651
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
652
|
Guo G, Shi X, Wang H, Ye L, Tong X, Yan K, Ding N, Chen C, Zhang H, Xue X. Epitranscriptomic N4-Acetylcytidine Profiling in CD4 + T Cells of Systemic Lupus Erythematosus. Front Cell Dev Biol 2020; 8:842. [PMID: 32984334 PMCID: PMC7483482 DOI: 10.3389/fcell.2020.00842] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging epitranscriptome plays an essential role in autoimmune disease. As a novel mRNA modification, N4-acetylcytidine (ac4C) could promote mRNA stability and translational efficiency. However, whether epigenetic mechanisms of RNA ac4C modification are involved in systemic lupus erythematosus (SLE) remains unclear. Herein, we detected eleven modifications in CD4+ T cells of SLE patients using mass spectrometry (LC-MS/MS). Furthermore, using samples from four CD4+ T cell pools, we identified lower modification of ac4C mRNA in SLE patients as compared to that in healthy controls (HCs). Meanwhile, significantly lower mRNA acetyltransferase NAT10 expression was detected in lupus CD4+ T cells by RT-qPCR. We then illustrated the transcriptome-wide ac4C profile in CD4+ T cells of SLE patients by ac4C-RIP-Seq and found ac4C distribution in mRNA transcripts to be highly conserved and enriched in mRNA coding sequence regions. Using bioinformatics analysis, the 3879 and 4073 ac4C hyper-acetylated and hypoacetylated peaks found in SLE samples, respectively, were found to be significantly involved in SLE-related function enrichments, including multiple metabolic and transcription-related processes, ROS-induced cellular signaling, apoptosis signaling, and NF-κB signaling. Moreover, we demonstrated the ac4C-modified regulatory network of gene biological functions in lupus CD4+ T cells. Notably, we determined that the 26 upregulated genes with hyperacetylation played essential roles in autoimmune diseases and disease-related processes. Additionally, the unique ac4C-related transcripts, including USP18, GPX1, and RGL1, regulate mRNA catabolic processes and translational initiation. Our study identified novel dysregulated ac4C mRNAs associated with critical immune and inflammatory responses, that have translational potential in lupus CD4+ T cells. Hence, our findings reveal transcriptional significance and potential therapeutic targets of mRNA ac4C modifications in SLE pathogenesis.
Collapse
Affiliation(s)
- Gangqiang Guo
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Shi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huijing Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lele Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinya Tong
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kejing Yan
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ning Ding
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
653
|
Chen S, Li Y, Zhi S, Ding Z, Wang W, Peng Y, Huang Y, Zheng R, Yu H, Wang J, Hu M, Miao J, Li J. WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m 6A-dependent manner. Cell Death Dis 2020; 11:659. [PMID: 32814762 PMCID: PMC7438489 DOI: 10.1038/s41419-020-02847-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
N6-methyladenosine (m6A) regulators are involved in the progression of various cancers via regulating m6A modification. However, the potential role and mechanism of the m6A modification in osteosarcoma remains obscure. In this study, WTAP was found to be highly expressed in osteosarcoma tissue and it was an independent prognostic factor for overall survival in osteosarcoma. Functionally, WTAP, as an oncogene, was involved in the proliferation and metastasis of osteosarcoma in vitro and vivo. Mechanistically, M6A dot blot, RNA-seq and MeRIP-seq, MeRIP-qRT-PCR and luciferase reporter assays showed that HMBOX1 was identified as the target gene of WTAP, which regulated HMBOX1 stability depending on m6A modification at the 3′UTR of HMBOX1 mRNA. In addition, HMBOX1 expression was downregulated in osteosarcoma and was an independent prognostic factor for overall survival in osteosarcoma patients. Silenced HMBOX1 evidently attenuated shWTAP-mediated suppression on osteosarcoma growth and metastasis in vivo and vitro. Finally, WTAP/HMBOX1 regulated osteosarcoma growth and metastasis via PI3K/AKT pathway. In conclusion, this study demonstrated the critical role of the WTAP-mediated m6A modification in the progression of osteosarcoma, which could provide novel insights into osteosarcoma treatment.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuezhan Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Shuang Zhi
- Four Gynecological Wards, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Yi Peng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Yan Huang
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha, China
| | - Haiyang Yu
- School of Basic Medical Science, Central South University, Changsha, China
| | - Jianlong Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Minghua Hu
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha, China
| | - Jinglei Miao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
| | - Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
| |
Collapse
|
654
|
Wang X, Xie H, Ying Y, Chen D, Li J. Roles of N 6 -methyladenosine (m 6 A) RNA modifications in urological cancers. J Cell Mol Med 2020; 24:10302-10310. [PMID: 32808488 PMCID: PMC7521283 DOI: 10.1111/jcmm.15750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetics has long been a hot topic in the field of scientific research. The scope of epigenetics usually includes chromatin remodelling, DNA methylation, histone modifications, non-coding RNAs and RNA modifications. In recent years, RNA modifications have emerged as important regulators in a variety of physiological processes and in disease progression, especially in human cancers. Among the various RNA modifications, m6 A is the most common. The function of m6 A modifications is mainly regulated by 3 types of proteins: m6 A methyltransferases (writers), m6 A demethylases (erasers) and m6 A-binding proteins (readers). In this review, we focus on RNA m6 A modification and its relationship with urological cancers, particularly focusing on its roles and potential clinical applications.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufan Ying
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danni Chen
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangfeng Li
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
655
|
Zhang Z, Wang Q, Zhang M, Zhang W, Zhao L, Yang C, Wang B, Jiang K, Ye Y, Shen Z, Wang S. Comprehensive analysis of the transcriptome-wide m6A methylome in colorectal cancer by MeRIP sequencing. Epigenetics 2020; 16:425-435. [PMID: 32749190 DOI: 10.1080/15592294.2020.1805684] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various cancers, making it essential to profile m6A modifications at a transcriptome-wide scale in colorectal cancer (CRC). In the present study, we performed high-throughput sequencing to determine the m6A methylome in CRC. We obtained six pairs of CRC samples and tumour-adjacent normal tissues from Peking University People's Hospital. We used MeRIP-seq to determine that compared to the tumour-adjacent normal tissues, the CRC samples had 1343 dysregulated m6A peaks, and 625 m6A peaks were significantly upregulated and 718 m6A peaks were significantly downregulated. Genes with altered m6A peaks play critical roles in regulating glucose metabolism, RNA metabolism, and cancer stem cells. Furthermore, we identified 297 hypermethylated m6A peaks and 328 hypomethylated m6A peaks in mRNAs through conjoint analyses of MeRIP-seq and RNA-seq data. After analysing these genes with differentially methylated m6A peaks and synchronously differential expression, we identified four genes (WDR72, SPTBN2, MORC2, and PARM1) that were associated with prognosis of colorectal cancer patients by searching The Cancer Genome Atlas (TCGA). Our study suggests that m6A modifications play important roles in tumour progression and survival of CRC patients. The results also indicate that modulating m6A modifications may represent an alternative strategy to predict the survival of cancer patients and interfere with tumour progression in the future.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Mengmeng Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Wei Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Long Zhao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| |
Collapse
|
656
|
Yi YC, Chen XY, Zhang J, Zhu JS. Novel insights into the interplay between m 6A modification and noncoding RNAs in cancer. Mol Cancer 2020; 19:121. [PMID: 32767982 PMCID: PMC7412851 DOI: 10.1186/s12943-020-01233-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023] Open
Abstract
N6-methyladenosine (m6A) is one of the most common RNA modifications in eukaryotes, mainly in messenger RNA (mRNA). Increasing evidence shows that m6A methylation modification acts an essential role in various physiological and pathological bioprocesses. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs and circRNAs, are known to participate in regulating cell differentiation, angiogenesis, immune response, inflammatory response and carcinogenesis. m6A regulators, such as METTL3, ALKBH5 and IGF2BP1 have been reported to execute a m6A-dependent modification of ncRNAs involved in carcinogenesis. Meanwhile, ncRNAs can target or modulate m6A regulators to influence cancer development. In this review, we provide an insight into the interplay between m6A modification and ncRNAs in cancer.
Collapse
Affiliation(s)
- You-Cai Yi
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
657
|
Protein-Related Circular RNAs in Human Pathologies. Cells 2020; 9:cells9081841. [PMID: 32781555 PMCID: PMC7463956 DOI: 10.3390/cells9081841] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a distinct family of RNAs derived from alternative splicing which play a crucial role in regulating gene expression by acting as microRNA (miRNA) and RNA binding protein (RBP) sponges. However, recent studies have also reported the multifunctional potential of these particles. Under different conditions, circRNAs not only regulate protein synthesis, destination, and degradation but can serve as protein scaffolds or recruiters and are also able to produce short peptides with active biological functions. circRNAs are under ongoing investigation because of their close association with the development of diseases. Some circRNAs are reportedly expressed in a tissue- and development stage-specific manner. Furthermore, due to other features of circRNAs, including their stability, conservation, and high abundance in bodily fluids, they are believed to be potential biomarkers for various diseases, including cancers. In this review, we focus on providing a summary of the current knowledge on circRNA-protein interactions. We present the properties and functions of circRNAs, the possible mechanisms of their translation abilities, and the emerging functions of circRNA-derived peptides in human pathologies.
Collapse
|
658
|
Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, Zhang Q. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int 2020; 20:347. [PMID: 32742194 PMCID: PMC7388453 DOI: 10.1186/s12935-020-01450-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022] Open
Abstract
Human AlkB homolog H5 (ALKBH5) is a primary m6A demethylase, which is dysregulated and acts as a biological and pharmacological role in human cancers or non-cancers. ALKBH5 plays a dual role in various cancers through regulating kinds of biological processes, such as proliferation, migration, invasion, metastasis and tumor growth. In addition, it takes a great part in human non-cancer, including reproductive system diseases. The underlying regulatory mechanisms of ALKBH5 that relys on m6A-dependent modification are implicated with long non-coding RNA, cancer stem cell, autophagy and hypoxia. ALKBH5 is also an independent prognostic indicator in various cancers. In this review, we summarized the current evidence on ALKBH5 in diverse human cancers or non-cancers and its potential as a prognostic target.
