651
|
Sabaté R, Castillo V, Espargaró A, Saupe SJ, Ventura S. Energy barriers for HET-s prion forming domain amyloid formation. FEBS J 2009; 276:5053-64. [DOI: 10.1111/j.1742-4658.2009.07202.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
652
|
Rao JN, Kim YE, Park LS, Ulmer TS. Effect of pseudorepeat rearrangement on alpha-synuclein misfolding, vesicle binding, and micelle binding. J Mol Biol 2009; 390:516-29. [PMID: 19481090 PMCID: PMC2731582 DOI: 10.1016/j.jmb.2009.05.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/14/2009] [Accepted: 05/18/2009] [Indexed: 01/13/2023]
Abstract
The pathological and physiological hallmarks of the protein alpha-synuclein (aS) are its misfolding into cytotoxic aggregates and its binding to synaptic vesicles, respectively. Both events are mediated by seven 11-residue amphiphilic pseudorepeats and, most generally, involve a transition from intrinsically unstructured conformations to structured conformations. Based on aS interactions with aggregation-inhibiting small molecules, an aS variant termed shuffled alpha-synuclein (SaS), wherein the first six pseudorepeats had been rearranged, was introduced. Here, the effects of this rearrangement on misfolding, vesicle binding, and micelle binding are examined in reference to aS and beta-synuclein to study the sequence characteristics underlying these processes. Fibrillization correlates with the distinct clustering of residues with high beta-sheet propensities, while vesicle affinities depend on the mode of pseudorepeat interchange and loss. In the presence of micelles, the pseudorepeat region of SaS adopts an essentially continuous helix, whereas aS and beta-synuclein encounter a distinct helix break, indicating that a more homogeneous distribution of surfactant affinities in SaS prevented the formation of an extensive helix break in the micelle-bound state. By demonstrating the importance of the distribution of beta-sheet propensities and by revealing inhomogeneous aS surfactant affinities, the present study provides novel insights into two central themes of synuclein biology.
Collapse
Affiliation(s)
- Jampani Nageswara Rao
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, USA
| | - Yujin E. Kim
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, USA
| | - Leena S. Park
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, USA
| | - Tobias S. Ulmer
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, USA
| |
Collapse
|
653
|
Harada R, Kobayashi N, Kim J, Nakamura C, Han SW, Ikebukuro K, Sode K. The effect of amino acid substitution in the imperfect repeat sequences of alpha-synuclein on fibrillation. Biochim Biophys Acta Mol Basis Dis 2009; 1792:998-1003. [PMID: 19596443 DOI: 10.1016/j.bbadis.2009.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/23/2009] [Accepted: 06/29/2009] [Indexed: 11/18/2022]
Abstract
Human alpha-synuclein is the causative protein of several neurodegenerative diseases, such as Parkinson's disease (PD) and dementia with Lewy Bodies (DLB). The N-terminal half of alpha-synuclein contains seven imperfect repeat sequences. One of the PD/DLB-causing point mutations, E46K, has been reported in the imperfect repeat sequences of alpha-synuclein, and is prone to form amyloid fibrils. The presence of seven imperfect repeats in alpha-synuclein raises the question of whether or not mutations corresponding to E46K in the other imperfect KTKE(Q)GV repeats have similar effects on aggregation and fibrillation, as well as their propensities to form alpha-helices. To investigate the effect of E(Q)/K mutations in each imperfect repeat sequence, we substituted the amino acid corresponding to E46K in each of the seven repeated sequences with a Lys residue. The mutations in the imperfect KTKE(Q)GV repeat sequences of the N-terminal region were prone to decrease the lag time of fibril formation. In addition, AFM imaging suggested that the Q24K mutant formed twisted fibrils, while the other mutants formed spherical aggregates and short fibrils. These observations indicate that the effect of the mutations on the kinetics of fibril formation and morphology of fibrils varies according to their location.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
654
|
Waxman EA, Giasson BI. Molecular mechanisms of alpha-synuclein neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:616-24. [PMID: 18955133 PMCID: PMC2756732 DOI: 10.1016/j.bbadis.2008.09.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/18/2008] [Accepted: 09/24/2008] [Indexed: 12/31/2022]
Abstract
alpha-Synuclein is an abundant highly charged protein that is normally predominantly localized around synaptic vesicles in presynaptic terminals. Although the function of this protein is still ill-defined, genetic studies have demonstrated that point mutations or genetic alteration (duplications or triplications) that increase the number of copies of the alpha-synuclein (SCNA) gene can cause Parkinson's disease or the related disorder dementia with Lewy bodies. alpha-Synuclein can aberrantly polymerize into fibrils with typical amyloid properties, and these fibrils are the major component of many types of pathological inclusions, including Lewy bodies, which are associated with neurodegenerative diseases, such as Parkinson's disease. Although there is substantial evidence supporting the toxic nature of alpha-synuclein inclusions, other modes of toxicity such as oligomers have been proposed. In this review, some of the evidence for the different mechanisms of alpha-synuclein toxicity is presented and discussed.
Collapse
Affiliation(s)
- Elisa A Waxman
- Department of Pharmacology, University of Pennsylvania School of Medicine, 125 John Morgan Building, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
655
|
McClendon S, Rospigliosi CC, Eliezer D. Charge neutralization and collapse of the C-terminal tail of alpha-synuclein at low pH. Protein Sci 2009; 18:1531-40. [PMID: 19475665 PMCID: PMC2775220 DOI: 10.1002/pro.149] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/09/2009] [Accepted: 04/13/2009] [Indexed: 11/11/2022]
Abstract
Alpha-synuclein (alphaS) is the primary component of Lewy bodies, the pathological hallmark of Parkinson's Disease. Aggregation of alphaS is thought to proceed from a primarily disordered state with nascent secondary structure through intermediate conformations to oligomeric forms and finally to mature amyloid fibrils. Low pH conditions lead to conformational changes associated with increased alphaS fibril formation. Here we characterize these structural and dynamic changes using solution state NMR measurements of secondary chemical shifts, relaxation parameters, residual dipolar couplings, and paramagnetic relaxation enhancement. We find that the neutralization of negatively charged side-chains eliminates electrostatic repulsion in the C-terminal tail of alphaS and leads to a collapse of this region at low pH. Hydrophobic contacts between the compact C-terminal tail and the NAC (non-amyloid-beta component) region are maintained and may lead to the formation of a globular domain. Transient long-range contacts between the C-terminus of the protein and regions N-terminal to the NAC region are also preserved. Thus, the release of long-range contacts does not play a role in the increased aggregation of alphaS at low pH, which we instead attribute to the increased hydrophobicity of the protein.
Collapse
Affiliation(s)
| | | | - David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College1300 York Avenue, New York, NY 10065
| |
Collapse
|
656
|
Hong L, Simon JD. Binding of Cu(II) to Human α-Synucleins: Comparison of Wild Type and the Point Mutations Associated with the Familial Parkinson’s Disease. J Phys Chem B 2009; 113:9551-61. [DOI: 10.1021/jp809773y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lian Hong
- Department of Chemistry, Duke University, Box 90034, Durham, North Carolina 27708
| | - John D. Simon
- Department of Chemistry, Duke University, Box 90034, Durham, North Carolina 27708
| |
Collapse
|
657
|
Optical reporters for the conformation of alpha-synuclein reveal a specific interaction with mitochondria. J Neurosci 2009; 28:12305-17. [PMID: 19020024 DOI: 10.1523/jneurosci.3088-08.2008] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aggregation of abnormally folded proteins is a defining feature of neurodegenerative disease, but it has not previously been possible to assess the conformation of these proteins in a physiologically relevant context, before they form morphologically recognizable aggregates. We now describe FRET-based reporters for the conformation of alpha-synuclein, a protein central to the pathogenesis of Parkinson's disease (PD). Characterization in vitro shows that alpha-synuclein adopts a relatively "closed" conformation in solution that converts to "open" on membrane binding. In living cells, the closed conformation predominates. In neurons, however, cell bodies contain a much larger proportion of the open conformation than synaptic boutons. To account for these differences, we also used the reporters to characterize the interaction with native membranes. We find that the conformation of alpha-synuclein responds selectively to mitochondria, indicating a direct link between alpha-synuclein and an organelle strongly implicated in the pathogenesis of PD.
