701
|
Hassani L, Ranjbar B, Khajeh K, Naderi-Manesh H, Naderi-Manesh M, Sadeghi M. Horseradish peroxidase thermostabilization: The combinatorial effects of the surface modification and the polyols. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
702
|
Yousef MA, Datta R, Rodgers VGJ. Monolayer hydration governs nonideality in osmotic pressure of protein solutions. AIChE J 2006. [DOI: 10.1002/aic.690480616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
703
|
Iorga B, Herlem D, Barré E, Guillou C. Acetylcholine nicotinic receptors: finding the putative binding site of allosteric modulators using the "blind docking" approach. J Mol Model 2005; 12:366-72. [PMID: 16372175 DOI: 10.1007/s00894-005-0057-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Allosteric potentiation of acetylcholine nicotinic receptors is considered to be one of the most promising approaches for the treatment of Alzheimer's disease. However, the exact localization of the allosteric binding site and the potentiation mechanism at the molecular level are presently unknown. We have performed the "blind docking" of three known allosteric modulators (galanthamine, codeine and eserine) with the Acetylcholine Binding Protein and models of human alpha7, alpha3beta4 and alpha4beta2 nicotinic receptors, created by homology modeling. Three putative binding sites were identified in the channel pore, each one showing different affinities for the ligands. One of these sites is localized opposite to the agonist binding site and is probably implicated in the potentiation process. On the basis of these results, a possible mechanism for nicotinic acetylcholine receptor (nAChRs) activation is proposed. The present findings may represent an important advance for understanding the allosteric modulation mechanism of nAChRs. [Figure: see text].
Collapse
Affiliation(s)
- Bogdan Iorga
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Avenue de la Terrasse, F-91198, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
704
|
Rozak DA, Orban J, Bryan PN. G148–GA3: A streptococcal virulence module with atypical thermodynamics of folding optimally binds human serum albumin at physiological temperatures. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1753:226-33. [PMID: 16290081 DOI: 10.1016/j.bbapap.2005.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 09/03/2005] [Accepted: 10/06/2005] [Indexed: 11/20/2022]
Abstract
The third albumin binding domain of streptococcal protein G strain 148 (G148-GA3) belongs to a novel class of prokaryotic albumin binding modules that is thought to support virulence in several bacterial species. Here, we characterize G148-GA3 folding and albumin binding by using differential scanning calorimetry and isothermal titration calorimetry to obtain the most complete set of thermodynamic state functions for any member of this medically significant module. When buffered at pH 7.0 the 46-amino acid alpha-helical domain melts at 72 degrees C and exhibits marginal stability (15 kJ/mol) at 37 degrees C. G148-GA3 unfolding is characterized by small contributions to entropy from non-hydrophobic forces and a low DeltaCp (1.1 kJ/(deg mol)). Isothermal titration calorimetry reveals that the domain has evolved to optimally bind human serum albumin near 37 degrees C with a binding constant of 1.4 x 10 7 M(-1). Analysis of G148-GA3 thermodynamics suggests that the domain experiences atypically small per residue changes in structural dynamics and heat capacity while transiting between folded and unfolded states.
Collapse
Affiliation(s)
- David A Rozak
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
705
|
Prasad A, Zhao H, Rutherford JM, Housley N, Nichols C, Pedigo S. Effect of linker segments on the stability of epithelial cadherin domain 2. Proteins 2005; 62:111-21. [PMID: 16287100 DOI: 10.1002/prot.20657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial cadherin is a transmembrane protein that is essential in calcium-dependent cell-cell recognition and adhesion. It contains five independently folded globular domains in its extracellular region. Each domain has a seven-strand beta-sheet immunoglobulin fold. Short seven-residue peptide segments connect the globular domains and provide oxygens to chelate calcium ions at the interface between the domains (Nagar et al., Nature 1995;380:360-364). Recently, stability studies of ECAD2 (Prasad et al., Biochemistry 2004;43:8055-8066) were undertaken with the motivation that Domain 2 is a representative domain for this family of proteins. The definition of a domain boundary is somewhat arbitrary; hence, it was important to examine the effect of the adjoining linker regions that connect Domain 2 to the adjacent domains. Present studies employ temperature-denaturation and proteolytic susceptibility to provide insight into the impact of these linkers on Domain 2. The significant findings of our present study are threefold. First, the linker segments destabilize the core domain in the absence of calcium. Second, the destabilization due to addition of the linker segments can be partially reversed by the addition of calcium. Third, sodium chloride stabilizes all constructs. This result implies that electrostatic repulsion is a contributor to destabilization of the core domain by addition of the linkers. Thus, the context of Domain 2 within the whole molecule affects its thermodynamic characteristics.
Collapse
Affiliation(s)
- Alka Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | | | | | | | | | | |
Collapse
|
706
|
Schein CH, Ivanciuc O, Braun W. Common physical-chemical properties correlate with similar structure of the IgE epitopes of peanut allergens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8752-9. [PMID: 16248581 DOI: 10.1021/jf051148a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although many sequences and linear IgE epitopes of allergenic proteins have been identified and archived in databases, structural and physicochemical discriminators that define their specific properties are lacking. Current bioinformatics tools for predicting the potential allergenicity of a novel protein use methods that were not designed to compare peptides. Novel tools to determine the quantitative sequence and three-dimensional (3D) relationships between IgE epitopes of major allergens from peanut and other foods have been implemented in the Structural Database of Allergenic Proteins (SDAP; http://fermi.utmb.edu/SDAP/). These peptide comparison tools are based on five-dimensional physicochemical property (PCP) vectors. Sequences from SDAP proteins similar in their physicochemical properties to known epitopes of Ara h 1 and Ara h 2 were identified by calculating property distance (PD) values. A 3D model of Ara h 1 was generated to visualize the 3D structure and surface exposure of the epitope regions and peptides with a low PD value to them. Many sequences similar to the known epitopes were identified in related nut allergens, and others were within the sequences of Ara h 1 and Ara h 2. Some of the sequences with low PD values correspond to other known epitopes. Regions with low PD values to one another in Ara h 1 had similar predicted structure, on opposite sides of the internal dimer axis. The PD scale detected epitope pairs that are similar in structure and/or reactivity with patient IgE. The high immunogenicity and IgE reactivity of peanut allergen proteins might be due to the proteins' arrays of similar antigenic regions on opposite sides of a single protein structure.
Collapse
Affiliation(s)
- Catherine H Schein
- Sealy Center for Structural Biology, Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0857, USA.
| | | | | |
Collapse
|
707
|
Galea C, Bowman P, Kriwacki RW. Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils. Protein Sci 2005; 14:2993-3003. [PMID: 16260757 PMCID: PMC2253254 DOI: 10.1110/ps.051622005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We describe in molecular detail how disruption of an intermonomer salt bridge (Arg337-Asp352) leads to partial destabilization of the p53 tetramerization domain and a dramatically increased propensity to form amyloid fibrils. At pH 4.0 and 37 degrees C, a p53 tetramerization domain mutant (p53tet-R337H), associated with adrenocortical carcinoma in children, readily formed amyloid fibrils, while the wild-type (p53tet-wt) did not. We characterized these proteins by equilibrium denaturation, 13C(alpha) secondary chemical shifts, (1H)-15N heteronuclear NOEs, and H/D exchange. Although p53tet-R337H was thermodynamically less stable, NMR data indicated that the two proteins had similar secondary structure and molecular dynamics. NMR derived pK(a) values indicated that at low pH the R337H mutation partially disrupted an intermonomer salt bridge. Backbone H/D exchange results showed that for at least a small population of p53tet-R337H molecules disruption of this salt bridge resulted in partial destabilization of the protein. It is proposed that this decrease in p53tet-R337H stability resulted in an increased propensity to form amyloid fibrils.
Collapse
Affiliation(s)
- Charles Galea
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | |
Collapse
|
708
|
Akinsiku OT, Yu ET, Fabris D. Mass spectrometric investigation of protein alkylation by the RNA footprinting probe kethoxal. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1372-81. [PMID: 16237662 DOI: 10.1002/jms.932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The reactivity of the RNA footprinting reagent kethoxal (KT) toward proteins was investigated by electrospray ionization-Fourier transform mass spectrometry. Using standard peptides, KT was shown to selectively modify the guanidino group of arginine side chains at neutral pH, while primary amino groups of lysine and N-terminus were found to be unreactive under these conditions. Gas-phase fragmentation of KT adducts provided evidence for a cyclic 1,2-diol structure. Esterification of the 1,2-diol product was obtained in borate buffer, and its structure was also investigated by tandem mass spectrometry. When model proteins were probed with this RNA footprinting reagent, the adducts proved to be sufficiently stable to allow for the application of different peptide-mapping procedures to identify the location of modified arginines. Probing of proteins under native folding conditions provided modification patterns that very closely matched the structural context of arginines in the global protein structure. A strong correlation was demonstrated between the susceptibility to modification and residue accessibility calculated from the known 3D structure. When the complexes formed by HIV-1 nucleocapsid (NC) protein and RNA stemloops SL2 and SL3 were investigated, KT footprinting provided accurate information regarding the involvement of individual arginines in binding RNA and showed different reactivity according to their mode of interaction.
