651
|
Junn E, Lee SS, Suhr UT, Mouradian MM. Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem 2002; 277:47870-7. [PMID: 12364339 DOI: 10.1074/jbc.m203159200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra and by the presence of ubiquitinated cytoplasmic inclusions known as Lewy bodies. Alpha-synuclein and Parkin are two of the proteins associated with inherited forms of PD and are found in Lewy bodies. Whereas numerous reports indicate the tendency of alpha-synuclein to aggregate both in vitro and in vivo, no information is available about similar physical properties for Parkin. Here we show that overexpression of Parkin in the presence of proteasome inhibitors leads to the formation of aggresome-like perinuclear inclusions. These eosinophilic inclusions share many characteristics with Lewy bodies, including a core and halo organization, immunoreactivity to ubiquitin, alpha-synuclein, synphilin-1, Parkin, molecular chaperones, and proteasome subunit as well as staining of some with thioflavin S. We propose that the process of Lewy body formation may be akin to that of aggresome-like structures. The tendency of wild-type Parkin to aggregate and form inclusions may have implications for the pathogenesis of sporadic PD.
Collapse
Affiliation(s)
- Eunsung Junn
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892-1406, USA
| | | | | | | |
Collapse
|
652
|
Lotharius J, Brundin P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 2002; 3:932-42. [PMID: 12461550 DOI: 10.1038/nrn983] [Citation(s) in RCA: 902] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julie Lotharius
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, BMC A10, 221 84 Lund, Sweden.
| | | |
Collapse
|
653
|
Marín I, Ferrús A. Comparative genomics of the RBR family, including the Parkinson's disease-related gene parkin and the genes of the ariadne subfamily. Mol Biol Evol 2002; 19:2039-50. [PMID: 12446796 DOI: 10.1093/oxfordjournals.molbev.a004029] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genes of the RBR family are characterized by the RBR signature (two RING finger domains separated by an IBR/DRIL domain). The RBR family is widespread in eukaryotes, with numerous members in animals (mammals, Drosophila, Caenorhabditis) and plants (Arabidopsis). But yeasts, such as Saccharomyces cerevisiae or Schizosaccharomyces pombe, contain only two RBR genes. We determined the phylogenetic relationships and the most likely orthologs in different species of several family members for which functional data are available. These include: (1) parkin, whose mutations are involved in forms of familial Parkinson's disease; (2) the ariadne genes, recently characterized in Drosophila and mammals; (3) XYbp and Dorfin, two mammalian genes whose products interact with the centrosome; (4) XAP3, RBCK1, and UIP28, mammalian genes encoding Protein Kinase-C-binding proteins; and (5) ARA54, an androgen receptor coactivator. Because several of these genes are involved in ubiquitination, we used phylogenetic and structural analyses to explore the hypothesis that all RBR proteins might play a role in ubiquitination. We show that the involvement of RBR proteins in ubiquitination predates the animals-plants-fungi divergence. On the basis of the evidence provided by cases of gene fusion, we suggest that Ariadne proteins interact with cullin domain-containing proteins to form complexes with ubiquitin-ligase activity.
Collapse
Affiliation(s)
- Ignacio Marín
- Departamento de Genética, Universidad de Valencia, Calle Doctor Moliner 50, Burjassot 46100, Valencia, Spain.
| | | |
Collapse
|
654
|
Ledesma MD, Galvan C, Hellias B, Dotti C, Jensen PH. Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem 2002; 83:1431-40. [PMID: 12472897 DOI: 10.1046/j.1471-4159.2002.01253.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parkin is a ubiquitin ligase that facilitates proteasomal protein degradation and is involved in a common autosomal recessive form of Parkinson's disease. Its expression is part of the unfolded protein response in cell lines where its overexpression protects against unfolded protein stress. How parkin expression is regulated in brain primary cells under stress situations is however, less well established. Here, the cellular and subcellular localization of parkin under basal conditions and during unfolded protein stress was investigated in primary cultures of rat astrocytes and hippocampal neurons. Immunofluorescense microscopy and biochemical analysis demonstrated that parkin is mainly associated with the endoplasmic reticulum (ER) in hippocampal neurons while it is associated with Golgi membranes, the nuclei and light vesicles in astrocytes. The constitutive parkin expression was high in neurons as compared with astrocytes. However, unfolded protein stress elicited a selective increase in astrocytic parkin expression and a change in distribution, whereas neuronal parkin remained largely unmodified. The cell specific differences argue in favour of different cellular binding sites and substrates for the protein and a pathogenic role for astrocytes in Parkinson's disease caused by parkin dysfunction.
Collapse
Affiliation(s)
- Maria Dolores Ledesma
- Università degli Studi di Torino, Cavalieri Ottolenghi Scientific Institute, Torino, Italy
| | | | | | | | | |
Collapse
|
655
|
Duan W, Zhu X, Ladenheim B, Yu QS, Guo Z, Oyler J, Cutler RG, Cadet JL, Greig NH, Mattson MP. p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol 2002; 52:597-606. [PMID: 12402257 DOI: 10.1002/ana.10350] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drugs currently used for patients with Parkinson's disease provide temporary relief of symptoms but do not halt or slow the underlying neurodegenerative disease process. Increasing evidence suggests that neurons die in Parkinson's disease by a process called apoptosis, which may be triggered by mitochondrial impairment and oxidative stress. We report that two novel synthetic inhibitors of the tumor suppressor protein p53, pifithrin-alpha (PFT-alpha) and Z-1-117, are highly effective in protecting midbrain dopaminergic neurons and improving behavioral outcome in a mouse model of Parkinson's disease. Mice given intraperitoneal injections of PFT-alpha or Z-1-117 exhibited improved motor function, reduced damage to nigrostriatal dopaminergic neurons and reduced depletion of dopamine and its metabolites after exposure to the toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP caused an increase in the level of the proapoptotic protein Bax, which was prevented by giving mice PFT-alpha and Z-1-117. PFT-alpha and Z-1-117 also suppressed Bax production and apoptosis in cultured dopaminergic cells exposed to MPP(+). Our findings demonstrate a pivotal role for p53 in experimental parkinsonism and identify a novel class of synthetic p53 inhibitors with clinical potential.
Collapse
Affiliation(s)
- Wenzhen Duan
- Laboratory of Neurosciences, Gerontology Research Center 4F01, National Institute on Aging/NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
656
|
Abstract
Dopamine agonists are effective in reversing the motor symptoms of Parkinson's disease (PD). They have also shown that they can delay or prevent the onset of motor complications associated with levodopa use. Recent attention has focused on the possible role for dopamine agonists in neuroprotection. Numerous studies have demonstrated that a variety of dopamine agonists can protect dopaminergic neuronal function in several toxin model systems. Pramipexole in particular has shown efficacy in reducing toxicity to MPTP, MPP, rotenone and 6-hydroxydopamine. Recent studies in early PD using imaging parameters as a surrogate marker of dopaminergic neuronal integrity have shown that pramipexole and ropinirole can apparently retard the rate of cell loss. These observations are of considerable interest, but additional studies are required to confirm a neuroprotective function for these dopamine agonists.