Collapse
|
658
|
Leong SL, Cappai R, Barnham KJ, Pham CLL. Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res 2009; 34:1838-46. [PMID: 19444607 DOI: 10.1007/s11064-009-9986-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/23/2009] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by (1) the selective loss of dopaminergic neurons in the substantia nigra and (2) the deposition of misfolded alpha-synuclein (alpha-syn) as amyloid fibrils in the intracellular Lewy bodies in various region of the brain. Current thinking suggests that an interaction between alpha-syn and dopamine (DA) leads to the selective death of neuronal cells and the accumulation of misfolded alpha-syn. However, the exact mechanism by which this occurs is not fully defined. DA oxidation could play a key role is the pathogenesis of PD by causing oxidative stress, mitochondria dysfunction and impairment of protein metabolism. Here, we review the literature on the role of DA and its oxidative intermediates in modulating the aggregation pathways of alpha-syn.
Collapse
Affiliation(s)
- Su Ling Leong
- Department of Pathology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | |
Collapse
|
659
|
Zhou W, Gallagher A, Hong DP, Long C, Fink AL, Uversky VN. At low concentrations, 3,4-dihydroxyphenylacetic acid (DOPAC) binds non-covalently to alpha-synuclein and prevents its fibrillation. J Mol Biol 2009; 388:597-610. [PMID: 19328209 PMCID: PMC2719782 DOI: 10.1016/j.jmb.2009.03.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 01/08/2023]
Abstract
Several studies have shown that catecholamines can inhibit the fibrillation of alpha-synuclein (alpha-Syn), a small presynaptic protein whose aggregation is believed to be a critical step in the etiology of Parkinson's disease and several other neurodegenerative disorders. However, the mechanism of this inhibition is uncertain. We show here that substoichiometric concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC), a normal product of the metabolism of dopamine, can inhibit the fibrillation of alpha-Syn, due to non-covalent binding of DOPAC to alpha-Syn monomer. Intriguingly, the presence of alpha-Syn accelerates the spontaneous oxidation of DOPAC, and the oxidized form of DOPAC (the quinone) is responsible for the fibrillation inhibition. In addition, the presence of DOPAC leads to the oxidation of the methionine residues of alpha-Syn, probably due to the H(2)O(2) production as a by-product of DOPAC oxidation. The lack of fibrillation results from the formation of stable oligomers, which are very similar to those observed transiently at early stages of the alpha-Syn fibrillation. A possible explanation for this phenomenon is that DOPAC stabilizes the normally transient oligomers and prevents them from subsequent fibril formation. The analysis of the alpha-Syn Y39W variant suggests that DOPAC binds non-covalently to the same N-terminal region of alpha-Syn as lipid vesicles, probably in the vicinity of residue 39. In contrast to the compounds with 1,2-dihydroxyphenyl groups (DOPAC and catechol), their 1,4-dihydroxyphenyl isomers (hydroquinone and homogentisic acid) are able to modify alpha-Syn covalently, probably due to the less steric hindrance in the Michael addition.
Collapse
Affiliation(s)
- Wenbo Zhou
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Amy Gallagher
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Dong-Pyo Hong
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Chunmei Long
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Anthony L. Fink
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
660
|
Sneppen K, Lizana L, Jensen MH, Pigolotti S, Otzen D. Modeling proteasome dynamics in Parkinson's disease. Phys Biol 2009; 6:036005. [DOI: 10.1088/1478-3975/6/3/036005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
661
|
Pham CL, Leong SL, Ali FE, Kenche VB, Hill AF, Gras SL, Barnham KJ, Cappai R. Dopamine and the Dopamine Oxidation Product 5,6-Dihydroxylindole Promote Distinct On-Pathway and Off-Pathway Aggregation of α-Synuclein in a pH-Dependent Manner. J Mol Biol 2009; 387:771-85. [DOI: 10.1016/j.jmb.2009.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/06/2009] [Accepted: 02/04/2009] [Indexed: 01/09/2023]
|
662
|
Fazary AE, Ismadji S, Ju YH. Biochemical studies on native and cross-linked aggregates of Aspergillus awamori feruloyl esterase. Int J Biol Macromol 2009; 44:240-8. [DOI: 10.1016/j.ijbiomac.2008.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/27/2022]
|
663
|
Oztug Durer ZA, Cohlberg JA, Dinh P, Padua S, Ehrenclou K, Downes S, Tan JK, Nakano Y, Bowman CJ, Hoskins JL, Kwon C, Mason AZ, Rodriguez JA, Doucette PA, Shaw BF, Valentine JS. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase. PLoS One 2009; 4:e5004. [PMID: 19325915 PMCID: PMC2659422 DOI: 10.1371/journal.pone.0005004] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 03/03/2009] [Indexed: 12/18/2022] Open
Abstract
Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.
Collapse
Affiliation(s)
- Zeynep A. Oztug Durer
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Jeffrey A. Cohlberg
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
- * E-mail:
| | - Phong Dinh
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Shelby Padua
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Krista Ehrenclou
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Sean Downes
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - James K. Tan
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Yoko Nakano
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Christopher J. Bowman
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Jessica L. Hoskins
- Department of Physics and Astronomy, California State University Long Beach, Long Beach, California, United States of America
| | - Chuhee Kwon
- Department of Physics and Astronomy, California State University Long Beach, Long Beach, California, United States of America
| | - Andrew Z. Mason
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, United States of America
| | - Jorge A. Rodriguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peter A. Doucette
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
664
|
Structural Properties of Fibril-forming Segments of α-Synuclein. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.3.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
665
|
Physiological and pathological role of alpha-synuclein in Parkinson's disease through iron mediated oxidative stress; the role of a putative iron-responsive element. Int J Mol Sci 2009; 10:1226-60. [PMID: 19399246 PMCID: PMC2672027 DOI: 10.3390/ijms10031226] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/03/2009] [Accepted: 03/11/2009] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder after Alzheimer’s disease (AD) and represents a large health burden to society. Genetic and oxidative risk factors have been proposed as possible causes, but their relative contribution remains unclear. Dysfunction of alpha-synuclein (α-syn) has been associated with PD due to its increased presence, together with iron, in Lewy bodies. Brain oxidative damage caused by iron may be partly mediated by α-syn oligomerization during PD pathology. Also, α-syn gene dosage can cause familial PD and inhibition of its gene expression by blocking translation via a newly identified Iron Responsive Element-like RNA sequence in its 5’-untranslated region may provide a new PD drug target.
Collapse
|
666
|
Hirohata M, Ono K, Morinaga A, Ikeda T, Yamada M. Anti-aggregation and fibril-destabilizing effects of sex hormones on alpha-synuclein fibrils in vitro. Exp Neurol 2009; 217:434-9. [PMID: 19289119 DOI: 10.1016/j.expneurol.2009.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/19/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
Abstract
The alpha-synuclein aggregation in the brain is the hallmark of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies, and multiple system atrophy. Some epidemiological studies have revealed that estrogen therapy reduces the risk of Parkinson's disease in females. We examined the effects of estriol, estradiol, estrone, androstenedione, and testosterone on the formation and destabilization of alpha-synuclein fibrils at pH 7.5 and 37 degrees C in vitro, using fluorescence spectroscopy with thioflavin S and electron microscopy. These sex hormones, especially estriol, significantly exert anti-aggregation and fibril-destabilizing effects; and hence, could be valuable preventive and therapeutic agents for alpha-synucleinopathies.