Collapse
Affiliation(s)
- Jinyan Wang
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China.,Department of Oncology, The Affiliated Jiangning Hospital of Jiangsu Health Vocational College, Nanjing, 210000 China
| | - Jinqiu Wang
- Department of Oncology, Dafeng People's Hospital, Yancheng, 224000 China
| | - Quan Gu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000 China
| | - Yajun Ma
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China
| | - Yan Yang
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China
| | - Jing Zhu
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China
| | - Quan'an Zhang
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China
| |
Collapse
|
659
|
Tao Z, Zhao Y, Chen X. Role of methyltransferase-like enzyme 3 and methyltransferase-like enzyme 14 in urological cancers. PeerJ 2020; 8:e9589. [PMID: 32765970 PMCID: PMC7382367 DOI: 10.7717/peerj.9589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) modifications can be found in eukaryotic messenger RNA (mRNA), long non-coding RNA (lncRNA), and microRNA (miRNA). Several studies have demonstrated a close relationship between m6A modifications and cancer cells. Methyltransferase-like enzyme 3 (METTL3) and methyltransferase-like enzyme 14 (METTL14) are two major enzymes involved in m6A modifications that play vital roles in various cancers. However, the roles and regulatory mechanisms of METTL3 and METTL14 in urological cancers are largely unknown. In this review, we summarize the current research results for METTL3 and METTL14 and identify potential pathways involving these enzymes in kidney, bladder, prostate, and testicular cancer. We found that METTL3 and METTL14 have different expression patterns in four types of urological cancers. METTL3 is highly expressed in bladder and prostate cancer and plays an oncogenic role on cancer cells; however, its expression and role are opposite in kidney cancer. METTL14 is expressed at low levels in kidney and bladder cancer, where it has a tumor suppressive role. Low METTL3 or METTL14 expression in cancer cells negatively regulates cell growth-related pathways (e.g., mTOR, EMT, and P2XR6) but positively regulates cell death-related pathways (e.g., P53, PTEN, and Notch1). When METTL3 is highly expressed, it positively regulates the NF-kB and SHH-GL1pathways but negatively regulates PTEN. These results suggest that although METTL3 and METTL14 have different expression levels and regulatory mechanisms in urological cancers, they control cancer cell fate via cell growth- and cell death-related pathways. These findings suggest that m6A modification may be a potential new therapeutic target in urological cancer.
Collapse
Affiliation(s)
- Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
660
|
Wang J, Lin H, Zhou M, Xiang Q, Deng Y, Luo L, Liu Y, Zhu Z, Zhao Z. The m6A methylation regulator-based signature for predicting the prognosis of prostate cancer. Future Oncol 2020; 16:2421-2432. [PMID: 32687727 DOI: 10.2217/fon-2020-0330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To construct a survival prediction signature for prostate cancer (PC) based on the RNA N6-methyladenosine (m6A) methylation regulator. Materials & methods: This paper explores the interaction network of differentially expressed m6A RNA methylation regulators in PC by Pearson correlation analysis. Univariate Cox risk regression and LASSO regression analysis were used to construct a predictive signature of PC. Kaplan-Meier survival analysis compared the overall survival of the high- and low-risk groups. Results & Conclusion: We first constructed a prognostic two gene signature for PC based on the m6A RNA methylation regulators MRTTL14 and YTHDF2. The interaction network of m6A RNA methylation regulators in PC was also established.
Collapse
Affiliation(s)
- Jiamin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China
| | - Han Lin
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China
| | - Mingda Zhou
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China
| | - Qian Xiang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China
| | - Yihan Deng
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China
| | - Lianmin Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China
| | - Yangzhou Liu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China
| | - Zhiguo Zhu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China
| | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China
| |
Collapse
|
661
|
Ding N, You A, Tian W, Gu L, Deng D. Chidamide increases the sensitivity of Non-small Cell Lung Cancer to Crizotinib by decreasing c- MET mRNA methylation. Int J Biol Sci 2020; 16:2595-2611. [PMID: 32792859 PMCID: PMC7415423 DOI: 10.7150/ijbs.45886] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction: Crizotinib is a kinase inhibitor targeting c-MET/ALK/ROS1 used as the first-line chemical for the treatment of non-small cell lung cancer (NSCLC) with ALK mutations. Although c-MET is frequently overexpressed in 35-72% of NSCLC, most NSCLCs are primarily resistant to crizotinib treatment. Method: A set of NSCLC cell lines were used to test the effect of chidamide on the primary crizotinib resistance in vitro and in vivo. Relationships between the synergistic effect of chidamide and c-MET expression and RNA methylation were systemically studied with a battery of molecular biological assays. Results: We found for the first time that chidamide could sensitize the effect of crizotinib in a set of ALK mutation-free NSCLC cell lines, especially those with high levels of c-MET expression. Notably, chidamide could not increase the sensitivity of NSCLC cells to crizotinib cultured in serum-free medium without hepatocyte growth factor (HGF; a c-MET ligand). In contrast, the addition of HGF into the serum-/HGF-free medium could restore the synergistic effect of chidamide. Moreover, the synergistic effect of chidamide could also be abolished either by treatment with c-MET antibody or siRNA-knockdown of c-MET expression. While cells with low or no c-MET expression were primarily resistant to chidamide-crizotinib cotreatment, enforced c-MET overexpression could increase the sensitivity of these cells to chidamide-crizotinib cotreatment. Furthermore, chidamide could decrease c-MET expression by inhibiting mRNA N6-methyladenosine (m6A) modification through the downregulation of METTL3 and WTAP expression. Chidamide-crizotinib cotreatment significantly suppressed the activity of c-MET downstream molecules. Conclusion: Chidamide downregulated c-MET expression by decreasing its mRNA m6A methylation, subsequently increasing the crizotinib sensitivity of NSCLC cells in a c-MET-/HGF-dependent manner.
Collapse
Affiliation(s)
- Nan Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Abin You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| |
Collapse
|
662
|
Prognostic Value of an m6A RNA Methylation Regulator-Based Signature in Patients with Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2053902. [PMID: 32733931 PMCID: PMC7378627 DOI: 10.1155/2020/2053902] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Purposes Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Recent researches have demonstrated that m6A methylation regulators play a key role in various cancers, such as gastric cancer and colon adenocarcinoma. Several m6A methylation regulators are reported to predict the prognosis of HCC. Therefore, there is a need to further identify the predictive value of m6A methylation regulators in HCC. Methods We utilized The Cancer Genome Atlas (TCGA) database to obtain the gene expression profile of m6A RNA methylation regulators and clinical information for patients with HCC. Besides, we identified two clusters of HCC with various clinical factors by consensus clustering analysis. Then the least absolute shrinkage and selection operator (LASSO) and the Cox regression analysis were applied to construct a prognostic signature. Results Except for ZC3H13 and METTL14, a majority of the thirteen m6A RNA methylation regulators were significantly overexpressed in HCC specimens. HCC patients were classified into two groups (cluster 1 and cluster 2). The cluster 1 was with a significantly worse prognosis than cluster 2, and most of the 13 known m6A RNA methylation regulators were upregulated in cluster 1. Besides, we developed a prognostic signature consisting of YTHDF2, YTHDF1, METTL3, KIAA1429, and ZC3H13, which could successfully differentiate high-risk patients. More importantly, univariate and multivariate Cox regression analysis indicated that the signature-based risk score was an independent prognostic factor for patients with HCC. Conclusions Our study showed these five m6A RNA methylation regulators can be used as practical and reliable prognostic tools of HCC, which might have potential value for therapeutic strategies.
Collapse
|
663
|
circ_KIAA1429 accelerates hepatocellular carcinoma advancement through the mechanism of m 6A-YTHDF3-Zeb1. Life Sci 2020; 257:118082. [PMID: 32653519 DOI: 10.1016/j.lfs.2020.118082] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023]
Abstract
AIMS Hepatocellular carcinoma (HCC), one of the most common cancer, causes the fourth cancer-related deaths around the world. N6-methyladenosine (m6A) has been reported to mediate circRNA translation in cancer biology. However, the mechanisms by which m6A and circRNA in post-transcriptional in HCC progression remain poorly understood. This study aimed to explore the mechanisms by which m6A and circRNA in post-transcriptional in HCC progression. MAIN METHODS circ_KIAA1429 (hsa_circ_0084922) expression profiles in matched normal and HCC tissues were detected using microarray analysis. The biological roles of circ_KIAA1429 in progression of HCCC were measured both in vitro and in vivo. KEY FINDINGS In this study, we found hsa_circ_0084922, which came from KIAA1429, named circ_KIAA1429, was upregulated in HCC cells and tumor tissues. Overexpression of circ_KIAA1429 can facilitate HCC migration, invasion, and EMT process. However, knockdown of circ_KIAA1429 lead to the opposite results. Furthermore, it was demonstrated that Zeb1 was the downstream target of circ_KIAA1429. Up-regulation of Zeb1 led to HCC cells metastasis induced by circ_KIAA1429. In addition, YTHDF3 enhanced Zeb1 mRNA stability via an m6A dependent manner. SIGNIFICANCE This study revealed that circ_KIAA1429 could accelerate HCC advancement, maintained the expression of Zeb1 through the mechanism of m6A-YTHDF3-Zeb1 in HCC. What's more, it might represent a potential therapeutic target in HCC.
Collapse
|
664
|
Hou J, Shan H, Zhang Y, Fan Y, Wu B. m 6A RNA methylation regulators have prognostic value in papillary thyroid carcinoma. Am J Otolaryngol 2020; 41:102547. [PMID: 32474328 DOI: 10.1016/j.amjoto.2020.102547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND N6-Methyladenosine (m6A) is a ubiquitous RNA modification with vital roles in various cancers, but little is known about its role in papillary thyroid carcinoma (PTC), a common endocrine malignancy. METHODS In this study, an m6A RNA methylation regulator-based biomarker signature was developed for the effective prediction of prognosis in patients with PTC. The gene expression profiles of m6A RNA methylation regulators and the corresponding clinical information was downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed m6A RNA methylation regulators between tumor and normal control samples, and correlation expression levels, clinical parameters, and outcomes were evaluated. And a prognostic signature was built using a PTC cohort from TCGA. RESULTS The expression level of HNRNPC was remarkably upregulated in tumor samples, while WTAP, RBM15, YTHDC2, YTHDC1, FTO, METTL14, METTL3, ALKBH5, KIAA1429, YTHDF1, and ZC3H13 were significantly downregulated in the cancer specimens compared with those in control samples. A three-gene prognostic signature comprising RBM15, KIAA1429, and FTO could predict overall survival in patients with PTC. In addition, the prognostic signature-based risk score was identified as an independent prognostic indicator for PTC. CONCLUSIONS We established a robust m6A RNA methylation regulator-based molecular signature for predicting prognosis in patients with PTC with high accuracy; this signature might provide important guidance for therapeutic strategies.
