp14, a better understanding of the cellular pathways regulated by the proteasome is required before effective proteasomal-based therapies can be used to treat chronic neurological diseases.
Collapse
Affiliation(s)
- Youngnam N. Jin
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ping-Chung Chen
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jennifer A. Watson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brandon J. Walters
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott E. Phillips
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karen Green
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Robert Schmidt
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Julie A. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gail V. Johnson
- Department of Anesthesiology, University of Rochester, Rochester, New York, United States of America
| | - Erik D. Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lynn E. Dobrunz
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott M. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
660
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
661
|
Ubiquitin receptors and protein quality control. J Mol Cell Cardiol 2012; 55:73-84. [PMID: 23046644 DOI: 10.1016/j.yjmcc.2012.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/14/2022]
Abstract
Protein quality control (PQC) is essential to intracellular proteostasis and is carried out by sophisticated collaboration between molecular chaperones and targeted protein degradation. The latter is performed by proteasome-mediated degradation, chaperone-mediated autophagy (CMA), and selective macroautophagy, and collectively serves as the final line of defense of PQC. Ubiquitination and subsequently ubiquitin (Ub) receptor proteins (e.g., p62 and ubiquilins) are important common factors for targeting misfolded proteins to multiple quality control destinies, including the proteasome, lysosomes, and perhaps aggresomes, as well as for triggering mitophagy to remove defective mitochondria. PQC inadequacy, particularly proteasome functional insufficiency, has been shown to participate in cardiac pathogenesis. Tremendous advances have been made in unveiling the changes of PQC in cardiac diseases. However, the investigation into the molecular pathways regulating PQC in cardiac (patho)physiology, including the function of most ubiquitin receptor proteins in the heart, has only recently been initiated. A better understanding of molecular mechanisms governing PQC in cardiac physiology and pathology will undoubtedly provide new insights into cardiac pathogenesis and promote the search for novel therapeutic strategies to more effectively battle heart disease.This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
|
662
|
Lee SM, Chin LS, Li L. Protein misfolding and clearance in demyelinating peripheral neuropathies: Therapeutic implications. Commun Integr Biol 2012; 5:107-10. [PMID: 22482025 DOI: 10.4161/cib.18638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Peripheral neuropathies such as Charcot-Marie-Tooth disease (CMT) are a group of neurological disorders that affect the peripheral nervous system. Although demyelinating CMT is the most prevalent hereditary peripheral neuropathy, there are currently no effective treatments for patients suffering from this disease. Recent studies by our group and others have provided a link between protein misfolding and demyelinating CMT and indicate that impairment of the proteasome and aggresome-autophagy pathways may contribute to CMT pathogenesis. These studies suggest that targeting protein quality control systems involved in cytoprotection against CMT-associated misfolded proteins could have therapeutic benefits for treating demyelinating CMT.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA USA
| | | | | |
Collapse
|
663
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
664
|
Tu Y, Chen C, Pan J, Xu J, Zhou ZG, Wang CY. The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:726-738. [PMID: 23071855 PMCID: PMC3466981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Accumulated evidence supports that the ubiquitin proteasome pathway (UPP) plays a crucial role in protein metabolism implicated in the regulation of many biological processes such as cell cycle control, DNA damage response, apoptosis, and so on. Therefore, alterations for the ubiquitin proteasome signaling or functional impairments for the ubiquitin proteasome components are involved in the etiology of many diseases, particularly in cancer development. In this minireview, we first give a brief outline for the ubiquitin proteasome pathway, we then discuss with focus for the ubiquitin proteasome pathway in the regulation of cell cycle control and DNA damage response, the relevance for the altered regulation of these signaling pathways in tumorigenesis is also reviewed. We finally assess and summarize the advancement for targeting the ubiquitin proteasome pathway in cancer therapy. A better understanding of the biological functions underlying ubiquitin regulatory mechanisms would provide us a wider prospective on cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Cai Chen
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Junru Pan
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Junfa Xu
- The Department of Clinical Immunology, Guangdong Medical College1 Xincheng Ave. Dongguan, 523808, Guangdong, China
| | - Zhi-Guang Zhou
- Diabetes Center, the Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Central South UniversityChangsha, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
- The Department of Clinical Immunology, Guangdong Medical College1 Xincheng Ave. Dongguan, 523808, Guangdong, China
- The Center for Biotechnology & Genomic Medicine, Georgia Health Sciences University1120 15th Street, CA4098, Augusta, GA 30912, USA
| |
Collapse
|
665
|
Zhao B, Velasco K, Sompallae R, Pfirrmann T, Masucci MG, Lindsten K. The ubiquitin specific protease-4 (USP4) interacts with the S9/Rpn6 subunit of the proteasome. Biochem Biophys Res Commun 2012; 427:490-6. [PMID: 23022198 DOI: 10.1016/j.bbrc.2012.09.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/17/2022]
Abstract
The proteasome is the major non-lysosomal proteolytic machine in cells that, through degradation of ubiquitylated substrates, regulates virtually all cellular functions. Numerous accessory proteins influence the activity of the proteasome by recruiting or deubiquitylating proteasomal substrates, or by maintaining the integrity of the complex. Here we show that the ubiquitin specific protease (USP)-4, a deubiquitylating enzyme with specificity for both Lys48 and Lys63 ubiquitin chains, interacts with the S9/Rpn6 subunit of the proteasome via an internal ubiquitin-like (UBL) domain. S9/Rpn6 acts as a molecular clamp that holds together the proteasomal core and regulatory sub-complexes. Thus, the interaction with USP4 may regulate the structure and function of the proteasome or the turnover of specific proteasomal substrates.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
666
|
de Jong A, Merkx R, Berlin I, Rodenko B, Wijdeven RHM, El Atmioui D, Yalçin Z, Robson CN, Neefjes JJ, Ovaa H. Ubiquitin-based probes prepared by total synthesis to profile the activity of deubiquitinating enzymes. Chembiochem 2012; 13:2251-8. [PMID: 23011887 PMCID: PMC3487179 DOI: 10.1002/cbic.201200497] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Indexed: 11/08/2022]
Abstract
Epitope-tagged active-site-directed probes are widely used to visualize the activity of deubiquitinases (DUBs) in cell extracts, to investigate the specificity and potency of small-molecule DUB inhibitors, and to isolate and identify DUBs by mass spectrometry. With DUBs arising as novel potential drug targets, probes are required that can be produced in sufficient amounts and to meet the specific needs of a given experiment. The established method for the generation of DUB probes makes use of labor-intensive intein-based methods that have inherent limitations concerning the incorporation of unnatural amino acids and the amount of material that can be obtained. Here, we describe the total chemical synthesis of active-site-directed probes and their application to activity-based profiling and identification of functional DUBs. This synthetic methodology allowed the easy incorporation of desired tags for specific applications, for example, fluorescent reporters, handles for immunoprecipitation or affinity pull-down, and cleavable linkers. Additionally, the synthetic method can be scaled up to provide significant amounts of probe. Fluorescent ubiquitin probes allowed faster, in-gel detection of active DUBs, as compared to (immuno)blotting procedures. A biotinylated probe holding a photocleavable linker enabled the affinity pull-down and subsequent mild, photorelease of DUBs. Also, DUB activity levels were monitored in response to overexpression or knockdown, and to inhibition by small molecules. Furthermore, fluorescent probes revealed differential DUB activity profiles in a panel of lung and prostate cancer cells.