Collapse
Affiliation(s)
- Mie Hirohata
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| | | | | | | | | |
Collapse
|
667
|
Jesse S, Steinacker P, Lehnert S, Gillardon F, Hengerer B, Otto M. Neurochemical approaches in the laboratory diagnosis of Parkinson and Parkinson dementia syndromes: a review. CNS Neurosci Ther 2009; 15:157-82. [PMID: 19298613 PMCID: PMC2730483 DOI: 10.1111/j.1755-5949.2008.00064.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The diagnosis of Parkinson disease (PD) is rendered on the basis of clinical parameters, whereby laboratory chemical tests or morphological imaging is only called upon to exclude other neurodegenerative diseases. The differentiation between PD and other diseases of the basal ganglia, especially the postsynaptic Parkinson syndromes multisystem atrophy (MSA) and progressive supranuclear palsy (PSP), is of decisive importance, on the one hand, for the response to an appropriate therapy, and on the other hand, for the respective prognosis of the disease. However, particularly at the onset of symptoms, it is difficult to precisely distinguish these diseases from each other, presenting with an akinetic-rigid syndrome. It is not yet possible to conduct a neurochemical differentiation of Parkinson syndromes. Therefore, a reliable biomarker is still to be found that might predict the development of Parkinson dementia. Since this situation is currently the subject of various different studies, the following synopsis is intended to provide a brief summary of the investigations addressing the field of the early neurochemical differential diagnosis of Parkinson syndromes and the early diagnosis of Parkinson dementia, from direct alpha-synuclein detection to proteomic approaches. In addition, an overview of the tested biomarkers will be given with regard to their possible introduction as a screening method.
Collapse
Affiliation(s)
- Sarah Jesse
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Stefan Lehnert
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Frank Gillardon
- Department of CNS Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riß, Germany
| | - Bastian Hengerer
- Department of CNS Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riß, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
668
|
Morris AM, Watzky MA, Finke RG. Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:375-97. [DOI: 10.1016/j.bbapap.2008.10.016] [Citation(s) in RCA: 506] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/17/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
|
669
|
Hong DP, Fink AL, Uversky VN. Smoking and Parkinson's disease: does nicotine affect alpha-synuclein fibrillation? BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:282-90. [PMID: 19013262 PMCID: PMC2647853 DOI: 10.1016/j.bbapap.2008.09.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/09/2008] [Accepted: 09/29/2008] [Indexed: 11/19/2022]
Abstract
alpha-synuclein is a small presynaptic protein (14,460 D) that is abundantly distributed in the brain. Although, its function is unknown, the aggregated form of alpha-synuclein is a pathological hallmark of several neurodegenerative diseases, including Parkinson's disease (PD). Epidemiological studies have shown that smoking can lessen the incidence of Parkinson's disease, indicating that smoke may contain chemicals that are neuro-protective. The fibrillation of alpha-synuclein was studied in relation to five different compounds found in cigarette smoke: anabasine, cotinine, hydroquinone, nicotine and nornicotine. Thioflavin T assays, gel electrophoresis, size exclusion chromatography-high performance liquid chromatography (SEC-HPLC) and atomic force microscopy (AFM) were utilized to monitor the rate of alpha-synuclein fibrillation and the inhibitory effects of the cigarette smoke components. We show that nicotine and hydroquinone inhibit alpha-synuclein fibril formation in a concentration-dependent manner, with nicotine being more effective. The SEC-HPLC data show that nicotine and hydroquinone stabilize soluble oligomers. The morphology of the oligomers stabilized by nicotine was evaluated by AFM, which showed the presence of three stable oligomers with an average height of 16 nm, 10 nm and 4 nm. Comparable results were obtained for the effect of the cigarette smoke components on the A53T mutant fibrillation. These results show that nicotine and hydroquinone inhibit alpha-synuclein fibrillation and stabilize soluble oligomeric forms. This information can be used to understand the molecular mechanism of the nicotine and hydroquinone action to develop therapeutic solutions for PD.
Collapse
Affiliation(s)
- Dong-Pyo Hong
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Anthony L. Fink
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
670
|
Eliezer D. Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 2009; 19:23-30. [PMID: 19162471 PMCID: PMC2728036 DOI: 10.1016/j.sbi.2008.12.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
The challenges associated with the structural characterization of disordered proteins have resulted in the application of a host of biophysical methods to such systems. NMR spectroscopy is perhaps the most readily suited technique for providing high-resolution structural information on disordered protein states in solution. Optical methods, solid state NMR, ESR and X-ray scattering can also provide valuable information regarding the ensemble of conformations sampled by disordered states. Finally, computational studies have begun to assume an increasingly important role in interpreting and extending the impact of experimental data obtained for such systems. This article discusses recent advances in the applications of these methods to intrinsically disordered proteins.
Collapse
Affiliation(s)
- David Eliezer
- Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
671
|
Skerget K, Vilfan A, Pompe-Novak M, Turk V, Waltho JP, Turk D, Zerovnik E. The mechanism of amyloid-fibril formation by stefin B: temperature and protein concentration dependence of the rates. Proteins 2009; 74:425-36. [PMID: 18636508 DOI: 10.1002/prot.22156] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystatins, a family of structurally related cysteine proteinase inhibitors, have proved to be useful model system to study amyloidogenesis. We have extended previous studies of the kinetics of amyloid-fibril formation by human stefin B (cystatin B) and some of its mutants, and proposed an improved model for the reaction. Overall, the observed kinetics follow the nucleation and growth behavior observed for many other amyloidogenic proteins. The minimal kinetic scheme that best fits measurements of changes in CD and thioflavin T fluorescence as a function of protein concentration and temperature includes nucleation (modeled as N(I) irreversible transitions with equivalent rates (k(I)), which fitted with N(I) = 64), fibril growth and nonproductive oligomerization, best explained by an off-pathway state with a rate-limiting escape rate. Three energies of activation were derived from global fitting to the minimal kinetic scheme, and independently through the fitting of the individual component rates. Nucleation was found to be a first-order process within an oligomeric species with an enthalpy of activation of 55 +/- 4 kcal mol(-1). Fibril growth was a second-order process with an enthalpy of activation (27 +/- 5 kcal mol(-1)), which is indistinguishable from that of tetramer formation by cystatins, which involves limited conformational changes including proline trans to cis isomerization. The highest enthalpy of activation (95 +/- 5 kcal mol(-1) at 35 degrees C), characteristic of a substantial degree of unfolding as observed prior to domain-swapping reactions, equated with the escape rate of the off-pathway oligomeric state.
Collapse
Affiliation(s)
- Katja Skerget
- Department of Biochemistry, Molecular and Structural Biology, JoZef Stefan Institute, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
672
|
Yonetani M, Nonaka T, Masuda M, Inukai Y, Oikawa T, Hisanaga SI, Hasegawa M. Conversion of wild-type alpha-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem 2009; 284:7940-50. [PMID: 19164293 DOI: 10.1074/jbc.m807482200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrillization or conformational change of alpha-synuclein is central in the pathogenesis of alpha-synucleinopathies, such as Parkinson disease. We found that the A30P mutant accelerates nucleation-dependent fibrillization of wild type (WT) alpha-synuclein. Electron microscopy observation and ultracentrifugation experiments revealed that shedding of fragments occurs from A30P fibrils and that these fragments accelerate fibrillization by serving as seeds. Immunochemical analysis using epitope-specific antibodies and biochemical analyses of protease-resistant cores demonstrated that A30P fibrils have a distinct conformation. Interestingly, WT fibrils formed with A30P seeds exhibited the same character as A30P fibrils, as did A30P fibrils formed with WT seeds, indicating that the A30P mutation affects the conformation and fibrillization of both WT and A30P. These effects of A30P mutation may explain the apparent conflict between the association of A30P with Parkinson disease and the slow fibrillization of A30P itself and therefore provide new insight into the molecular mechanisms of alpha-synucleinopathies.