Collapse
Affiliation(s)
- A H V Schapira
- University Department of Clinical Neurosciences, Royal Free and University College, Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
657
|
Gearhart DA, Toole PF, Warren Beach J. Identification of brain proteins that interact with 2-methylnorharman. An analog of the parkinsonian-inducing toxin, MPP+. Neurosci Res 2002; 44:255-65. [PMID: 12413654 DOI: 10.1016/s0168-0102(02)00133-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Methylated beta-carbolines, including 2-methylnorharman, are structural and functional analogs of the parkinsonian-inducing toxin, MPP+. We are investigating N-methylated beta-carbolines, including 2-methylnorharman, as possible etiologic factors in the pathogenesis of Parkinson's disease. The cellular targets of N-methylated beta-carboline-mediated cytotoxicity are unknown; therefore, we used the T7Select Phage Display System in a novel approach to identify brain proteins that bind to 2-methylnorharman. We incubated (biopanned) immobilized 2-methylnorharman with a phage display cDNA library that expressed a library of human brain proteins on the surface of bacteriophage T7. We washed off unbound phage, amplified the phage that were bound to 2-methylnorharman, and enriched for toxin-interacting phage by repeating the biopanning and amplification steps. The cDNA sequences from the toxin-interacting phage were used to derive the amino acid sequences of the phage-displayed proteins. Five of the six 2-methylnorharman-interacting proteins may have relevance to Parkinson's disease: alpha-tubulin, paraoxonase, dorfin, fatty acid binding protein, and platelet-activating factor acetylhydrolase. Dorfin has sequence homology with parkin, which is interesting because mutations in the parkin gene associate with early-onset Parkinson's disease. Our findings are the basis for future studies aimed at determining whether 2-methylnorharman affects the function of these specific proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Debra A Gearhart
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912-2000, USA.
| | | | | |
Collapse
|
658
|
Lansbury PT, Brice A. Genetics of Parkinson's disease and biochemical studies of implicated gene products. Curr Opin Cell Biol 2002; 14:653-60. [PMID: 12231362 DOI: 10.1016/s0955-0674(02)00377-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Parkinson's disease was thought, until recently, to have little or no genetic component. This notion has changed with the identification of three genes, and the mapping of five others, that are linked to rare familial forms of the disease (FPD). The products of the identified genes, alpha-synuclein (PARK 1), parkin (PARK 2), and ubiquitin-C-hydrolase-L1 (PARK 5) are the subject of intense cell-biological and biochemical studies designed to elucidate the underlying mechanism of FPD pathogenesis. In addition, the complex genetics of idiopathic PD is beginning to be unraveled. Genetic information may prove to be useful in identifying new therapeutic targets and identifying the preclinical phase of PD, allowing treatment to begin sooner.
Collapse
Affiliation(s)
- Peter T Lansbury
- Center for Neurologic Diseases, Brigham and Women's Hospital and Department of Neurology, Harvard Medical School, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
659
|
Lee G, Junn E, Tanaka M, Kim YM, Mouradian MM. Synphilin-1 degradation by the ubiquitin-proteasome pathway and effects on cell survival. J Neurochem 2002; 83:346-52. [PMID: 12423244 DOI: 10.1046/j.1471-4159.2002.01136.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parkinson's disease is characterized by loss of nigral dopaminergic neurons and the presence of cytoplasmic inclusions known as Lewy bodies. alpha-Synuclein and its interacting partner synphilin-1 are among constituent proteins in these aggregates. The presence of ubiquitin and proteasome subunits in these inclusions supports a role for this protein degradation pathway in the processing of proteins involved in this disease. To begin elucidating the kinetics of synphilin-1 in cells, we studied its degradation pathway in HEK293 cells that had been engineered to stably express FLAG-tagged synphilin-1. Pulse-chase experiments revealed that this protein is relatively stable with a half-life of about 16 h. Treatment with proteasome inhibitors resulted in attenuation of degradation and the accumulation of high molecular weight ubiquitinated synphilin-1 in immunoprecipitation/immunoblot experiments. Additionally, proteasome inhibitors stimulated the formation of peri-nuclear inclusions which were immunoreactive for synphilin-1, ubiquitin and alpha-synuclein. Cell viability studies revealed increased susceptibility of synphilin-1 over-expressing cells to proteasomal dysfunction. These observations indicate that synphilin-1 is ubiquitinated and degraded by the proteasome. Accumulation of ubiquitinated synphilin-1 due to impaired clearance results in its aggregation as peri-nuclear inclusions and in poor cell survival.
Collapse
Affiliation(s)
- Gwang Lee
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
660
|
Abstract
In idiopathic Parkinson's disease and familial parkinsonism, the limited number of overlapping clinical and pathological outcomes argue that a common underlying molecular pathway is perturbed. Genetic methods are a powerful approach to identify molecular components of disease. We summarize recent attempts to identify the genetic components of familial parkinsonism, without a priori assumptions about disease causation. Much effort has been expended on mapping in families with early-onset disease, in which parkinsonism appears inherited as a Mendelian trait. More recently, association methods have been employed in late-onset disease using affected sib-pairs and population isolates. These findings have been extrapolated to Parkinson's disease in the community with some success. We review the molecular synthesis now emerging from a genetic perspective.
Collapse
|
661
|
Niwa JI, Ishigaki S, Hishikawa N, Yamamoto M, Doyu M, Murata S, Tanaka K, Taniguchi N, Sobue G. Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J Biol Chem 2002; 277:36793-8. [PMID: 12145308 DOI: 10.1074/jbc.m206559200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder resulting from the degeneration of motor neurons in the cerebral cortex, brainstem, and spinal cord. The cytopathological hallmark in the remaining motor neurons of ALS is the presence of ubiquitylated inclusions consisting of insoluble protein aggregates. In this paper we report that Dorfin, a RING finger-type E3 ubiquitin ligase, is predominantly localized in the inclusion bodies of familial ALS with a copper/zinc superoxide dismutase (SOD1) mutation as well as sporadic ALS. Dorfin physically bound and ubiquitylated various SOD1 mutants derived from familial ALS patients and enhanced their degradation, but it had no effect on the stability of the wild-type SOD1. The overexpression of Dorfin protected against the toxic effects of mutant SOD1 on neural cells and reduced SOD1 inclusions. Our results indicate that Dorfin protects neurons by recognizing and then ubiquitylating mutant SOD1 proteins followed by targeting them for proteasomal degradation.
Collapse
Affiliation(s)
- Jun-Ichi Niwa
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
662
|
Chin LS, Vavalle JP, Li L. Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 2002; 277:35071-9. [PMID: 12121982 DOI: 10.1074/jbc.m203300200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntaxin 1 is an essential component of the neurotransmitter release machinery, and regulation of syntaxin 1 expression levels is thought to contribute to the mechanism underlying learning and memory. However, the molecular events that control the degradation of syntaxin 1 remain undefined. Here we report the identification and characterization of a novel RING finger protein, Staring, that interacts with syntaxin 1. Staring is expressed throughout the brain, where it exists in both cytosolic and membrane-associated pools. Staring binds and recruits the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 to syntaxin 1 and facilitates the ubiquitination and proteasome-dependent degradation of syntaxin 1. These findings suggest that Staring is a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Lih-Shen Chin
- Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322-3090, USA
| | | | | |
Collapse
|
663
|
Abstract
One of the most surprising discoveries of the past decade (at least in the field of neurodegeneration) was that protein misfolding underlies several seemingly disparate neurological diseases. Animal models were crucial to this discovery. In this article, we will discuss the CAG repeat diseases, the tauopathies and Parkinson disease, highlighting how mouse and fly models have contributed to our understanding of pathogenesis. In each case, we will stress what has been learned about the role of protein clearance and the questions that remain about how misfolded proteins acquire their toxicity.
