651
|
Azoulay M, Tuffin G, Sallem W, Florent JC. A new drug-release method using the Staudinger ligation. Bioorg Med Chem Lett 2006; 16:3147-9. [PMID: 16621529 DOI: 10.1016/j.bmcl.2006.03.073] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 03/16/2006] [Accepted: 03/17/2006] [Indexed: 11/26/2022]
Abstract
Many drugs induce severe side-effects caused by their lack of selectivity. One way to overcome this problem is to design a specific system which releases a free drug in a controlled manner. Herein we describe a new way to liberate a drug from a prodrug using the Staudinger ligation as the trigger.
Collapse
Affiliation(s)
- Michel Azoulay
- UMR 176 CNRS/Institut Curie, Centre de Recherche, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
652
|
Kodama K, Fukuzawa S, Nakayama H, Kigawa T, Sakamoto K, Yabuki T, Matsuda N, Shirouzu M, Takio K, Tachibana K, Yokoyama S. Regioselective carbon-carbon bond formation in proteins with palladium catalysis; new protein chemistry by organometallic chemistry. Chembiochem 2006; 7:134-9. [PMID: 16307466 DOI: 10.1002/cbic.200500290] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Palladium-catalyzed reactions have contributed to the advancement of many areas of organic chemistry, in particular, the synthesis of organic compounds such as natural products and polymeric materials. In this study, we have used a Mizoroki-Heck reaction for site-specific carbon-carbon bond formation in the Ras protein. This was performed by the following two steps: 1) the His6-fused Ras protein containing 4-iodo-L-phenylalanine at position 32 (iF32-Ras-His) was prepared by genetic engineering and 2) the aryl iodide group on the iF32-Ras-His was coupled with vinylated biotin in the presence of a palladium catalyst. The biotinylation was confirmed by Western blotting and liquid chromatography-mass spectrometry (LC-MS). The regioselectivity of the Mizoroki-Heck reaction was furthermore confirmed by LC-MS/MS analysis. However, in addition to the biotinylated product (bF32-Ras-His), a dehalogenated product (F32-Ras-His) was detected by LC-MS/MS. This dehalogenation resulted from the undesired termination of the Mizoroki-Heck reaction due to steric and electrostatic hindrance around residue 32. The biotinylated Ras showed binding activity for the Ras-binding domain as its downstream target, Raf-1, with no sign of decomposition. This study is the first report of an application of organometallic chemistry in protein chemistry.
Collapse
Affiliation(s)
- Koichiro Kodama
- Department of Biophysics and Biochemistry, School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
653
|
Dube DH, Prescher JA, Quang CN, Bertozzi CR. Probing mucin-type O-linked glycosylation in living animals. Proc Natl Acad Sci U S A 2006; 103:4819-24. [PMID: 16549800 PMCID: PMC1405625 DOI: 10.1073/pnas.0506855103] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Indexed: 11/18/2022] Open
Abstract
Changes in O-linked protein glycosylation are known to correlate with disease states but are difficult to monitor in a physiological setting because of a lack of experimental tools. Here, we report a technique for rapid profiling of O-linked glycoproteins in living animals by metabolic labeling with N-azidoacetylgalactosamine (GalNAz) followed by Staudinger ligation with phosphine probes. After injection of mice with a peracetylated form of GalNAz, azide-labeled glycoproteins were observed in a variety of tissues, including liver, kidney, and heart, in serum, and on isolated splenocytes. B cell glycoproteins were robustly labeled with GalNAz but T cell glycoproteins were not, suggesting fundamental differences in glycosylation machinery or metabolism. Furthermore, GalNAz-labeled B cells could be selectively targeted with a phosphine probe by Staudinger ligation within the living animal. Metabolic labeling with GalNAz followed by Staudinger ligation provides a means for proteomic analysis of this posttranslational modification and for identifying O-linked glycoprotein fingerprints associated with disease.
Collapse
Affiliation(s)
| | | | | | - Carolyn R. Bertozzi
- Departments of *Chemistry and
- Molecular and Cell Biology and
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and
- Molecular Foundry, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
654
|
Hartman MCT, Josephson K, Szostak JW. Enzymatic aminoacylation of tRNA with unnatural amino acids. Proc Natl Acad Sci U S A 2006; 103:4356-61. [PMID: 16537388 PMCID: PMC1450175 DOI: 10.1073/pnas.0509219103] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Indexed: 11/18/2022] Open
Abstract
The biochemical flexibility of the cellular translation apparatus offers, in principle, a simple route to the synthesis of drug-like modified peptides and novel biopolymers. However, only approximately 75 unnatural building blocks are known to be fully compatible with enzymatic tRNA acylation and subsequent ribosomal synthesis of modified peptides. Although the translation system can reject substrate analogs at several steps along the pathway to peptide synthesis, much of the specificity resides at the level of the aminoacyl-tRNA synthetase (AARS) enzymes that are responsible for charging tRNAs with amino acids. We have developed an AARS assay based on mass spectrometry that can be used to rapidly identify unnatural monomers that can be enzymatically charged onto tRNA. By using this assay, we have found 59 previously unknown AARS substrates. These include numerous side-chain analogs with useful functional properties. Remarkably, many beta-amino acids, N-methyl amino acids, and alpha,alpha-disubstituted amino acids are also AARS substrates. These previously unidentified AARS substrates will be useful in studies of the specificity of subsequent steps in translation and may significantly expand the number of analogs that can be used for the ribosomal synthesis of modified peptides.