Collapse
Affiliation(s)
- Motokuni Yonetani
- Department of Molecular Neurobiology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, 156-8585 Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
673
|
Huang CY, Liang CM, Chu CL, Liang SM. Albumin fibrillization induces apoptosis via integrin/FAK/Akt pathway. BMC Biotechnol 2009; 9:2. [PMID: 19133118 PMCID: PMC2630307 DOI: 10.1186/1472-6750-9-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 01/08/2009] [Indexed: 01/24/2023] Open
Abstract
Background Numerous proteins can be converted to amyloid-like fibrils to increase cytotoxicity and induce apoptosis, but the methods generally require a high concentration of protein, vigorous shaking, or fibril seed. As well, the detailed mechanism of the cytotoxic effects is not well characterized. In this study, we have developed a novel process to convert native proteins into the fibrillar form. We used globular bovine serum albumin (BSA) as a model protein to verify the properties of the fibrillar protein, investigated its cellular effects and studied the signaling cascade induced by the fibrillar protein. Results We induced BSA, a non-cytotoxic globular protein, to become fibril by a novel process involving Superdex-200 column chromatography in the presence of anionic or zwittergenic detergent(s). The column pore size was more important than column matrix composite in fibril formation. The fibrillar BSA induced apoptosis in BHK-21 cell as well as breast cancer cell line T47D. Pre-treating cells with anti-integrin antibodies blocked the apoptotic effect. Fibrillar BSA, but not globular BSA, bound to integrin, dephosphorylated focal adhesion kinase (FAK), Akt and glycogen synthase kinase-3β (GSK-3β). Conclusion We report on a novel process for converting globular proteins into fibrillar form to cause apoptosis by modulating the integrin/FAK/Akt/GSK-3β/caspase-3 signaling pathway. Our findings may be useful for understanding the pathogenesis of amyloid-like fibrils and applicable for the development of better therapeutic agents that target the underlying mechanism(s) of the etiologic agents.
Collapse
Affiliation(s)
- Chun-Yung Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | |
Collapse
|
674
|
Lang IA, Scarlett A, Guralnik J, Depledge MH, Melzer D, Galloway TS. Age-related impairments of mobility associated with cobalt and other heavy metals: data from NHANES 1999-2004. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:402-9. [PMID: 19199147 PMCID: PMC3404487 DOI: 10.1080/15287390802647336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Exposure to heavy metals promotes oxidative stress and damage to cellular components, and may accelerate age-related disease and disability. Physical mobility is a validated biomarker of age-related disability and is predictive of hospitalization and mortality. Our study examined associations between selected heavy metals and impaired lower limb mobility in a representative older human population. Data for 1615 adults aged >or=60 yr from the National Health and Nutrition Examination Survey (NHANES) 1999 to 2004 were used to identify associations between urinary concentrations of 10 metals with self-reported and measured significant walking impairments. Models were adjusted for confounding factors, including smoking. In models adjusted for age, gender, and ethnicity, elevated levels of cadmium, cobalt, and uranium were associated with impairment of the ability to walk a quarter mile. In fully adjusted models, cobalt was the only metal that remained associated: the odds ratio (OR) for reporting walking problems with a 1-unit increase in logged cobalt concentration (mug/L) was 1.43 (95% CI 1.12 to 1.84). Cobalt was also the only metal associated with a significant increased measured time to walk a 20-ft course. In analyses of disease categories to explain the mobility finding, cobalt was associated with physician diagnosed arthritis (1-unit increase OR = 1.22 (95% CI 1.00 to 1.49). Low-level cobalt exposure, assessed through urinary concentrations of this essential heavy metal, may be a risk factor for age-related physical impairments. Independent replication is needed to confirm this association.
Collapse
|
675
|
Csizmók V, Tompa P. Structural Disorder and Its Connection with Misfolding Diseases. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
676
|
Stefani M. Protein folding and misfolding on surfaces. Int J Mol Sci 2008; 9:2515-2542. [PMID: 19330090 PMCID: PMC2635651 DOI: 10.3390/ijms9122515] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/03/2008] [Accepted: 12/08/2008] [Indexed: 01/08/2023] Open
Abstract
Protein folding, misfolding and aggregation, as well as the way misfolded and aggregated proteins affects cell viability are emerging as key themes in molecular and structural biology and in molecular medicine. Recent advances in the knowledge of the biophysical basis of protein folding have led to propose the energy landscape theory which provides a consistent framework to better understand how a protein folds rapidly and efficiently to the compact, biologically active structure. The increased knowledge on protein folding has highlighted its strict relation to protein misfolding and aggregation, either process being in close competition with the other, both relying on the same physicochemical basis. The theory has also provided information to better understand the structural and environmental factors affecting protein folding resulting in protein misfolding and aggregation into ordered or disordered polymeric assemblies. Among these, particular importance is given to the effects of surfaces. The latter, in some cases make possible rapid and efficient protein folding but most often recruit proteins/peptides increasing their local concentration thus favouring misfolding and accelerating the rate of nucleation. It is also emerging that surfaces can modify the path of protein misfolding and aggregation generating oligomers and polymers structurally different from those arising in the bulk solution and endowed with different physical properties and cytotoxicities.
Collapse
Affiliation(s)
- Massimo Stefani
- Department of Biochemical Sciences and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Florence, Italy
| |
Collapse
|
677
|
Lee D, Park CW, Paik SR, Choi KY. The modification of alpha-synuclein by dicarbonyl compounds inhibits its fibril-forming process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:421-30. [PMID: 19103312 DOI: 10.1016/j.bbapap.2008.11.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 12/29/2022]
Abstract
Oxidative modification of alpha-synuclein (alphaSyn) was reported to have significant effects on its amyloidogenic properties. Dicarbonyl compounds are metabolites accumulated by various oxidative processes in the intracellular environment. In this study, two dicarbonyl compounds, methylglyoxal (MGO) and glyoxal (GO), were investigated for their effects on the structural and fibril-forming properties of alphaSyn. Both compounds were found to induce the oligomerization of alphaSyn. By adding substoichiometric amounts of alphaSyn modified by MGO or GO, the fibrillization of alphaSyn was substantially inhibited. The heterogeneously-modified alphaSyns were separated into three fractions: monomers, oligomers, and high molecular mass oligomers. When each modified alphaSyn species was used to seed fibril formation, protein fibrillization was significantly suppressed. Temperature scanning and interactions with liposomes revealed that both MGO- and GO-modified monomers were not as susceptible as the unmodified alphaSyn to conformational changes into partially folded intermediates and alpha-helixes. Our observations suggest that dicarbonyl modification of alphaSyn reduces conformational flexibility of the protein, thereby contributing to a reduction in the ability of alphaSyn to form fibrils, and the modified protein inhibits the fibrillization of the unmodified alphaSyn.