Collapse
Affiliation(s)
- Jianzhong Hou
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yingchao Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Youben Fan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
665
|
METTL3 regulates the malignancy of cervical cancer via post-transcriptional regulation of RAB2B. Eur J Pharmacol 2020; 879:173134. [DOI: 10.1016/j.ejphar.2020.173134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
|
666
|
Hou H, Zhao H, Yu X, Cong P, Zhou Y, Jiang Y, Cheng Y. METTL3 promotes the proliferation and invasion of esophageal cancer cells partly through AKT signaling pathway. Pathol Res Pract 2020; 216:153087. [PMID: 32825955 DOI: 10.1016/j.prp.2020.153087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Methyltransferase-like 3 (METTL3) is identified as a methyltransferase responsible for N6-methyladenosine (m6A) modification of mRNA, miRNA and lncRNA. Emerging evidences suggest that METTL3 is involved in tumorigenesis and progression of multiple tumor types. However, the functional role of METTL3 in esophageal cancer (EC) remains unclear. We used specific shRNA to down-regulate the METTL3 expression, and used pcDNA3.1-METTL3 cDNA plasmid to up-regulate the METTL3 expression in Eca-109 and KY-SE150 cells. Biological functions of METTL3 were performed by CCK-8, colony formation, apoptosis analysis, transwell and wound healing assays. Finally, an in-depth mechanism study was performed by an AKT inhibitor. METTL3 knockdown reduced the proliferation, clonality, migration and invasion of Eca-109 and KY-SE150 cells, and induced cell apoptosis, which may be mediated by activation of the mitochondrial apoptotic pathway. Further, METTL3 overexpression promoted the proliferation, clonality, migration and invasion of Eca-109 and KY-SE150 cells, and inhibited cell apoptosis. In addition, METTL3 regulated the expression of Wnt/β-catenin and AKT signaling pathway components. A double-effect inhibitor (BEZ235) inhibited AKT and mTOR phosphorylation and hindered the effect of METTL3 overexpression on the proliferation and migration of Eca-109 and KY-SE150 cells. Our data suggest that METTL3 plays a carcinogenic role in human EC progression partially through AKT signaling pathways, suggesting that METTL3 may serve as a potential therapeutic target for EC therapy.
Collapse
Affiliation(s)
- Huaying Hou
- Cancer Prevention Center, The Second Hospital of Shandong University, No.247 Beiyuan Road, Jinan 250033, Shandong, China; School of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Huidong Zhao
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, No.1 Jiaozhou Road, Qingdao 266011, Shandong, China
| | - Xiaoming Yu
- Cancer Prevention Center, The Second Hospital of Shandong University, No.247 Beiyuan Road, Jinan 250033, Shandong, China
| | - Ping Cong
- Cancer Prevention Center, The Second Hospital of Shandong University, No.247 Beiyuan Road, Jinan 250033, Shandong, China
| | - Yong Zhou
- Cancer Prevention Center, The Second Hospital of Shandong University, No.247 Beiyuan Road, Jinan 250033, Shandong, China
| | - Yuhua Jiang
- Cancer Prevention Center, The Second Hospital of Shandong University, No.247 Beiyuan Road, Jinan 250033, Shandong, China
| | - Yufeng Cheng
- Department of Radiotherapy, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong, China.
| |
Collapse
|
667
|
Huang GZ, Wu QQ, Zheng ZN, Shao TR, Chen YC, Zeng WS, Lv XZ. M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT. Aging (Albany NY) 2020; 12:11667-11684. [PMID: 32526707 PMCID: PMC7343469 DOI: 10.18632/aging.103333] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Increasing evidence suggests that N6-methyladenosine(m6A) has a vital role in cancer progression. Therefore, we aimed to explore the prognostic relevance of m6A-related genes in oral squamous cell carcinoma (OSCC). First, Expression profiles were downloaded from The Cancer Genome Atlas (TCGA) and m6A-related genes were extracted afterwards. Then, cluster analysis and principal component analysis (PCA) were used to analyze m6A-related genes. And differentially-expressed analysis was performed in R software. Furthermore, a risk model was constructed, and crucial m6A genes were selected to explore its biological effects in OSCC cells. Total of 13 m6A-related genes were extracted and 8 differentially-expressed genes were identified. Subsequently, m6A-based clustering showed 2 subtypes with different clinical outcome. In addition, a risk model was successfully established. Of 13 m6A-related genes, only heterogeneous nuclear ribonucleoprotein C (HNRNPC) might be an independent biomarker and mean unfavorable overall survival in OSCC by univariate and multivariate cox regression analysis. Functional studies revealed that overexpression of HNRNPC promoted carcinogenesis of OSCC via epithelial- mesenchymal transition (EMT). In total, a risk model of m6A-related genes in OSCC was established. Subsequently, HNRNPC was proved to promote OSCC carcinogenesis and be an independent biomarker prognostic biomarker of OSCC, suggesting that it might be a new biomarker and therapeutic target of OSCC.
Collapse
Affiliation(s)
- Guang-Zhao Huang
- Department of Oral and Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Qing-Qing Wu
- Department of Oral and Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-Nan Zheng
- Department of Oral and Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Ting-Ru Shao
- Department of Oral and Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Yue-Chuan Chen
- Department of Oral and Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Sen Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiao-Zhi Lv
- Department of Oral and Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
668
|
Zhou Z, Lv J, Yu H, Han J, Yang X, Feng D, Wu Q, Yuan B, Lu Q, Yang H. Mechanism of RNA modification N6-methyladenosine in human cancer. Mol Cancer 2020; 19:104. [PMID: 32513173 PMCID: PMC7278081 DOI: 10.1186/s12943-020-01216-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023] Open
Abstract
Since the breakthrough discoveries of DNA and histone modifications, the field of RNA modifications has gained increasing interest in the scientific community. The discovery of N6-methyladenosine (m6A), a predominantly internal epigenetic modification in eukaryotes mRNA, heralded the creation of the field of epi-transcriptomics. This post-transcriptional RNA modification is dynamic and reversible, and is regulated by methylases, demethylases and proteins that preferentially recognize m6A modifications. Altered m6A levels affect RNA processing, degradation and translation, thereby disrupting gene expression and key cellular processes, ultimately resulting in tumor initiation and progression. Furthermore, inhibitors and regulators of m6A-related factors have been explored as therapeutic approaches for treating cancer. In the present review, the mechanisms of m6A RNA modification, the clinicopathological relevance of m6A alterations, the type and frequency of alterations and the multiple functions it regulates in different types of cancer are discussed.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jie Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Dexiang Feng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Qikai Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Baorui Yuan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
669
|
Guo G, Wang H, Shi X, Ye L, Yan K, Chen Z, Zhang H, Jin Z, Xue X. Disease Activity-Associated Alteration of mRNA m 5 C Methylation in CD4 + T Cells of Systemic Lupus Erythematosus. Front Cell Dev Biol 2020; 8:430. [PMID: 32582707 PMCID: PMC7291606 DOI: 10.3389/fcell.2020.00430] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
Epigenetic processes including RNA methylation, post-translational modifications, and non-coding RNA expression have been associated with the heritable risks of systemic lupus erythematosus (SLE). In this study, we aimed to explore the dysregulated expression of 5-methylcytosine (m5C) in CD4+ T cells from patients with SLE and the potential function of affected mRNAs in SLE pathogenesis. mRNA methylation profiles were ascertained through chromatography-coupled triple quadrupole mass spectrometry in CD4+ T cells from two pools of patients with SLE exhibiting stable activity, two pools with moderate-to-major activity, and two pools of healthy controls (HCs). Simultaneously, mRNA methylation profiles and expression profiling were performed using RNA-Bis-Seq and RNA-Seq, respectively. Integrated mRNA methylation and mRNA expression bioinformatics analysis was comprehensively performed. mRNA methyltransferase NSUN2 expression was validated in CD4+ T cells from 27 patients with SLE and 28 HCs using real-time polymerase chain reaction and western blot analyses. Hypomethylated-mRNA profiles of NSUN2-knockdown HeLa cells and of CD4+ T cells of patients with SLE were jointly analyzed using bioinformatics. Eleven methylation modifications (including elevated Am, 3′OMeA, m1A, and m6A and decreased Ψ, m3C, m1G, m5U, and t6A levels) were detected in CD4+ T cells of patients with SLE. Additionally, decreased m5C levels, albeit increased number of m5C-containing mRNAs, were observed in CD4+ T cells of patients with SLE compared with that in CD4+ T cells of HCs. m5C site distribution in mRNA transcripts was highly conserved and enriched in mRNA translation initiation sites. In particular, hypermethylated m5C or/and significantly up-regulated genes in SLE were significantly involved in immune-related and inflammatory pathways, including immune system, cytokine signaling pathway, and interferon signaling. Compared to that in HCs, NSUN2 expression was significantly lower in SLE CD4+ T cells. Notably, hypomethylated m5C genes in SLE and in NSUN2-knockdown HeLa cells revealed linkage between eukaryotic translation elongation and termination, and mRNA metabolism. Our study identified novel aberrant m5C mRNAs relevant to critical immune pathways in CD4+ T cells from patients with SLE. These data provide valuable perspectives for future studies of the multifunctionality and post-transcriptional significance of mRNA m5C modification in SLE.