Collapse
Affiliation(s)
- Huda Y Zoghbi
- Depts of Pediatrics, Neurology, and Molecular and Human Genetics, and Howard Hughes Medical Institute, Baylor College of Medicine, 77030, Houston, TX, USA
| | | |
Collapse
|
664
|
Abstract
The recent identification of several genes and gene loci linked to familial forms of Parkinson's disease (PD) has contributed significantly to our understanding of the genetic contribution in PD. Although the etiology of sporadic PD remains unknown, it is currently assumed that genetic susceptibilities may be involved. The advent of genome-wide scanning techniques has now made it possible to conduct complete genome screens for linkage in PD in multigenerational parkinsonian kindreds. Such studies undoubtedly will be instrumental in establishing the susceptibility genes involved in idiopathic PD. This article reviews the recent advances in the genetics of PD.
Collapse
Affiliation(s)
- Kah Leong Lim
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Carnegie 214, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
665
|
Abstract
Parkinson's disease is a complex disorder in which the genetic aspects are only just being realized. The underlying cause for the degeneration of dopaminergic substantia nigra neurons and the formation of Lewy bodies in Parkinson's disease is unknown. The identification of clear inherited forms of the disease has provided important clues as to how this complex process may be occurring. Mutations have now been identified in the alpha-synuclein (4q21.3-23), parkin (6q25.2-27), and ubiquitin carboxy terminal hydrolase-L1 (4p16.3) genes in families with Parkinson's disease. Four additional chromosomal locations; 2p13, 4p14-15, 1p35-36, and 12p11.2-q13.1 have been linked to Parkinson's disease families but no pathologic gene mutations have been identified to date. As additional Parkinson's disease loci are mapped and their genes identified we will continue to add to our understating of the critical biochemical pathways involved and be able to develop effective disease altering treatments.
Collapse
Affiliation(s)
- D A Grimes
- Parkinson's Disease and Movement Disorders Clinic, The Ottawa Hospital, Civic Campus, 1053 Carling Ave, K1Y 4E9, Ottawa, Ont, Canada.
| | | |
Collapse
|
666
|
Mata IF, Alvarez V, García-Moreira V, Guisasola LM, Ribacoba R, Salvador C, Blázquez M, Sarmiento RG, Lahoz CH, Menes BB, García EC. Single-nucleotide polymorphisms in the promoter region of the PARKIN gene and Parkinson's disease. Neurosci Lett 2002; 329:149-52. [PMID: 12165399 DOI: 10.1016/s0304-3940(02)00619-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutations in the PARKIN gene have been identified in families with recessively inherited Parkinson disease (PD). Common DNA-polymorphisms at the PARKIN gene could contribute to the risk for PD in the general population. Here we searched for DNA-polymorphisms in the PARKIN promoter. We found two single nucleotide polymorphisms (-324 A/G and -797 A/G). In order to analyse the association of PD with these and two previously described polymorphisms (1281 G/A, Asp394Asn, and 601 G/A, Ser167Asn) we genotyped 105 patients and 150 healthy controls. Allele and genotype frequencies for the four polymorphisms did not differ between patients and controls, or between patients with an early-onset (< or =40 years; n = 20) and a late-onset (>40 years; n = 85). According to our data, the genetic variation at the PARKIN gene (including promoter polymorphisms) did not contribute to the risk of developing PD in the general population.
Collapse
Affiliation(s)
- Ignacio F Mata
- Genética Molecular-Instituto Investigación Nefrológica (IRSIN), Hospital Central de Asturias, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
667
|
Hyun DH, Lee M, Hattori N, Kubo SI, Mizuno Y, Halliwell B, Jenner P. Effect of wild-type or mutant Parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J Biol Chem 2002; 277:28572-7. [PMID: 12034719 DOI: 10.1074/jbc.m200666200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in Parkin (a ubiquitin protein ligase) are involved in autosomal recessive juvenile parkinsonism, but it is not known how they cause nigral cell death. We examined the effect of Parkin overexpression on cellular levels of oxidative damage, antioxidant defenses, nitric oxide production, and proteasomal enzyme activity. Increasing expression of Parkin by gene transfection in NT-2 and SK-N-MC cells led to increased proteasomal activity, decreased levels of protein carbonyls, 3-nitrotyrosine-containing proteins, and a trend to a reduction in ubiquitinated protein levels. Transfection of these cells with DNA encoding three mutant Parkins associated with autosomal recessive juvenile parkinsonism (Del 3-5, T240R, and Q311X) gave smaller increases in proteasomal activity and led to elevated levels of protein carbonyls and lipid peroxidation. Turnover of the mutant proteins was slower than that of the wild-type protein, and both could be blocked by the proteasome inhibitor, lactacystin. A rise in levels of nitrated proteins and increased levels of NO2-/NO3- was also observed in cells transfected with mutant Parkins, apparently because of increased levels of neuronal nitric-oxide synthase. The presence of mutant Parkin in substantia nigra in juvenile parkinsonism may increase oxidative stress and nitric oxide production, sensitizing cells to death induced by other insults.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Wolfson Centre for Age-related Diseases, GKT School of Biomedical Sciences, King's College London, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
668
|
Abstract
Parkinson's disease (PD) was noted to have a familial component as early as 1880 (Leroux, 1880). More recently, the discovery of several genetic factors influencing parkinsonism has emphasized the importance of heredity in PD. The clinical spectrum of familial parkinsonism is wide; it includes not only PD, but also dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), essential tremor, and other disorders. In the general population, it is likely that PD results from combined genetic and environmental factors, most of which are not yet known. The discovery of causal mutations in the gene for alpha-synuclein, parkin, and of genetic linkages to chromosomes 2p4, 4p5, and three loci on 1q6-8 have revolutionized PD research. This review focuses on recent progress in the Mendelian genetics of PD and those diseases in which parkinsonism is a prominent feature, and considers how these discoveries modify our beliefs regarding the etiology and pathogenesis of these disorders.