Collapse
Affiliation(s)
- Olusimidele T Akinsiku
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
709
|
Urquiza M, Lopez R, Patiño H, Rosas JE, Patarroyo ME. Identification of Three gp350/220 Regions Involved in Epstein-Barr Virus Invasion of Host Cells. J Biol Chem 2005; 280:35598-605. [PMID: 16087675 DOI: 10.1074/jbc.m504544200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) invasion of B-lymphocytes involves EBV gp350/220 binding to B-lymphocyte CR2. The anti-gp350 monoclonal antibody (mAb)-72A1 Fab inhibits this binding and therefore blocks EBV invasion of target cells. However, gp350/220 regions interacting with mAb 72A1 and involved in EBV invasion of target cells have not yet been identified. This work reports three gp350/220 regions, defined by peptide 11382, 11389, and 11416 sequences, that are involved in EBV binding to B-lymphocytes. Peptides 11382, 11389, and 11416 bound to CR2(+) but not to CR2(-) cells, inhibited EBV invasion of cord blood lymphocytes (CBLs), were recognized by mAb 72A1, and inhibited mAb 72A1 binding to EBV. Peptides 11382 and 11416 binding to peripheral blood lymphocytes (PBLs) induced interleukin-6 protein synthesis in these cells, this phenomenon being inhibited by mAb 72A1. The same behavior has been reported for gp350/220 binding to PBLs. Anti-peptide 11382, 11389, and 11416 antibodies inhibited EBV binding and EBV invasion of PBLs and CBLs. Peptide 11382, 11389, and 11416 sequences presented homology with the C3dg regions coming into contact with CR2 (C3dg and gp350 bound to similar CR2 regions). These peptides could be used in designing strategies against EBV infection.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Bogotá 030405, Colombia.
| | | | | | | | | |
Collapse
|
710
|
Martins BM, Svetlitchnaia T, Dobbek H. 2-Oxoquinoline 8-monooxygenase oxygenase component: active site modulation by Rieske-[2Fe-2S] center oxidation/reduction. Structure 2005; 13:817-24. [PMID: 15893671 DOI: 10.1016/j.str.2005.03.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 03/01/2005] [Accepted: 03/06/2005] [Indexed: 11/20/2022]
Abstract
2-Oxoquinoline 8-monooxygenase is a Rieske non-heme iron oxygenase that catalyzes the NADH-dependent oxidation of the N-heterocyclic aromatic compound 2-oxoquinoline to 8-hydroxy-2-oxoquinoline in the soil bacterium Pseudomonas putida 86. The crystal structure of the oxygenase component of 2-oxoquinoline 8-monooxygenase shows a ring-shaped, C3-symmetric arrangement in which the mononuclear Fe(II) ion active site of one monomer is at a distance of 13 A from the Rieske-[2Fe-2S] center of a second monomer. Structural analyses of oxidized, reduced, and substrate bound states reveal the molecular bases for a new function of Fe-S clusters. Reduction of the Rieske center modulates the mononuclear Fe through a chain of conformational changes across the subunit interface, resulting in the displacement of Fe and its histidine ligand away from the substrate binding site. This creates an additional coordination site at the mononuclear Fe(II) ion and can open a pathway for dioxygen to bind in the substrate-containing active site.
Collapse
|
711
|
Kosinski J, Steindorf I, Bujnicki JM, Giron-Monzon L, Friedhoff P. Analysis of the quaternary structure of the MutL C-terminal domain. J Mol Biol 2005; 351:895-909. [PMID: 16024043 DOI: 10.1016/j.jmb.2005.06.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 11/29/2022]
Abstract
The dimeric DNA mismatch repair protein MutL has a key function in communicating mismatch recognition by MutS to downstream repair processes. Dimerization of MutL is mediated by the C-terminal domain, while activity of the protein is modulated by the ATP-dependent dimerization of the highly conserved N-terminal domain. Recently, a crystal structure analysis of the Escherichia coli MutL C-terminal dimerization domain has been reported and a model for the biological dimer was proposed. In this model, dimerization is mediated by the internal (In) subdomain comprising residues 475-569. Here, we report a computational analysis of all protein interfaces observed in the crystal structure and suggest that the biological dimer interface is formed by a hydrophobic surface patch of the external (Ex) subdomain (residues 432-474 and 570-615). Moreover, sequence analysis revealed that this surface patch is conserved among the MutL proteins. To test this hypothesis, single and double-cysteine variants of MutL were generated and tested for their ability to be cross-linked with chemical cross-linkers of various size. Finally, deletion of the C-terminal residues 605-615 abolished homodimerization. The biochemical data are fully compatible with a revised model for the biological dimer, which has important implications for understanding the heterodimerization of eukaryotic MutL homologues, modeling the MutL holoenzyme and predicting protein-protein interaction sites.
Collapse
Affiliation(s)
- Jan Kosinski
- Institut für Biochemie FB 08, Justus-Liebig Universität, Giessen D-35392, Germany
| | | | | | | | | |
Collapse
|
712
|
Kaltashov IA, Mohimen A. Estimates of protein surface areas in solution by electrospray ionization mass spectrometry. Anal Chem 2005; 77:5370-5379. [PMID: 16097782 PMCID: PMC2631554 DOI: 10.1021/ac050511%2b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extent of multiple charging of protein ions in electrospray ionization (ESI) mass spectra depends on the solvent-exposed surface area, but it may also be influenced by a variety of other extrinsic and intrinsic factors. Gas-phase ion chemistry (charge-transfer and charge-partitioning reactions) appears to be the major extrinsic factor influencing the extent of protonation as detected by ESI MS. In this work, we demonstrate that under carefully controlled conditions, which limit the occurrence of the charge-transfer reactions in the gas phase, charge-state distributions of protein ions can be used to assess the solvent-exposed surface area in solution. A set of proteins ranging from 5-kDa insulin to 500-kDa ferritin shows a clear correlation between the average charge in ESI mass spectra acquired under native conditions and their surface areas calculated based on the available crystal structures. An increase of the extent of charge-transfer reactions in the ESI interface results in a noticeable decrease of the average charge of protein ions across the entire range of tested proteins, while the charge-surface correlation is maintained. On the other hand, the intrinsic factors (e.g., a limited number of basic residues) do not appear to play a significant role in determining the protein ion charge. Based on these results, it is now possible to obtain estimates of the surface areas of proteins and protein complexes, for which crystal structures are not available. We also demonstrate how the ESI MS measurements can be used to characterize protein-protein interaction in solution by providing quantitative information on the subunit interfaces formed in protein associations.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, USA.
| | | |
Collapse
|
713
|
Aye TT, Low TY, Sze SK. Nanosecond Laser-Induced Photochemical Oxidation Method for Protein Surface Mapping with Mass Spectrometry. Anal Chem 2005; 77:5814-22. [PMID: 16159110 DOI: 10.1021/ac050353m] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed an ultrafast pulse method for protein surface footprinting by laser-induced protein surface oxidations. This method makes use of a pulse UV laser that produces, in nanoseconds, a high concentration of hydroxyl (OH) free radicals by photodissociation of a hydrogen peroxide (H2O2) solution. The OH radicals oxidize amino acid residues located on the protein surface to produce stable covalent modifications. The oxidized protein is then analyzed by mass spectrometry to map the oxidized amino acid residues. Ubiquitin and apomyoglobin were used as model proteins in this study. Our results show that a single laser pulse can produce extensive protein surface oxidations. We found that monooxidized ubiquitins were more susceptible to further oxidations by subsequent laser irradiation, as compared to nonoxidized ones. This is due to the conformational changes of proteins by oxidation that increases the solvent-accessible surface area. Therefore, it is crucial to perform this experiment with a single pulse of laser so as to avoid oxidation of proteins after conformation of the protein changes. Subsequently, to obtain a high frequency and coverage of the oxidation sites while keeping the number of laser shots to one, we further optimized the laser power and concentration of hydrogen peroxide as well as the concentration of protein. This ultrafast OH radical generation method allows for rapid and accurate detection of surface residues, enabling mapping of the solvent-accessible regions of a protein in its native state.