Collapse
Affiliation(s)
- Matthew C. T. Hartman
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| | - Kristopher Josephson
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| | - Jack W. Szostak
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| |
Collapse
|
655
|
Löwik DWPM, Ayres L, Smeenk JM, Van Hest JCM. Synthesis of Bio-Inspired Hybrid PolymersUsing Peptide Synthesis and Protein Engineering. PEPTIDE HYBRID POLYMERS 2006. [DOI: 10.1007/12_081] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
656
|
Watzke A, Köhn M, Gutierrez-Rodriguez M, Wacker R, Schröder H, Breinbauer R, Kuhlmann J, Alexandrov K, Niemeyer CM, Goody RS, Waldmann H. Site-Selective Protein Immobilization by Staudinger Ligation. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502057] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
657
|
Watzke A, Köhn M, Gutierrez-Rodriguez M, Wacker R, Schröder H, Breinbauer R, Kuhlmann J, Alexandrov K, Niemeyer CM, Goody RS, Waldmann H. Site-Selective Protein Immobilization by Staudinger Ligation. Angew Chem Int Ed Engl 2006; 45:1408-12. [PMID: 16440394 DOI: 10.1002/anie.200502057] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anja Watzke
- Department of Chemical Biology, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, 44 227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
658
|
Karajanagi SS, Yang H, Asuri P, Sellitto E, Dordick JS, Kane RS. Protein-assisted solubilization of single-walled carbon nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:1392-5. [PMID: 16460050 DOI: 10.1021/la0528201] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report a simple method that uses proteins to solubilize single-walled carbon nanotubes (SWNTs) in water. Characterization by a variety of complementary techniques including UV-Vis spectroscopy, Raman spectroscopy, and atomic force microscopy confirmed the dispersion at the individual nanotube level. A variety of proteins differing in size and structure were used to generate individual nanotube solutions by this noncovalent functionalization procedure. Protein-mediated solubilization of nanotubes in water may be important for biomedical applications. This method of solubilization may also find use in approaches for controlling the assembly of nanostructures, and the wide variety of functional groups present on the adsorbed proteins may be used as orthogonal reactive handles for the functionalization of carbon nanotubes.
Collapse
Affiliation(s)
- Sandeep S Karajanagi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | |
Collapse
|
659
|
Abstract
Dissecting complex cellular processes requires the ability to track biomolecules as they function within their native habitat. Although genetically encoded tags such as GFP are widely used to monitor discrete proteins, they can cause significant perturbations to a protein's structure and have no direct extension to other classes of biomolecules such as glycans, lipids, nucleic acids and secondary metabolites. In recent years, an alternative tool for tagging biomolecules has emerged from the chemical biology community--the bioorthogonal chemical reporter. In a prototypical experiment, a unique chemical motif, often as small as a single functional group, is incorporated into the target biomolecule using the cell's own biosynthetic machinery. The chemical reporter is then covalently modified in a highly selective fashion with an exogenously delivered probe. This review highlights the development of bioorthogonal chemical reporters and reactions and their application in living systems.
Collapse
Affiliation(s)
- Jennifer A Prescher
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
660
|
Hashimoto M, Hatanaka Y. Post-biotinylation of photocrosslinking by Staudinger-Bertozzi ligation of preinstalled alkylazide tag. Chem Pharm Bull (Tokyo) 2006; 53:1510-2. [PMID: 16272745 DOI: 10.1248/cpb.53.1510] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Post-biotinylation of the alkyl azide derivative of trifluoromethyl phenyldiazirine (TPD) was elucidated to apply a photoaffinity biotinylation technique. A photo-modified polyvinilidene difluoride (PVDF) membrane was used as a photolabeled component and we introduced biotin by Staudinger-Bertozzi ligation. The 15 pmol amount of biotinylated reagent was still effective for the visualization of cross-linked product on the matrix. The results show the potential utility of alkyl azide carrying TPD derivatives in the application of photoaffinity biotinylation, which could be useful for the ligands with tight structural requirements.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Department of Agricultural and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan.
| | | |
Collapse
|
661
|
Mock ML, Michon T, van Hest JCM, Tirrell DA. Stereoselective Incorporation of an Unsaturated Isoleucine Analogue into a Protein Expressed in E. coli. Chembiochem 2006; 7:83-7. [PMID: 16397872 DOI: 10.1002/cbic.200500201] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The unsaturated amino acid 2-amino-3-methyl-4-pentenoic acid (E-Ile) was prepared in the form of its (2S,3S),(2R,3R) and (2S,3R),(2R,3S) stereoisomeric pairs. The translational activities of SS-E-Ile and SR-E-Ile were assessed in an E. coli strain rendered auxotrophic for isoleucine. SS-E-Ile was incorporated into the test protein mouse dihydrofolate reductase (mDHFR) in place of isoleucine at a rate of up to 72 %; SR-E-Ile yielded no conclusive evidence for incorporation. ATP/PPi exchange assays indicated that SS-E-Ile was activated by the isoleucyl-tRNA synthetase at a rate comparable to that characteristic of isoleucine; SR-E-Ile was activated approximately 100-times more slowly than SS-E-Ile.