Collapse
Affiliation(s)
- Daekyun Lee
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | | | | | | |
Collapse
|
678
|
Morris AM, Finke RG. Alpha-synuclein aggregation variable temperature and variable pH kinetic data: a re-analysis using the Finke-Watzky 2-step model of nucleation and autocatalytic growth. Biophys Chem 2008; 140:9-15. [PMID: 19101068 DOI: 10.1016/j.bpc.2008.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/06/2008] [Accepted: 11/06/2008] [Indexed: 11/19/2022]
Abstract
The aggregation of proteins is believed to be intimately connected to many neurodegenerative disorders. We recently reported an "Ockham's razor"/minimalistic approach to analyze the kinetic data of protein aggregation using the Finke-Watzky (F-W) 2-step model of nucleation (A-->B, rate constant k(1)) and autocatalytic growth (A+B-->2B, rate constant k(2)). With that kinetic model we have analyzed 41 representative protein aggregation data sets in two recent publications, including amyloid beta, alpha-synuclein, polyglutamine, and prion proteins (Morris, A. M., et al. (2008) Biochemistry 47, 2413-2427; Watzky, M. A., et al. (2008) Biochemistry 47, 10790-10800). Herein we use the F-W model to reanalyze protein aggregation kinetic data obtained under the experimental conditions of variable temperature or pH 2.0 to 8.5. We provide the average nucleation (k(1)) and growth (k(2)) rate constants and correlations with variable temperature or varying pH for the protein alpha-synuclein. From the variable temperature data, activation parameters DeltaG(double dagger), DeltaH(double dagger), and DeltaS(double dagger) are provided for nucleation and growth, and those values are compared to the available parameters reported in the previous literature determined using an empirical method. Our activation parameters suggest that nucleation and growth are energetically similar for alpha-synuclein aggregation (DeltaG(double dagger)(nucleation)=23(3) kcal/mol; DeltaG(double dagger)(growth)=22(1) kcal/mol at 37 degrees C). From the variable pH data, the F-W analyses show a maximal k(1) value at pH approximately 3, as well as minimal k(1) near the isoelectric point (pI) of alpha-synuclein. Since solubility and net charge are minimized at the pI, either or both of these factors may be important in determining the kinetics of the nucleation step. On the other hand, the k(2) values increase with decreasing pH (i.e., do not appear to have a minimum or maximum near the pI) which, when combined with the k(1) vs. pH (and pI) data, suggest that solubility and charge are less important factors for growth, and that charge is important in the k(1), nucleation step of alpha-synuclein. The chemically well-defined nucleation (k(1)) rate constants obtained from the F-W analysis are, as expected, different than the 1/lag-time empirical constants previously obtained. However, k(2)x[A](0) (where k(2) is the rate constant for autocatalytic growth and [A](0) is the initial protein concentration) is related to the empirical constant, k(app) obtained previously. Overall, the average nucleation and average growth rate constants for alpha-synuclein aggregation as a function of pH and variable temperature have been quantitated. Those values support the previously suggested formation of a partially folded intermediate that promotes aggregation under high temperature or acidic conditions.
Collapse
Affiliation(s)
- Aimee M Morris
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
679
|
Sureshbabu N, Kirubagaran R, Jayakumar R. Surfactant-induced conformational transition of amyloid β-peptide. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:355-67. [DOI: 10.1007/s00249-008-0379-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/05/2008] [Accepted: 10/12/2008] [Indexed: 11/30/2022]
|
680
|
Maguire-Zeiss KA. alpha-Synuclein: a therapeutic target for Parkinson's disease? Pharmacol Res 2008; 58:271-80. [PMID: 18840530 PMCID: PMC2630208 DOI: 10.1016/j.phrs.2008.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a progressive age-related neurodegenerative disease with invariant loss of substantia nigra dopamine neurons and striatal projections. This disorder is well known for the associated motoric symptoms including resting tremor and the inability to initiate movement. However, it is now apparent that Parkinson's disease is a multisystem disorder with patients exhibiting symptoms derived from peripheral nervous system and extra-nigral dysfunctions in addition to the prototypical nigrostriatal damage. Although the etiology for sporadic Parkinson's disease is unknown, information gleaned from both familial forms of the disease and animal models places misfolded alpha-synuclein at the forefront. The disease is currently without a cure and most therapies target the motoric symptoms relying on increasing dopamine tone. In this review, the role of alpha-synuclein in disease pathogenesis and as a potential therapeutic target focusing on toxic conformers of this protein is considered. The addition of protofibrillar/oligomer-directed neurotherapeutics to the existing armamentarium may extend the symptom-free stage of Parkinson's disease as well as alleviate pathogenesis.
Collapse
Affiliation(s)
- Kathleen A Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, Washington, DC 20057, United States.
| |
Collapse
|
681
|
Hong DP, Fink AL, Uversky VN. Structural characteristics of alpha-synuclein oligomers stabilized by the flavonoid baicalein. J Mol Biol 2008; 383:214-23. [PMID: 18775438 PMCID: PMC2573395 DOI: 10.1016/j.jmb.2008.08.039] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/15/2008] [Indexed: 11/23/2022]
Abstract
The flavonoid baicalein inhibits fibrillation of alpha-synuclein, which is a major component of Lewy bodies in Parkinson's disease. It has been known that baicalein induces the formation of alpha-synuclein oligomers and consequently prevents their fibrillation. In order to evaluate the structural properties of baicalein-stabilized oligomers, we purified oligomer species by HPLC and examined their stability and structure by CD, Fourier transform infrared spectroscopy, size exclusion chromatography HPLC, small-angle X-ray scattering, and atomic force microscopy. Baicalein-stabilized oligomers are beta-sheet-enriched according to CD and Fourier transform infrared spectroscopy analyses. They did not form fibrils even after very prolonged incubation. From small-angle X-ray scattering data and atomic force microscopy images, the oligomers were characterized as quite compact globular species. Oligomers were extremely stable, with a GdmCl C(m)=3.3 M. This high stability explains the previously observed inhibition properties of baicalein against alpha-synuclein fibrillation. These baicalein-stabilized oligomers, added to the solution of aggregating alpha-synuclein, were able to noticeably inhibit its fibrillation. After prolonged coincubation, short fibrils were formed, suggesting an effective interaction of oligomers with monomeric alpha-synuclein. Membrane permeability tests suggested that the baicalein-stabilized oligomers had a mild effect on the integrity of the membrane surface. This effect was rather similar to that of the monomeric protein, suggesting that targeted stabilization of certain alpha-synuclein oligomers might offer a potential strategy for the development of novel Parkinson's disease therapies.
Collapse
Affiliation(s)
- Dong-Pyo Hong
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Anthony L. Fink
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
682
|
Yu J, Malkova S, Lyubchenko YL. alpha-Synuclein misfolding: single molecule AFM force spectroscopy study. J Mol Biol 2008; 384:992-1001. [PMID: 18948117 DOI: 10.1016/j.jmb.2008.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/26/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Abstract
Protein misfolding and aggregation are the very first and critical steps in development of various neurodegenerative disorders, including Parkinson's disease, induced by misfolding of alpha-synuclein. Thus, elucidating properties of proteins in misfolded states and understanding the mechanisms of their assembly into the disease prone aggregates are critical for the development of rational approaches to prevent protein misfolding-mediated pathologies. To accomplish this goal and as a first step to elucidate the mechanism of alpha-synuclein misfolding, we applied single-molecule force spectroscopy capable of detecting protein misfolding. We immobilized alpha-synuclein molecules at their C-termini at the atomic force microscope tips and substrate surfaces, and measured the interaction between the proteins by probing the microscope tip at various locations on the surface. Using this approach, we detected alpha-synuclein misfolded states by enhanced interprotein interaction. We used a dynamics force spectroscopy approach to measure such an important characteristic of dimers of misfolded alpha-synuclein as their lifetimes. We found that the dimer lifetimes are in the range of seconds and these values are much higher than the characteristics for the dynamics of the protein in monomeric state. These data show that compared to highly dynamic monomeric forms, alpha-synuclein dimers are much more stable and thus can serve as stable nuclei for the formation of multimeric and aggregated forms of alpha-synuclein. Importantly, two different lifetimes were observed for the dimers, suggesting that aggregation can follow different pathways that may lead to different aggregated morphologies of alpha-synuclein.