Collapse
Affiliation(s)
- Thin Thin Aye
- Genome Institute of Singapore, 60 Biopolis Street, Singapore
| | | | | |
Collapse
|
714
|
Lobley CMC, Ciulli A, Whitney HM, Williams G, Smith AG, Abell C, Blundell TL. The crystal structure of Escherichia coli ketopantoate reductase with NADP+ bound. Biochemistry 2005; 44:8930-9. [PMID: 15966718 DOI: 10.1021/bi0502036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The NADPH-dependent reduction of ketopantoate to pantoate, catalyzed by ketopantoate reductase (KPR; EC 1.1.1.169), is essential for the biosynthesis of pantothenate (vitamin B(5)). Here we present the crystal structure of Escherichia coli KPR with NADP(+) bound, solved to 2.1 A resolution. The cofactor is bound in the active site cleft between the N-terminal Rossmann-fold domain and the C-terminal alpha-helical domain. The thermodynamics of cofactor and substrate binding were characterized by isothermal titration calorimetry. The dissociation constant for NADP(+) was found to be 6.5 muM, 20-fold larger than that for NADPH (0.34 muM). The difference is primarily due to the entropic term, suggesting favorable hydrophobic interactions of the more lipophilic nicotinamide ring in NADPH. Comparison of this binary complex structure with the previously studied apoenzyme reveals no evidence for large domain movements on cofactor binding. This observation is further supported both by molecular dynamics and by calorimetric analysis. A model of the ternary complex, based on the structure presented here, provides novel insights into the molecular mechanism of enzyme catalysis. We propose a conformational switch of the essential Lys176 from the "resting" state observed in our structure to an "active" state, to bind ketopantoate. Additionally, we identify the importance of Asn98 for substrate binding and enzyme catalysis.
Collapse
Affiliation(s)
- Carina M C Lobley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | |
Collapse
|
715
|
Kaltashov IA, Mohimen A. Estimates of Protein Surface Areas in Solution by Electrospray Ionization Mass Spectrometry. Anal Chem 2005; 77:5370-9. [PMID: 16097782 PMCID: PMC2631554 DOI: 10.1021/ac050511+] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extent of multiple charging of protein ions in electrospray ionization (ESI) mass spectra depends on the solvent-exposed surface area, but it may also be influenced by a variety of other extrinsic and intrinsic factors. Gas-phase ion chemistry (charge-transfer and charge-partitioning reactions) appears to be the major extrinsic factor influencing the extent of protonation as detected by ESI MS. In this work, we demonstrate that under carefully controlled conditions, which limit the occurrence of the charge-transfer reactions in the gas phase, charge-state distributions of protein ions can be used to assess the solvent-exposed surface area in solution. A set of proteins ranging from 5-kDa insulin to 500-kDa ferritin shows a clear correlation between the average charge in ESI mass spectra acquired under native conditions and their surface areas calculated based on the available crystal structures. An increase of the extent of charge-transfer reactions in the ESI interface results in a noticeable decrease of the average charge of protein ions across the entire range of tested proteins, while the charge-surface correlation is maintained. On the other hand, the intrinsic factors (e.g., a limited number of basic residues) do not appear to play a significant role in determining the protein ion charge. Based on these results, it is now possible to obtain estimates of the surface areas of proteins and protein complexes, for which crystal structures are not available. We also demonstrate how the ESI MS measurements can be used to characterize protein-protein interaction in solution by providing quantitative information on the subunit interfaces formed in protein associations.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, USA.
| | | |
Collapse
|
716
|
Silverman BD. The hydrophobicity of the H3 histone fold differs from the hydrophobicity of the other three folds. J Mol Evol 2005; 60:354-64. [PMID: 15871046 DOI: 10.1007/s00239-004-0193-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 09/09/2004] [Indexed: 10/25/2022]
Abstract
The eukaryotic histone dimers, H3-H4 and H2A-H2B, are formed in the cytosol prior to being transported into the nucleus and assembled into the nucleosome. Residue side-chain distances from the interior of the histone dimers are obtained with an ellipsoidal spatial metric and structural information provided by X-ray analyses at atomic resolution of the nucleosome core particles. While the spatial hydrophobic moment profiles of the dimers are comparable with profiles obtained previously that characterize the hydrophobic core of single-chain, single-domain globular soluble proteins, correlation coefficients between the side-chain hydrophobicities and distances from the interior of the H3-H4 dimer and H2A-H2B dimer differ significantly. This difference is traced to the H3 histone fold, which segregates fewer hydrophobic residues within the protein interior than the three other folds. Examination of the correlation coefficient between residue hydrophobicity and side-chain distance from the dimer interior over local regions of the fold sequence shows that the region of reduced correlation is associated mainly with the residues at the carboxyl end of the H3 histone fold, the helical region of the fold involved in the H3-H3' binding of the (H3-H4)(2) tetramer of the nucleosome. Hydrophobic interactions apparently contribute to the binding of this fourfold helical bundle and this evolutionary requirement may trade off against the requirement for H3-H4 dimer stability. The present results provide a different view than previously proposed, albeit of similar origin, to account for the reduced stability of the H3-H4 dimer compared with the H2A-H2B dimer.
Collapse
Affiliation(s)
- B David Silverman
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
| |
Collapse
|
717
|
Midoro-Horiuti T, Schein CH, Mathura V, Braun W, Czerwinski EW, Togawa A, Kondo Y, Oka T, Watanabe M, Goldblum RM. Structural basis for epitope sharing between group 1 allergens of cedar pollen. Mol Immunol 2005; 43:509-18. [PMID: 15975657 PMCID: PMC2596064 DOI: 10.1016/j.molimm.2005.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Indexed: 10/25/2022]
Abstract
The group 1 allergens are a major cause of cedar pollen hypersensitivity in several geographic areas. Allergens from several taxa have been shown to cross-react. The goal of these studies was to compare the structural features of the shared and unique epitopes of the group 1 allergen from mountain cedar (Jun a 1) and Japanese cedar (Cry j 1). An array of overlapping peptides from the sequence of Jun a 1 and a panel of monoclonal anti-Cry j 1 antibodies were used to identify the IgE epitopes recognized by cedar-sensitive patients from Texas and Japan. IgE from Japanese patients reacted with peptides representing one of the two linear epitopes within the highly conserved beta-helical core structure and both epitopes within less ordered loops and turns near the N- and C-termini of Jun a 1. A three-dimensional (3D) model of the Cry j 1, based on the crystal structure of Jun a 1, indicated a similar surface exposure for the four described epitopes of Jun a 1 and the homologous regions of Cry j 1. The monoclonal antibodies identified another shared epitope, which is most likely conformational and a unique Cry j 1 epitope that may be the previously recognized glycopeptide IgE epitope. Defining the structural basis for shared and unique epitopes will help to identify critical features of IgE epitopes that can be used to develop mimotopes or identify allergen homologues for vaccine development.
Collapse
Affiliation(s)
- Terumi Midoro-Horiuti
- Department of Pediatrics, Child Health Research Center, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
718
|
Filizola M, Weinstein H. The study of G-protein coupled receptor oligomerization with computational modeling and bioinformatics. FEBS J 2005; 272:2926-38. [PMID: 15955053 DOI: 10.1111/j.1742-4658.2005.04730.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To achieve a structural context for the analysis of G-protein coupled receptor (GPCR) oligomers, molecular modeling must be used to predict the corresponding interaction interfaces. The task is complicated by the paucity of detailed structural data at atomic resolution, and the large number of possible modes in which the bundles of seven transmembrane (TM) segments of the interacting GPCR monomers can be packed together into dimers and/or higher-order oligomers. Approaches and tools offered by bioinformatics can be used to reduce the complexity of this task and, combined with computational modeling, can serve to yield testable predictions for the structural properties of oligomers. Most of the bioinformatics methods take advantage of the evolutionary relation that exists among GPCRs, as expressed in their sequences and measurable in the common elements of their structural and functional features. These common elements are responsible for the presence of detectable patterns of motifs and correlated mutations evident from the alignment of the sequences of these complex biological systems. The decoding of these patterns in terms of structural and functional determinants can provide indications about the most likely interfaces of dimerization/oligomerization of GPCRs. We review here the main approaches from bioinformatics, enhanced by computational molecular modeling, that have been used to predict likely interfaces of dimerization/oligomerization of GPCRs, and compare results from their application to rhodopsin-like GPCRs. A compilation of the most frequently predicted GPCR oligomerization interfaces points to specific regions of TMs 4-6.
Collapse
Affiliation(s)
- Marta Filizola
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, NY 10021, USA.
| | | |
Collapse
|
719
|
Chupreta S, Holmstrom S, Subramanian L, Iñiguez-Lluhí JA. A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol Cell Biol 2005; 25:4272-82. [PMID: 15870296 PMCID: PMC1087732 DOI: 10.1128/mcb.25.10.4272-4282.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) modification of sequence-specific transcription factors has profound regulatory consequences. By providing an intrinsic inhibitory function, SUMO isoforms can suppress transcriptional activation, particularly at promoters harboring multiple response elements. Through a comprehensive structure-function analysis, we have identified a single critical sector along the second beta sheet and the following alpha helix of SUMO2. This distinct surface is defined by four basic residues (K33, K35, K42, R50) that surround a shallow pocket lined by aliphatic (V30, I34) and polar (T38) residues. Substitutions within this area specifically and dramatically affected the ability of both SUMO2 and SUMO1 to inhibit transcription and revealed that the positively charged nature of the key basic residues is the main feature responsible for their functional role. This highly conserved surface accounts for the inhibitory properties of SUMO on multiple transcription factors and promoter contexts and likely defines the interaction surface for the corepressors that mediate the inhibitory properties of SUMO.