Collapse
Affiliation(s)
- Katrina Gwinn-Hardy
- Division of Intramural Research, Neurogenetics Laboratories, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
669
|
Fishman PS, Oyler GA. Significance of the parkin gene and protein in understanding Parkinson's disease. Curr Neurol Neurosci Rep 2002; 2:296-302. [PMID: 12044248 DOI: 10.1007/s11910-002-0004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mutations in the parkin gene cause autosomal recessive inherited juvenile parkinsonism (ARJP) and account for the majority of cases of inherited Parkinson's disease (PD) of young onset (<45 years of age). Patients with parkin mutations commonly have atypical clinical features such as dystonia at onset, hyper-reflexia, diurnal fluctuations, and sleep benefit; however, parkin mutation patients with both typical PD symptoms and older age of onset have been identified. Parkin is a ubiquitin protein ligase (E3), a component in the pathway that attaches ubiquitin to specific proteins, designating them for degradation by the proteasome. Several substrates for parkin have been identified (CDCrel-1, o-glycosylated alpha-synuclein, parkin associated endothelin-like cell receptor, and synphilin). The role of these substrates in the pathogenesis of ARJP is under active study. Most patients with parkin mutations lack Lewy bodies, suggesting that functional parkin is involved in the formation of these highly ubiquitinated inclusions. Furthermore, the recognition that parkin mutations can lead to a disorder clinically similar to sporadic PD, but presumably lacking Lewy bodies, calls into question the necessity of Lewy bodies for the diagnosis of PD and nigral cell death. Studies of parkin are increasing the focus on the role of the ubiquitin-proteasome system in the pathogenesis of both familial and sporadic PD.
Collapse
Affiliation(s)
- Paul S Fishman
- Department of Neurology, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
670
|
Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI, Takahashi R. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 2002; 10:55-67. [PMID: 12150907 DOI: 10.1016/s1097-2765(02)00583-x] [Citation(s) in RCA: 367] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unfolded Pael receptor (Pael-R) is a substrate of the E3 ubiquitin ligase Parkin. Accumulation of Pael-R in the endoplasmic reticulum (ER) of dopaminergic neurons induces ER stress leading to neurodegeneration. Here, we show that CHIP, Hsp70, Parkin, and Pael-R formed a complex in vitro and in vivo. The amount of CHIP in the complex was increased during ER stress. CHIP promoted the dissociation of Hsp70 from Parkin and Pael-R, thus facilitating Parkin-mediated Pael-R ubiquitination. Moreover, CHIP enhanced Parkin-mediated in vitro ubiquitination of Pael-R in the absence of Hsp70. Furthermore, CHIP enhanced the ability of Parkin to inhibit cell death induced by Pael-R. Taken together, these results indicate that CHIP is a mammalian E4-like molecule that positively regulates Parkin E3 activity.
Collapse
Affiliation(s)
- Yuzuru Imai
- Laboratory for Motor System Neurodegeneration, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
671
|
Abstract
Parkinson's disease (PD) is the most common neurodegenerative motor disorder, marked by chronic progressive loss of neurons in the substantia nigra, thereby damaging purposeful control of movement. For decades, it was believed that PD was caused solely by environmental causes. However, the discovery of genetic factors involved in PD has revolutionized our attempts to understand the disease's pathology. PD now appears to be more polygenetic than previously thought and is most likely caused by a complex interaction of genetic risks and environmental exposures. The first gene found to be mutated in PD encodes for the presynaptic protein alpha-synuclein, which is also a major component of Lewy bodies and Lewy neurites, the neuropathological hallmarks of the disease. While these findings provide a classic example of how rare genetic mutations in disease can point to important pathways in idiopathic disease pathologies, much of the study of alpha-synuclein has focused on understanding how this protein undergoes the transition from an unfolded monomer to amorphous aggregates or Lewy body-like filaments rather than addressing what its fundamental function might be. Since alterations in synuclein function may predispose to the disease pathology of PD, regardless of the presence of genetic mutations, a more thorough understanding of the cellular regulation and function of alpha-synuclein may be of crucial importance to our understanding of this degenerating disorder.
Collapse
Affiliation(s)
- Nelson B Cole
- National Human Genome Research Institute (NHGRI), Bethesda, MD 20892, USA.
| | | |
Collapse
|
672
|
Lansbury PT, Brice A. Genetics of Parkinson's disease and biochemical studies of implicated gene products. Curr Opin Genet Dev 2002; 12:299-306. [PMID: 12076673 DOI: 10.1016/s0959-437x(02)00302-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease was thought, until recently, to have little or no genetic component. This notion has changed with the identification of three genes, and the mapping of five others, that are linked to rare familial forms of the disease (FPD). The products of the identified genes, alpha-synuclein (PARK 1), parkin (PARK 2), and ubiquitin-C-hydrolase-L1 (PARK 5) are the subject of intense cell-biological and biochemical studies designed to elucidate the underlying mechanism of FPD pathogenesis. In addition, the complex genetics of idiopathic PD is beginning to be unraveled. Genetic information may prove to be useful in identifying new therapeutic targets and identifying the preclinical phase of PD, allowing treatment to begin sooner.
Collapse
Affiliation(s)
- Peter T Lansbury
- Center for Neurologic Diseases, Brigham and Women's Hospital and Department of Neurology, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
673
|
Kahns S, Lykkebo S, Jakobsen LD, Nielsen MS, Jensen PH. Caspase-mediated parkin cleavage in apoptotic cell death. J Biol Chem 2002; 277:15303-8. [PMID: 11839750 DOI: 10.1074/jbc.m111534200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The parkin protein is important for the survival of the neurons that degenerate in Parkinson's disease as demonstrated by disease-causing lesions in the parkin gene. The Chinese hamster ovary and the SH-SY5Y cell line stably expressing recombinant human parkin combined with epitope-specific parkin antibodies were used to investigate the proteolytic processing of human parkin during apoptosis by immunoblotting. Parkin is cleaved during apoptosis induced by okadaic acid, staurosporine, and camptothecin, thereby generating a 38-kDa C-terminal fragment and a 12-kDa N-terminal fragment. The cleavage was not significantly affected by the disease-causing mutations K161N, G328E, T415N, and G430D and the polymorphism R366W. Parkin and its 38-kDa proteolytic fragment is preferentially associated with vesicles, thereby indicating that cleavage is a membrane-associated event. The proteolysis is sensitive to inhibitors of caspases. The cleavage site was mapped by site-directed mutagenesis of potential aspartic residues and revealed that mutation of Asp-126 alone abrogated the parkin cleavage. The tetrapeptide aldehyde LHTD-CHO, representing the amino acid sequence N-terminal to the putative cleavage site was an efficient inhibitor of parkin cleavage. This suggests that parkin function is compromised in neuropathological states associated with an increased caspase activation, thereby further adding to the cellular stress.
Collapse
Affiliation(s)
- Soren Kahns
- Department of Medical Biochemistry, Building 170, University of Aarhus, DK-8000 Aarhus-C, Denmark
| | | | | | | | | |
Collapse
|
674
|
Kann M, Jacobs H, Mohrmann K, Schumacher K, Hedrich K, Garrels J, Wiegers K, Schwinger E, Pramstaller PP, Breakefield XO, Ozelius LJ, Vieregge P, Klein C. Role of parkin mutations in 111 community-based patients with early-onset parkinsonism. Ann Neurol 2002; 51:621-5. [PMID: 12112109 DOI: 10.1002/ana.10179] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early-onset parkinsonism is frequently reported in connection with mutations in the parkin gene. In this study, we present the results of extensive genetic screening for parkin mutations in 111 community-derived early-onset parkinsonism patients (age of onset <50 years) from Germany with an overall mutation rate of 9.0%. Gene dosage alterations represented 67% of the mutations found, underlining the importance of quantitative analyses of parkin. In summary, parkin mutations accounted for a low but significant percentage of early-onset parkinsonism patients in a community-derived sample.