Collapse
Affiliation(s)
- Marissa L Mock
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
662
|
Tomizaki KY, Usui K, Mihara H. Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 2006; 6:782-99. [PMID: 15791688 DOI: 10.1002/cbic.200400232] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sequencing of the human genome has been successfully completed and offers the chance of obtaining a large amount of valuable information for understanding complex cellular events simply and rapidly in a single experiment. Interestingly, in addressing these proteomic studies, the importance of protein-detecting microarray technology is increasing. In the coming few years, microarray technology will become a significantly promising and indispensable research/diagnostic tool from just a speculative technology. It is clear that the protein-detecting microarray is supported by three independent but strongly related technologies (surface chemistry, detection methods, and capture agents). Firstly, a variety of surface-modification methodologies are now widely available and offer site-specific immobilization of capture agents onto surfaces in such a way as to keep the native conformation and activity. Secondly, sensitive and parallel detection apparatuses are being developed to provide highly engineered microarray platforms for simultaneous data acquisition. Lastly, in the development of capture agents, antibodies are now probably the most prominent capture agents for analyzing protein abundances. Alternative scaffolds, such as phage-displayed antibody and protein fragments, which provide the advantage of increasing diversity of proteinic capture agents, however, are under development. An approach involving recombinant proteins fused with affinity tag(s) and coupled with a highly engineered surface chemistry will provide simple production protocols and specific orientations of capture agents on the microarray formats. Peptides and other small molecules can be employed in screening highly potent ligands as well as in measuring enzymatic activities. Protein-detecting microarrays supported by the three key technologies should contribute in accelerating diagnostic/biological research and drug discovery.
Collapse
Affiliation(s)
- Kin-ya Tomizaki
- Department of Bioengineering and The COE21 Program, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-40, 4259 Nagatsuta, Midori, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
663
|
Laughlin ST, Agard NJ, Baskin JM, Carrico IS, Chang PV, Ganguli AS, Hangauer MJ, Lo A, Prescher JA, Bertozzi CR. Metabolic Labeling of Glycans with Azido Sugars for Visualization and Glycoproteomics. Methods Enzymol 2006; 415:230-50. [PMID: 17116478 DOI: 10.1016/s0076-6879(06)15015-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The staggering complexity of glycans renders their analysis extraordinarily difficult, particularly in living systems. A recently developed technology, termed metabolic oligosaccharide engineering, enables glycan labeling with probes for visualization in cells and living animals, and enrichment of specific glycoconjugate types for proteomic analysis. This technology involves metabolic labeling of glycans with a specifically reactive, abiotic functional group, the azide. Azido sugars are fed to cells and integrated by the glycan biosynthetic machinery into various glycoconjugates. The azido sugars are then covalently tagged, either ex vivo or in vivo, using one of two azide-specific chemistries: the Staudinger ligation, or the strain-promoted [3+2] cycloaddition. These reactions can be used to tag glycans with imaging probes or epitope tags, thus enabling the visualization or enrichment of glycoconjugates. Applications to noninvasive imaging and glycoproteomic analyses are discussed.
Collapse
Affiliation(s)
- Scott T Laughlin
- Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
664
|
Link AJ, Tirrell DA. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J Am Chem Soc 2005; 125:11164-5. [PMID: 16220915 DOI: 10.1021/ja036765z] [Citation(s) in RCA: 458] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Labeling of the cell surface of Escherichia coli was accomplished by expression of a recombinant outer membrane protein, OmpC, in the presence of the unnatural amino acid azidohomoalanine, which acts as a methionine surrogate. The surface-exposed azide moieties of whole cells were biotinylated via Cu(1)-catalyzed [3+2] azide-alkyne cycloaddition. The specificity of labeling of both wild-type OmpC and a mutant containing additional methionine sites for azidohomoalanine incorporation was confirmed by Western blotting. Flow cytometry was performed to examine the specificity of the labeling. Cells that express the mutant form of OmpC in the presence of azidohomoalanine, which were biotinylated and stained with fluorescent avidin, exhibit a mean fluorescence 10-fold higher than the background. Incorporation of an unnatural amino acid can thus be determined on a single-cell basis.
Collapse
Affiliation(s)
- A James Link
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | | |
Collapse
|
665
|
Bock VD, Hiemstra H, van Maarseveen JH. Cu
I
‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500483] [Citation(s) in RCA: 1265] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Victoria D. Bock
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Henk Hiemstra
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Jan H. van Maarseveen
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| |
Collapse
|
666
|
Back JW, David O, Kramer G, Masson G, Kasper PT, de Koning LJ, de Jong L, van Maarseveen JH, de Koster CG. Mild and Chemoselective Peptide-Bond Cleavage of Peptides and Proteins at Azido Homoalanine. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200502431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
667
|
Durek T, Becker CFW. Protein semi-synthesis: New proteins for functional and structural studies. ACTA ACUST UNITED AC 2005; 22:153-72. [PMID: 16188500 DOI: 10.1016/j.bioeng.2005.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 12/19/2022]
Abstract
Our ability to alter and control the structure and function of biomolecules, and of proteins in particular, will be of utmost importance in order to understand their respective biological roles in complex systems such as living organisms. This challenge has prompted the development of powerful modern techniques in the fields of molecular biology, physical biochemistry and chemical biology. These fields complement each other and their successful combination has provided unique insights into protein structure and function at the level of isolated molecules, cells and organisms. Chemistry is without doubt most suited for introducing subtle changes into biomolecules down to the atomic level, but often struggles when it comes to large targets, such as proteins. In this review, we attempt to give an overview of modern and broadly applicable techniques that permit chemical synthesis to be applied to complex protein targets in order to gain control over their structure and function. As will be demonstrated, these approaches offer unique possibilities in our efforts to understand the molecular basis of protein functioning in vitro and in vivo. We will discuss modern synthetic reactions that can be applied to proteins and give examples of recent highlights. Another focus of this review will be the application of inteins as versatile protein engineering tools.