Collapse
Affiliation(s)
- Annemieke de Jong
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
667
|
Liu Z, Taylor A, Liu Y, Wu M, Gong X, Shang F. Enhancement of ubiquitin conjugation activity reduces intracellular aggregation of V76D mutant γD-crystallin. Invest Ophthalmol Vis Sci 2012; 53:6655-65. [PMID: 22915036 PMCID: PMC3460391 DOI: 10.1167/iovs.12-9744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/19/2012] [Accepted: 08/16/2012] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The ubiquitin-proteasome pathway (UPP) is an important protein quality control mechanism for selective degradation of abnormal proteins. The objective of this study was to test the hypothesis that enhancement of the UPP capacity could attenuate the accumulation and aggregation of misfolded proteins using V76D-γD-crystallin as a model substrate. METHODS Wild type (wt) and V76D mutant γD-crystallin were fused to red fluorescence protein (RFP) and expressed in human lens epithelial cells. The cellular distribution of the expressed proteins was compared by fluorescence microscopy. The solubility of wt- and V76D-γD-crystallin was determined by cellular fractionation and Western blotting. Wt-γD-RFP and V76D-γD-RFP were also cotransfected along with a ubiquitin ligase (CHIP) or a ubiquitin-conjugating enzyme (Ubc5) into cells. Levels of wt- and V76D-γD-crystallin, the percentage of transfected cells with aggregates, and aggregate size were quantified and compared among different groups. RESULTS Wt-γD-crystallin was evenly distributed in cells, whereas V76D-γD-crystallin formed intracellular aggregates. Eighty percent of wt-γD-crystallin was detected in the soluble fraction, whereas only 7% of V76D-γD-crystallin was soluble. CHIP or Ubc5 coexpression reduced the protein level of V76D-γD and concomitantly its aggregation in transfected cells; these effects could be attenuated by proteasome inhibitor. Mutant CHIP with defect TPR (tetratricopeptide repeat) or U-box domain failed to reduce levels of V76D-γD-crystallin. CONCLUSIONS Enhancing ubiquitin conjugation activity reduces accumulation and aggregation of V76D-γD-crystallin by promoting its degradation. Upregulation of ubiquitin-conjugating activity could be an effective strategy to maintain lens transparency by eliminating other forms of misfolded proteins.
Collapse
Affiliation(s)
- Zhenzhen Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| | - Yizhi Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
| | - Mingxing Wu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, California
| | - Fu Shang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| |
Collapse
|
668
|
Long MJC, Gollapalli DR, Hedstrom L. Inhibitor mediated protein degradation. ACTA ACUST UNITED AC 2012; 19:629-37. [PMID: 22633414 DOI: 10.1016/j.chembiol.2012.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
The discovery of drugs that cause the degradation of their target proteins has been largely serendipitous. Here we report that the tert-butyl carbamate-protected arginine (Boc(3)Arg) moiety provides a general strategy for the design of degradation-inducing inhibitors. The covalent inactivators ethacrynic acid and thiobenzofurazan cause the specific degradation of glutathione-S-transferase when linked to Boc(3)Arg. Similarly, the degradation of dihydrofolate reductase is induced when cells are treated with the noncovalent inhibitor trimethoprim linked to Boc(3)Arg. Degradation is rapid and robust, with 30%-80% of these abundant target proteins consumed within 1.3-5 hr. The proteasome is required for Boc(3)Arg-mediated degradation, but ATP is not necessary and the ubiquitin pathways do not appear to be involved. These results suggest that the Boc(3)Arg moiety may provide a general strategy to construct inhibitors that induce targeted protein degradation.