Collapse
Affiliation(s)
- Martin Kann
- Department of Neurology, Medical University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
675
|
Krüger R, Eberhardt O, Riess O, Schulz JB. Parkinson's disease: one biochemical pathway to fit all genes? Trends Mol Med 2002; 8:236-40. [PMID: 12067634 DOI: 10.1016/s1471-4914(02)02333-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although originally discounted, hereditary factors have emerged as the focus of research in Parkinson's disease (PD). Genetic studies have identified mutations in alpha-synuclein and ubiquitin C-terminal hydrolase as rare causes of autosomal dominant PD and mutations in parkin as a cause of autosomal recessive PD. Functional characterization of the identified disease genes implicates the ubiquitin-mediated protein degradation pathway in these hereditary forms of PD and also in the more common sporadic forms of PD. Subsequent identification of further loci in familial PD and diverse genetic factors modulating the risk for sporadic PD point to substantial genetic heterogeneity in the disease. Thus, new candidate genes are expected to encode proteins either involved in ubiquitin-mediated protein degradation or sequestrated in intracytoplasmic protein aggregations. Future identification of disease genes is required to confirm this hypothesis, thereby unifying the clinical and genetic heterogeneity of PD, including the common sporadic form of the disease, by one biochemical pathway.
Collapse
Affiliation(s)
- Rejko Krüger
- Dept of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
676
|
Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1655-67. [PMID: 12000718 PMCID: PMC1850875 DOI: 10.1016/s0002-9440(10)61113-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutations in alpha-synuclein (alpha S) and parkin cause heritable forms of Parkinson disease (PD). We hypothesized that neuronal parkin, a known E3 ubiquitin ligase, facilitates the formation of Lewy bodies (LBs), a pathological hallmark of PD. Here, we report that affinity-purified parkin antibodies labeled classical LBs in substantia nigra sections from four related human disorders: sporadic PD, inherited alphaS-linked PD, dementia with LBs (DLB), and LB-positive, parkin-linked PD. Anti-parkin antibodies also detected LBs in entorhinal and cingulate cortices from DLB brain and alphaS inclusions in sympathetic gangliocytes from sporadic PD. Double labeling with confocal microscopy of DLB midbrain sections revealed that approximately 90% of anti-alpha S-reactive LBs were also detected by a parkin antibody to amino acids 342 to 353. Accordingly, parkin proteins, including the 53-kd mature isoform, were present in affinity-isolated LBs from DLB cortex. Fluorescence resonance energy transfer and immunoelectron microscopy showed that alphaS and parkin co-localized within brainstem and cortical LBs. Biochemically, parkin appeared most enriched in cytosolic and postsynaptic fractions of adult rat brain, but also in purified, alpha S-rich presynaptic elements that additionally contained parkin's E2-binding partner, UbcH7. We conclude that parkin and UbcH7 are present with alphaS in subcellular compartments of normal brain and that parkin frequently co-localizes with alpha S aggregates in the characteristic LB inclusions of PD and DLB. These results suggest that functional parkin proteins may be required during LB formation.
Collapse
|
677
|
Hedrich K, Marder K, Harris J, Kann M, Lynch T, Meija-Santana H, Pramstaller PP, Schwinger E, Bressman SB, Fahn S, Klein C. Evaluation of 50 probands with early-onset Parkinson's disease for Parkin mutations. Neurology 2002; 58:1239-46. [PMID: 11971093 DOI: 10.1212/wnl.58.8.1239] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Early onset PD has been associated with different mutations in the Parkin gene, including exon deletions and duplications. METHODS The authors performed an extensive mutational analysis on 50 probands with onset of PD at younger than 50 years of age. Thirteen probands were ascertained from a registry of familial PD and 37 probands by age at onset at younger than 50 years, blind to family history. Mutational analysis was undertaken on the probands and available family members and included conventional techniques (single strand conformation polymorphism analysis and sequencing) and a newly developed method of quantitative duplex PCR to detect alterations of gene dosage (exon deletions and duplications) in PARKIN: RESULTS Using this new technique, the authors detected eight alterations of gene dosage in the probands, whereas 12 mutations were found by conventional methods among the probands and another different mutation in an affected family member. In total, the authors identified compound heterozygous mutations in 14%, heterozygous mutations in 12%, and no Parkin mutation in 74% of the 50 probands. We expanded the occurrence of Parkin mutations to another ethnic group (African-American). CONCLUSION The authors systematically screened all 12 Parkin exons by quantitative PCR and conventional methods in 50 probands. Eight mutations were newly reported, 2 of which are localized in exon 1, and 38% of the mutations were gene dosage alterations. These results underline the need to screen all exons and to undertake gene dosage studies. Furthermore, this study reveals a frequency of heterozygous mutation carriers that may signify a unique mode of inheritance and expression of the Parkin gene.
Collapse
Affiliation(s)
- K Hedrich
- Department of Neurology, Medical University of Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
678
|
Hilker R, Klein C, Hedrich K, Ozelius LJ, Vieregge P, Herholz K, Pramstaller PP, Heiss WD. The striatal dopaminergic deficit is dependent on the number of mutant alleles in a family with mutations in the parkin gene: evidence for enzymatic parkin function in humans. Neurosci Lett 2002; 323:50-4. [PMID: 11911988 DOI: 10.1016/s0304-3940(01)02529-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autosomal recessive parkinsonism associated with mutations in the parkin gene represents a monogenic form of hereditary parkinsonism. We performed [(18)F]6-fluorodopa (FDOPA) positron emission tomography as a measurement of the nigrostriatal dopaminergic system as well as extensive haplotype analysis of the PARK 2 gene locus in 14 subjects with parkin mutations. In parkin subjects, the reduction of striatal FDOPA uptake increased with the number of mutated alleles and was also slightly obvious in asymptomatic parkin gene carriers in the heterozygous state. The abnormal FDOPA uptake pattern in parkin patients did not significantly differ from that of sporadic Parkinson's disease. Our data are in agreement with an enzymatic dysfunction of the gene's translational product, which has been shown to promote protein degradation as an ubiquitin-protein ligase. Thus, parkinsonism in parkin gene carriers may be related to abnormal nigral protein accumulation in the presence of a suprathreshold enzyme dysfunction.