Collapse
Affiliation(s)
- Gangqiang Guo
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huijing Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Shi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Gynecologic Oncology, Wenzhou Central Hospital, Wenzhou, China
| | - Kejing Yan
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zibing Jin
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
670
|
Zhou X, Han J, Zhen X, Liu Y, Cui Z, Yue Z, Ding L, Xu S. Analysis of Genetic Alteration Signatures and Prognostic Values of m6A Regulatory Genes in Head and Neck Squamous Cell Carcinoma. Front Oncol 2020; 10:718. [PMID: 32547941 PMCID: PMC7273190 DOI: 10.3389/fonc.2020.00718] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Genetic alteration involving N6-methyladenosine (m6A) regulatory genes is a frequent characteristic of multiple tumors. Nevertheless, little is known regarding their genetic alteration signatures and prognostic values in head and neck squamous cell carcinoma (HNSCC). In this study, RNA sequence profiles and copy number variation (CNV) data of 506 HNSCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Correlation analysis involving alteration of m6A regulatory genes, clinicopathological characteristics, and patient survival was performed using R language. The results suggest that alteration of m6A regulatory genes was correlated with clinical staging. Patients with high expression of ALKBH5, FTO, METTL14, WTAP, YTHDC1, YTHDF1, and YTHDF2 had poor overall survival (OS) than those with low expression. Univariate and multivariate Cox regression analyses showed that ALKBH5 and YTHDC2 were independent risk factors for OS. However, patients with high YTHDC2 expression had better OS. Moreover, according to machine learning results, YTHDC2 was found to be the most important gene among the 10 m6A regulators. Additionally, high expression of YTHDC2 was correlated with activation of apoptosis and ubiquitin-mediated proteolysis. Here, we identified alterations to m6A regulatory genes in HNSCC for the first time and found that seven m6A regulators were associated with poor prognosis, especially ALKBH5, whereas YTHDC2 was associated with better prognosis. These m6A-related regulators could act as novel prognostic biomarkers for HNSCC. Our findings provide clues for understanding RNA epigenetic modifications in HNSCC.
Collapse
Affiliation(s)
- Xuanchen Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Han
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaoyue Zhen
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yiqing Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaoyang Cui
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiyong Yue
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Ding
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
671
|
Wang Q, Geng W, Guo H, Wang Z, Xu K, Chen C, Wang S. Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. J Hematol Oncol 2020; 13:57. [PMID: 32429972 PMCID: PMC7238608 DOI: 10.1186/s13045-020-00895-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancer, the most common solid tumor, has a poor prognosis. With the development of high-throughput sequencing and detection technology, recent studies have suggested that many chemical modifications of human RNA are involved in the development of human diseases, including cancer. m6A, the most abundant modification, was revealed to participate in a series of aspects of cancer progression. Recent evidence has shown that methyltransferase-like 3 (METTL3), the first identified and a critical methyltransferase, catalyzes m6A methylation on mRNA or non-coding RNA in mammals, affecting RNA metabolism. Abnormal m6A levels caused by METTL3 have been reported to be involved in different aspects of cancer development, including proliferation, apoptosis, and metastasis. In this review, we will shed light on recent findings regarding the biological function of METTL3 in gastrointestinal cancer and discuss future research directions and potential clinical applications of METTL3 for gastrointestinal cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| | - Wei Geng
- The Affiliated Yancheng No. 1 People's Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Kaiyue Xu
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Chen
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China. .,Center for Public Health Research, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
672
|
Xiang S, Liang X, Yin S, Liu J, Xiang Z. N6-methyladenosine methyltransferase METTL3 promotes colorectal cancer cell proliferation through enhancing MYC expression. Am J Transl Res 2020; 12:1789-1806. [PMID: 32509177 PMCID: PMC7270026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
N6-methyladenosine (m6A) modification is the most common chemical modification in eukaryotic mRNA, which plays a crucial role in regulating mRNA stability, splicing, and translation. METTL3 (methyltransferase like 3), a major RNA N6-adenosine methyltransferase, has been reported to participate in the progression of many cancers. However, its function in colorectal cancer (CRC) remains largely unknown. In this study, we revealed that METTL3 played an oncogenic role in CRC. We found that METTL3 was significantly upregulated in CRC, using quantitative real-time PCR, western blotting, and immunohistochemical staining, and upregulation of METTL3 was associated with clinicopathological features. Functionally, knockdown of METTL3 suppressed CRC cell proliferation in vitro and in vivo. In contrast, overexpression of METTL3 promoted the growth of CRC cells both in vitro and in vivo. Mechanistically, METTL3 exerted its function through enhancing MYC expression, at least partially in an m6A-IGF2BP1-dependent manner. In conclusion, we found that METTL3 was frequently upregulated in human CRC and promoted CRC progression though enhancing MYC expression. This provided new insights into the molecular mechanisms underlying the development of colorectal cancer.
Collapse
Affiliation(s)
- Song Xiang
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Xiaolong Liang
- First People’s Hospital of Zunyi/Third Affiliated Hospital of Zunyi Medical UniversityZunyi, China
| | - Shuo Yin
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Jian Liu
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Zheng Xiang
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| |
Collapse
|
673
|
Chen J, Yu K, Zhong G, Shen W. Identification of a m 6A RNA methylation regulators-based signature for predicting the prognosis of clear cell renal carcinoma. Cancer Cell Int 2020; 20:157. [PMID: 32419773 PMCID: PMC7206820 DOI: 10.1186/s12935-020-01238-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background The mortality rate of clear cell renal cell carcinoma (ccRCC) remains high. The aim of this study was to identify novel prognostic biomarkers by using m6A RNA methylation regulators capable of improving the risk-stratification criteria of survival for ccRCC patients. Methods The gene expression data of 16 m6A methylation regulators and its relevant clinical information were extracted from The Cancer Genome Atlas (TCGA) database. The expression pattern of these m6A methylation regulators were evaluated. Consensus clustering analysis was conducted to identify clusters of ccRCC patients with different prognosis. Univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis were performed to construct multiple-gene risk signature. A survival analysis was carried out to determine the independent prognostic significance of the signature. Results Five m6A-related genes (ZC3H13, METTL14, YTHDF2, YTHDF3 and HNRNPA2B1) showed significantly downregulated in tumor tissue, while seven regulators (YTHDC2, FTO, WTAP, METTL3, ALKBH5, RBM15 and KIAA1429) was remarkably upregulated in ccRCC. Consensus clustering analysis identified two clusters of ccRCC with significant differences in overall survival (OS) and tumor stage between them. We also constructed a two-gene signature, METTL3 and METTL14, serving as an independent prognostic indicator for distinguishing ccRCC patients with different prognosis both in training, validation and our own clinical datasets. The receiver operator characteristic (ROC) curve indicated the area under the curve (AUC) in these three datasets were 0.721, 0.684 and 0.828, respectively, demonstrated that the prognostic signature had a good prediction efficiency. Conclusions m6A methylation regulators exert as potential biomarkers for prognostic stratification of ccRCC patients and may assist clinicians achieving individualized treatment for this patient population.
Collapse
Affiliation(s)
- Jing Chen
- 1Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province China
| | - Kun Yu
- 2Department of Breast and Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Guansheng Zhong
- 3Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310013 Zhejiang People's Republic of China
| | - Wei Shen
- 4Department of Nephrology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014 Zhejiang People's Republic of China
| |
Collapse
|
674
|
Huang H, Bai Y, Lu X, Xu Y, Zhao H, Sang X. N6-methyladenosine associated prognostic model in hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:633. [PMID: 32566570 PMCID: PMC7290648 DOI: 10.21037/atm-20-2894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background N6-methyladenosine (m6A), the most internal mRNA modification, is involved in various cancers. However, the function of m6A in hepatocellular carcinoma (HCC) is still not well explored. Here, we aimed to develop a prognostic model consist of m6A associated genes in HCC. Methods The mRNA expression profiles and the corresponding clinical information from the patients with HCC were obtained from The Cancer Genome Atlas (TCGA) database, m6A differentially expressed genes (DEGs) were screened by univariate, Lasso and multivariate Cox regression analyses to develop the prognostic model. The differentially expressed m6A genes in HCC tissues were verified by quantitative reverse transcription PCR (qRT-PCR). Results The DEGs were obtained between the HCC (n=374) and normal tissues (n=50). Nine m6A genes were correlated with the prognosis, and five of them (KIAA1429, METTL3, YTHDF1, YTHDF2, ZC3H13) were included in the prognostic model by Lasso regression analyses. Four genes (KIAA1429, METTL3, YTHDF1, YTHDF2) were proved significantly high expression in our ten pairs of matched HCC and normal tissues by PCR. The HCC patients were divided into two groups (high- and low-risk) according to the risk score. The high-risk group associated with a significant poor prognosis (P=1.72×10–4). The time-dependent receiver operating characteristic (ROC) curve analysis confirmed the good performance of this prognostic model (AUC =0.617). After univariate [P<0.001, 1.213 (1.136−1.295)] and multivariate Cox regression analyses [P<0.001, 1.198 (1.115−1.288)] by combined with other clinical factors, this prognostic model was identified as an independent prognostic factor of HCC patients. Conclusions The m6A genes were differentially expressed between HCC and normal tissues, and associated with the prognosis of HCC.
Collapse
Affiliation(s)
- Hanchun Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yiyao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
675
|
Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer 2020; 19:79. [PMID: 32340605 PMCID: PMC7184703 DOI: 10.1186/s12943-020-01197-3] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Epigenetics is dynamic and heritable modifications to the genome that occur independently of DNA sequence. It requires interactions cohesively with various enzymes and other molecular components. Aberrant epigenetic alterations can lead to inappropriate onset of genetic expressions and promote tumorigenesis. As the epigenetic modifiers are susceptible to extrinsic factors and reversible, they are becoming promising targets in multiple cancer therapies. Recently, various epi-drugs have been developed and implicated in clinical use. The use of epi-drugs alone, or in combination with chemotherapy or immunotherapy, has shown compelling outcomes, including augmentation of anti-tumoral effects, overcoming drug resistance, and activation of host immune response.
Collapse
Affiliation(s)
- Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China.
| |
Collapse
|
676
|
Tang R, Long T, Lui KO, Chen Y, Huang ZP. A Roadmap for Fixing the Heart: RNA Regulatory Networks in Cardiac Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:673-686. [PMID: 32380417 PMCID: PMC7210385 DOI: 10.1016/j.omtn.2020.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/16/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
With the continuous development of RNA biology and massive genome-wide transcriptome analysis, more and more RNA molecules and their functions have been explored in the last decade. Increasing evidence has demonstrated that RNA-related regulatory networks play an important role in a variety of human diseases, including cardiovascular diseases. In this review, we focus on RNA regulatory networks in heart disease, most of which are devastating conditions with no known cure. We systemically summarize recent discoveries of important new components of RNA regulatory networks, including microRNAs, long non-coding RNAs, and circular RNAs, as well as multiple regulators that affect the activity of these networks in cardiac physiology and pathology. In addition, this review covers emerging micropeptides, which represent short open reading frames (sORFs) in long non-coding RNA transcripts that may modulate cardiac physiology. Based on the current knowledge of RNA regulatory networks, we think that ongoing discoveries will not only provide us a better understanding of the molecular mechanisms that underlie heart disease, but will also identify novel biomarkers and therapeutic targets for the diagnosis and treatment of cardiac disease.