Collapse
Affiliation(s)
- Marcus J C Long
- Graduate Program in Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | | | | |
Collapse
|
669
|
Kravtsova-Ivantsiv Y, Ciechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 2012; 125:539-48. [PMID: 22389393 DOI: 10.1242/jcs.093567] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulated cellular proteolysis is mediated largely by the ubiquitin-proteasome system (UPS). It is a highly specific process that is time- (e.g. cell cycle), compartment- (e.g. nucleus or endoplasmic reticulum) and substrate quality- (e.g. denatured or misfolded proteins) dependent, and allows fast adaptation to changing conditions. Degradation by the UPS is carried out through two successive steps: the substrate is covalently tagged with ubiquitin and subsequently degraded by the 26S proteasome. The accepted 'canonical' signal for proteasomal recognition is a polyubiquitin chain that is anchored to a lysine residue in the target substrate, and is assembled through isopeptide bonds involving lysine 48 of ubiquitin. However, several 'non-canonical' ubiquitin-based signals for proteasomal targeting have also been identified. These include chains anchored to residues other than internal lysine in the substrates, chains assembled through linking residues other than lysine 48 in ubiquitin, and mixed chains made of both ubiquitin and a ubiquitin-like protein. Furthermore, some proteins can be degraded following modification by a single ubiquitin (monoubiquitylation) or multiple single ubiquitins (multiple monoubiquitylation). Finally, some proteins can be proteasomally degraded without prior ubiquitylation (the process is also often referred to as ubiquitination). In this Commentary, we describe these recent findings and discuss the possible physiological roles of these diverse signals. Furthermore, we discuss the possible impact of this signal diversity on drug development.
Collapse
Affiliation(s)
- Yelena Kravtsova-Ivantsiv
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Efron Street, Bat Galim, PO Box 9649, Haifa 31096, Israel.
| | | |
Collapse
|
670
|
Adaptive response, evidence of cross-resistance and its potential clinical use. Int J Mol Sci 2012; 13:10771-10806. [PMID: 23109822 PMCID: PMC3472714 DOI: 10.3390/ijms130910771] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 12/15/2022] Open
Abstract
Organisms and their cells are constantly exposed to environmental fluctuations. Among them are stressors, which can induce macromolecular damage that exceeds a set threshold, independent of the underlying cause. Stress responses are mechanisms used by organisms to adapt to and overcome stress stimuli. Different stressors or different intensities of stress trigger different cellular responses, namely induce cell repair mechanisms, induce cell responses that result in temporary adaptation to some stressors, induce autophagy or trigger cell death. Studies have reported life-prolonging effects of a wide variety of so-called stressors, such as oxidants, heat shock, some phytochemicals, ischemia, exercise and dietary energy restriction, hypergravity, etc. These stress responses, which result in enhanced defense and repair and even cross-resistance against multiple stressors, may have clinical use and will be discussed, while the emphasis will be on the effects/cross-effects of oxidants.
Collapse
|
671
|
Abstract
The deubiquitinating enzyme USP7 is an emerging oncology and antiviral target. Reverdy et al., in this issue of Chemistry & Biology, disclose the first small-molecule inhibitor selective for USP7, which recapitulates its knockdown in cancer cells and hence demonstrates the therapeutic feasibility of USP7 inhibitors.
Collapse
Affiliation(s)
- Robert Menard
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.
| | | |
Collapse
|
672
|
Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. ACTA ACUST UNITED AC 2012; 19:467-77. [PMID: 22520753 DOI: 10.1016/j.chembiol.2012.02.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/31/2012] [Accepted: 02/13/2012] [Indexed: 12/25/2022]
Abstract
The human USP7 deubiquitinating enzyme was shown to regulate many proteins involved in the cell cycle, as well as tumor suppressors and oncogenes. Thus, USP7 offers a promising, strategic target for cancer therapy. Using biochemical assays and activity-based protein profiling in living systems, we identified small-molecule antagonists of USP7 and demonstrated USP7 inhibitor occupancy and selectivity in cancer cell lines. These compounds bind USP7 in the active site through a covalent mechanism. In cancer cells, these active-site-targeting inhibitors were shown to regulate the level of several USP7 substrates and thus recapitulated the USP7 knockdown phenotype that leads to G1 arrest in colon cancer cells. The data presented in this report provide proof of principle that USP7 inhibitors may be a valuable therapeutic for cancer. In addition, the discovery of such molecules offers interesting tools for studying deubiquitination.
Collapse
|
673
|
Abstract
Prion diseases comprise a family of fatal neurodegenerative disorders caused by the conformational re-arrangement of a normal host-encoded protein, PrP (C) , to an abnormal infectious isoform termed PrP (Sc) . Currently, the precise cellular mechanism(s) underlying prion disease pathogenesis remain unclear. Evidence suggests a role for the ubiquitin proteasome system (UPS), a protein degradation pathway that is critical for maintaining cellular proteostasis. Dysfunction of the UPS has been implicated in various neurodegenerative diseases. However, the mechanisms of this impairment remain unknown in many cases, and evidence that disease-associated misfolded proteins are able to directly inhibit the function of the proteasome has been lacking. Recently, we have shown data describing a mechanism of proteasome impairment by the direct interaction of β-sheet-rich PrP to reduce gate opening and inhibit substrate entry. This novel mechanism may provide a model for how other misfolded, disease-associated proteins might interact with the proteasome to disrupt its function. Targeting the UPS to restore proteostasis in neurodegenerative disorders in which misfolded proteins accumulate offers a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Ralph Andre
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, UK
| | | |
Collapse
|
674
|
Shang F, Taylor A. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: implications in the pathogenesis of age-related macular degeneration. Mol Aspects Med 2012; 33:446-66. [PMID: 22521794 PMCID: PMC3417153 DOI: 10.1016/j.mam.2012.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
The accumulation of damaged or postsynthetically modified proteins and dysregulation of inflammatory responses and angiogenesis in the retina/RPE are thought be etiologically related to formation of drusen and choroidal neovascularization (CNV), hallmarks of age-related macular degeneration (AMD). The ubiquitin-proteasome pathway (UPP) plays crucial roles in protein quality control, cell cycle control and signal transduction. Selective degradation of aberrant proteins by the UPP is essential for timely removal of potentially cytotoxic damaged or otherwise abnormal proteins. Proper function of the UPP is thought to be required for cellular function. In contrast, age--or stress induced--impairment the UPP or insufficient UPP capacity may contribute to the accumulation of abnormal proteins, cytotoxicity in the retina, and AMD. Crucial roles for the UPP in eye development, regulation of signal transduction, and antioxidant responses are also established. Insufficient UPP capacity in retina and RPE can result in dysregulation of signal transduction, abnormal inflammatory responses and CNV. There are also interactions between the UPP and lysosomal proteolytic pathways (LPPs). Means that modulate the proteolytic capacity are making their way into new generation of pharmacotherapies for delaying age-related diseases and may augment the benefits of adequate nutrition, with regard to diminishing the burden of AMD.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Boston, MA 02111, USA.