Collapse
Affiliation(s)
- Rüdiger Hilker
- Department of Neurology, Medical University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
679
|
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428. [PMID: 11917093 DOI: 10.1152/physrev.00027.2001] [Citation(s) in RCA: 3118] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
Collapse
Affiliation(s)
- Michael H Glickman
- Faculty of Biology and the Institute for Catalysis Science and Technology, Haifa, Israel.
| | | |
Collapse
|
680
|
van Baren MJ, van der Linde HC, Breedveld GJ, Baarends WM, Rizzu P, de Graaff E, Oostra BA, Heutink P. A double RING-H2 domain in RNF32, a gene expressed during sperm formation. Biochem Biophys Res Commun 2002; 292:58-65. [PMID: 11890671 DOI: 10.1006/bbrc.2002.6612] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RING domain is a cysteine-rich zinc-binding motif, which is found in a wide variety of proteins, among which are several proto-oncogenes and the gene implicated in autosomal recessive juvenile parkinsonism, Parkin. The domain mediates binding to other proteins, either via their RING domains or other motifs. In several proteins, RING domains are found in combination with other cysteine-rich binding motifs and some proteins contain two RING domains. Recent evidence suggests that RING finger proteins function in the ubiquitin pathway as E3 ligases. A variant of the RING domain is the RING-H2 domain, in which one of the cysteines is replaced by a histidine. We have cloned and characterized a novel gene, RNF32, located on chromosome 7q36. RNF32 is contained in 37 kb of genomic DNA and consists of 9 constitutive and 8 alternatively spliced exons, most of which are alternative first exons. A long and a short transcript of the gene are expressed; the short transcript containing exons 1-4 only. This gene encodes two RING-H2 domains separated by an IQ domain of unknown function. This is the first reported gene with a double RING-H2 domain. In humans, RNF32 overlaps with a processed retroposon located on the opposite strand, C7orf13. RNF32 is specifically expressed in testis and ovary, whereas C7orf13 is testis-specific, suggesting that its expression may be regulated by elements in the RNF32 promoter region. RNF32 is expressed during spermatogenesis, most likely in spermatocytes and/or in spermatids, suggesting a possible role in sperm formation.
Collapse
Affiliation(s)
- Marijke J van Baren
- Department of Clinical Genetics, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
681
|
Wheeler TC, Chin LS, Li Y, Roudabush FL, Li L. Regulation of synaptophysin degradation by mammalian homologues of seven in absentia. J Biol Chem 2002; 277:10273-82. [PMID: 11786535 DOI: 10.1074/jbc.m107857200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptophysin is an integral membrane protein of synaptic vesicles characterized by four transmembrane domains with both termini facing the cytoplasm. Although synaptophysin has been implicated in neurotransmitter release, and decreased synaptophysin levels have been associated with several neurodegenerative diseases, the molecular mechanism that regulates the degradation of synaptophysin remains unsolved. Using the cytoplasmic C terminus of synaptophysin as bait in a yeast two-hybrid screen, we identified two synaptophysin-binding proteins, Siah-1A and Siah-2, which are rat homologues of Drosophila Seven in Absentia. We demonstrated that Siah-1A and Siah-2 associate with synaptophysin both in vitro and in vivo and defined the binding domains of synaptophysin and Siah that mediate their association. Siah proteins exist in both cytosolic and membrane-associated pools and co-localize with synaptophysin on synaptic vesicles and early endosomes. In addition, Siah proteins interact specifically with the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 and facilitate the ubiquitination of synaptophysin. Furthermore, overexpression of Siah proteins promotes the degradation of synaptophysin via the ubiquitin-proteasome pathway. Our findings indicate that Siah proteins function as E3 ubiquitin-protein ligases to regulate the ubiquitination and degradation of synaptophysin.
Collapse
Affiliation(s)
- Tiffany C Wheeler
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
682
|
Hase A, Yamada H, Arai K, Sunada Y, Shimizu T, Matsumura K. Characterization of parkin in bovine peripheral nerve. Brain Res 2002; 930:143-9. [PMID: 11879804 DOI: 10.1016/s0006-8993(02)02241-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The autosomal recessive juvenile parkinsonism is caused by the mutations of the gene encoding a novel protein called parkin. It has been reported that parkin is expressed in the central nervous system and functions as a ubiquitin-protein ligase (E3) which suppresses neuronal cell degeneration by ubiquitinating misfolded proteins. Thus far, however, it remains unknown if parkin is expressed and functions in the peripheral nervous system. In order to begin to address to this question, we investigated the expression of parkin in bovine peripheral nerve. Reverse transcription polymerase chain reaction analysis demonstrated the presence of parkin transcript in bovine peripheral nerve. The obtained bovine parkin cDNA sequence was identical to that of human except a single nucleotide. Immunoblot analysis demonstrated the expression of parkin protein in bovine peripheral nerve. Immunohistochemical analysis demonstrated the localization of parkin in the axoplasm of myelinated nerve fibers, the Schwann cell cytoplasm and the Schwann cell outer membrane. Furthermore, fractionation analysis indicated the presence of two fractions of parkin in bovine peripheral nerve, the cytosolic fraction and the cell membrane-bound fraction. All together, these results point to diverse roles of parkin in not only the central but also the peripheral nervous system.
Collapse
Affiliation(s)
- Asako Hase
- Department of Neurology and Neuroscience, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | | | | | | | | | |
Collapse
|
683
|
Rajkovic A, Lee JH, Yan C, Matzuk MM. The ret finger protein-like 4 gene, Rfpl4, encodes a putative E3 ubiquitin-protein ligase expressed in adult germ cells. Mech Dev 2002; 112:173-7. [PMID: 11850190 DOI: 10.1016/s0925-4773(01)00635-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using an in silico (electronic database) subtraction, we identified a new member of the Ret Finger Protein-Like gene family, Rfpl4. Rfpl4 encodes a 287 amino acid putative E3 ubiquitin-protein ligase with a RING finger-like domain and a B30.2 motif. Reverse transcriptase polymerase chain reaction and Northern blot analyses reveal that Rfpl4 encodes a 1.7kb mRNA detectable exclusively in the gonads of adult mice. In situ hybridization localizes Rfpl4 transcripts within the ovary to oocytes of primary and later stage follicles and in the testis to elongating spermatids. The Rfpl4 gene comprises three exons and maps to mouse chromosome 7. We have identified the human ortholog, which maps to 19q13.4. These studies suggest that RFPL4 mediates protein degradation pathways important for gametogenesis or early embryonic development.
Collapse
Affiliation(s)
- Aleksandar Rajkovic
- Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
684
|
Kitamura Y, Kakimura JI, Taniguchi T. Antiparkinsonian drugs and their neuroprotective effects. Biol Pharm Bull 2002; 25:284-90. [PMID: 11913520 DOI: 10.1248/bpb.25.284] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Parkinson's disease, while dopamine (DA) replacement therapy, such as with L-DOPA (levodopa), improves the symptoms, it does not inhibit the degeneration of DA neurons in the substantia nigra. Numerous studies have suggested that both endogenous and environmental neurotoxins and oxidative stress may participate in this disease, but the detailed mechanisms are still unclear. Recent genetic studies in familial Parkinson's disease and parkinsonism have shown several gene mutations. This new information regarding its pathogenesis offers novel prospects for effective strategies involving the neuroprotection of vulnerable DA neurons. This review summarizes current findings regarding the pathogenesis and antiparkinsonian drugs, and discusses their possibilities of targets to develop novel neuroprotective drugs.