Collapse
Affiliation(s)
- Rong Tang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Long
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Yili Chen
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
677
|
RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57 Kip2 by an m 5C-dependent manner. Cell Death Dis 2020; 11:270. [PMID: 32332707 PMCID: PMC7181747 DOI: 10.1038/s41419-020-2487-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023]
Abstract
The RNA methyltransferase NSUN2 has been involved in the cell proliferation and senescence, and is upregulated in various types of cancers. However, the role and potential mechanism of NSUN2 in gastric cancer remains to be determined. Our study showed that NSUN2 was significantly upregulated in gastric cancers, compared to adjacent normal gastric tissues. Moreover, NSUN2 could promote gastric cancer cell proliferation both in vitro and in vivo. Further study demonstrated that CDKN1C (p57Kip2) was the potential downstream gene of regulated by NSUN2 in gastric cancer. NSUN2 could promote gastric cancer cell proliferation through repressing p57Kip2 in an m5C-dependent manner. Our findings suggested that NSUN2 acted as an oncogene through promoting gastric cancer development by repressing p57Kip2 in an m5C-dependent manner, which may provide a novel therapeutic target against gastric cancer.
Collapse
|
678
|
Han Q, Yang J, Yang H, Li C, Li J, Cao Y. KIAA1429 promotes osteosarcoma progression by promoting stem cell properties and is regulated by miR-143-3p. Cell Cycle 2020; 19:1172-1185. [PMID: 32286148 DOI: 10.1080/15384101.2020.1749465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Background: Osteosarcoma (OS) is the most common primary bone malignancy, it has a dismal prognosis and mainly affects the children and adolescents. Previous reports have demonstrated that aberrantly expressed KIAA1429 plays crucial roles in the carcinogenesis of several cancers, but its expression status and functional role in the progression of OS have not previously been investigated.Methods: Immunohistochemistry (IHC) and western blotting were conducted to determine KIAA1429 expression status in OS. The relationship between KIAA1429 expression and OS prognosis was analyzed based on public database and tissue microarray (TMA). Cell proliferation ability was evaluated by CCK8, EdU and colony formation assays, and Transwell and wound healing potential were also assessed in vitro. Xenograft nude mouse model was performed to elucidate the tumor growth in vivo. The main specific miRNA targeting KIAA1429 in OS cells was identified.Results: KIAA1429 expression is markedly overexpressed in OS, and elevated KIAA1429 expression is significantly associated with an unfavorable prognosis. Functional investigations demonstrate that KIAA1429 silencing could attenuate proliferation, migration and invasion abilities of OS in vitro, as well as tumor growth in vivo. Mechanistically, microRNA-143-3p (miR-143-3p) was identified as the crucial specific mediator of KIAA1429 expression in OS cells. Furthermore, restoring KIAA1429 expression could partially reverse miR-143-3p mediated tumor-inhibition effects. Additionally, we found that knockdown of KIAA1429 or ectopic overexpression of miR-143-3p could repress stemness cell properties and the inhibition could be partly abolished by overexpression of KIAA1429.Conclusions: In summary, this study establishes miR-143-3p/KIAA1429 axis as promising therapeutic target for OS patients.
Collapse
Affiliation(s)
- Qicai Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Yang
- Department of Bone and Soft Tissue, Zhengzhou Central Affiliated Hospital to Zhengzhou University, Zhengzhou, China
| | - Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Li
- Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Li
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Cao
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
679
|
Ban Y, Tan P, Cai J, Li J, Hu M, Zhou Y, Mei Y, Tan Y, Li X, Zeng Z, Xiong W, Li G, Li X, Yi M, Xiang B. LNCAROD is stabilized by m6A methylation and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell carcinoma. Mol Oncol 2020; 14:1282-1296. [PMID: 32216017 PMCID: PMC7266281 DOI: 10.1002/1878-0261.12676] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) constitute approximately 4% of all cancers worldwide. In this study, we analyzed the expression profile of the long noncoding RNA (lncRNA) of 502 HNSCC patients from The Cancer Genome Atlas database. Among the differentially expressed lncRNAs between HNSCC and normal samples, LNCAROD is overexpressed in HNSCC and associated with advanced T stage and shortened overall survival. The N6‐methyladenosine (m6A) modification mediated by METTL3 and METTL14 enhanced the stability of LNCAROD in HNSCC cells. Depletion of LNCAROD attenuated cell proliferation, mobility in vitro, and tumorigenicity in vivo, whereas overexpression of LNCAROD exerted opposite effects. LNCAROD is mainly distributed in nucleus and binds with YBX1 and HSPA1A proteins. Silencing either YBX1 or HSPA1A did not affect the level of LNCAROD. However, loss of LNCAROD led to shortened half‐life of YBX1 protein. Mechanistically, LNCAROD protected YBX1 from proteasomal degradation by facilitating YBX1‐HSPA1A protein–protein interaction. Depletion of HSPA1A in LNCAROD‐overexpressing cells resulted in accelerated proteasomal degradation of YBX1 protein. Moreover, re‐expression of Flag‐YBX1 in LNCAROD‐silenced cells rescued malignant behavior of HNSCC cells. Our study indicates that LNCAROD is an oncogenic lncRNA and dysregulation of m6A modification might account for aberrant expression of LNCAROD in HNSCC. LNCAROD acts as a scaffold for the interaction between YBX1 and HSPA1A, preventing proteasomal degradation of YBX1 in HNSCC cells.
Collapse
Affiliation(s)
- Yuanyuan Ban
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Pingqing Tan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Cai
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Junjun Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Meng Hu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ying Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan Mei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mei Yi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
680
|
Yang X, Liu M, Li M, Zhang S, Hiju H, Sun J, Mao Z, Zheng M, Feng B. Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Mol Cancer 2020; 19:64. [PMID: 32209098 PMCID: PMC7092482 DOI: 10.1186/s12943-020-01159-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Empowered by recent advances of sequencing techniques, transcriptome-wide studies have characterized over 150 different types of post-transcriptional chemical modifications of RNA, ranging from methylations of single base to complex installing reactions catalyzed by coordinated actions of multiple modification enzymes. These modifications have been shown to regulate the function and fate of RNAs and further affecting various cellular events. However, the current understanding of their biological functions in human diseases, especially in cancers, is still limited. Once regarded as “junk” or “noise” of the transcriptome, noncoding RNA (ncRNA) has been proved to be involved in a plethora of cellular signaling pathways especially those regulating cancer initiation and progression. Accumulating evidence has demonstrated that ncRNAs manipulate multiple phenotypes of cancer cells including proliferation, metastasis and chemoresistance and may become promising biomarkers and targets for diagnosis and treatment of cancer. Importantly, recent studies have mapped plenty of modified residues in ncRNA transcripts, indicating the existence of epigenetic modulation of ncRNAs and the potential effects of RNA modulation on cancer progression. In this review, we briefly introduced the characteristics of several main epigenetic marks on ncRNAs and summarized their consecutive effects on cancer cells. We found that ncRNAs could act both as regulators and targets of epigenetic enzymes, which indicated a cross-regulating network in cancer cells and unveil a novel dimension of cancer biology. Moreover, by epitomizing the knowledge of RNA epigenetics, our work may pave the way for the design of patient-tailored therapeutics of cancers.
Collapse
Affiliation(s)
- Xiao Yang
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Ming Liu
- Department of genecology and obstetrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Mengmeng Li
- Shanghai tenth People's Hospital, Medical School of Tongji University, Shanghai, 200205, China
| | - Sen Zhang
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Hong Hiju
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Jing Sun
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Zhihai Mao
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| | - Minhua Zheng
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| | - Bo Feng
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| |
Collapse
|
681
|
Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. m 6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Mol Cancer 2020; 19:53. [PMID: 32164750 PMCID: PMC7066851 DOI: 10.1186/s12943-020-01170-0] [Citation(s) in RCA: 676] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Background The epigenetic regulation of immune response has been demonstrated in recent studies. Nonetheless, potential roles of RNA N6-methyladenosine (m6A) modification in tumor microenvironment (TME) cell infiltration remain unknown. Methods We comprehensively evaluated the m6A modification patterns of 1938 gastric cancer samples based on 21 m6A regulators, and systematically correlated these modification patterns with TME cell-infiltrating characteristics. The m6Ascore was constructed to quantify m6A modification patterns of individual tumors using principal component analysis algorithms. Results Three distinct m6A modification patterns were determined. The TME cell-infiltrating characteristics under these three patterns were highly consistent with the three immune phenotypes of tumors including immune-excluded, immune-inflamed and immune-desert phenotypes. We demonstrated the evaluation of m6A modification patterns within individual tumors could predict stages of tumor inflammation, subtypes, TME stromal activity, genetic variation, and patient prognosis. Low m6Ascore, characterized by increased mutation burden and activation of immunity, indicated an inflamed TME phenotype, with 69.4% 5-year survival. Activation of stroma and lack of effective immune infiltration were observed in the high m6Ascore subtype, indicating a non-inflamed and immune-exclusion TME phenotype, with poorer survival. Low m6Ascore was also linked to increased neoantigen load and enhanced response to anti-PD-1/L1 immunotherapy. Two immunotherapy cohorts confirmed patients with lower m6Ascore demonstrated significant therapeutic advantages and clinical benefits. Conclusions This work revealed the m6A modification played a nonnegligible role in formation of TME diversity and complexity. Evaluating the m6A modification pattern of individual tumor will contribute to enhancing our cognition of TME infiltration characterization and guiding more effective immunotherapy strategies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Bo Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Qiong Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Ben Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Defeng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Lei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
682
|
Liu L, Wang Y, Wu J, Liu J, Qin Z, Fan H. N 6-Methyladenosine: A Potential Breakthrough for Human Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:804-813. [PMID: 31958696 PMCID: PMC7005339 DOI: 10.1016/j.omtn.2019.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Among more than 100 types of identified RNA modification, N6-methyladenosine (m6A) modification is the predominant mRNA modification, which regulates RNA splicing, translocation, stability, and translation. m6A modification plays critical roles in the growth, differentiation, and metabolism of cells. As a dynamic and reversible modification, m6A is catalyzed by "writers" (RNA methyltransferases), removed by "erasers" (demethylases), and interacts with "readers" (m6A-binding proteins). With more advanced technology applied to research, the molecular mechanisms of RNA methyltransferase, demethylase, and m6A-binding protein have been revealed. An increasing number of studies have implicated the correlation between m6A modification and human cancers. In this review, we summarize that the occurrence and development of various human cancers are associated with aberrant m6A modification. We also discuss the progress in research related to m6A modification, providing novel therapeutic insight and potential breakthrough in anticancer therapy.