| | | |
Collapse
|
675
|
Baptista MS, Duarte CB, Maciel P. Role of the ubiquitin-proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cell Mol Life Sci 2012; 69:2691-715. [PMID: 22382927 PMCID: PMC11115168 DOI: 10.1007/s00018-012-0946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/12/2023]
Abstract
In addition to its central roles in protein quality control, regulation of cell cycle, intracellular signaling, DNA damage response and transcription regulation, the ubiquitin-proteasome system (UPS) plays specific roles in the nervous system, where it contributes to precise connectivity through development, and later assures functionality by regulating a wide spectrum of neuron-specific cellular processes. Aberrations in this system have been implicated in the etiology of neurodevelopmental and neurodegenerative diseases. In this review, we provide an updated view on the UPS and highlight recent findings concerning its role in normal and diseased nervous systems. We discuss the advantages of the model organism Caenorhabditis elegans as a tool to unravel the major unsolved questions concerning this biochemical pathway and its involvement in nervous system function and dysfunction, and expose the new possibilities, using state-of-the-art techniques, to assess UPS function using this model system.
Collapse
Affiliation(s)
- Márcio S Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
676
|
Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathol 2012; 124:153-72. [PMID: 22744791 DOI: 10.1007/s00401-012-1004-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022]
Abstract
Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Institute of Anatomy and Cell Biology, Ruprecht-Karls University Heidelberg, INF 307, 69120, Heidelberg, Germany.
| | | | | |
Collapse
|
677
|
D'Arcy P, Linder S. Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 2012; 44:1729-38. [PMID: 22819849 DOI: 10.1016/j.biocel.2012.07.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a conserved pathway regulating numerous biological processes including protein turnover, DNA repair, and intracellular trafficking. Tumor cells are dependent on a functioning UPS, making it an ideal target for the development of novel anti-cancer therapies. The development of bortezomib (Velcade(®)) as a treatment for multiple myeloma and mantle cell lymphoma has verified this and suggests that targeting other components of the UPS may be a viable strategy for the treatment for cancer. We recently described a novel class of proteasome inhibitors that function by an alternative mechanism of action (D'Arcy et al., 2011). The small molecule b-AP15 blocks the deubiquitinase (DUB) activity of the 19S regulatory particle (19S RP) without inhibiting the proteolytic activities of the 20S core particle (20S CP). b-AP15 inhibits two proteasome-associated DUBs, USP14 and UCHL5, resulting in a rapid accumulation of high molecular weight ubiquitin conjugates and a functional proteasome shutdown. Interestingly, b-AP15 displays several differences to bortezomib including insensitivity to over-expression of the anti-apoptotic mediator Bcl-2 and anti-tumor activity in solid tumor models. In this review we will discuss the potential of proteasome deubiquitinase inhibitors as additions to the therapeutic arsenal against cancer.
Collapse
Affiliation(s)
- Pádraig D'Arcy
- Institute for Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, 17176 Stockholm, Sweden.
| | | |
Collapse
|
678
|
Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response. PLoS Pathog 2012; 8:e1002783. [PMID: 22792064 PMCID: PMC3390402 DOI: 10.1371/journal.ppat.1002783] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/16/2012] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies. Deubiquitinases (DUBs) are enzymes, which are implicated in many cellular processes but their functions during virus infection are not well understood. We used WP1130, a small molecule inhibitor of a subset of DUBs, as a probe to unravel the functions of DUBs during norovirus infections. We identified USP14 as a cellular DUB target of WP1130 that is required for optimal norovirus infection. Furthermore, we demonstrated that chemical induction of the unfolded protein response can significantly inhibit viral progeny production of several RNA viruses, including noroviruses. These results suggest that chemical inhibition of cellular DUBs and/or modulation of the unfolded protein response could represent novel targets for therapy against a variety of viral pathogens.
Collapse
|
679
|
Abstract
Failure to eliminate abnormal proteins in the cell is associated with numerous aggregation diseases. Misfolded proteins are normally detected by protein quality control and either refolded or eliminated. The ubiquitin-proteasome system is a major pathway that degrades these unwanted proteins. Ubiquitin ligases are central to these degradation pathways as they recognize aberrant proteins and covalently attach a polyubiquitin chain to target them to the proteasome. We discovered that the Hul5 ubiquitin ligase is a major player in a novel protein quality control pathway that targets cytosolic misfolded proteins. Hul5 is required for the maintenance of cell fitness and the increased ubiquitination of low solubility proteins after heat-shock in yeast cells. We identified several low-solubility substrates of Hul5, including the prion-like protein Pin3. It is now apparent that in the cytoplasm, misfolded proteins can be targeted by multiple degradation pathways. In this review, we discuss how the Hul5 protein quality control pathway may specifically target low solubility cytosolic proteins in the cell.