Collapse
Affiliation(s)
- Sergey Chupreta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632, USA
| | | | | | | |
Collapse
|
720
|
Gaspar JA, Liu C, Vassall KA, Meglei G, Stephen R, Stathopulos PB, Pineda-Lucena A, Wu B, Yee A, Arrowsmith CH, Meiering EM. A novel member of the YchN-like fold: solution structure of the hypothetical protein Tm0979 from Thermotoga maritima. Protein Sci 2005; 14:216-23. [PMID: 15608123 PMCID: PMC2253327 DOI: 10.1110/ps.041068605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report herein the NMR structure of Tm0979, a structural proteomics target from Thermotoga maritima. The Tm0979 fold consists of four beta/alpha units, which form a central parallel beta-sheet with strand order 1234. The first three helices pack toward one face of the sheet and the fourth helix packs against the other face. The protein forms a dimer by adjacent parallel packing of the fourth helices sandwiched between the two beta-sheets. This fold is very interesting from several points of view. First, it represents the first structure determination for the DsrH family of conserved hypothetical proteins, which are involved in oxidation of intracellular sulfur but have no defined molecular function. Based on structure and sequence analysis, possible functions are discussed. Second, the fold of Tm0979 most closely resembles YchN-like folds; however the proteins that adopt these folds differ in secondary structural elements and quaternary structure. Comparison of these proteins provides insight into possible mechanisms of evolution of quaternary structure through a simple mechanism of hydrophobicity-changing mutations of one or two residues. Third, the Tm0979 fold is found to be similar to flavodoxin-like folds and beta/alpha barrel proteins, and may provide a link between these very abundant folds and putative ancestral half-barrel proteins.
Collapse
Affiliation(s)
- Joe A Gaspar
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
721
|
Sharp JS, Guo JT, Uchiki T, Xu Y, Dealwis C, Hettich RL. Photochemical surface mapping of C14S-Sml1p for constrained computational modeling of protein structure. Anal Biochem 2005; 340:201-12. [PMID: 15840492 DOI: 10.1016/j.ab.2005.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Indexed: 11/29/2022]
Abstract
Photochemically generated hydroxyl radicals were used to map solvent-exposed regions in the C14S mutant of the protein Sml1p, a regulator of the ribonuclease reductase enzyme Rnr1p in Saccharomyces cerevisiae. By using high-performance mass spectrometry to characterize the oxidized peptides created by the hydroxyl radical reactions, amino acid solvent-accessibility data for native and denatured C14S Sml1p that revealed a solvent-excluding tertiary structure in the native state were obtained. The data on solvent accessibilities of various amino acids within the protein were then utilized to evaluate the de novo computational models generated by the HMMSTR/Rosetta server. The top five models initially generated by the server all disagreed with both published nuclear magnetic resonance (NMR) data and the solvent-accessibility data obtained in this study. A structural model adjusted to fit the previously reported NMR data satisfied most of the solvent-accessibility constraints. Through minor adjustment of the rotamers of two amino acid side chains for this latter structure, a model that not only provided a lower energy conformation but also completely satisfied previously reported data from NMR and tryptophan fluorescence measurements, in addition to the solvent-accessibility data presented here, was generated.
Collapse
Affiliation(s)
- Joshua S Sharp
- Graduate School of Genome Science and Technology, The University of Tennessee and Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, TN 37830-8026, USA
| | | | | | | | | | | |
Collapse
|
722
|
Schmidt TR, Wildman DE, Uddin M, Opazo JC, Goodman M, Grossman LI. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates. Proc Natl Acad Sci U S A 2005; 102:6379-84. [PMID: 15851671 PMCID: PMC1088365 DOI: 10.1073/pnas.0409714102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytochrome c (CYC) oxidase (COX), a multisubunit enzyme that functions in mitochondrial aerobic energy production, catalyzes the transfer of electrons from CYC to oxygen and participates in creating the electrochemical gradient used for ATP synthesis. Modeling three-dimensional structural data on COX and CYC reveals that 57 of the >1,500 COX residues can be implicated in binding CYC. Because of the functional importance of the transfer of electrons to oxygen, it might be expected that natural selection would drastically constrain amino acid replacement rates of CYC and COX. Instead, in anthropoid primates, although not in other mammals, CYC and COX show markedly accelerated amino acid replacement rates, with the COX acceleration being much greater at the positions that bind CYC than at those that do not. Specifically, in the anthropoid lineage descending from the last common ancestor of haplorhines (tarsiers and anthropoids) to that of anthropoids (New World monkeys and catarrhines) and that of catarrhines (Old World monkeys and apes, including humans), a minimum of 27 of the 57 COX amino acid residues that bind CYC were replaced, most frequently from electrostatically charged to noncharged residues. Of the COX charge-bearing residues involved in binding CYC, half (11 of 22) have been replaced with uncharged residues. CYC residues that interact with COX residues also frequently changed, but only two of the CYC changes altered charge. We suggest that reducing the electrostatic interaction between COX and CYC was part of the adaptive evolution underlying the emergence of anthropoid primates.
Collapse
Affiliation(s)
- Timothy R Schmidt
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
723
|
Pack SP, Yoo YJ. Packing-based difference of structural features between thermophilic and mesophilic proteins. Int J Biol Macromol 2005; 35:169-74. [PMID: 15811472 DOI: 10.1016/j.ijbiomac.2005.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 01/18/2005] [Accepted: 01/20/2005] [Indexed: 11/26/2022]
Abstract
Twenty pairs of thermophilic and mesophilic proteins were compared in terms of residue packing distribution to obtain structural features related to protein thermostability. Based on residue packing concept, structural features of residues such as residue packing distribution, inner/outer position, secondary structure and water solvation were investigated. The statistical tests revealed that higher frequency in well-packed state of residues, lower frequency in exposed state and higher frequency in well-packed state of inner positioned residues, and higher frequency in well-packed state of 3/10 helix residues could be general structural features thermophilic proteins have.
Collapse
Affiliation(s)
- Seung Pil Pack
- School of Chemical Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
724
|
Yamniuk AP, Vogel HJ. Structural investigation into the differential target enzyme regulation displayed by plant calmodulin isoforms. Biochemistry 2005; 44:3101-11. [PMID: 15723555 DOI: 10.1021/bi047770y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conserved calmodulin (CaM) isoform SCaM-1 and the divergent SCaM-4 from soybean bind to many of the same target enzymes, but differentially activate or competitively inhibit them. Class 1 target enzymes are activated by both calcium (Ca(2+))-bound SCaM-1 (Ca(2+)-SCaM-1) and Ca(2+)-bound SCaM-4 (Ca(2+)-SCaM-4), while class 2 enzymes are activated by Ca(2+)-SCaM-1 but competitively inhibited by Ca(2+)-SCaM-4, and class 3 enzymes are activated by Ca(2+)-SCaM-4 but competitively inhibited by Ca(2+)-SCaM-1. To determine whether these differences can be attributed to unique interactions with the CaM-binding domains (CaMBD) of these enzymes, we have studied the binding of each protein to peptides derived from the CaMBD of a representative target enzyme from each of these three classes. Using a combination of NMR spectroscopy and isothermal titration calorimetry, we demonstrate that the N- and C-domains of either Ca(2+)-SCaM bind to each peptide to form structurally compact complexes driven by the burial of hydrophobic surfaces. Interestingly, the interactions with the CaMBD peptides from classes 1 and 2 are similar for the two proteins; however, binding to the peptide from class 3 is structurally and thermodynamically distinct for Ca(2+)-SCaM-1 and -4. We also demonstrate that both calcium-free SCaM-1 (apo-SCaM-1) and calcium-free SCaM-4 (apo-SCaM-4) bind to the CaMBD from cyclic nucleotide phosphodiesterase, and that the interactions are similar to each other and to the interactions with apo-mammalian CaM. Therefore, the apo-SCaMs are also capable of binding to the same target enzymes, which could provide an additional mechanism for CaM-dependent signaling in plants.