Collapse
Affiliation(s)
- Junping Yu
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
683
|
Jain S, Udgaonkar JB. Evidence for Stepwise Formation of Amyloid Fibrils by the Mouse Prion Protein. J Mol Biol 2008; 382:1228-41. [DOI: 10.1016/j.jmb.2008.07.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/28/2008] [Accepted: 07/21/2008] [Indexed: 11/16/2022]
|
684
|
Bharathi P, Nagabhushan P, Rao KSJ. Mathematical approach to understand the kinetics of alpha-synuclein aggregation: relevance to Parkinson's disease. Comput Biol Med 2008; 38:1084-93. [PMID: 18823621 DOI: 10.1016/j.compbiomed.2008.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 08/07/2008] [Accepted: 08/09/2008] [Indexed: 11/18/2022]
Abstract
alpha-Synuclein aggregation is a hallmark pathological feature in Parkinson's disease (PD). The conversion of alpha-synuclein from soluble monomer to insoluble aggregates through the toxic oligomeric intermediates underlie the neurodegeneration associated with PD. Redox active metal ions such as iron (Fe) and copper (Cu) are known to enhance alpha-synuclein fibrillogenesis. In the present study, we have implemented mathematical approach to monitor the kinetics of aggregation of alpha-synuclein nucleation and elongation constants based on fluorescence studies. In this pretext, we have implemented mathematical simulations like self and absolute analysis. The mathematical model discussed in this paper is the first of its kind and might prove useful for predicting the drug intervention time to prevent alpha-synuclein aggregation and has future clinical application.
Collapse
Affiliation(s)
- P Bharathi
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570020, India
| | | | | |
Collapse
|
685
|
Grabenauer M, Bernstein SL, Lee JC, Wyttenbach T, Dupuis NF, Gray HB, Winkler JR, Bowers MT. Spermine binding to Parkinson's protein alpha-synuclein and its disease-related A30P and A53T mutants. J Phys Chem B 2008; 112:11147-54. [PMID: 18693700 PMCID: PMC2639767 DOI: 10.1021/jp801175w] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aggregation of alpha-synuclein (alpha-syn), a protein implicated in Parkinson's disease (PD), is believed to progress through formation of a partially folded intermediate. Using nanoelectrospray ionization (nano-ESI) mass spectrometry combined with ion mobility measurements we found evidence for a highly compact partially folded family of structures for alpha-syn and its disease-related A53T mutant with net charges of -6, -7, and -8. For the other early onset PD mutant, A30P, this highly compact population was only evident when the protein had a net charge of -6. When bound to spermine near physiologic pH, all three proteins underwent a charge reduction from the favored solution charge state of -10 to a net charge of -6. This charge reduction is accompanied by a dramatic size reduction of about a factor of 2 (cross section of 2600 A2 (-10 charge state) down to 1430 A2 (-6 charge state)). We conclude that spermine increases the aggregation rate of alpha-syn by inducing a collapsed conformation, which then proceeds to form aggregates.
Collapse
Affiliation(s)
- Megan Grabenauer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106
| | - Summer L. Bernstein
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106
| | - Jennifer C. Lee
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Thomas Wyttenbach
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106
| | - Nicholas F. Dupuis
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106
| |
Collapse
|
686
|
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease with unknown etiology. Growing evidence from genetic, pathologic, animal modeling, and biochemical studies strongly support the theory that abnormal aggregation of alpha-synuclein plays a critical role in the pathogenesis of PD. Protein aggregation is an alternative folding process that competes with the native folding pathway. Whether or not a protein is subject to the aggregation process is determined by the concentration of the protein as well as thermodynamic properties inherent to each polypeptide. An increase in cellular concentration of alpha-synuclein has been associated with the disease in both familial and sporadic forms of PD. Thus, maintenance of the intraneuronal steady state levels of alpha-synuclein below the critical concentration is a key challenge neuronal cells are facing. Expression of the alpha-synuclein gene is under the control of environmental factors and aging, the two best-established risk factors for PD. Studies also suggest that the degradation of this protein is mediated by proteasomal and autophagic pathways, which are two mechanisms that are related to the pathogenesis of PD. Recently, vesicle-mediated exocytosis has been suggested as a novel mechanism for disposal of neuronal alpha-synuclein. Relocalization of the protein to specific compartments may be another method for increasing its local concentration. Regulation of the neuronal steady state levels of alpha-synuclein has significant implications in the development of PD, and understanding the mechanism may disclose potential therapeutic targets for PD and other related diseases.
Collapse
Affiliation(s)
- Changyoun Kim
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | | |
Collapse
|
687
|
Cortese MS, Uversky VN, Dunker AK. Intrinsic disorder in scaffold proteins: getting more from less. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:85-106. [PMID: 18619997 PMCID: PMC2671330 DOI: 10.1016/j.pbiomolbio.2008.05.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Regulation, recognition and cell signaling involve the coordinated actions of many players. Signaling scaffolds, with their ability to bring together proteins belonging to common and/or interlinked pathways, play crucial roles in orchestrating numerous events by coordinating specific interactions among signaling proteins. This review examines the roles of intrinsic disorder (ID) in signaling scaffold protein function. Several well-characterized scaffold proteins with structurally and functionally characterized ID regions are used here to illustrate the importance of ID for scaffolding function. These examples include scaffolds that are mostly disordered, only partially disordered or those in which the ID resides in a scaffold partner. Specific scaffolds discussed include RNase, voltage-activated potassium channels, axin, BRCA1, GSK-3beta, p53, Ste5, titin, Fus3, BRCA1, MAP2, D-AKAP2 and AKAP250. Among the mechanisms discussed are: molecular recognition features, fly-casting, ease of encounter complex formation, structural isolation of partners, modulation of interactions between bound partners, masking of intramolecular interaction sites, maximized interaction surface per residue, toleration of high evolutionary rates, binding site overlap, allosteric modification, palindromic binding, reduced constraints for alternative splicing, efficient regulation via posttranslational modification, efficient regulation via rapid degradation, protection of normally solvent-exposed sites, enhancing the plasticity of interaction and molecular crowding. We conclude that ID can enhance scaffold function by a diverse array of mechanisms. In other words, scaffold proteins utilize several ID-facilitated mechanisms to enhance function, and by doing so, get more functionality from less structure.
Collapse
Affiliation(s)
- Marc S. Cortese
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
688
|
Brandt I, Gérard M, Sergeant K, Devreese B, Baekelandt V, Augustyns K, Scharpé S, Engelborghs Y, Lambeir AM. Prolyl oligopeptidase stimulates the aggregation of alpha-synuclein. Peptides 2008; 29:1472-8. [PMID: 18571285 DOI: 10.1016/j.peptides.2008.05.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/05/2008] [Accepted: 05/07/2008] [Indexed: 12/20/2022]
Abstract
Despite its thorough enzymological and biochemical characterization the exact function of prolyl oligopeptidase (PO, E.C. 3.4.21.26) remains unclear. The positive effect of PO inhibitors on learning and memory in animal models for amnesia, enzyme activity measurements in patient samples and (neuro)peptide degradation studies link the enzyme with neurodegenerative disorders. The brain protein alpha-synuclein currently attracts much attention because of its proposed role in the pathology of Parkinson's disease. A fundamental question concerns how the essentially disordered protein is transformed into the highly organized fibrils that are found in Lewy bodies, the hallmarks of Parkinson's disease. Using gel electrophoresis and MALDI TOF/TOF mass spectrometry we investigated the possibility of alpha-synuclein as a PO substrate. We found that in vitro incubation of the protein with PO did not result in truncation of full-length alpha-synuclein. Surprisingly, however, we found an acceleration of the aggregation process of alpha-synuclein using turbidity measurements that was reversed by specific inhibitors of PO enzymatic activity. If PO displays this activity also in vivo, PO inhibitors might have an effect on neurodegenerative disorders through a decrease in the aggregation of alpha-synuclein.