Collapse
|
685
|
Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 2002. [PMID: 11739566 DOI: 10.1523/jneurosci.21-24-09549.2001] [Citation(s) in RCA: 397] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alpha-synuclein mutations have been identified in certain families with Parkinson's disease (PD), and alpha-synuclein is a major component of Lewy bodies. Other genetic data indicate that the ubiquitin-dependent proteolytic system is involved in PD pathogenesis. We have generated stable PC12 cell lines expressing wild-type or A53T mutant human alpha-synuclein. Lines expressing mutant but not wild-type alpha-synuclein show: (1) disruption of the ubiquitin-dependent proteolytic system, manifested by small cytoplasmic ubiquitinated aggregates and by an increase in polyubiquitinated proteins; (2) enhanced baseline nonapoptotic death; (3) marked accumulation of autophagic-vesicular structures; (4) impairment of lysosomal hydrolysis and proteasomal function; and (5) loss of catecholamine-secreting dense core granules and an absence of depolarization-induced dopamine release. Such findings raise the possibility that the primary abnormality in these cells may involve one or more deficits in the lysosomal and/or proteasomal degradation pathways, which in turn lead to loss of dopaminergic capacity and, ultimately, to death. These cells may serve as a model to study the effects of aberrant alpha-synuclein on dopaminergic cell function and survival.
Collapse
|
686
|
Abstract
The identification of three genes and several additional loci associated with inherited forms of levodopa-responsive PD has confirmed that this is not a single disorder. Yet, analyses of the structure and function of these gene products point to the critical role of protein aggregation in dopaminergic neurons of the substantia nigra as the common mechanism leading to neurodegeneration in all known forms of this disease. The three specific genes identified to date--alpha-synuclein, Parkin, and ubiquitin C terminal hydrolase L1--are either closely involved in the proper functioning of the ubiquitin-proteasome pathway or are degraded by this protein-clearing machinery of cells. Knowledge gained from genetically transmitted PD also has clear implications for nonfamilial forms of the disease. Lewy bodies, even in sporadic PD, contain these three gene products, particularly abundant amounts of fibrillar alpha-synuclein. Increased aggregation of alpha-synuclein by oxidative stress, as well as oxidant-induced proteasomal dysfunction, link genetic and potential environmental factors in the onset and progression of the disease. The biochemical and molecular cascades elucidated from genetic studies in PD can provide novel targets for curative therapies.
Collapse
Affiliation(s)
- M Maral Mouradian
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1406, USA.
| |
Collapse
|
687
|
Fallon L, Moreau F, Croft BG, Labib N, Gu WJ, Fon EA. Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J Biol Chem 2002; 277:486-91. [PMID: 11679592 DOI: 10.1074/jbc.m109806200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the gene encoding parkin cause an autosomal recessive juvenile-onset form of Parkinson's disease. Parkin functions as a RING-type E3 ubiquitin-ligase, coordinating the transfer of ubiquitin to substrate proteins and thereby targeting them for degradation by the proteasome. We now report that the extreme C terminus of parkin, which is selectively truncated by a Parkinson's disease-causing mutation, functions as a class II PDZ-binding motif that binds CASK, the mammalian homolog of Caenorhabditis elegans Lin-2, but not other PDZ proteins in brain extracts. Importantly, parkin co-localizes with CASK at synapses in cultured cortical neurons as well as in postsynaptic densities and lipid rafts in brain. Further, parkin associates not only with CASK but also with other postsynaptic proteins in the N-methyl d-aspartate (NMDA) receptor-signaling complex, in rat brain in vivo. Finally, despite exhibiting E2-dependent ubiquitin ligase activity, rat brain parkin does not ubiquitinate CASK, suggesting that CASK may function in targeting or scaffolding parkin within the postsynaptic complex rather than as a direct substrate for parkin-mediated ubiquitination. These data implicate for the first time a PDZ-mediated interaction between parkin and CASK in neurodegeneration and possibly in ubiquitination of proteins involved in synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Lara Fallon
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
688
|
Peng XR, Jia Z, Zhang Y, Ware J, Trimble WS. The septin CDCrel-1 is dispensable for normal development and neurotransmitter release. Mol Cell Biol 2002; 22:378-87. [PMID: 11739749 PMCID: PMC134223 DOI: 10.1128/mcb.22.1.378-387.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Septins are GTPases required for the completion of cytokinesis in a variety of organisms, yet their role in this process is not known. Septins may have additional functions since the mammalian septin CDCrel-1 is predominantly expressed in the nervous system, a largely postmitotic tissue. While relatively little is known about the function of this protein, we have previously shown that it is involved in regulated secretion. In addition, the gene encoding this protein maps to a locus often deleted in velo-cardiofacial and DiGeorge syndromes, and CDCrel-1 has recently been shown to be a direct target of the E3 ubiquitin ligase activity of Parkin, a causative agent in autosomal recessive forms of Parkinson's disease. Here we show that CDCrel-1 expression rises at the time of synaptic maturation and that CDCrel-1 is present in a complex that includes the septins Nedd5 and CDC10. To investigate its function in the nervous system, we generated homozygotic CDCrel-1 null mice and showed that these mice appear normal with respect to synaptic properties and hippocampal neuron growth in vitro. Moreover, we found that while the expression of a number of synaptic proteins is not affected in the CDCrel-1 mutant mice, the expression of other septins is altered. Together, these data suggest that CDCrel-1 is not essential for neuronal development or function, and that changes in expression of other septins may account for its functional redundancy.
Collapse
Affiliation(s)
- Xiao-Rong Peng
- Programmes in Cell Biology. Brain and Behavior, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
689
|
Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 2001; 21:9549-60. [PMID: 11739566 PMCID: PMC6763041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Alpha-synuclein mutations have been identified in certain families with Parkinson's disease (PD), and alpha-synuclein is a major component of Lewy bodies. Other genetic data indicate that the ubiquitin-dependent proteolytic system is involved in PD pathogenesis. We have generated stable PC12 cell lines expressing wild-type or A53T mutant human alpha-synuclein. Lines expressing mutant but not wild-type alpha-synuclein show: (1) disruption of the ubiquitin-dependent proteolytic system, manifested by small cytoplasmic ubiquitinated aggregates and by an increase in polyubiquitinated proteins; (2) enhanced baseline nonapoptotic death; (3) marked accumulation of autophagic-vesicular structures; (4) impairment of lysosomal hydrolysis and proteasomal function; and (5) loss of catecholamine-secreting dense core granules and an absence of depolarization-induced dopamine release. Such findings raise the possibility that the primary abnormality in these cells may involve one or more deficits in the lysosomal and/or proteasomal degradation pathways, which in turn lead to loss of dopaminergic capacity and, ultimately, to death. These cells may serve as a model to study the effects of aberrant alpha-synuclein on dopaminergic cell function and survival.
Collapse
Affiliation(s)
- L Stefanis
- Department of Pathology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
690
|
Abstract
Septins comprise a eukaryotic guanine nucleotide binding protein subfamily which form filamentous heteropolymer complexes. Although mechanism of cytokinesis is diverged by species and tissues, loss of septin function results in the multinuclear phenotype in many organisms. Hence septin filaments beneath the cleavage furrow are hypothesized as a structural basis to ensure completion of cytokinesis. However, molecular mechanisms of septin assembly, disassembly and function have been elusive despite the potential importance of this ubiquitous cytoskeletal system. Meanwhile, growing evidence suggests that mammalian septins functionally or physically interact with diverse molecules such as actin, actin-binding proteins, proteins of membrane fusion machinery, Cdc42 adapter proteins, a ubiquitin-protein ligase, and phosphoinositides. Careful integration of these data may provide insights into the mechanism of mammalian septin organization and functions in cytokinesis.