Collapse
Affiliation(s)
- Aaron P Yamniuk
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | | |
Collapse
|
725
|
Krantz BA, Trivedi AD, Cunningham K, Christensen KA, Collier RJ. Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin. J Mol Biol 2005; 344:739-56. [PMID: 15533442 DOI: 10.1016/j.jmb.2004.09.067] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 09/22/2004] [Accepted: 09/23/2004] [Indexed: 11/22/2022]
Abstract
The two enzymatic components of anthrax toxin, lethal factor (LF) and edema factor (EF), are transported to the cytosol of mammalian cells by the third component, protective antigen (PA). A heptameric form of PA binds LF and/or EF and, under the acidic conditions encountered in endosomes, generates a membrane-spanning pore that is thought to serve as a passageway for these enzymes to enter the cytosol. The pore contains a 14-stranded transmembrane beta-barrel that is too narrow to accommodate a fully folded protein, necessitating that LF and EF unfold, at least partly, in order to pass. Here, we describe the pH-dependence of the unfolding of LF(N) and EF(N), the 30kDa N-terminal PA-binding domains, and minimal translocatable units, of LF and EF. Equilibrium chemical denaturation studies using fluorescence and circular dichroism spectroscopy show that each protein unfolds via a four-state mechanism: N<-->I<-->J<-->U. The acid-induced N-->I transition occurs within the pH range of the endosome (pH 5-6). The I state predominates at lower pH values, and the J and U states are populated significantly only in the presence of denaturant. The I state is compact and has characteristics of a molten globule, as shown by its retention of significant secondary structure and its ability to bind an apolar fluorophore. The N-->I transition leads to an overall 60% increase in buried surface area exposure. The J state is expanded significantly and has diminished secondary structure content. We analyze the different protonation states of LF(N) and EF(N) in terms of a linked equilibrium proton binding model and discuss the implications of our findings for the mechanism of acidic pH-induced translocation of anthrax toxin. Finally, analysis of the structure of the transmembrane beta-barrel of PA shows that it can accommodate alpha-helix, and we suggest that the steric constraints and composition of the lumen may promote alpha-helix formation.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
726
|
Abstract
Hydropathy plots or window averages over local stretches of the sequence of residue hydrophobicity have revealed patterns related to various protein tertiary structural features. This has enabled identification of regions of the sequence that are at the surface or within the interior of globular soluble proteins, regions located within the lipid bilayer of transmembrane proteins, portions of the sequence that characterize repeating motifs, as well as motifs that usefully characterize different protein structural families. This, therefore, provides one example of the generally expressed maxim that "sequence determines structure". On the other hand, a number of previous investigations have shown the rapidly varying values of residue hydrophobicity along the sequence to be distributed approximately randomly. So one might question just how much of the sequence actually determines structure. It is, therefore, of interest to extract that part of this rapidly varying distribution of residue hydrophobicity that is responsible for the longer wavelength variations that correlate with protein tertiary structural features and to determine their prevalence within the entire distribution. This is accomplished by a finite Fourier analysis of the sequence of residue hydrophobicity and of a new measure of residue distance from the protein interior. Calculations are performed on a number of globins, immunoglobulins, cuprodoxins, and papain-like structures. The spectral power of the Fourier amplitudes of the frequencies extracted, whose inverse transforms underlie the windowed values of residue hydrophobicity is shown to be a small fraction of the total power of the hydrophobicity distribution and thereby consistent with a distribution that might appear to be predominantly random. The wide range of sequence identity between proteins having the same fold, all exhibiting similar small fractions of power amplitude that correlate with the longer wavelength inside-to-outside excursions of the amino acid residues, supports the general contention that close sequence identity is an expression of a close evolutionary relationship rather than an expression of structural similarity. Practical implications of the present analysis for protein structure prediction and engineering are also described.
Collapse
Affiliation(s)
- B David Silverman
- IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598, USA.
| |
Collapse
|
727
|
Furukawa Y, Ban T, Hamada D, Ishimori K, Goto Y, Morishima I. Electron Transfer Reaction in a Single Protein Molecule Observed by Total Internal Reflection Fluorescence Microscopy. J Am Chem Soc 2005; 127:2098-103. [PMID: 15713086 DOI: 10.1021/ja0478173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To observe an electron transfer (ET) process in a single protein molecule, we constructed a model system, Alexa-HCytb5, in which cytochrome b5 (Cytb5) is modified with a fluorescent probe, Alexa Fluor 647 dye. In this model system, intramolecular transfer of an electron from the Alexa dye to heme in Cytb5 is supposed to oxidize the probe and quench its fluorescence, and the ET reaction at the single-molecule level can be monitored as the intermittent change in the fluorescence intensity. Alexa-HCytb5 was fixed on the glass surface, and illumination of laser light by the total internal reflection resulted in blinking of the fluorescence from the single Alexa-HCytb5 molecule in the time scale of several hundred milliseconds. Each Alexa-HCytb5 molecule is characterized by its own rate constant of the blinking, corresponding to the ET rate constant at the single-molecule level, and its variation ranges between 1 and 10 s(-1). The current system thus enables us to visualize the ET reaction in the single protein molecule, and the protein ET reaction was found to be explained by the distribution of the rate constants. On the basis of the Marcus theory, we suggest that the origin of this rate distribution is the distance change associated with the structural fluctuation in the protein molecule.
Collapse
Affiliation(s)
- Yoshiaki Furukawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
728
|
Mallam AL, Jackson SE. Folding studies on a knotted protein. J Mol Biol 2005; 346:1409-21. [PMID: 15713490 DOI: 10.1016/j.jmb.2004.12.055] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/20/2004] [Accepted: 12/23/2004] [Indexed: 10/25/2022]
Abstract
YibK is a 160 residue homodimeric protein belonging to the SPOUT class of methyltransferases. Proteins in this group all display a unique topological feature; the backbone polypeptide chain folds to form a deep trefoil knot. Such knotted structures were completely unpredicted, it being thought impossible for a protein to fold efficiently in this way. However, they are becoming more common and there are now a growing number of examples in the Protein Data Bank. These intriguing knotted structures represent a new and significant challenge in the field of protein folding. Here, we present an initial characterisation of the folding of YibK, one of the smallest knotted proteins to be identified. This is the first detailed folding study on a knotted protein to be reported. We have established conditions under which the protein can be denatured reversibly in vitro using urea, thereby showing that molecular chaperones are not required for the efficient folding of this protein. A series of equilibrium unfolding experiments were performed over a 400-fold range of protein concentration. Both secondary and tertiary structural probes show a single, protein concentration-dependent unfolding transition, and data are most consistent with a three-state equilibrium denaturation model involving a monomeric intermediate. Thermodynamic parameters obtained from the fit of the data to this model indicate that the intermediate is a stable species with appreciable secondary and tertiary structure; whether the topological knot remains in the intermediate state is still to be shown. Together, these results demonstrate that, despite its complex knotted structure, YibK is able to fold efficiently and behaves remarkably similarly to other dimeric proteins under equilibrium conditions.
Collapse
Affiliation(s)
- Anna L Mallam
- Chemistry Department, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
729
|
Gray RD, Trent JO. Contribution of a Single-Turn α-Helix to the Conformational Stability and Activity of the Alkaline Proteinase Inhibitor of Pseudomonas aeruginosa. Biochemistry 2005; 44:2469-77. [PMID: 15709759 DOI: 10.1021/bi048287q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alkaline proteinase inhibitor of Pseudomonas aeruginosa (APRin), a high-affinity inhibitor of the serralysin family of bacterial metalloproteinases, is folded into an eight-stranded beta-barrel with an N-terminal trunk linked to the barrel by a single-turn alpha-helix (helix A, residues 8-11). We show here that deletion or modification of helix A decreases the conformational stability of APRin as assessed by thermal and chemical denaturation with guanidinium chloride (GdmCl). The apparent melting temperature T(m) of the wild-type protein was 81.5 degrees C at pH 7.1 as assessed by circular dichroism and 87.5 degrees C by differential scanning calorimetry. Reduction of the single disulfide bond of APRin decreased T(m) by approximately 18 degrees C, while deletion of residues 6-10 or 1-10 lowered T(m) by approximately 8 and approximately 14 degrees C, respectively. DeltaG(u) as assessed by chemical denaturation was 7.2 kcal mol(-)(1) at 25 degrees C for wild-type APRin and was decreased by 3.4, 2.4, and 2.6 kcal mol(-)(1) by disulfide reduction, deletion of residues 6-10, and deletion of residues 1-10, respectively. In contrast, deletion of residues 1-5 had no significant effect on either T(m) or DeltaG(u). Substitution of five helix-breaking Gly or Pro residues in positions 6-10 as well as disruption of hydrogen bonds involving residues within helix A (mutants Asp10Pro and Trp15Phe) also decreased T(m) and DeltaG(u). The data suggest that a hydrogen-bonding network involving Leu11 in helix A and Trp15 located at the top of the barrel may prevent access of solvent to the interior of the barrel. Disruption of the helix could facilitate solvation of the nonpolar interior of the barrel, thereby destabilizing its folded structure. Kinetic studies with single amino acid mutants in helix A indicate that it modulates the affinity of APRin for APR primarily by influencing the dissociation rate of the inhibitor from the complex.
Collapse
Affiliation(s)
- Robert D Gray
- Department of Biochemistry & Molecular Biology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
730
|
Hayryan S, Hu CK, Skrivánek J, Hayryane E, Pokorný I. A new analytical method for computing solvent-accessible surface area of macromolecules and its gradients. J Comput Chem 2005; 26:334-43. [PMID: 15643653 DOI: 10.1002/jcc.20125] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the calculation of thermodynamic properties and three-dimensional structures of macromolecules, such as proteins, it is important to have an efficient algorithm for computing the solvent-accessible surface area of macromolecules. Here, we propose a new analytical method for this purpose. In the proposed algorithm we consider the transformation that maps the spherical circles formed by intersection of the atomic surfaces in three-dimensional space onto the circles on a two-dimensional plane, and the problem of computing the solvent-accessible surface area is reduced to the problem of computing the corresponding curve integrals on the plane. This allows to consider only the integrals along the circular trajectories on the plane. The algorithm is suitable for parallelization. Testings on many proteins as well as the comparison to the other analogous algorithms have shown that our method is accurate and efficient.