Collapse
Affiliation(s)
- Inger Brandt
- Laboratory for Medical Biochemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
689
|
Abstract
Macromolecular crowding is expected to have a significant effect on protein aggregation. In the present study we analyzed the effect of macromolecular crowding on fibrillation of four proteins, bovine S-carboxymethyl-alpha-lactalbumin (a disordered form of the protein with reduced three out of four disulfide bridges), human insulin, bovine core histones, and human alpha-synuclein. These proteins are structurally different, varying from natively unfolded (alpha-synuclein and core histones) to folded proteins with rigid tertiary and quaternary structures (monomeric and hexameric forms of insulin). All these proteins are known to fibrillate in diluted solutions, however their aggregation mechanisms are very divers and some of them are able to form different aggregates in addition to fibrils. We studied how macromolecular crowding guides protein between different aggregation pathways by analyzing the effect of crowding agents on the aggregation patterns under the variety of conditions favoring different aggregated end products in diluted solutions.
Collapse
Affiliation(s)
- Larissa A. Munishkina
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Atta Ahmad
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Anthony L. Fink
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
690
|
Hu D, Qin Z, Xue B, Fink AL, Uversky VN. Effect of methionine oxidation on the structural properties, conformational stability, and aggregation of immunoglobulin light chain LEN. Biochemistry 2008; 47:8665-77. [PMID: 18652490 PMCID: PMC2676884 DOI: 10.1021/bi800806d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Light chain amyloidoses arise from the overproduction and abnormal deposition of the immunoglobulin light chain in various organs. LEN is the variable domain of an immunoglobulin light chain originally isolated from the urine of a patient suffering from multiple myeloma, with no sign of renal dysfunction or amyloidosis. LEN was shown to form fibrils in vitro under mildly destabilizing conditions. In this work, we investigated the changes induced by methionine oxidation in the structural properties, conformational stability, and aggregation behavior of immunoglobulin light chain domain LEN. We established that LEN was well-protected from oxidation in its native state, but successful oxidation was achieved in the presence of 4 M GuHCl. Oxidation induced noticeable structural changes in LEN and destabilized this protein. The methionine-oxidized LEN preferred to form amorphous aggregates instead of fibrils. The results indicated that the LEN oxidation may play an important role in amorphous deposition of the protein, but not in its fibrillation.
Collapse
Affiliation(s)
- Dongmei Hu
- Department of Chemistry, University of California at Santa Cruz, Santa Cruz, CA 95064
| | - Zhijie Qin
- Department of Chemistry, University of California at Santa Cruz, Santa Cruz, CA 95064
| | - Bin Xue
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Anthony L. Fink
- Department of Chemistry, University of California at Santa Cruz, Santa Cruz, CA 95064
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
691
|
Kumar N, Shukla S, Kumar S, Suryawanshi A, Chaudhry U, Ramachandran S, Maiti S. Intrinsically disordered protein from a pathogenic mesophile Mycobacterium tuberculosis adopts structured conformation at high temperature. Proteins 2008; 71:1123-33. [PMID: 18004752 DOI: 10.1002/prot.21798] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Compared to eukaryotes, the occurrence of "intrinsically disordered" or "natively unfolded" proteins in prokaryotes has not been explored extensively. Here, we report the occurrence of an intrinsically disordered protein from the mesophilic human pathogen Mycobacterium tuberculosis. The Histidine-tagged recombinant Rv3221c biotin-binding protein is intrinsically disordered at ambient and physiological growth temperatures as revealed by circular dichroism and Fourier transform infrared (FTIR) spectroscopic studies. However, an increase in temperature induces a transition from disordered to structured state with a folding temperature of approximately 53 degrees C. Addition of a structure inducing solvent trifluoroethanol (TFE) causes the protein to fold at lower temperatures suggesting that TFE fosters hydrophobic interactions, which drives protein folding. Differential Scanning Calorimetry studies revealed that folding is endothermic and the transition from a disordered to structured state is continuous (higher-order), implying existence of intermediates during folding process. Secondary structure analysis revealed that the protein has propensity to form beta-sheets. This is in conformity with FTIR spectrum that showed an absorption peak at wave number of 1636 cm(-1), indicative of disordered beta-sheet conformation in the native state. These data suggest that although Rv3221c may be disordered under ambient or optimal growth temperature conditions, it has the potential to fold into ordered structure at high temperature driven by increased hydrophobic interactions. In contrast to the generally known behavior of other intrinsically disordered proteins folding at high temperature, Rv3221c does not appear to oligomerize or aggregate as revealed through numerous experiments including Congo red binding, Thioflavin T-binding, turbidity measurements, and examining molar ellipticity as a function of protein concentration. The amino acid composition of Rv3221c reveals that it has 24% charged and 54.9% hydrophobic amino acid residues. In this respect, this protein, although belonging to the class of intrinsically disordered proteins, has distinct features. The intrinsically disordered state and the biotin-binding feature of this protein suggest that it may participate in many biochemical processes requiring biotin as a cofactor and adopt suitable conformations upon binding other folded targets.
Collapse
Affiliation(s)
- Niti Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | | | | | | | | | | | | |
Collapse
|
692
|
Fawzi NL, Yap EH, Okabe Y, Kohlstedt KL, Brown SP, Head-Gordon T. Contrasting disease and nondisease protein aggregation by molecular simulation. Acc Chem Res 2008; 41:1037-47. [PMID: 18646868 PMCID: PMC2895938 DOI: 10.1021/ar800062k] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[Figurre: see text]. Protein aggregation can be defined as the sacrifice of stabilizing intrachain contacts of the functional state that are replaced with interchain contacts to form non-functional states. The resulting aggregate morphologies range from amorphous structures without long-range order typical of nondisease proteins involved in inclusion bodies to highly structured fibril assemblies typical of amyloid disease proteins. In this Account, we describe the development and application of computational models for the investigation of nondisease and disease protein aggregation as illustrated for the proteins L and G and the Alzheimer's Abeta systems. In each case, we validate the models against relevant experimental observables and then expand on the experimental window to better elucidate the link between molecular properties and aggregation outcomes. Our studies show that each class of protein exhibits distinct aggregation mechanisms that are dependent on protein sequence, protein concentration, and solution conditions. Nondisease proteins can have native structural elements in the denatured state ensemble or rapidly form early folding intermediates, which offers avenues of protection against aggregation even at relatively high concentrations. The possibility that early folding intermediates may be evolutionarily selected for their protective role against unwanted aggregation could be a useful strategy for reengineering sequences to slow aggregation and increase folding yield in industrial protein production. The observed oligomeric aggregates that we see for nondisease proteins L and G may represent the nuclei for larger aggregates, not just for large amorphous inclusion bodies, but potentially as the seeds of ordered fibrillar aggregates, since most nondisease proteins can form amyloid fibrils under conditions that destabilize the native state. By contrast, amyloidogenic protein sequences such as Abeta 1-40,42 and the familial Alzheimer's disease (FAD) mutants favor aggregation into ordered fibrils once the free-energy barrier for forming a critical nucleus is crossed. However, the structural characteristics and oligomer size of the soluble nucleation species have yet to be determined experimentally for any disease peptide sequence, and the molecular mechanism of polymerization that eventually delineates a mature fibril is unknown. This is in part due to the limited experimental access to very low peptide concentrations that are required to characterize these early aggregation events, providing an opportunity for theoretical studies to bridge the gap between the monomer and fibril end points and to develop testable hypotheses. Our model shows that Abeta 1-40 requires as few as 6-10 monomer chains (depending on sequence) to begin manifesting the cross-beta order that is a signature of formation of amyloid filaments or fibrils assessed in dye-binding kinetic assays. The richness of the oligomeric structures and viable filament and fibril polymorphs that we observe may offer structural clues to disease virulence variations that are seen for the WT and hereditary mutants.