Collapse
Affiliation(s)
- Nancy N Fang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
680
|
Min M, Lindon C. Substrate targeting by the ubiquitin-proteasome system in mitosis. Semin Cell Dev Biol 2012; 23:482-91. [PMID: 22326960 DOI: 10.1016/j.semcdb.2012.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/11/2012] [Accepted: 01/23/2012] [Indexed: 12/15/2022]
Abstract
Both cell cycle progression and the ubiquitin-proteasome system (UPS) that drives it are precisely regulated. Enzymatically, many ubiquitylation and degradation reactions have been characterized in in vitro systems, providing insights into the fundamental mechanisms of the UPS. Biologically, a range of degradation events depending on a ubiquitin ligase called the Anaphase-Promoting Complex (APC/C), have been shown to control mitotic progression through removal of key substrates with extreme temporal precision. However we are only just beginning to understand how the different enzymatic activities of the UPS act collectively - and in cooperation with other cellular factors - for accurate temporal and spatial control of mitotic substrate levels in vivo.
Collapse
Affiliation(s)
- Mingwei Min
- University of Cambridge, Department of Genetics, Downing St., Cambridge CB2 3EH, UK
| | | |
Collapse
|
681
|
Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. PLoS One 2012; 7:e38658. [PMID: 22761693 PMCID: PMC3380899 DOI: 10.1371/journal.pone.0038658] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 05/08/2012] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a major component within ubiquitin-positive inclusions of a number of neurodegenerative diseases that increasingly are considered as TDP-43 proteinopathies. Identities of other inclusion proteins associated with TDP-43 aggregation remain poorly defined. In this study, we identify and quantitate 35 co-aggregating proteins in the detergent-resistant fraction of HEK-293 cells in which TDP-43 or a particularly aggregate prone variant, TDP-S6, were enriched following overexpression, using stable isotope-labeled (SILAC) internal standards and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We also searched for differential post-translational modification (PTM) sites of ubiquitination. Four sites of ubiquitin conjugation to TDP-43 or TDP-S6 were confirmed by dialkylated GST-TDP-43 external reference peptides, occurring on or near RNA binding motif (RRM) 1. RRM-containing proteins co-enriched in cytoplasmic granular structures in HEK-293 cells and primary motor neurons with insoluble TDP-S6, including cytoplasmic stress granule associated proteins G3BP, PABPC1, and eIF4A1. Proteomic evidence for TDP-43 co-aggregation with paraspeckle markers RBM14, PSF and NonO was also validated by western blot and by immunocytochemistry in HEK-293 cells. An increase in peptides from methylated arginine-glycine-glycine (RGG) RNA-binding motifs of FUS/TLS and hnRNPs was found in the detergent-insoluble fraction of TDP-overexpressing cells. Finally, TDP-43 and TDP-S6 detergent-insoluble species were reduced by mutagenesis of the identified ubiquitination sites, even following oxidative or proteolytic stress. Together, these findings define some of the aggregation partners of TDP-43, and suggest that TDP-43 ubiquitination influences TDP-43 oligomerization.
Collapse
|
682
|
Orcutt SJ, Wu J, Eddins MJ, Leach CA, Strickler JE. Bioluminescence assay platform for selective and sensitive detection of Ub/Ubl proteases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2079-86. [PMID: 22705352 DOI: 10.1016/j.bbamcr.2012.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/16/2022]
Abstract
As the importance of ubiquitylation in certain disease states becomes increasingly apparent, the enzymes responsible for removal of ubiquitin (Ub) from target proteins, deubiquitylases (DUBs), are becoming attractive targets for drug discovery. For rapid identification of compounds that alter DUB function, in vitro assays must be able to provide statistically robust data over a wide dynamic range of both substrate and enzyme concentrations during high throughput screening (HTS). The most established reagents for HTS are Ubs with a quenched fluorophore conjugated to the C-terminus; however, a luciferase-based strategy for detecting DUB activity (DUB-Glo™, Promega) provides a wider dynamic range than traditional fluorogenic reagents. Unfortunately, this assay requires high enzyme concentrations and lacks specificity for DUBs over other isopeptidases (e.g. desumoylases), as it is based on an aminoluciferin (AML) derivative of a peptide derived from the C-terminus of Ub (Z-RLRGG-). Conjugation of aminoluciferin to a full-length Ub (Ub-AML) yields a substrate that has a wide dynamic range, yet displays detection limits for DUBs 100- to 1000-fold lower than observed with DUB-Glo™. Ub-AML was even a sensitive substrate for DUBs (e.g. JosD1 and USP14) that do not show appreciable activity with DUB-Glo™. Aminoluciferin derivatives of hSUMO2 and NEDD8 were also shown to be sensitive substrates for desumoylases and deneddylases, respectively. Ub/Ubl-AML substrates are amenable to HTS (Z'=0.67) yielding robust signal, and providing an alternative drug discovery platform for Ub/Ubl isopeptidases. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.
Collapse
|
683
|
Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. ACTA ACUST UNITED AC 2012; 135:2169-77. [PMID: 22689910 PMCID: PMC3381726 DOI: 10.1093/brain/aws143] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The accumulation of insoluble proteins is a pathological hallmark of several neurodegenerative disorders. Tauopathies are caused by the dysfunction and aggregation of tau protein and an impairment of cellular protein degradation pathways may contribute to their pathogenesis. Thus, a deficiency in autophagy can cause neurodegeneration, while activation of autophagy is protective against some proteinopathies. Little is known about the role of autophagy in animal models of human tauopathy. In the present report, we assessed the effects of autophagy stimulation by trehalose in a transgenic mouse model of tauopathy, the human mutant P301S tau mouse, using biochemical and immunohistochemical analyses. Neuronal survival was evaluated by stereology. Autophagy was activated in the brain, where the number of neurons containing tau inclusions was significantly reduced, as was the amount of insoluble tau protein. This reduction in tau aggregates was associated with improved neuronal survival in the cerebral cortex and the brainstem. We also observed a decrease of p62 protein, suggesting that it may contribute to the removal of tau inclusions. Trehalose failed to activate autophagy in the spinal cord, where it had no impact on the level of sarkosyl-insoluble tau. Accordingly, trehalose had no effect on the motor impairment of human mutant P301S tau transgenic mice. Our findings provide direct evidence in favour of the degradation of tau aggregates by autophagy. Activation of autophagy may be worth investigating in the context of therapies for human tauopathies.