Collapse
Affiliation(s)
- Lina Liu
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, Tianjin 300041, P.R. China
| | - Yuwei Wang
- School of Stomatology, Qingdao University, Qingdao 266071, P.R. China
| | - Jie Wu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jingwen Liu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China.
| | - Zongchang Qin
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, Tianjin 300041, P.R. China.
| | - Hong Fan
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, Tianjin 300041, P.R. China.
| |
Collapse
|
683
|
Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 2020; 52:400-408. [PMID: 32210357 PMCID: PMC7156397 DOI: 10.1038/s12276-020-0407-z] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.
Collapse
Affiliation(s)
- Sung Ho Boo
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea.
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
684
|
Li E, Wei B, Wang X, Kang R. METTL3 enhances cell adhesion through stabilizing integrin β1 mRNA via an m6A-HuR-dependent mechanism in prostatic carcinoma. Am J Cancer Res 2020; 10:1012-1025. [PMID: 32266107 PMCID: PMC7136910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023] Open
Abstract
Bone metastasis is the major cause of morbidity and mortality in patients with prostate cancer (PCa). However, the underlying mechanism of bone-specific metastasis remain vague. Recently, with the deep research of N6-methyladenine (m6A) mRNA methylation, many studies directly focus on the role of m6A modification in human diseases, especially in cancers. Here we found that methyltransferase-like 3 (METTL3) expression is higher in PCa than in normal prostate tissues, especially in PCa with bone metastasis. High METTL3 expression was positively correlated with advanced progression and a poor prognosis of PCa. Functional assays demonstrated that METTL3 regulates the expression of Integrin β1 (ITGB1) through m6A-HuR-dependent mechanism, which affects the binding of ITGB1 to Collagen I and tumor cell motility, so as to promote the bone metastasis of PCa. The findings of this study reveal a novel mechanism of PCa osteotropism and suggest METTL3 as a therapeutic target for PCa bone metastasis.
Collapse
Affiliation(s)
- Ermao Li
- Research Lab for Clinical & Translational Medicine, Medical school, University of South ChinaHengyang, Hunan, China
| | - Bo Wei
- Research Lab for Clinical & Translational Medicine, Medical school, University of South ChinaHengyang, Hunan, China
| | - Xiaolan Wang
- Reproductive Center of Medicine, The First Affiliated Hospital of University of South ChinaHengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital of University of South ChinaHengyang, Hunan, China
| |
Collapse
|
685
|
Geng Y, Guan R, Hong W, Huang B, Liu P, Guo X, Hu S, Yu M, Hou B. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:387. [PMID: 32355831 PMCID: PMC7186697 DOI: 10.21037/atm.2020.03.98] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification holds an important position in tumorigenesis and metastasis because it can change gene expression and even function in multiple levels including RNA splicing, stability, translocation and translation. In present study, we aim to conducted comprehensive investigation on m6A RNA methylation regulators and m6A-related genes in pancreatic cancer and their association with survival time. METHODS Based on Univariate Cox regression analysis, protein-protein interaction analysis, LASSO Cox regression, a risk prognostic model, STRING, Spearman and consensus clustering analysis, data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database was used to analyze 15 m6A RNA methylation regulators that were widely reported and 1,393 m6A-related genes in m6Avar. RESULTS We found that 283 candidate m6A RNA methylation-related genes and 4 m6A RNA methylation regulatory factors, including RNA binding motif protein 15 (RBM15), methyltransferase like 14 (METTL14), fat mass and obesity-associated protein (FTO), and α-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5), differed significantly among different stages of the American Joint Committee on Cancer (AJCC) staging system. Protein-protein interaction analysis indicated epidermal growth factor receptor (EGFR), plectin-1 (PLEC), BLM RecQ like helicase (BLM), and polo like kinase 1 (PLK1) were closely related to other genes and could be considered as hub genes in the network. The results of LASSO Cox regression and the risk prognostic model indicated that AJCC stage, stage T and N, KRAS mutation status and x8q23.3 CNV fragment mutation differed significantly between the high-risk and the low-risk subgroups. The AUCs of 1 to 5 years after surgery were all more than 0.7 and increased year by year. Finally, we found KRAS mutation status and AJCC stage differed significantly among these groups after TCGA samples divided into subgroups with k=7. Moreover, we identified four m6A RNA methylation related genes expressed significantly differently among these seven subgroups, including collagen type VII alpha 1 chain (COL7A1), branched chain amino acid transaminase 1 (BCAT1), zinc finger protein 596 (ZNF596), and PLK1. CONCLUSIONS Our study systematically analyzed the m6A RNA methylation related genes, including expression, protein-protein interaction, potential function, and prognostic value and provides important clues to further research on the function of RNA m6A methylation and its related genes in pancreatic cancer.
Collapse
Affiliation(s)
- Yan Geng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Shunde Hospital, Southern Medical University, The First People’s Hospital of Shunde, Lunjiao, Shunde District, Foshan 528308, China
| | - Renguo Guan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Bowen Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Peizhen Liu
- Department of Nursing, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaohua Guo
- Department of General Surgery, Yingde People’s Hospital, Qingyuan 513000, China
| | - Shixiong Hu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Baohua Hou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
686
|
Yang J, Han Q, Li C, Yang H, Chen X, Wang X. Circular RNA circ_0001105 Inhibits Progression and Metastasis of Osteosarcoma by Sponging miR-766 and Activating YTHDF2 Expression. Onco Targets Ther 2020; 13:1723-1736. [PMID: 32161468 PMCID: PMC7051899 DOI: 10.2147/ott.s234668] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play vital roles in the modulation of tumor progression. This study explored the biological functions of circ_0001105 in the progression of osteosarcoma (OS). METHODS qRT-PCR and in situ hybridization (ISH) were performed to detect the expression status of circ_0001105 in cells and tissues. Bioinformatics analysis, dual-luciferase reporter gene assay, Western blot and qRT-PCR were performed to determine the relationships among RNAs. The CCK-8, colony formation, EdU, transwell and wound healing assays were conducted to evaluate the cell growth, invasion and migration of OS cells. Tumor xenografts were established to investigate the effects of circ_0001105 on tumor growth in vivo. Lastly, the protein expression of YTHDF2 in OS tissues was measured using immunohistochemical staining. RESULTS Data showed that circ_0001105 and YTHDF2 were significantly lower, while miR-766 was higher in OS tissues compared to adjacent tissues. Low expression of circ_0001105 or YTHDF2 was associated with poor survival of OS patients as demonstrated by the Kaplan-Meier analysis. In addition, miR-766 was identified as a direct binding target of circ_0001105 and YTHDF2. Ectopic overexpression of circ_0001105 or YTHDF2 significantly suppressed OS cell viability and invasion through regulating miR-766. Last, overexpression of circ_0001105 significantly attenuated in vivo tumor growth. CONCLUSION Our findings suggest that circ_0001105 inhibits OS progression, at least partially, by regulating miR-766/YTHDF2 signaling pathway.
Collapse
Affiliation(s)
- Jie Yang
- Department of Orthopedics, Zhengzhou Central Affiliated Hospital to Zhengzhou University, Zhengzhou450052, People’s Republic of China
| | - Qicai Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, People’s Republic of China
| | - Chao Li
- Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou450052, People’s Republic of China
| | - Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, People’s Republic of China
| | - Xiaolong Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, People’s Republic of China
| | - Xiaohu Wang
- Department of Orthopedics, Zhengzhou Central Affiliated Hospital to Zhengzhou University, Zhengzhou450052, People’s Republic of China
| |
Collapse
|
687
|
Zhang Y, Liu X, Liu L, Li J, Hu Q, Sun R. Expression and Prognostic Significance of m6A-Related Genes in Lung Adenocarcinoma. Med Sci Monit 2020; 26:e919644. [PMID: 32086933 PMCID: PMC7049251 DOI: 10.12659/msm.919644] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of lung malignancy and is the leading cause of cancer-related mortalities worldwide. N6-methyladenosine (m6A), the most prevalent internal modification of mRNAs, plays crucial roles in regulating mRNA splicing, exportation, localization, translation, and stability. This study assessed the expression patterns and prognostic value of m6A-related genes in LUAD. Material/Methods The expression data of 509 LUAD samples and 20 normal samples were obtained from the Cancer Genome Atlas (TCGA) to determine the mRNA expression levels of m6A-related genomic targets. mRNA expression of 6 LUAD datasets was obtained from the Gene Expression Omnibus (GEO) repository. Subsequently, the Human Protein Atlas (HPA) and tissue microarray (TMA) cohort were used to verify the expression pattern of m6A-related genes at mRNA and protein level. The t test was used to analyze correlations between m6A-related genes and clinical features. Finally, survival analysis was performed to assess the prognostic value of m6A-related genes in LUAD patients. Results We found that KIAA1429, RBM15, METTL3, HNRNPC, HNRNPA2B1, YTHDF1, and YTHDF2 were upregulated in TCGA-LUAD databases. The analysis of 7 GEO databases was consistent with the TCGA. YTHDF1 was overexpressed in LUAD patients and YTHDF2 was overexpressed in the great majority of cases. METTL3, YTHDF1, and YTHDF2 were associated with better OS and RFS. Conclusions m6A-related genes were differentially expressed in LUAD compared to matched normal patients. The m6A-related genes METTL3, YTHDF1, and YTHDF2 could serve as novel biomarkers for the prognosis of LUAD.