Collapse
Affiliation(s)
- Thomas Durek
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
668
|
Tsao ML, Tian F, Schultz PG. Selective Staudinger Modification of Proteins Containing p-Azidophenylalanine. Chembiochem 2005; 6:2147-9. [PMID: 16317766 DOI: 10.1002/cbic.200500314] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng-Lin Tsao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR202, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
669
|
Bräse S, Gil C, Knepper K, Zimmermann V. Organische Azide - explodierende Vielfalt bei einer einzigartigen Substanzklasse. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200400657] [Citation(s) in RCA: 346] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
670
|
Blencowe A, Hayes W. Development and application of diazirines in biological and synthetic macromolecular systems. SOFT MATTER 2005; 1:178-205. [PMID: 32646075 DOI: 10.1039/b501989c] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many different reagents and methodologies have been utilised for the modification of synthetic and biological macromolecular systems. In addition, an area of intense research at present is the construction of hybrid biosynthetic polymers, comprised of biologically active species immobilised or complexed with synthetic polymers. One of the most useful and widely applicable techniques available for functionalisation of macromolecular systems involves indiscriminate carbene insertion processes. The highly reactive and non-specific nature of carbenes has enabled a multitude of macromolecular structures to be functionalised without the need for specialised reagents or additives. The use of diazirines as stable carbene precursors has increased dramatically over the past twenty years and these reagents are fast becoming the most popular photophors for photoaffinity labelling and biological applications in which covalent modification of macromolecular structures is the basis to understanding structure-activity relationships. This review reports the synthesis and application of a diverse range of diazirines in macromolecular systems.
Collapse
Affiliation(s)
- Anton Blencowe
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| | - Wayne Hayes
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| |
Collapse
|
671
|
Hosoya T, Hiramatsu T, Ikemoto T, Aoyama H, Ohmae T, Endo M, Suzuki M. Design of dantrolene-derived probes for radioisotope-free photoaffinity labeling of proteins involved in the physiological Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Bioorg Med Chem Lett 2005; 15:1289-94. [PMID: 15713372 DOI: 10.1016/j.bmcl.2005.01.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
Bifunctional dantrolene derivatives have been synthesized as probes for radioisotope-free photoaffinity labeling with the aim of elucidating the molecular mechanism of skeletal muscle contraction. GIF-0430 and GIF-0665 are aromatic azido-functionalized derivatives that were designed to selectively inhibit physiological Ca2+ release (PCR) from sarcoplasmic reticulum (SR) in mouse skeletal muscle without a strong effect on Ca2+-induced Ca2+ release (CICR). These photoaffinity probes consist of either an azidomethyl or an ethynyl group, respectively, which could function as a tag for introduction of an optional detectable marker unit by an appropriate chemoselective ligation method after the photo-cross-linking operation. Actually, the former probe worked to photolabel its target proteins specifically as confirmed by subsequent fluorescent visualization.
Collapse
Affiliation(s)
- Takamitsu Hosoya
- Division of Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan
| | | | | | | | | | | | | |
Collapse
|
672
|
Link AJ, Tirrell DA. Reassignment of sense codons in vivo. Methods 2005; 36:291-8. [PMID: 16076455 DOI: 10.1016/j.ymeth.2005.04.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/28/2022] Open
Abstract
The genetic code maps one or more of the 61 sense codons onto a set of 20 canonical amino acids. Reassignment of sense codons to non-canonical amino acids in model organisms such as Escherichia coli has been achieved through manipulation of the cellular protein synthesis machinery. Specifically, control of amino acid pools, coupled with engineering of the aminoacyl-tRNA synthetase activity of the host, has enabled assignment of sense codons to a wide variety of non-canonical amino acids under conditions routinely used for expression of recombinant proteins. Codon reassignment is leading to important advances in protein engineering and bioorganic chemistry. Here we summarize some of those advances, and provide detailed protocols for codon reassignment.
Collapse
Affiliation(s)
- A James Link
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
673
|
Rose MW, Xu J, Kale TA, O'Doherty G, Barany G, Distefano MD. Enzymatic incorporation of orthogonally reactive prenylazide groups into peptides using geranylazide diphosphate via protein farnesyltransferase: implications for selective protein labeling. Biopolymers 2005; 80:164-71. [PMID: 15810014 DOI: 10.1002/bip.20239] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein farnesyltransferase (PFTase) catalyzes the attachment of a geranyl azide moiety to a peptide substrate, N-dansyl-Gly-Cys-Val-Ile-Ala-OH. The resulting azide-containing peptide was derivatized with a triphenylphosphine-based reagent to generate an O-alkyl imidate-linked product, rather than the amide-linked material expected via a Staudinger reaction. Since the CAAX box recognition motif (where the internal A residues are aliphatic amino acids) modified by PFTase can be incorporated into the C-terminus of virtually any polypeptide, this two-step procedure provides a general method for incorporating a diverse range of chemical modifications specifically near the C-terminus of proteins.
Collapse
Affiliation(s)
- Matthew W Rose
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
674
|
Pan Y, Holmes CP, Tumelty D. Novel α,α-Difluorohomophthalimides via Copper-Catalyzed Tandom Cross-Coupling−Cyclization of 2-Halobenzamides with α,α-Difluoro Reformatskii Reagent. J Org Chem 2005; 70:4897-900. [PMID: 15932341 DOI: 10.1021/jo050599r] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel alpha,alpha-difluorohomophthalimides 2 were prepared by reacting N-substituted 2-halobenzamides with the alpha,alpha-difluoro Reformatskii reagent BrZnCF2CO2Et (3) in the presence of CuBr at room temperature. The synthesis involves a CuBr-mediated cross-coupling of 3 with aryl iodides or activated aryl bromides, followed by a spontaneous cyclization of the ethyl 2-benzamido-alpha,alpha-difluoroacetate intermediates at room temperature. N-unsubstituted alpha,alpha-difluorohomophthalimides 2 (R' = H), bearing an acidic imide proton capable of acting as a carboxylic acid bioisostere, were also prepared by reacting 3 equiv of 3 with the parent 2-iodobenzamides. Other aryl iodides such as 3-iodo-imidazo[1,2-alpha]pyridine were also used for the tandem coupling-cyclization reaction.