Collapse
Affiliation(s)
- Véronique Schaeffer
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
684
|
Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors: an expanding army attacking a unique target. ACTA ACUST UNITED AC 2012; 19:99-115. [PMID: 22284358 DOI: 10.1016/j.chembiol.2012.01.003] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/30/2022]
Abstract
Proteasomes are large, multisubunit proteolytic complexes presenting multiple targets for therapeutic intervention. The 26S proteasome consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of active sites. Many structurally diverse inhibitors of these active sites, both natural product and synthetic, have been discovered in the last two decades. One, bortezomib, is used clinically for treatment of multiple myeloma, mantle cell lymphoma, and acute allograft rejection. Five more recently developed proteasome inhibitors are in trials for treatment of myeloma and other cancers. Proteasome inhibitors also have activity in animal models of autoimmune and inflammatory diseases, reperfusion injury, promote bone and hair growth, and can potentially be used as anti-infectives. In addition, inhibitors of ATPases and deubiquitinases of 19S regulatory particles have been discovered in the last decade.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
685
|
Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M, Armenteros-Monterroso E, Lassailly F, Matthews N, Nye E, Stamp G, Behrens A, Downward J. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 2012; 149:642-55. [PMID: 22541434 DOI: 10.1016/j.cell.2012.02.059] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/04/2012] [Accepted: 02/29/2012] [Indexed: 12/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer deaths worldwide; nearly half contain mutations in the receptor tyrosine kinase/RAS pathway. Here we show that RAS-pathway mutant NSCLC cells depend on the transcription factor GATA2. Loss of GATA2 reduced the viability of NSCLC cells with RAS-pathway mutations, whereas wild-type cells were unaffected. Integrated gene expression and genome occupancy analyses revealed GATA2 regulation of the proteasome, and IL-1-signaling, and Rho-signaling pathways. These pathways were functionally significant, as reactivation rescued viability after GATA2 depletion. In a Kras-driven NSCLC mouse model, Gata2 loss dramatically reduced tumor development. Furthermore, Gata2 deletion in established Kras mutant tumors induced striking regression. Although GATA2 itself is likely undruggable, combined suppression of GATA2-regulated pathways with clinically approved inhibitors caused marked tumor clearance. Discovery of the nononcogene addiction of KRAS mutant lung cancers to GATA2 presents a network of druggable pathways for therapeutic exploitation.
Collapse
Affiliation(s)
- Madhu S Kumar
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
686
|
Buratti E, Baralle FE. TDP-43: gumming up neurons through protein-protein and protein-RNA interactions. Trends Biochem Sci 2012; 37:237-47. [PMID: 22534659 DOI: 10.1016/j.tibs.2012.03.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/02/2012] [Accepted: 03/08/2012] [Indexed: 12/11/2022]
Abstract
Since the discovery that 43 kDa TAR DNA binding protein (TDP-43) is involved in neurodegeneration, studies of this protein have focused on the global effects of TDP-43 expression modulation on cell metabolism and survival. The major difficulty with these global searches, which can yield hundreds to thousands of variations in gene expression level and/or mRNA isoforms, is our limited ability to separate specific TDP-43 effects from secondary dysregulations occurring at the gene expression and various mRNA processing steps. In this review, we focus on two biochemical properties of TDP-43: its ability to bind RNA and its protein-protein interactions. In particular, we overview how these two properties may affect potentially very important processes for the pathology, from the autoregulation of TDP-43 to aggregation in the cytoplasmic/nuclear compartments.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | |
Collapse
|
687
|
Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA. Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics 2012; 11:148-59. [PMID: 22505724 DOI: 10.1074/mcp.m111.016857] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ubiquitination plays a key role in protein degradation and signal transduction. Ubiquitin is a small protein modifier that is adducted to lysine residues by the combined function of E1, E2, and E3 enzymes and is removed by deubiquitinating enzymes. Characterization of ubiquitination sites is important for understanding the role of this modification in cellular processes and disease. However, until recently, large-scale characterization of endogenous ubiquitination sites has been hampered by the lack of efficient enrichment techniques. The introduction of antibodies that specifically recognize peptides with lysine residues that harbor a di-glycine remnant (K-ε-GG) following tryptic digestion has dramatically improved the ability to enrich and identify ubiquitination sites from cellular lysates. We used this enrichment technique to study the effects of proteasome inhibition by MG-132 and deubiquitinase inhibition by PR-619 on ubiquitination sites in human Jurkat cells by quantitative high performance mass spectrometry. Minimal fractionation of digested lysates prior to immunoaffinity enrichment increased the yield of K-ε-GG peptides three- to fourfold resulting in detection of up to ~3300 distinct K-GG peptides in SILAC triple encoded experiments starting from 5 mg of protein per label state. In total, we identify 5533 distinct K-ε-GG peptides of which 4907 were quantified in this study, demonstrating that the strategy presented is a practical approach to perturbational studies in cell systems. We found that proteasome inhibition by MG-132 and deubiquitinase inhibition by PR-619 induces significant changes to the ubiquitin landscape, but that not all ubiquitination sites regulated by MG-132 and PR-619 are likely substrates for the ubiquitin-proteasome system. Additionally, we find that the proteasome and deubiquitinase inhibitors studied induced only minor changes in protein expression levels regardless of the extent of regulation induced at the ubiquitin site level. We attribute this finding to the low stoichiometry of the majority ubiquitination sites identified in this study.