Collapse
Affiliation(s)
- Shura Hayryan
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
731
|
Schreiber A, Humbert M, Benz A, Dietrich U. 3D-Epitope-Explorer (3DEX): Localization of conformational epitopes within three-dimensional structures of proteins. J Comput Chem 2005; 26:879-87. [DOI: 10.1002/jcc.20229] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
732
|
Amor JC, Swails J, Zhu X, Roy CR, Nagai H, Ingmundson A, Cheng X, Kahn RA. The Structure of RalF, an ADP-ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site. J Biol Chem 2005; 280:1392-400. [PMID: 15520000 DOI: 10.1074/jbc.m410820200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms a cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the "glutamic finger," conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.
Collapse
Affiliation(s)
- J Carlos Amor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
733
|
López-Lucendo MF, Solís D, André S, Hirabayashi J, Kasai KI, Kaltner H, Gabius HJ, Romero A. Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J Mol Biol 2004; 343:957-70. [PMID: 15476813 DOI: 10.1016/j.jmb.2004.08.078] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 08/23/2004] [Accepted: 08/25/2004] [Indexed: 10/26/2022]
Abstract
Human galectin-1 is a potent multifunctional effector that participates in specific protein-carbohydrate and protein-protein (lipid) interactions. By determining its X-ray structure, we provide the basis to define the structure of its ligand-binding pocket and to perform rational drug design. We have also analysed whether single-site mutations introduced at some distance from the carbohydrate recognition domain can affect the lectin fold and influence sugar binding. Both the substitutions introduced in the C2S and R111H mutants altered the presentation of the loop, harbouring Asp123 in the common "jelly-roll" fold. The orientation of the side-chain was inverted 180 degrees and the positions of two key residues in the sugar-binding site of the R111H mutant were notably shifted, i.e. His52 and Trp68. Titration calorimetry was used to define the decrease in ligand affinity in both mutants and a significant increase in the entropic penalty was found to outweigh a slight enhancement of the enthalpic contribution. The position of the SH-groups in the galectin appeared to considerably restrict the potential to form intramolecular disulphide bridges and was assumed to be the reason for the unstable lectin activity in the absence of reducing agent. However, this offers no obvious explanation for the improved stability of the C2S mutant under oxidative conditions. The noted long-range effects in single-site mutants are relevant for the functional divergence of closely related galectins and in more general terms, the functionality definition of distinct amino acids.
Collapse
Affiliation(s)
- María F López-Lucendo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
734
|
Campos LA, Bueno M, Lopez-Llano J, Jiménez MA, Sancho J. Structure of stable protein folding intermediates by equilibrium phi-analysis: the apoflavodoxin thermal intermediate. J Mol Biol 2004; 344:239-55. [PMID: 15504414 DOI: 10.1016/j.jmb.2004.08.081] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/19/2004] [Accepted: 08/26/2004] [Indexed: 11/17/2022]
Abstract
Protein intermediates in equilibrium with native states may play important roles in protein dynamics but, in cases, can initiate harmful aggregation events. Investigating equilibrium protein intermediates is thus important for understanding protein behaviour (useful or pernicious) but it is hampered by difficulties in gathering structural information. We show here that the phi-analysis techniques developed to investigate transition states of protein folding can be extended to determine low-resolution three-dimensional structures of protein equilibrium intermediates. The analysis proposed is based solely on equilibrium data and is illustrated by determination of the structure of the apoflavodoxin thermal unfolding intermediate. In this conformation, a large part of the protein remains close to natively folded, but a 40 residue region is clearly unfolded. This structure is fully consistent with the NMR data gathered on an apoflavodoxin mutant designed specifically to stabilise the intermediate. The structure shows that the folded region of the intermediate is much larger than the proton slow-exchange core at 25 degrees C. It also reveals that the unfolded region is made of elements whose packing surface is more polar than average. In addition, it constitutes a useful guide to rationally stabilise the native state relative to the intermediate state, a far from trivial task.
Collapse
Affiliation(s)
- Luis A Campos
- Biocomputation and Complex Systems Physics Institute and Department Bioquímica y Biología Molecular y Celular, Fac. Ciencias, University Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
735
|
Sosnick TR, Dothager RS, Krantz BA. Differences in the folding transition state of ubiquitin indicated by phi and psi analyses. Proc Natl Acad Sci U S A 2004; 101:17377-82. [PMID: 15576508 PMCID: PMC536030 DOI: 10.1073/pnas.0407683101] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We compare the folding transition state (TS) of ubiquitin previously identified by using psi analysis to that determined by using analysis. Both methods attempt to identify interactions and their relative populations at the rate-limiting step for folding. The TS ensemble derived from psi analysis has an extensive native-like chain topology, with a four-stranded beta-sheet network and a portion of the major helix. According to analysis, however, the TS is much smaller and more polarized, with only a local helix/hairpin motif. We find that structured regions can have values far from unity, the canonical value for such sites, because of structural relaxation of the TS. Consequently, these sites may be incorrectly interpreted as contributing little to the structure of the TS. These results stress the need for caution when interpreting and drawing conclusions from analysis alone and highlight the need for more specific tools for examining the structure and energetics of the TS ensemble.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
736
|
Dashnau JL, Zelent B, Vanderkooi JM. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations. Biophys Chem 2004; 114:71-83. [PMID: 15792863 DOI: 10.1016/j.bpc.2004.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/13/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
In order to correlate how the solvent affects emission properties of tryptophan, the fluorescence and phosphorescence emission spectra of tryptophan and indole model compounds were compared for solid sugar glass (trehalose/sucrose) matrix and glycerol/water solution and under the same conditions, these matrices were examined by infrared spectroscopy. Temperature was varied from 290 to 12 K. In sugar glass, the fluorescence and phosphorescence emission spectra are constant over this temperature range and the fluorescence remains red shifted; these results are consistent with the static interaction of OH groups with tryptophan in the sugar glass. In sugar glass containing water, the water retains mobility over the entire temperature range as indicated by the HOH infrared bending frequency. The fluorescence of tryptophan in glycerol/water shifts to the blue as temperature decreases and the frequency change of the absorption of the HOH bend mode is larger than in the sugar glass. These results suggest rearrangement of glycerol and water molecules over the entire temperature change. Shifts in the fluorescence emission maximum of indole and tryptophan were relatively larger than shifts for the phosphorescence emission-as expected for the relatively smaller excited triplet state dipole for tryptophan. The fluorescence emission of tryptophan in glycerol/water at low temperature has maxima at 312, 313, and 316 nm at pH 1.4, 7.0, and 10.6, respectively. The spectral shifts are interpreted to be an indication of a charge, or Stark phenomena, effect on the excited state molecule, as supported by ab initio calculations. To check whether the amino acid remains charged over the temperature range, the infrared spectrum of alanine was monitored over the entire range of temperature. The ratio of infrared absorption characteristic of carboxylate/carbonyl was constant in glycerol/water and sugar glass, which indicates that the charge was retained. Tryptophan buried in proteins, namely calcium parvalbumin from cod and aldolase from rabbit, showed temperature profiles of the fluorescence spectra that were largely independent of the solvent (glycerol/water or sugar glass) and temperature whereas the fluorescence and phosphorescence yields were dependent. The results demonstrate how the rich information found in tryptophan luminescence can provide information on the dipolar nature and dynamics of the matrix.
Collapse
Affiliation(s)
- Jennifer L Dashnau
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
737
|
Abstract
The dynamics of confined water in capillaries and nanotubes suggests that gating of ion channels may involve not only changes of the pore geometry, but also transitions between water-filled and empty states in certain locations. The recently solved heptameric structure of the small mechanosensitive channel of Escherichia coli, MscS, has revealed a relatively wide (7-15 A) yet highly hydrophobic transmembrane pore. Continuum estimations based on the properties of pore surface suggest low conductance and a thermodynamic possibility of dewetting. To test the predictions we performed molecular dynamics simulations of MscS filled with flexible TIP3P water. Irrespective to the initial conditions, several independent 6-ns simulations converged to the same stable state with the pore water-filled in the wider part, but predominantly empty in the narrow hydrophobic part, displaying intermittent vapor-liquid transitions. The polar gain-of-function substitution L109S in the constriction resulted in a stable hydration of the entire pore. Steered passages of Cl(-) ions through the narrow part of the pore consistently produced partial ion dehydration and required a force of 200-400 pN to overcome an estimated barrier of 10-20 kcal/mole, implying negligibly low conductance. We conclude that the crystal structure of MscS does not represent an open state. We infer that MscS gate, which is similar to that of the nicotinic ACh receptor, involves a vapor-lock mechanism where limited changes of geometry or surface polarity can locally switch the regime between water-filled (conducting) and empty (nonconducting) states.