Collapse
Affiliation(s)
- Yijun Pan
- Affymax, Inc., 4001 Miranda Ave., Palo Alto, California 94304, USA
| | | | | |
Collapse
|
675
|
Comstock LR, Rajski SR. Conversion of DNA methyltransferases into azidonucleosidyl transferases via synthetic cofactors. Nucleic Acids Res 2005; 33:1644-52. [PMID: 15778434 PMCID: PMC1067524 DOI: 10.1093/nar/gki306] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/26/2005] [Accepted: 02/26/2005] [Indexed: 11/21/2022] Open
Abstract
Aziridine-based cofactor mimics have been synthesized and are shown to undergo methyltransferase-dependent DNA alkylation. Notably, each cofactor mimic possesses an azide functionality, to which can be attached an assortment of unnatural groups following methyltransferase-dependent DNA delivery. DNA duplexes modified with these cofactor mimics are capable of undergoing the Staudinger ligation with phosphines tethered to biological functionalities following enzymatic modification. This methodology provides a new tool by which to selectively modify DNA in a methyltransferase-dependent way. The conversion of biological methyltransferases into azidonucleosidyl transferases demonstrated here also holds tremendous promise as a means of identifying, as yet, unknown substrates of methylation.
Collapse
Affiliation(s)
- Lindsay R. Comstock
- School of Pharmacy, University of Wisconsin-Madison777 Highland Ave., Madison, WI 53705, USA
| | - Scott R. Rajski
- School of Pharmacy, University of Wisconsin-Madison777 Highland Ave., Madison, WI 53705, USA
| |
Collapse
|
676
|
Datta D, Vaidehi N, Zhang D, Goddard WA. Selectivity and specificity of substrate binding in methionyl-tRNA synthetase. Protein Sci 2005; 13:2693-705. [PMID: 15388861 PMCID: PMC2286561 DOI: 10.1110/ps.04792204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The accuracy of in vivo incorporation of amino acids during protein biosynthesis is controlled to a significant extent by aminoacyl-tRNA synthetases (aaRS). This paper describes the application of the HierDock computational method to study the molecular basis of amino acid binding to the Escherichia coli methionyl tRNA synthetase (MetRS). Starting with the protein structure from the MetRS cocrystal, the HierDock calculations predict the binding site of methionine in MetRS to a root mean square deviation in coordinates (CRMS) of 0.55 A for all the atoms, compared with the crystal structure. The MetRS conformation in the cocrystal structure shows good discrimination between cognate and the 19 noncognate amino acids. In addition, the calculated binding energies of a set of five methionine analogs show a good correlation (R(2) = 0.86) to the relative free energies of binding derived from the measured in vitro kinetic parameters, K(m) and k(cat). Starting with the crystal structure of MetRS without the methionine (apo-MetRS), the putative binding site of methionine was predicted. We demonstrate that even the apo-MetRS structure shows a preference for binding methionine compared with the 19 other natural amino acids. On comparing the calculated binding energies of the 20 natural amino acids for apo-MetRS with those for the cocrystal structure, we observe that the discrimination against the noncognate substrate increases dramatically in the second step of the physical binding process associated with the conformation change in the protein.
Collapse
Affiliation(s)
- Deepshikha Datta
- Materials and Process Simulation Center (MC 139-74), Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
677
|
Tucker MJ, Oyola R, Gai F. Conformational Distribution of a 14-Residue Peptide in Solution: A Fluorescence Resonance Energy Transfer Study. J Phys Chem B 2005; 109:4788-95. [PMID: 16851563 DOI: 10.1021/jp044347q] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate here that a nitrile-derivatized phenylalanine residue, p-cyanophenylalanine (Phe(CN)), and tryptophan (Trp) constitute a novel donor-acceptor pair for fluorescence resonance energy transfer (FRET). The Förster distance of this FRET pair was determined to be approximately 16 A and hence is well suited for determining relatively short separation distances. To validate the applicability of this FRET pair in conformational studies, we studied the conformational heterogeneity of a 14-residue amphipathic peptide, Mastoparan X (MPx peptide), in water and 7 M urea solution as well as at different temperatures. Specifically, seven nitrile-derivatized mutants of the MPx peptide, each containing a Phe(CN) residue that replaces different positions along the peptide sequence (i.e., from position 5 to 11) and serves as a resonance energy donor to the native Trp residue at position 3, were studied spectroscopically. The FRET efficiencies obtained from these peptides allowed us to gain a global picture regarding the conformational distribution of the MPx peptide in different environments. Our results suggest that the MPx molecules exist in water as an ensemble of rather compact conformations, with a radius of gyration of approximately 4.2 A, whereas in 7 M urea the radius of gyration increases to approximately 6.5 A, indicating that the peptide conformations become more extended under this condition. However, we found that temperature had only a negligible effect on the size of the MPx peptide, underlining the difference between the thermally and chemically denatured states of polypeptides. The application of the Gaussian chain or the wormlike chain model allowed us to further obtain the probability distribution function of the separation distance between any two residues along the peptide sequence. We found that the effective bond length of the MPx peptide, obtained by using the Gaussian chain model, is 2.78 A in water and 4.28 A in 7 M urea.