Collapse
Affiliation(s)
- Namrata D Udeshi
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
688
|
Emerging roles of the ubiquitin-proteasome system in the steroid receptor signaling. Arch Pharm Res 2012; 35:397-407. [DOI: 10.1007/s12272-012-0301-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023]
|
689
|
Vendruscolo M. Proteome folding and aggregation. Curr Opin Struct Biol 2012; 22:138-43. [DOI: 10.1016/j.sbi.2012.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 12/29/2022]
|
690
|
Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, Maloney DJ, Jadhav A, Simeonov A, Zhuang Z. Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. ACTA ACUST UNITED AC 2012; 18:1390-400. [PMID: 22118673 DOI: 10.1016/j.chembiol.2011.08.014] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/04/2011] [Accepted: 08/22/2011] [Indexed: 10/15/2022]
Abstract
Ubiquitin-specific proteases (USPs) have in recent years emerged as a promising therapeutic target class. We identified selective small-molecule inhibitors against a deubiquitinase complex, the human USP1/UAF1, through quantitative high throughput screening (qHTS) of a collection of bioactive molecules. The top inhibitors, pimozide and GW7647, inhibited USP1/UAF1 noncompetitively with a K(i) of 0.5 and 0.7 μM, respectively, and displayed selectivity against a number of deubiquitinases, deSUMOylase, and cysteine proteases. The USP1/UAF1 inhibitors act synergistically with cisplatin in inhibiting cisplatin-resistant non-small cell lung cancer (NSCLC) cell proliferation. USP1/UAF1 represents a promising target for drug intervention because of its involvement in translesion synthesis and Fanconi anemia pathway important for normal DNA damage response. Our results support USP1/UAF1 as a potential therapeutic target and provide an example of targeting the USP/WD40 repeat protein complex for inhibitor discovery.
Collapse
Affiliation(s)
- Junjun Chen
- Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
691
|
USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med 2012; 18:429-35. [PMID: 22344298 DOI: 10.1038/nm.2619] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 12/02/2011] [Indexed: 01/08/2023]
Abstract
In advanced cancer, including glioblastoma, the transforming growth factor β (TGF-β) pathway acts as an oncogenic factor and is considered to be a therapeutic target. Using a functional RNAi screen, we identified the deubiquitinating enzyme ubiquitin-specific peptidase 15 (USP15) as a key component of the TGF-β signaling pathway. USP15 binds to the SMAD7-SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) complex and deubiquitinates and stabilizes type I TGF-β receptor (TβR-I), leading to an enhanced TGF-β signal. High expression of USP15 correlates with high TGF-β activity, and the USP15 gene is found amplified in glioblastoma, breast and ovarian cancer. USP15 amplification confers poor prognosis in individuals with glioblastoma. Downregulation or inhibition of USP15 in a patient-derived orthotopic mouse model of glioblastoma decreases TGF-β activity. Moreover, depletion of USP15 decreases the oncogenic capacity of patient-derived glioma-initiating cells due to the repression of TGF-β signaling. Our results show that USP15 regulates the TGF-β pathway and is a key factor in glioblastoma pathogenesis.
Collapse
|
692
|
Abstract
The ubiquitin-proteasome system (UPS) controls protein abundance and is essential for many aspects of neuronal function. In ataxia (ax(J)) mice, profound neurological and synaptic defects result from a loss-of-function mutation in the proteasome-associated deubiquitinating enzyme Usp14, which is required for recycling ubiquitin from proteasomal substrates. Here, we show that transgenic complementation of ax(J) mice with neuronally expressed ubiquitin prevents early postnatal lethality, restores muscle mass, and corrects developmental and functional deficits resulting from the loss of Usp14, demonstrating that ubiquitin deficiency is a major cause of the neurological defects observed in the ax(J) mice. We also show that proteasome components are normally induced during the first 2 weeks of postnatal development, which coincides with dramatic alterations in polyubiquitin chain formation. These data demonstrate a critical role for ubiquitin homeostasis in synaptic development and function, and show that ubiquitin deficiency may contribute to diseases characterized by synaptic dysfunction.
Collapse
|
693
|
Ubiquitin-specific protease 4 inhibits mono-ubiquitination of the master growth factor signaling kinase PDK1. PLoS One 2012; 7:e31003. [PMID: 22347420 PMCID: PMC3274522 DOI: 10.1371/journal.pone.0031003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022] Open
Abstract
Background Phosphorylation by the phospho-inositide-dependent kinase 1 (PDK1) is essential for many growth factor-activated kinases and thus plays a critical role in various processes such as cell proliferation and metabolism. However, the mechanisms that control PDK1 have not been fully explored and this is of great importance as interfering with PDK1 signaling may be useful to treat diseases, including cancer and diabetes. Methodology/Principal Findings In human cells, few mono-ubiquitinated proteins have been described but in all cases this post-translational modification has a key regulatory function. Unexpectedly, we find that PDK1 is mono-ubiquitinated in a variety of human cell lines, indicating that PDK1 ubiquitination is a common and regulated process. Ubiquitination occurs in the kinase domain of PDK1 yet is independent of its kinase activity. By screening a library of ubiquitin proteases, we further identify the Ubiquitin-Specific Protease 4 (USP4) as an enzyme that removes ubiquitin from PDK1 in vivo and in vitro and co-localizes with PDK1 at the plasma membrane when the two proteins are overexpressed, indicating direct deubiquitination. Conclusions The regulated mono-ubiquitination of PDK1 provides an unanticipated layer of complexity in this central signaling network and offers potential novel avenues for drug discovery.