Collapse
Affiliation(s)
- Nicolas Lux Fawzi
- UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley, California 94720
| | - Eng-Hui Yap
- UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley, California 94720
| | - Yuka Okabe
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Kevin L. Kohlstedt
- Department of Chemical and Biological Engineering, Northwestern University Evanston, Illinois 60208
| | - Scott P. Brown
- Abbott Laboratories, 1401 Sheridan Road, North Chicago, Illinois 60064-400
| | - Teresa Head-Gordon
- UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley, California 94720
- Department of Bioengineering, University of California, Berkeley, California 94720
| |
Collapse
|
693
|
Ulrih NP, Barry CH, Fink AL. Impact of Tyr to Ala mutations on alpha-synuclein fibrillation and structural properties. Biochim Biophys Acta Mol Basis Dis 2008; 1782:581-5. [PMID: 18692132 DOI: 10.1016/j.bbadis.2008.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
Substantial evidence suggests that the fibrillation of alpha-synuclein is a critical step in the development of Parkinson's disease. In vitro, alpha-synuclein forms fibrils with morphologies and a staining characteristic similar to those extracted from disease-affected brain. Monomeric alpha-synuclein is an intrinsically disordered protein, with three Tyr residues in the C-terminal region, one in the N-terminus, and lacking Trp. It is thought that interactions between the C-terminus and the central portion of the molecule may prevent or minimize aggregation/fibrillation. To test this hypothesis we examined the importance of the Tyr residues on the propensity for alpha-synuclein to fibrillate in vitro. Fibril formation of alpha-synuclein was completely inhibited, in the timescale over which measurements were made, by replacing the three C-terminal Tyr residues with Ala. In addition, substitution of Tyr133 by Ala also resulted in the absence of fibrillation, whereas the individual Y125A and Y136A mutants showed limited inhibition. Replacement of Tyr39 by Ala also resulted in substantial inhibition of fibrillation. Structural analysis showed that the Y133A mutant had a substantially different conformation, rich in alpha-helical secondary structure, as compared with the wild-type and other mutants, although the formation of any tertiary structure has not been observed as can be judged from near-UV-CD spectra. These observations suggest that the long-range intramolecular interactions between the N- and C-termini of alpha-synuclein are likely to be crucial to the fibrillation process.
Collapse
Affiliation(s)
- Natasa Poklar Ulrih
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95964, USA.
| | | | | |
Collapse
|
694
|
Yu J, Lyubchenko YL. Early stages for Parkinson's development: alpha-synuclein misfolding and aggregation. J Neuroimmune Pharmacol 2008; 4:10-6. [PMID: 18633713 DOI: 10.1007/s11481-008-9115-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Misfolding and aggregation of proteins are common threads linking a number of important human health problems, including various neurodegenerative disorders such as Parkinson's disease in particular. The first and perhaps most important elements in most neurodegenerative processes are misfolding and aggregation of specific proteins. Despite the crucial importance of protein misfolding and abnormal interactions, very little is currently known about the molecular mechanism underlying these processes. Factors that lead to protein misfolding and aggregation in vitro are poorly understood, in addition to the complexities involved in the formation of protein nanoparticles with different morphologies (e.g. nanopores and other species) in vivo. A clear understanding of the molecular mechanisms of misfolding and aggregation will facilitate rational approaches to prevent protein misfolding mediated pathologies. To accomplish this goal and to elucidate the mechanism of protein misfolding, we developed a novel nanotechnology tool capable of detecting protein misfolding. We applied single molecule probing technique to characterize misfolding and self-assembly of alpha-synuclein dimers, which is the very first step of the aggregation process. Using AFM force spectroscopy approach, we were able to detect protein misfolding via enhanced interprotein interaction. Moreover, such an important characteristic as the lifetime of dimers formed by misfolded alpha-synuclein was measured. These data suggest that compared to highly dynamic monomeric forms, alpha-synuclein dimers are practically static and thus can play a role of aggregation nuclei for the formation of aggregates. Importantly, two different dissociation channels were detected suggesting that aggregation process can follow different pathways. The application of these findings for understanding of the aggregation phenomenon and the development of the disease is discussed.
Collapse
Affiliation(s)
- Junping Yu
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | |
Collapse
|
695
|
Gerard M, Debyser Z, Desender L, Baert J, Brandt I, Baekelandt V, Engelborghs Y. FK506 binding protein 12 differentially accelerates fibril formation of wild type alpha-synuclein and its clinical mutants A30P or A53T. J Neurochem 2008; 106:121-33. [DOI: 10.1111/j.1471-4159.2008.05342.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
696
|
Campioni S, Mossuto MF, Torrassa S, Calloni G, de Laureto PP, Relini A, Fontana A, Chiti F. Conformational properties of the aggregation precursor state of HypF-N. J Mol Biol 2008; 379:554-67. [DOI: 10.1016/j.jmb.2008.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
697
|
Abstract
Aggregation and subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. The accumulated data support the model where protein fibrillogenesis proceeds via the formation of a relatively unfolded amyloidogenic conformation, which shares many structural properties with the pre-molten globule state, a partially folded intermediate first found during the equilibrium and kinetic (un)folding studies of several globular proteins and later described as one of the structural forms of natively unfolded proteins. The flexibility of this structural form is essential for the conformational rearrangements driving the formation of the core cross-beta structure of the amyloid fibril. Obviously, molecular mechanisms describing amyloidogenesis of ordered and natively unfolded proteins are different. For ordered protein to fibrillate, its unique and rigid structure has to be destabilized and partially unfolded. On the other hand, fibrillogenesis of a natively unfolded protein involves the formation of partially folded conformation; i.e., partial folding rather than unfolding. In this review recent findings are surveyed to illustrate some unique features of the natively unfolded proteins amyloidogenesis.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
698
|
Molecular Understanding of Copper and Iron Interaction with α-Synuclein by Fluorescence Analysis. J Mol Neurosci 2008; 35:273-81. [DOI: 10.1007/s12031-008-9076-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
|
699
|
Croke RL, Sallum CO, Watson E, Watt ED, Alexandrescu AT. Hydrogen exchange of monomeric alpha-synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in Escherichia coli. Protein Sci 2008; 17:1434-45. [PMID: 18493022 DOI: 10.1110/ps.033803.107] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Amide proton NMR signals from the N-terminal domain of monomeric alpha-synuclein (alphaS) are lost when the sample temperature is raised from 10 degrees C to 35 degrees C at pH 7.4. Although the temperature-induced effects have been attributed to conformational exchange caused by an increase in alpha-helix structure, we show that the loss of signals is due to fast amide proton exchange. At low ionic strength, hydrogen exchange rates are faster for the N-terminal segment of alphaS than for the acidic C-terminal domain. When the salt concentration is raised to 300 mM, exchange rates increase throughout the protein and become similar for the N- and C-terminal domains. This indicates that the enhanced protection of amide protons from the C-terminal domain at low salt is electrostatic in nature. Calpha chemical shift data point to <10% residual alpha-helix structure at 10 degrees C and 35 degrees C. Conformational exchange contributions to R2 are negligible at both temperatures. In contrast to the situation in vitro, the majority of amide protons are observed at 37 degrees C in 1H-15N HSQC spectra of alphaS encapsulated within living Escherichia coli cells. Our finding that temperature effects on alphaS NMR spectra can be explained by hydrogen exchange obviates the need to invoke special cellular factors. The retention of signals is likely due to slowed hydrogen exchange caused by the lowered intracellular pH of high-density E. coli cultures. Taken together, our results emphasize that alphaS remains predominantly unfolded at physiological temperature and pH-an important conclusion for mechanistic models of the association of alphaS with membranes and fibrils.
Collapse
Affiliation(s)
- Robyn L Croke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | | | |
Collapse
|
700
|
Yoon J, Park J, Jang S, Lee K, Shin S. Conformational Characteristics of Unstructured Peptides: α-Synuclein. J Biomol Struct Dyn 2008; 25:505-15. [DOI: 10.1080/07391102.2008.10507197] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|