Collapse
Affiliation(s)
- Matthew J Tucker
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
678
|
|
679
|
Abstract
Although chemists can synthesize virtually any small organic molecule, our ability to rationally manipulate the structures of proteins is quite limited, despite their involvement in virtually every life process. For most proteins, modifications are largely restricted to substitutions among the common 20 amino acids. Herein we describe recent advances that make it possible to add new building blocks to the genetic codes of both prokaryotic and eukaryotic organisms. Over 30 novel amino acids have been genetically encoded in response to unique triplet and quadruplet codons including fluorescent, photoreactive, and redox-active amino acids, glycosylated amino acids, and amino acids with keto, azido, acetylenic, and heavy-atom-containing side chains. By removing the limitations imposed by the existing 20 amino acid code, it should be possible to generate proteins and perhaps entire organisms with new or enhanced properties.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
680
|
de Las Heras Alarcon C, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev 2005; 34:276-85. [PMID: 15726163 DOI: 10.1039/b406727d] [Citation(s) in RCA: 1174] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymers that can respond to external stimuli are of great interest in medicine, especially as controlled drug release vehicles. In this critical review, we consider the types of stimulus response used in therapeutic applications and the main classes of responsive materials developed to date. Particular emphasis is placed on the wide-ranging possibilities for the biomedical use of these polymers, ranging from drug delivery systems and cell adhesion mediators to controllers of enzyme function and gene expression (134 references).
Collapse
Affiliation(s)
- Carolina de Las Heras Alarcon
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, UKPO1 2DT
| | | | | |
Collapse
|
681
|
Sen Gupta S, Raja KS, Kaltgrad E, Strable E, Finn MG. Virus–glycopolymer conjugates by copper(i) catalysis of atom transfer radical polymerization and azide–alkyne cycloaddition. Chem Commun (Camb) 2005:4315-7. [PMID: 16113733 DOI: 10.1039/b502444g] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(I)-catalyzed ATRP and azide-alkyne cycloaddition reactions together provide a versatile method for the synthesis of end-functionalized glycopolymers and their attachment to a suitably modified viral protein scaffold.
Collapse
Affiliation(s)
- Sayam Sen Gupta
- Department of Chemistry and Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
682
|
Restituyo JA, Comstock LR, Petersen SG, Stringfellow T, Rajski SR. Conversion of aryl azides to O-alkyl imidates via modified Staudinger ligation. Org Lett 2004; 5:4357-60. [PMID: 14601999 DOI: 10.1021/ol035635s] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] o-Carboalkoxy triarylphosphines are shown to react with aryl azides to provide Staudinger ligation products bearing O-alkyl imidate linkages. This is in contrast to alkyl azides whose ligation to o-carboalkoxy triarylphosphines has been reported to yield amide-linked materials. This extension of the Staudinger ligation for coupling of abiotic reagents under biocompatible conditions highlights the utility of commercially available triarylphosphines through which suitable linkers can be attached via an ester moiety.
Collapse
Affiliation(s)
- José A Restituyo
- The School of Pharmacy and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | |
Collapse
|
683
|
Budisa N. Prolegomena zum experimentellen Engineering des genetischen Codes durch Erweiterung seines Aminosäurerepertoires. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200300646] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
684
|
Budisa N. Prolegomena to Future Experimental Efforts on Genetic Code Engineering by Expanding Its Amino Acid Repertoire. Angew Chem Int Ed Engl 2004; 43:6426-63. [PMID: 15578784 DOI: 10.1002/anie.200300646] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein synthesis and its relation to the genetic code was for a long time a central issue in biology. Rapid experimental progress throughout the past decade, crowned with the recently elucidated ribosomal structures, provided an almost complete description of this process. In addition important experiments provided solid evidence that the natural protein translation machinery can be reprogrammed to encode genetically a vast number of non-coded (i.e. noncanonical) amino acids. Indeed, in the set of 20 canonical amino acids as prescribed by the universal genetic code, many desirable functionalities, such as halogeno, keto, cyano, azido, nitroso, nitro, and silyl groups, as well as C=C or C[triple bond]C bonds, are absent. The ability to encode genetically such chemical diversity will enable us to reprogram living cells, such as bacteria, to express tailor-made proteins exhibiting functional diversity. Accordingly, genetic code engineering has developed into an exciting emerging research field at the interface of biology, chemistry, and physics.
Collapse
Affiliation(s)
- Nediljko Budisa
- Max-Planck-Institut für Biochemie, Junior Research Group "Moleculare Biotechnologie", Am Klopferspitz 18a, 82152 Martinsried bei München, Germany.
| |
Collapse
|
685
|
Speers AE, Cravatt BF. Profiling enzyme activities in vivo using click chemistry methods. ACTA ACUST UNITED AC 2004; 11:535-46. [PMID: 15123248 DOI: 10.1016/j.chembiol.2004.03.012] [Citation(s) in RCA: 625] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 01/19/2004] [Accepted: 01/21/2004] [Indexed: 11/23/2022]
Abstract
Methods for profiling the activity of enzymes in vivo are needed to understand the role that these proteins and their endogenous regulators play in physiological and pathological processes. Recently, we introduced a tag-free strategy for activity-based protein profiling (ABPP) that utilizes the copper(I)-catalyzed azide-alkyne cycloaddition reaction ("click chemistry") to analyze the functional state of enzymes in living cells and organisms. Here, we report a detailed characterization of the reaction parameters that affect click chemistry-based ABPP and identify conditions that maximize the speed, sensitivity, and bioorthogonality of this approach. Using these optimized conditions, we compare the enzyme activity profiles of living and homogenized breast cancer cells, resulting in the identification of several enzymes that are labeled by activity-based probes in situ but not in vitro.