Collapse
Affiliation(s)
- Yingying Zhang
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xin Liu
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Liwen Liu
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Jianhao Li
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Qiuyue Hu
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Ranran Sun
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
688
|
Li Y, Wang J, Huang C, Shen M, Zhan H, Xu K. RNA N6-methyladenosine: a promising molecular target in metabolic diseases. Cell Biosci 2020; 10:19. [PMID: 32110378 PMCID: PMC7035649 DOI: 10.1186/s13578-020-00385-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine is a prevalent and abundant transcriptome modification, and its methylation regulates the various aspects of RNAs, including transcription, translation, processing and metabolism. The methylation of N6-methyladenosine is highly associated with numerous cellular processes, which plays important roles in the development of physiological process and diseases. The high prevalence of metabolic diseases poses a serious threat to human health, but its pathological mechanisms remain poorly understood. Recent studies have reported that the progression of metabolic diseases is closely related to the expression of RNA N6-methyladenosine modification. In this review, we aim to summarize the biological and clinical significance of RNA N6-methyladenosine modification in metabolic diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular diseases, osteoporosis and immune-related metabolic diseases.
Collapse
Affiliation(s)
- Yan Li
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Jiawen Wang
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Chunyan Huang
- Houjie Hospital of Dongguan, Dongguan, 523945 Guangdong China
| | - Meng Shen
- Chengdu Tumor Hospital, Chengdu, 610041 Sichuan China
| | - Huakui Zhan
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Keyang Xu
- 4Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310023 Zhejiang China
| |
Collapse
|
689
|
Liu Y, Guo X, Zhao M, Ao H, Leng X, Liu M, Wu C, Ma J, Zhu J. Contributions and prognostic values of m 6 A RNA methylation regulators in non-small-cell lung cancer. J Cell Physiol 2020; 235:6043-6057. [PMID: 32052446 DOI: 10.1002/jcp.29531] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022]
Abstract
N6-methyladenosine (m6 A) RNA modification can alter gene expression and function by regulating RNA splicing, stability, translocation, and translation. Deregulation of m6 A has been involved in various types of cancer. However, its implications in non-small-cell lung cancer (NSCLC) are mostly unknown. This posttranscriptional modification is dynamically and reversibly mediated by different regulators, including methyltransferase, demethylases, and m6 A binding proteins. In this study, we comprehensively investigated the contributions and prognostic values of 13 common m6 A RNA modification regulators using The Cancer Genome Atlas database. We found that the expression levels of most of the studied genes were significantly altered in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Using consensus clustering, the gene-expression profiles of 13 m6 A regulators could classify patients with LUAD into two subgroups with significantly distinct clinical outcomes, but not the LUSC cohort or the combination of the two cohorts. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analysis were applied to explore differential signaling pathways and cellular processes between the two LUAD subgroups. Moreover, we found that this gene-expression signature could better predict prognosis in the late-stage (III + IV) than in the early-stage (I + II) LUAD. Finally, we developed an optimal prognostic gene signature by using the least absolute shrinkage and selection operator Cox regression algorithm and compute risk score. In conclusion, our study unveiled the implication of m6 A RNA modification regulators in NSCLC and identified the m6 A gene expression classifiers for predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.,Department of Oncology, Harbin Medical University Cancer hospital, Harbin, Heilongjiang, China
| | - Xiuchen Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Meng Zhao
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Haijiao Ao
- Department of Oncology, Harbin Medical University Cancer hospital, Harbin, Heilongjiang, China
| | - Xue Leng
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Mingdong Liu
- Department of Oncology, Harbin Medical University Cancer hospital, Harbin, Heilongjiang, China
| | - Caixia Wu
- Department of Oncology, Harbin Medical University Cancer hospital, Harbin, Heilongjiang, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
690
|
Miao R, Dai CC, Mei L, Xu J, Sun SW, Xing YL, Wu LS, Wang MH, Wei JF. KIAA1429 regulates cell proliferation by targeting c-Jun messenger RNA directly in gastric cancer. J Cell Physiol 2020; 235:7420-7432. [PMID: 32052427 DOI: 10.1002/jcp.29645] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
N6-methyladenosine (m6A) modification regulatory proteins are involved in the development of many types of cancer. KIAA1429 serves as a scaffold in bridging the catalytic core components of the m6A methyltransferase complex. The role of KIAA1429 in gastric cancer and its related mechanism has not been reported upon. The expression of KIAA1429 was detected in human gastric cancer tissues and cell lines by quantitative real-time polymerase chain reaction and western blot. The effects of KIAA1429 on gastric cancer proliferation were evaluated by cell counting kit assays, colony formation assays, flow cytometry assay, and in vivo experiments with nude mice. And messenger RNA (mRNA) high-throughput sequencing, RNA immunoprecipitation assay (RIP), luciferase assay, and a rescue experiment were used to identify the relationship between KIAA1429 and its specific targeted gene, c-Jun. We found that KIAA1429 was upregulated in gastric cancer tissues, and expressed lower in adjacent tissues. The upregulated KIAA1429 promoted proliferation and downregulated KIAA1429 was proved to inhibit proliferation of gastric cancer in vitro and in vivo. Then, we identified the potential KIAA1429 regulating gene as c-Jun by mRNAs high-throughput sequencing and RIP assay. By luciferase assay, we verified that KIAA1429 regulated the expression of c-Jun in an m6A-independent manner. Finally, the overexpression of c-Jun rescued the inhibition of proliferation caused by KIAA1429 knockdown in gastric cancer cells. KIAA1429 could act as an oncogene in gastric cancer by stabilizing c-Jun mRNA in an m6A-independent manner. This highlights the functional role for KIAA1429 as a potential prognostic biomarker and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Ran Miao
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Cong Dai
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Mei
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jun Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shan-Wen Sun
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun-Long Xing
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Li-Sheng Wu
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Ming-Hai Wang
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
691
|
Zhao W, Cui Y, Liu L, Ma X, Qi X, Wang Y, Liu Z, Ma S, Liu J, Wu J. METTL3 Facilitates Oral Squamous Cell Carcinoma Tumorigenesis by Enhancing c-Myc Stability via YTHDF1-Mediated m 6A Modification. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:1-12. [PMID: 32145676 PMCID: PMC7057159 DOI: 10.1016/j.omtn.2020.01.033] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
N6-Methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) that occurred on the N6 nitrogen of adenosine. However, the roles of m6A in oral squamous cell carcinoma (OSCC) are still elusive. Here, we investigate the function and mechanism of methyltransferase-like 3 (METTL3) in OSCC tumorigenesis. Clinically, METTL3 was significantly upregulated in tissue samples and correlated with the poor prognosis of OSCC patients. Functionally, loss and gain studies illustrated that METTL3 promoted the proliferation, invasion, and migration of OSCC cells in vitro, and METTL3 knockdown inhibited tumor growth in vivo. Mechanistically, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that METTL3 targeted the 3′ UTR (near to stop codon) of the c-Myc transcript to install the m6A modification, thereby enhancing its stability. Furthermore, results revealed that YTH N6-methyladenosine RNA binding protein 1 (YTH domain family, member 1 [YTHDF1]) mediated the m6A-increased stability of c-Myc mRNA catalyzed by METTL3. In conclusion, our findings herein identify that METTL3 accelerates the c-Myc stability via YTHDF1-mediated m6A modification, thereby giving rise to OSCC tumorigenesis.
Collapse
Affiliation(s)
- Wei Zhao
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yameng Cui
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lina Liu
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, Tianjin 300041, China
| | - Xiaozhou Ma
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoqian Qi
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Wang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Zihao Liu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Shiqing Ma
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Jingwen Liu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| | - Jie Wu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
692
|
N 6-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stability. Gene 2020; 731:144348. [PMID: 31927006 DOI: 10.1016/j.gene.2020.144348] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/22/2023]
Abstract
Mounting evidence demonstrates that N6-methyladenosine (m6A) play critical roles of m6A in the epigenetic regulation, especially for human cancer. The m6A modification is installed by methyltransferase and erased demethylases, leading to the significant modification for gene expression and cell fate. Here, we investigated the biological roles and mechanism of demethylase alkylation repair homolog protein 5 (ALKBH5) in the non-small cell lung cancer (NSCLC). Results revealed that ALKBH5 was ectopically up-regulated in the NSCLC tissue and cells, and closely correlated with the poor prognosis. Functionally, ALKBH5 promoted the proliferation and reduced apoptosis of NSCLC cells in vitro, and knockdown of ALKBH5 repressed the tumor growth in vivo. Mechanistically, RNA immunoprecipitation sequencing (RIP-Seq) revealed that ALKBH5 targeted the TIMP3. Moreover, ALKBH5 repressed TIMP3 mRNA stability and protein production. In conclusion, the present research confirmed the ALKBH5/TIMP3 pathway in the NSCLC oncogenesis progress, providing a novel insight for the epitranscriptome and potential therapeutic target for NSCLC.
Collapse
|
693
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
694
|
Xu H, Sun Y, You B, Huang CP, Ye D, Chang C. Androgen receptor reverses the oncometabolite R-2-hydroxyglutarate-induced prostate cancer cell invasion via suppressing the circRNA-51217/miRNA-646/TGFβ1/p-Smad2/3 signaling. Cancer Lett 2019; 472:151-164. [PMID: 31846689 DOI: 10.1016/j.canlet.2019.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
IDH1 (Isocitrate dehydrogenase 1) mutation occurring at codon 132 (R132) in prostate cancer (PCa) is considered as a classifier for a subgroup of PCas with accumulation of oncometabolite R-2HG (R-2-hydroxyglutarate). Here we found that adding R-2HG or the mutant IDH1 R132H could promote PCa cell invasion in androgen receptor (AR)-negative PC3 cells or suppressing the AR in AR-positive C4-2 cells. Mechanism dissection revealed that R-2HG could increase circRNA-51217 expression to sponge miRNA-646, which might then lead to increase TGFβ1 expression and thus induce TGFβ1/p-Smad2/3 signaling to increase PCa cell invasion. AR can suppress this R-2HG/circRNA-51217/miRNA-646/TGFβ1/p-Smad2/3 signaling-increased PCa cell invasion via repressing TGFβ1 transcription and inhibiting circRNA-51217 expression through regulating ADAR2 expression. Preclinical studies with an in vivo xenograft mouse model also revealed that PCa cells with the IDH1 R132H mutation have more invasive metastasis. This study demonstrates that IDH1 R132H mutation with increased oncometabolite R-2HG in PCa cells may play important roles to increase PCa cell invasion.