Collapse
|
694
|
APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1. Nat Cell Biol 2012; 14:168-76. [PMID: 22286100 PMCID: PMC3278798 DOI: 10.1038/ncb2425] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/20/2011] [Indexed: 12/19/2022]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) initiates mitotic exit by ubiquitinating cell-cycle regulators such as cyclin B1 and securin. Lys48-linked ubiquitin chains represent the canonical signal targeting proteins for degradation by the proteasome, but they are not required for the degradation of cyclin B1. Lys11-linked ubiquitin chains have been implicated in degradation of APC/C substrates, but the Lys11-chain forming E2 UBE2S is not essential for mitotic exit, raising questions about the nature of the ubiquitin signal that targets APC/C substrates for degradation. Here we demonstrate that multiple monoubiquitination of cyclin B1, catalyzed by UBCH10 or UBC4/5, is sufficient to target cyclin B1 for destruction by the proteasome. When the number of ubiquitinatable lysines in cyclin B1 is restricted, Lys11-linked ubiquitin polymers elaborated by UBE2S become increasingly important. We therefore explain how a substrate that contains multiple ubiquitin acceptor sites confers flexibility in the requirement for particular E2 enzymes in modulating the rate of ubiquitin-dependent proteolysis.
Collapse
|
695
|
A small-molecule inhibitor of deubiquitinating enzyme USP14 inhibits Dengue virus replication. Virus Res 2012; 165:103-6. [PMID: 22306365 DOI: 10.1016/j.virusres.2012.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/23/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a key player in maintaining cellular protein homeostasis and is associated with various human diseases, including neurodegenerative disorders, cancer, and infectious diseases. Viruses from several families reprogram the UPS to make the cellular environment conducive to viral replication, and inhibition of the UPS interferes with viral propagation. Here we show that IU1, a small-molecule inhibitor of the proteasome-associated deubiquitinating enzyme USP14, inhibits replication of several flaviviruses. IU1 has been shown to enhance proteasome activity, an effect that may underlie its influence on flavivirus propagation. Inhibition of dengue virus replication was more pronounced than other flaviviruses used in the study. These results open new targets for therapeutic intervention against viruses from multiple families.
Collapse
|
696
|
Abstract
Proteasome is a highly organized protease complex comprising a catalytic 20S core particle (CP) and two 19S regulatory particles (RP), which together form the 26S structure. The 26S proteasome is responsible for the degradation of most ubiquitylated proteins through a multistep process involving recognition of the polyubiquitin chain, unfolding of the substrate, and translocation of the substrate into the active site in the cavity of the CP. Recent studies have shed light on various aspects of the complex functions of the 26S proteasome. In addition, the recent identification of various proteasome-dedicated chaperones indicates that the assembly pathways of the RP and CP are multistep processes. In this review, we summarize recent advances in the understanding of the proteasome structure, function, and assembly.
Collapse
|
697
|
Abstract
The proteasome is an ATP-dependent molecular machine that degrades proteins through the concerted activity of dozens of subunits. It is the yin to the ribosome's yang, and together these entities mold the protein landscape of the cell. Native gels are generally superior to conventional and affinity purifications for the analytical resolution proteasomal variants, and have thus become a staple of proteasome work. Here, we describe the technique of using native gels to observe proteasomes in complex with ubiquitin conjugates. We discuss the consequences of ubiquitin conjugate length and concentration on the migration of these complexes, the use of this mobility shift to evaluate the relative affinity of mutant proteasomes for ubiquitin conjugates, and the effects of deubiquitinating enzymes and competing ubiquitin-binding proteins on the interactions of ubiquitin conjugates with the proteasome.
Collapse
|
698
|
Chondrogianni N, Gonos ES. Structure and Function of the Ubiquitin–Proteasome System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:41-74. [DOI: 10.1016/b978-0-12-397863-9.00002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
699
|
Shang F, Taylor A. Role of the ubiquitin-proteasome in protein quality control and signaling: implication in the pathogenesis of eye diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:347-96. [PMID: 22727427 DOI: 10.1016/b978-0-12-397863-9.00010-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or otherwise abnormal proteins. Conversely, accumulation of the cytotoxic abnormal proteins in eye tissues is etiologically associated with many age-related eye diseases such as retina degeneration, cataract, and certain types of glaucoma. Age- or stress-induced impairment or overburdening of the UPP appears to contribute to the accumulation of abnormal proteins in eye tissues. Cell cycle and signal transduction are regulated by the conditional UPP-dependent degradation of the regulators of these processes. Impairment or overburdening of the UPP could also result in dysregulation of cell cycle control and signal transduction. The consequences of the improper cell cycle and signal transduction include defects in ocular development, wound healing, angiogenesis, or inflammatory responses. Methods that enhance or preserve UPP function or reduce its burden may be useful strategies for preventing age-related eye diseases.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Boston, Massachusetts, USA
| | | |
Collapse
|
700
|
Isasa M, Zuin A, Crosas B. Integration of multiple ubiquitin signals in proteasome regulation. Methods Mol Biol 2012; 910:337-70. [PMID: 22821603 DOI: 10.1007/978-1-61779-965-5_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ubiquitin-proteasome system has emerged in the last decades as a new paradigm in cell physiology. Ubiquitin is found in fundamental levels of cell regulation, as a target for degradation to the proteasome or as a signal that controls protein function in a complex manner. Even though many aspects of the ubiquitin system remain unexplored, the contributions on the field uncover that ubiquitin represents one of the most sophisticated codes in cellular biology. The proteasome is an ATP-dependent protease that degrades a large number of protein substrates in the cell. The proteasome recruits substrates by a number of receptors that interact with polyubiquitin. Recently, it has been shown that one of these receptors, Rpn10, is regulated by monoubiquitination. In this chapter, we show an overview of the central aspects of the pathway and describe the methodology to characterize in vitro the monoubiquitination of proteasome subunits.
Collapse
Affiliation(s)
- Marta Isasa
- Proteasome Regulation Lab, Cell Biology Department, Institute of Molecular Biology of Barcelona (CSIC), Barcelona, Spain
| | | | | |
Collapse
|