Collapse
Affiliation(s)
- Andriy Anishkin
- Biology Department, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
738
|
Pey AL, Thórólfsson M, Teigen K, Ugarte M, Martínez A. Thermodynamic characterization of the binding of tetrahydropterins to phenylalanine hydroxylase. J Am Chem Soc 2004; 126:13670-8. [PMID: 15493924 DOI: 10.1021/ja047713s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenylalanine hydroxylase (PAH) is the key enzyme in the catabolism of L-Phe. The natural cofactor of PAH, 6R-tetrahydrobiopterin (BH4), negatively regulates the enzyme activity in addition to being an essential cosubstrate for catalysis. The analogue 6-methyltetrahydropterin (6M-PH4) is effective in catalysis but does not regulate PAH. Here, the thermodynamics of binding of BH4 and 6M-PH4 to human PAH have been studied by isothermal titration calorimetry. At neutral pH and 25 degrees C, BH4 binds to PAH with higher affinity (Kd = 0.75 +/- 0.18 microM) than 6M-PH4 (Kd = 16.5 +/- 2.7 microM). While BH4 binding is a strongly exothermic process (DeltaH = -11.8 +/- 0.4 kcal/mol) accompanied by an entropic penalty (-TDeltaS = 3.4 +/- 0.4 kcal/mol), 6M-PH4 binding is both enthalpically (DeltaH = -3.3 +/- 0.3 kcal/mol) and entropically (-TDeltaS = -3.2 kcal/mol) driven. No significant changes in binding affinity were observed in the 5-35 degrees C temperature range for both pterins at neutral pH, but the enthalpic contribution increased with temperature rendering a heat capacity change (DeltaCp) of -357 +/- 26 cal/mol/K for BH4 and -63 +/- 12 cal/mol/K for 6M-PH4. Protons do not seem to be taken up or released upon pterin binding. Structure-based energetics calculations applied on the molecular dynamics simulated structures of the complexes suggest that in the case of BH4 binding, the conformational rearrangement of the N-terminal tail of PAH contribute with favorable enthalpic and unfavorable entropic contributions to the intrinsic thermodynamic parameters of binding. The entropic penalty is most probably associated to the reduction of conformational flexibility at the protein level and disappears for the L-Phe activated enzyme. The calculated energetic parameters aid to elucidate the molecular mechanism for cofactor recognition and the regulation of PAH by the dihydroxypropyl side chain of BH4.
Collapse
Affiliation(s)
- Angel Luis Pey
- Contribution from the Centro de Biología Molecular Severo Ochoa, CSIC-UniversidadAutónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
739
|
Nukuna BN, Sun G, Anderson VE. Hydroxyl radical oxidation of cytochrome c by aerobic radiolysis. Free Radic Biol Med 2004; 37:1203-13. [PMID: 15451060 DOI: 10.1016/j.freeradbiomed.2004.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 06/29/2004] [Accepted: 07/01/2004] [Indexed: 11/28/2022]
Abstract
The reaction of radiolytically generated *OH with cytochrome c was investigated by mass spectrometry. Tryptic digestion and characterization of the oxidized peptides by MALDI-TOF and ESI tandem mass spectrometry identified eight different amino acid residues with oxidized side chains with no cleavage of the protein detected. Solvent-accessible aromatic and methionine residues are the most susceptible to oxidation by *OH. These results support the careful use of *OH in characterizing protein surfaces. Dose-response studies identified the residues most prone to oxidation to be Phe-36, Phe-46, and Met-80. Hydroxylation of Phe-36 and Phe-46 should serve as indicators of the presence of *OH in the mitochondrial intermembrane space. Using solutions containing 50 at.% (18)O, our study also provides a novel method of determining the source of oxygen during *OH-mediated oxidation of proteins and contributes to identification of the modified residue type, with Phe>Tyr>Met in (18)O incorporation. During aerobic radiolysis, UV-vis spectroscopy indicates that ferrocytochrome c reaches a steady state concomitant with reduction of the heme.
Collapse
Affiliation(s)
- Benedicta N Nukuna
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935, USA
| | | | | |
Collapse
|
740
|
Gupta S, Mangel WF, McGrath WJ, Perek JL, Lee DW, Takamoto K, Chance MR. DNA Binding Provides a Molecular Strap Activating the Adenovirus Proteinase. Mol Cell Proteomics 2004; 3:950-9. [PMID: 15220401 DOI: 10.1074/mcp.m400037-mcp200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human adenovirus proteinase (AVP) requires two cofactors for maximal activity: pVIc, a peptide derived from the C terminus of adenovirus precursor protein pVI, and the viral DNA. Synchrotron protein footprinting was used to map the solvent accessible cofactor binding sites and to identify conformational changes associated with the binding of cofactors to AVP. The binding of pVIc alone or pVIc and DNA together to AVP triggered significant conformational changes adjacent to the active site cleft sandwiched between the two AVP subdomains. In addition, upon binding of DNA to AVP, it was observed that specific residues on each of the two major subdomains were significantly protected from hydroxyl radicals. Based on the locations of these protected side-chain residues and conserved aromatic and positively charged residues within AVP, a three-dimensional model of DNA binding was constructed. The model indicated that DNA binding can alter the relative orientation of the two AVP domains leading to the partial activation of AVP by DNA. In addition, both pVIc and DNA may independently alter the active site conformation as well as drive it cooperatively to fully activate AVP.
Collapse
Affiliation(s)
- Sayan Gupta
- Center for Synchrotron Biosciences, Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
741
|
Marianayagam NJ, Jackson SE. The folding pathway of ubiquitin from all-atom molecular dynamics simulations. Biophys Chem 2004; 111:159-71. [PMID: 15381313 DOI: 10.1016/j.bpc.2004.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/14/2004] [Accepted: 05/17/2004] [Indexed: 11/17/2022]
Abstract
The folding (unfolding) pathway of ubiquitin is probed using all-atom molecular dynamics simulations. We dissect the folding pathway using two techniques: first, we probe the folding pathway of ubiquitin by calculating the evolution of structural properties over time and second, we identify the rate determining transition state for folding. The structural properties that we look at are hydrophobic solvent accessible surface area (SASA) and Calpha-root-mean-square deviation (rmsd). These properties on their own tell us relatively little about the folding pathway of ubiquitin; however, when plotted against each other, they become powerful tools for dissecting ubiquitin's folding mechanism. Plots of Calpha-rmsd against SASA serve as a phase space trajectories for the folding of ubiquitin. In this study, these plots show that ubiquitin folds to the native state via the population of an intermediate state. This is shown by an initial hydrophobic collapse phase followed by a second phase of secondary structure arrangement. Analysis of the structure of the intermediate state shows that it is a collapsed species with very little secondary structure. In reconciling these observations with recent experimental data, the transition that we observe in our simulations from the unfolded state (U) to the intermediate state (I) most likely occurs in the dead-time of the stopped flow instrument. The folding pathway of ubiquitin is probed further by identification of the rate-determining transition state for folding. The method used for this is essential dynamics, which utilizes a principal component analysis (PCA) on the atomic fluctuations throughout the simulation. The five transition state structures identified in silico are in good agreement with the experimentally determined transition state. The calculation of phi-values from the structures generated in the simulations is also carried out and it shows a good correlation with the experimentally measured values. An initial analysis of the denatured state shows that it is compact with fluctuating regions of nonnative secondary structure. It is found that the compactness in the denatured state is due to the burial of some hydrophobic residues. We conclude by looking at a correlation between folding kinetics and residual structure in the denatured state. A hierarchical folding mechanism is then proposed for ubiquitin.
Collapse
Affiliation(s)
- Neelan J Marianayagam
- Centre for Protein Engineering, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | | |
Collapse
|
742
|
Burguete AS, Harbury PB, Pfeffer SR. In vitro selection and prediction of TIP47 protein-interaction interfaces. Nat Methods 2004; 1:55-60. [PMID: 15782153 DOI: 10.1038/nmeth702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Accepted: 07/27/2004] [Indexed: 11/08/2022]
Abstract
We present a new method for the rapid identification of amino acid residues that contribute to protein-protein interfaces. Tail-interacting protein of 47 kDa (TIP47) binds Rab9 GTPase and the cytoplasmic domains of mannose 6-phosphate receptors and is required for their transport from endosomes to the Golgi apparatus. Cysteine mutations were incorporated randomly into TIP47 by expression in Escherichia coli cells harboring specific misincorporator tRNAs. We made use of the ability of the native TIP47 protein to protect 48 cysteine probes from chemical modification by iodoacetamide as a means to obtain a surface map of TIP47, revealing the identity of surface-localized, hydrophobic residues that are likely to participate in protein-protein interactions. Direct mutation of predicted interface residues confirmed that the protein had altered binding affinity for the mannose 6-phosphate receptor. TIP47 mutants with enhanced or diminished affinities were also selected by affinity chromatography. These methods were validated in comparison with the protein's crystal structure, and provide a powerful means to predict protein-protein interaction interfaces.