Collapse
Affiliation(s)
- Anna E Speers
- The Skaggs Institute for Chemical Biology, Departments of Chemistry and Cell Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
686
|
Abstract
Novel chemical variants of proteins have been found in nature, including potent 'microprotein' natural products and folded protein molecules that contain a cyclic polypeptide chain. Researchers have used chemical synthesis and genetic methods to make these proteins and more: protein catenanes, neoglycoproteins, and artificial protein molecules with novel architectures or made from novel building blocks. De novo design has taken a big step forward with the accurate design and construction of proteins with complex molecular structure. A variety of non-coded amino acids and other building blocks has been used to make increasingly sophisticated protein molecular devices for use as biosensors and for the study of signal transduction inside living cells.
Collapse
Affiliation(s)
- Stephen Kent
- Cummings Life Sciences Center #325, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
687
|
Affiliation(s)
- Sarah J Luchansky
- Department of Chemistry, University of California-Berkeley, B84 Hildebrand Hall, Berkeley, CA 94720, USA
| | | |
Collapse
|
688
|
Shriver Z, Raguram S, Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 2004; 3:863-73. [PMID: 15459677 DOI: 10.1038/nrd1521] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Complex glycans that are located at the surface of cells, deposited in the extracellular matrix and attached to soluble signalling molecules have a crucial role in the phenotypic expression of cellular genotypes. However, owing to their structural complexity and some redundancy in terms of structures that elicit a function, the therapeutic potential of complex glycans has not been well exploited, with a few notable exceptions. This review outlines recent advances that promise to increase our ability to use complex glycans as therapeutics. Opportunities for the development of further structure-function relationships for these complex molecules are also discussed.
Collapse
Affiliation(s)
- Zachary Shriver
- Momenta Pharmaceuticals, 43 Moulton Street, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
689
|
Affiliation(s)
- Nediljko Budisa
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany.
| |
Collapse
|
690
|
Szardenings K, Li B, Ma L, Wu M. Fishing for targets: novel approaches using small molecule baits. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:9-15. [PMID: 24981262 DOI: 10.1016/j.ddtec.2004.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
New technologies for target identification have emerged in the past few years. Driven by the development of novel proteomic tools and advances in analytical techniques, three new approaches have been successfully applied to drug discovery efforts by determining targets and off-targets. Recent progress in labeling live cells with activity-based probes will further aide a deeper understanding of the interaction of small molecules with a complex biological system on a molecular level.:
Collapse
Affiliation(s)
- Katrin Szardenings
- ActivX Biosciences, 11025 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Bei Li
- ActivX Biosciences, 11025 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lifu Ma
- ActivX Biosciences, 11025 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Min Wu
- ActivX Biosciences, 11025 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
691
|
Abstract
Methods for engineering proteins that contain non-canonical amino acids have advanced rapidly in the past few years. Novel amino acids can be introduced into recombinant proteins in either a residue-specific or site-specific fashion. The methods are complementary: residue-specific incorporation allows engineering of the overall physical and chemical behavior of proteins and protein-like macromolecules, whereas site-specific methods allow mechanistic questions to be probed in atomistic detail. Challenges remain in the engineering of the translational apparatus and in the design of schemes that can be used to encode both canonical and non-canonical amino acids.
Collapse
Affiliation(s)
- A James Link
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
692
|
Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A 2004; 101:12479-84. [PMID: 15308774 PMCID: PMC515085 DOI: 10.1073/pnas.0403413101] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recently developed proteomics strategy, designated tagging-via-substrate (TAS) approach, is described for the detection and proteomic analysis of farnesylated proteins. TAS technology involves metabolic incorporation of a synthetic azido-farnesyl analog and chemoselective derivatization of azido-farnesyl-modified proteins by an elegant version of Staudinger reaction, pioneered by the Bertozzi group, using a biotinylated phosphine capture reagent. The resulting protein conjugates can be specifically detected and/or affinity-purified by streptavidin-linked horseradish peroxidase or agarose beads, respectively. Thus, the technology enables global profiling of farnesylated proteins by enriching farnesylated proteins and reducing the complexity of farnesylation subproteome. Azido-farnesylated proteins maintain the properties of protein farnesylation, including promoting membrane association, Ras-dependent mitogen-activated protein kinase kinase activation, and inhibition of lovastatin-induced apoptosis. A proteomic analysis of farnesylated proteins by TAS technology revealed 18 farnesylated proteins, including those with potentially novel farnesylation motifs, suggesting that future use of this method is likely to yield novel insight into protein farnesylation. TAS technology can be extended to other posttranslational modifications, such as geranylgeranylation and myristoylation, thus providing powerful tools for detection, quantification, and proteomic analysis of posttranslationally modified proteins.