Collapse
Affiliation(s)
- Hua Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, The Wilmot Cancer Center, University of Rochester, Rochester, NY, USA, 14646
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, The Wilmot Cancer Center, University of Rochester, Rochester, NY, USA, 14646
| | - Bosen You
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, The Wilmot Cancer Center, University of Rochester, Rochester, NY, USA, 14646
| | - Chi-Ping Huang
- Sex Hormone Research Center and Department of Urology, China Medical University, Taichung, 404, Taiwan
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, The Wilmot Cancer Center, University of Rochester, Rochester, NY, USA, 14646; Sex Hormone Research Center and Department of Urology, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
695
|
Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M, Zheng X, Gu M. Multiple Functions and Mechanisms Underlying the Role of METTL3 in Human Cancers. Front Oncol 2019; 9:1403. [PMID: 31921660 PMCID: PMC6920212 DOI: 10.3389/fonc.2019.01403] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Methyltransferase-like 3 (METTL3), a predominantly catalytic enzyme in the N6-methyladenosine (m6A) methyltransferase system, is dysregulated and plays a dual role (oncogene or tumor suppressor) in different human cancers. The expression and pro- or anticancer role of METTL3 in different cancers remain controversial. METTL3 is implicated in many aspects of tumor progression, including tumorigenesis, proliferation, invasion, migration, cell cycle, differentiation, and viability. Most underlying mechanisms involve multiple signaling pathways that rely on m6A-dependent modification. However, METTL3 can also modulate the cancer process by directly promoting the translation of oncogenes via interaction with the translation initiation machinery through recruitment of eukaryotic translation initiation factor 3 subunit h (eIF3h). In this review, we summarized the current evidence on METTL3 in diverse human malignancies and its potential as a prognostic/ therapeutic target.
Collapse
Affiliation(s)
- Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoshen Dong
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiyang Jiang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xinyu Zheng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.,Lab 1, Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming Gu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
696
|
Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, Di W, Hu B, An J, Kong L, Pan L, Su G. m 6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol 2019; 12:135. [PMID: 31818312 PMCID: PMC6902496 DOI: 10.1186/s13045-019-0830-6] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/13/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND METTL3 is an RNA methyltransferase that mediates m6A modification and is implicated in mRNA biogenesis, decay, and translation. However, the biomechanism through which METTL3 regulates MALAT1-miR-1914-3p-YAP axis activity to induce NSCLC drug resistance and metastasis is not very clear. METHODS The expression of mRNA was analyzed by qPCR assays. Protein levels were analyzed by western blotting and immunofluorescent staining. Cellular proliferation was detected by CCK8 assays. Cell migration and invasion were analyzed by wound healing and transwell assays, respectively. Promoter activities and gene transcription were analyzed by luciferase reporter assays. Finally, m6A modification was analyzed by MeRIP. RESULTS METTL3 increased the m6A modification of YAP. METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. Moreover, the RNA level of MALAT1 was increased due to a higher level of m6A modification mediated by METTL3. Meanwhile, the stability of MALAT1 was increased by METTL3/YTHDF3 complex. Additionally, MALAT1 functions as a competing endogenous RNA that sponges miR-1914-3p to promote the invasion and metastasis of NSCLC via YAP. Furthermore, the reduction of YAP m6A modification by METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo. CONCLUSION Results indicated that the m6A mRNA methylation initiated by METTL3 promotes YAP mRNA translation via recruiting YTHDF1/3 and eIF3b to the translation initiation complex and increases YAP mRNA stability through regulating the MALAT1-miR-1914-3p-YAP axis. The increased YAP expression and activity induce NSCLC drug resistance and metastasis.
Collapse
Affiliation(s)
- Dan Jin
- grid.452240.5Clinical Medical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Jiwei Guo
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China.
| | - Yan Wu
- grid.452240.5Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Jing Du
- grid.452240.5Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Lijuan Yang
- grid.452240.5Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Xiaohong Wang
- grid.452240.5Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Weihua Di
- grid.452240.5Department of Pain, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Baoguang Hu
- grid.452240.5Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Jiajia An
- grid.452240.5Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Lingqun Kong
- grid.452240.5Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Lei Pan
- grid.452240.5Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, 256603 People’s Republic of China
| | - Guoming Su
- Department of Nursing, Binzhou Polytechnic University, Binzhou, 256603 People’s Republic of China
| |
Collapse
|
697
|
Functions of N6-methyladenosine and its role in cancer. Mol Cancer 2019; 18:176. [PMID: 31801551 PMCID: PMC6892141 DOI: 10.1186/s12943-019-1109-9] [Citation(s) in RCA: 801] [Impact Index Per Article: 160.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023] Open
Abstract
N6-methyladenosine (m6A) is methylation that occurs in the N6-position of adenosine, which is the most prevalent internal modification on eukaryotic mRNA. Accumulating evidence suggests that m6A modulates gene expression, thereby regulating cellular processes ranging from cell self-renewal, differentiation, invasion and apoptosis. M6A is installed by m6A methyltransferases, removed by m6A demethylases and recognized by reader proteins, which regulate of RNA metabolism including translation, splicing, export, degradation and microRNA processing. Alteration of m6A levels participates in cancer pathogenesis and development via regulating expression of tumor-related genes like BRD4, MYC, SOCS2 and EGFR. In this review, we elaborate on recent advances in research of m6A enzymes. We also highlight the underlying mechanism of m6A in cancer pathogenesis and progression. Finally, we review corresponding potential targets in cancer therapy.
Collapse
|
698
|
Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q, Sun Z. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol 2019; 12:121. [PMID: 31757221 PMCID: PMC6874823 DOI: 10.1186/s13045-019-0805-7] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) methylation, one of the most common RNA modifications, has been reported to execute important functions that affect normal life activities and diseases. Most studies have suggested that m6A modification can affect the complexity of cancer progression by regulating biological functions related to cancer. M6A modification of noncoding RNAs regulates the cleavage, transport, stability, and degradation of noncoding RNAs themselves. It also regulates cell proliferation and metastasis, stem cell differentiation, and homeostasis in cancer by affecting the biological function of cells. Interestingly, noncoding RNAs also play significant roles in regulating these m6A modifications. Additionally, it is becoming increasingly clear that m6A and noncoding RNAs potentially contribute to the clinical application of cancer treatment. In this review, we summarize the effect of the interactions between m6A modifications and noncoding RNAs on the biological functions involved in cancer progression. In particular, we discuss the role of m6A and noncoding RNAs as possible potential biomarkers and therapeutic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiang Ji
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanbo Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guixian Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhenqiang Sun
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
699
|
Su Y, Huang J, Hu J. m 6A RNA Methylation Regulators Contribute to Malignant Progression and Have Clinical Prognostic Impact in Gastric Cancer. Front Oncol 2019; 9:1038. [PMID: 31681576 PMCID: PMC6813557 DOI: 10.3389/fonc.2019.01038] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common form of mRNA modification, and is dynamically regulated by the m6A RNA methylation regulators. However, little is known about m6A in gastric cancer. The aim of this work is to investigate the effects of m6A RNA methylation regulators in gastric cancer. Here, we found that most of the 13 main m6A RNA methylation regulators are higher expressed in 375 patients with gastric cancer. We identified two subgroups of gastric cancer (cluster1 and 2) by applying consensus clustering to m6A RNA methylation regulators. Compared with the cluster1 subgroup, the cluster2 subgroup correlates with a poorer prognosis, and most of the 13 main m6A RNA methylation regulators are higher expressed in cluster2. Moreover, the cancer-specific pathways are also significantly enriched in the cluster2 subgroup. This finding indicates that m6A RNA methylation regulators are closely associated with gastric cancer. Based on this finding, we derived a risk signature, using 3 m6A RNA methylation regulators (FTO, RBM15, ALKBH5), that is not only an independent prognostic marker but can also predict the clinicopathological features of gastric cancer. Moreover, FTO is higher expressed in high risk scores subtype in gastric cancer. Thus, this first finding provide us clues to understand epigenetic modification of RNA in gastric cancer.
Collapse
Affiliation(s)
- Yunshu Su
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinqi Huang
- Division of Cardiothoracic Surgery, Central Hospital of EnShi Tujia and Miao Autonomous Prefecture, EnShi Clinical College of Wuhan University, EnShi, China
| | - Jichang Hu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
700
|
Zhao X, Cui L. Development and validation of a m 6A RNA methylation regulators-based signature for predicting the prognosis of head and neck squamous cell carcinoma. Am J Cancer Res 2019; 9:2156-2169. [PMID: 31720080 PMCID: PMC6834477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most common types of cancers that threat the public health worldwide. A growing body of evidence has demonstrated that m6A RNA methylation plays a critical role in tumorigenesis. However, the association between m6A RNA methylation regulators and prognosis of HNSCC remains poorly known. This study aimed to construct a m6A RNA methylation regulators-based biomarker signature that efficiently predicted the prognosis of HNSCC. The gene expression profile of m6A RNA methylation regulators and the corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA) HNSCC dataset. The differentially expressed m6A RNA methylation regulators between tumor samples and normal control samples, as well as the interaction and correlation of m6A RNA methylation regulators were evaluated. Consensus clustering analysis was performed to identify the clusters of HNSCC with different clinical outcome. Then a prognostic signature was built on TCGA HNSCC cohort and further validated in an external independent cohort. The expression levels of METTL3, YTHDF1, KIAA1429, ALKBH5, YTHDF2, METTL14, FTO, WTAP, RBM15 and HNRNPC were significantly upregulated in tumor samples, while YTHDC2 was remarkably downregulated in the cancer specimens. WTAP and METTL14 might be the hub genes of the interaction network among m6A RNA methylation regulators. Two clusters of HNSCC cases were identified and significant differences were found with respect to overall survival (OS) and tumor grade between the two subgroups of patients. A two-gene prognostic signature including YTHDC2 and HNRNPC was constructed and could predict OS in HNSCC patients from TCGA dataset. In addition, the prognostic signature-based risk score was identified as an independent prognostic indicator for HNSCC. More importantly, these findings were successfully validated in an external independent HNSCC cohort. In conclusion, our study has built up a robust m6A RNA methylation regulators-based molecular signature that predicts the prognosis of patients with HNSCC with high accuracy, which might provide important guidance for therapeutic strategies.
Collapse
Affiliation(s)
- Xinyuan Zhao
- Stomatological Hospital, Southern Medical UniversityGuangzhou 510280, China
| | - Li Cui
- UCLA School of DentistryLos Angeles, CA 90095, USA
| |
Collapse
|