Collapse
Affiliation(s)
- M Kinoshita
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Japan.
| | | |
Collapse
|
691
|
|
692
|
|
693
|
Alvarez V, Guisasola LM, Moreira VG, Lahoz CH, Coto E. Early-onset Parkinson's disease associated with a new parkin mutation in a Spanish family. Neurosci Lett 2001; 313:108-10. [PMID: 11684352 DOI: 10.1016/s0304-3940(01)02235-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in the PARKIN gene are associated with early-onset (juvenile) Parkinson's disease. We analyzed the coding sequence of this gene (exons 1-12) in patients from a family with three affected siblings, born to first-degree consanguineous parents, with an onset before 23 years and foot dystonia as the initial clinical symptom. The three patients were alive without cognitive impairment at ages of 70, 69, and 65 years, showing a marked response to levodopa treatment. A 2 bp-deletion at exon 11 (1276-1277 del GA) was found. The three patients were homozygous for this frameshift mutation, which would introduce a Stop at codon 394. This is a new PARKIN-mutation that would produce a truncated protein, lacking exon 12 and most the 11th. This region includes the C-terminal ring-finger domain of parkin, essential for its function as a ubiquitin-protein ligase. Compared to patients from other families with truncating mutations, our patients had an earlier onset. In addition, the three patients had dystonia at onset. In conclusion, we described a new PARKIN truncating mutation associated with an early onset parkinsonism, and the presence of foot dystonia as the initial symptom.
Collapse
Affiliation(s)
- V Alvarez
- Genética Molecular, Hospital Central de Asturias, 33006 Oviedo, Spain
| | | | | | | | | |
Collapse
|
694
|
Abstract
The development of new methods for manipulating the animal genome by transgenic and gene-targeting technologies provides a unique means of studying the most intimate aspects of countless human diseases, including Parkinson's disease (PD). In this review, the contribution of such engineered models to our current understanding of the pathophysiology, etiology and pathogenesis of PD will be discussed.
Collapse
Affiliation(s)
- M Vila
- Dept Neurology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
695
|
|
696
|
Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci 2001. [DOI: 10.1016/s0166-2236(01)00003-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
697
|
Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci 2001; 24:S7-14. [PMID: 11881748 DOI: 10.1016/s0166-2236(00)01998-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A unifying feature of neurodegenerative diseases is the abnormal accumulation and processing of mutant or damaged intra- and extracellular proteins; this leads to selective neuronal vulnerability and dysfunction. The ubiquitin-proteasomal pathway (UPP) is poised to play a central role in the processing of damaged and toxic proteins by ubiquitin-dependent proteolysis. The UPP can be overwhelmed in several neurodegenerative diseases. This results in the accumulation of toxic proteins and the formation of inclusions, and ultimately to neuronal dysfunction and cell death. Further analysis of the cellular and molecular mechanisms by which the UPP influences the detoxification of damaged and toxic proteins in neurodegenerative diseases could provide novel concepts and targets for the treatment and understanding of the pathogenesis of these devastating disorders.
Collapse
Affiliation(s)
- K K Chung
- Dept of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
698
|
Huynh DP, Dy M, Nguyen D, Kiehl TR, Pulst SM. Differential expression and tissue distribution of parkin isoforms during mouse development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 130:173-81. [PMID: 11675120 DOI: 10.1016/s0165-3806(01)00234-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mutations of the parkin gene are a cause of autosomal recessive juvenile parkinsonism. Although the parkin gene has been isolated from mouse, rat, and human, little is known about its expression in neural and nonneural tissues during development. In this study, we used a polyclonal antibody to a peptide downstream of the parkin ubiquitin domain to investigate (1) the differential expression of parkin isoforms in protein extracts from fetal and adult mouse tissues, and (2) the distribution of parkin in mouse fetal tissues at different developmental stages and in adult CNS tissues. By Western blot analyses, at least three isoforms of parkin of 22, 50, and 55 kDa were differentially expressed in mouse tissues. The p22 and p50 isoforms were found in fetal and adult mouse CNS tissues, while the p55 isoform was found only in adult tissues. The p50 isoform is the predominant form in both fetal and adult tissues. Immunolocalization in mouse fetuses showed that parkin was expressed only after neuronal differentiation. Although parkin was localized throughout the cytoplasm, the highest level of parkin was found in the neurites of both fetal and adult neurons.
Collapse
Affiliation(s)
- D P Huynh
- Division of Neurology and Rose Moss Laboratory for Parkinson and Neurodegenerative Diseases, Burns and Allen Research Institute, Cedars-Sinai Medical Center, UCLA School of Medicine, 8700 Beverley Boulevard, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
699
|
Andersen JK, Kumar J, Srinivas B, Kaur D, Hsu M, Rajagopalan S. The hunt for a cure for Parkinson's disease. ACTA ACUST UNITED AC 2001; 2001:re1. [PMID: 14602952 DOI: 10.1126/sageke.2001.1.re1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several exciting new scientific advances have been made in the past decade toward both understanding the causes of and finding a cure for Parkinson's disease. Heartened by an acceleration in research findings in the past several years, the government has recently called for an infusion of funds from both the National Institutes of Health and private foundations into this burgeoning area of biomedical research. Most currently available conventional treatments for the disease only temporarily delay symptom presentation while doing nothing to halt disease progression. However, the rapidly accelerating pace of research in this field has left researchers hopeful that Parkinson's will be the first major age-related neurodegenerative disease for which we have a viable cure. In this article, advances in various areas of Parkinson's disease research are reviewed.
Collapse
Affiliation(s)
- J K Andersen
- Buck Institute for Age Research, Novato, CA 94945, USA.
| | | | | | | | | | | |
Collapse
|
700
|
Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 2001; 7:1144-50. [PMID: 11590439 DOI: 10.1038/nm1001-1144] [Citation(s) in RCA: 552] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parkinson disease is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of intracytoplasmic-ubiquitinated inclusions (Lewy bodies). Mutations in alpha-synuclein (A53T, A30P) and parkin cause familial Parkinson disease. Both these proteins are found in Lewy bodies. The absence of Lewy bodies in patients with parkin mutations suggests that parkin might be required for the formation of Lewy bodies. Here we show that parkin interacts with and ubiquitinates the alpha-synuclein-interacting protein, synphilin-1. Co-expression of alpha-synuclein, synphilin-1 and parkin result in the formation of Lewy-body-like ubiquitin-positive cytosolic inclusions. We further show that familial-linked mutations in parkin disrupt the ubiquitination of synphilin-1 and the formation of the ubiquitin-positive inclusions. These results provide a molecular basis for the ubiquitination of Lewy-body-associated proteins and link parkin and alpha-synuclein in a common pathogenic mechanism through their interaction with synphilin-1.
Collapse
Affiliation(s)
- K K Chung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|