Collapse
Affiliation(s)
- Yoonjung Kho
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
693
|
Prescher JA, Dube DH, Bertozzi CR. Chemical remodelling of cell surfaces in living animals. Nature 2004; 430:873-7. [PMID: 15318217 DOI: 10.1038/nature02791] [Citation(s) in RCA: 611] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/25/2004] [Indexed: 01/07/2023]
Abstract
Cell surfaces are endowed with biological functionality designed to mediate extracellular communication. The cell-surface repertoire can be expanded to include abiotic functionality through the biosynthetic introduction of unnatural sugars into cellular glycans, a process termed metabolic oligosaccharide engineering. This technique has been exploited in fundamental studies of glycan-dependent cell-cell and virus-cell interactions and also provides an avenue for the chemical remodelling of living cells. Unique chemical functional groups can be delivered to cell-surface glycans by metabolism of the corresponding unnatural precursor sugars. These functional groups can then undergo covalent reaction with exogenous agents bearing complementary functionality. The exquisite chemical selectivity required of this process is supplied by the Staudinger ligation of azides and phosphines, a reaction that has been performed on cultured cells without detriment to their physiology. Here we demonstrate that the Staudinger ligation can be executed in living animals, enabling the chemical modification of cells within their native environment. The ability to tag cell-surface glycans in vivo may enable therapeutic targeting and non-invasive imaging of changes in glycosylation during disease progression.
Collapse
Affiliation(s)
- Jennifer A Prescher
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
694
|
Kim W, George A, Evans M, Conticello VP. Cotranslational Incorporation of a Structurally Diverse Series of Proline Analogues in an Escherichia coli Expression System. Chembiochem 2004; 5:928-36. [PMID: 15239049 DOI: 10.1002/cbic.200400052] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A set of Escherichia coli expression strains have been defined that are competent for the incorporation of a structurally diverse series of proline analogues under culture conditions that are compatible with high levels of analogue substitution within a proline-rich protein substrate. These bacterial strains have been employed to assay the efficacy of incorporation of noncanonical amino acids into a recombinant-protein test substrate and to create variant polypeptides in which native protein sequences have been globally substituted with imino acid analogues in response to proline codons. We envision that these methods may be used to interrogate the effect of imino acid substitution on protein structure and function and may be particularly informative in the context of structural comparison of a series of modified proteins with respect to the stereoelectronic differences between the incorporated proline analogues.
Collapse
Affiliation(s)
- Wookhyun Kim
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
695
|
Miller GP, Kool ET. Versatile 5'-functionalization of oligonucleotides on solid support: amines, azides, thiols, and thioethers via phosphorus chemistry. J Org Chem 2004; 69:2404-10. [PMID: 15049637 DOI: 10.1021/jo035765e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the preparation of conjugates of oligonucleotides is by now commonplace, existing methods (usually utilizing thiols or primary amines) are generally expensive, and often require postsynthetic reaction with the DNA followed by a separate purification. Here we describe simple procedures for a broad set of direct 5'-end (5'-terminal carbon) functionalizations of DNA oligonucleotides while they remain on the synthesizer column. 5'-Iodinated oligonucleotides (prepared by an automated cycle as previously reported) are converted directly to 5'-azides, 5'-thiocarbamates, and alkyl and aryl 5'-thioethers in high yields. Further, we demonstrate high-yielding conversions of DNA-azides to 5'-amines, and of thiocarbamates to 5'-thiols. Finally, we report a new, one-pot conversion of naturally substituted 5'-OH oligonucleotides (again on the solid support) to 5'-amino-oligonucleotides. All of the above reactions are demonstrated in multiple sequence contexts. Most of the procedures are automatable.
Collapse
Affiliation(s)
- Gregory P Miller
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
696
|
Abstract
The genetic code is established by the aminoacylation of transfer RNA, reactions in which each amino acid is linked to its cognate tRNA that, in turn, harbors the nucleotide triplet (anticodon) specific to the amino acid. The accuracy of aminoacylation is essential for building and maintaining the universal tree of life. The ability to manipulate and expand the code holds promise for the development of new methods to create novel proteins and to understand the origins of life. Recent efforts to manipulate the genetic code have fulfilled much of this potential. These efforts have led to incorporation of nonnatural amino acids into proteins for a variety of applications and have demonstrated the plausibility of specific proposals for early evolution of the code.
Collapse
Affiliation(s)
- Tamara L Hendrickson
- Department of Chemistry, 1Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
697
|
Abstract
8-Azido-5'-aziridino-5'-deoxyadenosine (6), a novel cofactor mimic, was synthesized in nine steps from commercially available 2',3'-isopropylideneadenosine in approximately 4% overall yield. Crucial to this success was a very unorthodox phthalimide cleavage procedure, C8 azidation prior to aziridination and late stage alkylation of the 5' amino group with iodoethanol necessitated by the high degree of lability endowed by the aryl azide moiety. Aziridine 6 is envisioned as a useful biochemical tool by which to probe DNA and protein methylation patterns.
Collapse
Affiliation(s)
- Lindsay R Comstock
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Avenue, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
698
|
|
699
|
Abstract
Unraveling the functional roles of proteins is a major challenge facing the postgenome researcher. Advances towards this goal have been made through the development of both chemical and biochemical tools for monitoring protein activity. Recently, a myriad of fluorescence-based imaging tools have emerged for in vitro, in vivo and whole animal applications. These tools have provided methods to monitor the spatial and temporal distribution of proteins and bioorganic molecules dynamically. Here, recent advances in chemical and biochemical techniques that allow the detection of enzymatic activity within intact cells and in vivo are reviewed. Such technologies have the potential to be integrated into drug-development programs to facilitate both the functional validation of pharmaceutical targets and the treatment of human disease.
Collapse
Affiliation(s)
- Amos Baruch
- Department of Chemical Proteomics, Celera Genomics, 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
700
|
Klok HA. Biological-synthetic hybrid block copolymers: Combining the best from two worlds. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/pola.20527] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|