Collapse
Affiliation(s)
- Alondra Schweizer Burguete
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | |
Collapse
|
743
|
Stoner MR, Fischer N, Nixon L, Buckel S, Benke M, Austin F, Randolph TW, Kendrick BS. Protein−solute interactions affect the outcome of ultrafiltration/diafiltration operations. J Pharm Sci 2004; 93:2332-42. [PMID: 15295793 DOI: 10.1002/jps.20145] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein production operations often involve a final diafiltration of the protein into formulation buffer. For several Amgen product proteins, post-diafiltration assays revealed a significant difference in molar excipient concentrations on the retentate and the permeate side of the membrane. For example, post-diafiltration assays of formulated 200 mg/mL human interleukin-1 receptor antagonist showed molar chloride concentrations up to 30% lower than those of the diafiltration buffer. Deviations from expected results were also observed in cases where a fusion conjugate protein (AMG-719) was formulated by dialysis in 10 mM acetate and where PEGylated soluble tumor necrosis factor receptor (PEG-sTNF-RI) was formulated in 270 mM glycine and 10 mM histidine. Classical thermodynamic theory describing intermolecular interactions predicts that the partitioning of small solutes during dialysis will be dependent on the protein concentration, charge, and surface area. This study illustrates methods to approximate these effects using readily available protein data (theoretical titration curves based on protein sequence, density information, etc.). Additionally, guidelines are provided to determine when intermolecular interactions are likely to significantly impact the outcome of dialysis/diafiltration operations.
Collapse
Affiliation(s)
- Michael R Stoner
- University of Colorado, Department of Chemical and Biological Engineering, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
744
|
Rajamani D, Thiel S, Vajda S, Camacho CJ. Anchor residues in protein-protein interactions. Proc Natl Acad Sci U S A 2004; 101:11287-92. [PMID: 15269345 PMCID: PMC509196 DOI: 10.1073/pnas.0401942101] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show that the mechanism for molecular recognition requires one of the interacting proteins, usually the smaller of the two, to anchor a specific side chain in a structurally constrained binding groove of the other protein, providing a steric constraint that helps to stabilize a native-like bound intermediate. We identify the anchor residues in 39 protein-protein complexes and verify that, even in the absence of their interacting partners, the anchor side chains are found in conformations similar to those observed in the bound complex. These ready-made recognition motifs correspond to surface side chains that bury the largest solvent-accessible surface area after forming the complex (> or =100 A2). The existence of such anchors implies that binding pathways can avoid kinetically costly structural rearrangements at the core of the binding interface, allowing for a relatively smooth recognition process. Once anchors are docked, an induced fit process further contributes to forming the final high-affinity complex. This later stage involves flexible (solvent-exposed) side chains that latch to the encounter complex in the periphery of the binding pocket. Our results suggest that the evolutionary conservation of anchor side chains applies to the actual structure that these residues assume before the encounter complex and not just to their loci. Implications for protein docking are also discussed.
Collapse
Affiliation(s)
- Deepa Rajamani
- Departments of Biology and Biomedical Engineering and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
745
|
Lammerts van Bueren A, Boraston AB. Binding Sub-site Dissection of a Carbohydrate-binding Module Reveals the Contribution of Entropy to Oligosaccharide Recognition at “Non-primary” Binding Subsites. J Mol Biol 2004; 340:869-79. [PMID: 15223327 DOI: 10.1016/j.jmb.2004.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 05/19/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
The optimal ligands for many carbohydrate-binding proteins are often oligosaccharides comprising two, three, or more monosaccharide units. The binding affinity for these sugars is increased incrementally by contributions from binding subsites on the protein that accommodate the individual monosaccharide residues of the oligosaccharide. Here, we use CsCBM6-1, a xylan-specific type B carbohydrate-binding module (CBM) from Clostridium stercorarium falling into amino acid sequence family CBM6, as a model system to investigate the structural and thermodynamic contributions of binding subsites in this protein to carbohydrate recognition. The three-dimensional structures of uncomplexed CsCBM6-1 (at 1.8 A resolution) and bound to the oligosaccharides xylobiose, xylotriose, and xylotetraose (at 1.70 A, 1.89 A, and 1.69 A resolution, respectively) revealed the sequential occupation of four subsites within the binding site in the order of subsites 2, 3, 4 then 1. Overall, binding to all of the xylooligosaccharides tested was enthalpically favourable and entropically unfavourable, like most protein-carbohydrate interactions, with the primary subsites 2 and 3 providing the bulk of the free energy and enthalpy of binding. In contrast, the contributions to the changes in entropy of the non-primary subsites 1 and 4 to xylotriose and xylotetraose binding, respectively, were positive. This observation is remarkable, in that it shows that the 10-20-fold improvement in association constants for oligosaccharides longer than a disaccharide is facilitated by favourable entropic contributions from the non-primary binding subsites.
Collapse
Affiliation(s)
- Alicia Lammerts van Bueren
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | | |
Collapse
|
746
|
Thompson TB, Katayama K, Watanabe K, Hutchinson CR, Rayment I. Structural and functional analysis of tetracenomycin F2 cyclase from Streptomyces glaucescens. A type II polyketide cyclase. J Biol Chem 2004; 279:37956-63. [PMID: 15231835 DOI: 10.1074/jbc.m406144200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetracenomycin F2 cyclase (tcmI gene product), catalyzes an aromatic rearrangement in the biosynthetic pathway for tetracenomycin C in Streptomyces glaucescens. The x-ray structure of this small enzyme has been determined to 1.9-A resolution together with an analysis of site-directed mutants of potential catalytic residues. The protein exhibits a dimeric betaalphabeta ferredoxin-like fold that utilizes strand swapping between subunits in its assembly. The fold is dominated by four strands of antiparallel sheet and a layer of alpha-helices, which creates a cavity that is proposed to be the active site. This type of secondary structural arrangement has been previously observed in polyketide monooxygenases and suggests an evolutionary relationship between enzymes that catalyze adjacent steps in these biosynthetic pathways. Mutational analysis of all of the obvious catalytic bases within the active site suggests that the enzyme functions to steer the chemical outcome of the cyclization rather than providing a specific catalytic group. Together, the structure and functional analysis provide insight into the structural framework necessary to perform the complex rearrangements catalyzed by this class of polyketide cyclases.
Collapse
Affiliation(s)
- Thomas B Thompson
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
747
|
Guvench O, Brooks CL. Efficient approximate all-atom solvent accessible surface area method parameterized for folded and denatured protein conformations. J Comput Chem 2004; 25:1005-14. [PMID: 15067676 DOI: 10.1002/jcc.20026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Continuing advances in computer hardware and software are permitting atomic-resolution molecular simulations for longer time scales and on larger systems. Despite these advances, routinely performing atomistic simulations with explicit water for even small proteins, which reach the folding time of such proteins, remains intractable for the foreseeable future. An implicit approximation of the solvent environment using a solvent accessible surface area (SASA) term in a molecular mechanics potential function allows exclusion of the explicit water molecules in protein simulations. This reduces the number of particles by approximately an order of magnitude. We present a fast and acceptably accurate approximate all-atom SASA method parameterized using a set of folded and heat-denatured conformations of globular proteins. The parameters are shown to be transferable to folded and heat-denatured conformations for another set of proteins. Calculation of the approximate SASA and the associated derivatives with respect to atomic positions for a 4644 atom protein requires only 1/11th the CPU time required for calculation of the nonbonded interactions for this system. On a per atom basis, this algorithm is three times faster than the fastest previously published approximate SASA method and achieves the same level of accuracy.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Molecular Biology (TPC-6), The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
| | | |
Collapse
|
748
|
Yan X, Broderick D, Leid ME, Schimerlik MI, Deinzer ML. Dynamics and ligand-induced solvent accessibility changes in human retinoid X receptor homodimer determined by hydrogen deuterium exchange and mass spectrometry. Biochemistry 2004; 43:909-17. [PMID: 14744134 DOI: 10.1021/bi030183c] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptors for retinoic acid act as ligand activated transcription factors. The three-dimensional structure of the retinoid X receptor (RXR) ligand binding domain has been determined, but little information is available concerning the properties of the protein in solution. Hydrogen/deuterium exchange followed by electrospray ionization mass spectrometry was used to probe the solution conformation of the recombinant human RXRalpha homodimer ligand binding domain in the presence and absence of 9-cis-retinoic acid (9-cis-RA). Within the experimental time domain (0.25-180 min), about 20 amide hydrogens showed decreased exchange rates in the presence of saturating concentrations of 9-cis-RA as compared to those found for the homodimer in the absence of ligand. Most of the amides were located in peptides derived from regions of the protein shown by the X-ray structure to interact with the bound ligand: the amino termini of helices 3 and 9, the two beta sheets, helix 8, the H8-H9 loop, and the carboxyl terminus of helix 11. Unexpectedly, protection was also observed in peptides derived from helices 7, 10, 11, and the H7-H8 and H10-H11 loops, regions that are not directly in contact with bound 9-cis-RA. These results suggest that the binding of ligand results in additional effects on the conformation or dynamics of the homodimer in solution as compared to those observed for the X-ray structure. Overall, the change in deuterium exchange induced by the binding of 9-cis-RA correlated reasonably well with changes in hydrogen bonding, residue depth, and/or solvent accessibility predicted from the crystal structure.
Collapse
Affiliation(s)
- Xuguang Yan
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
749
|
Zhao Y, Liu D, Kaluarachchi WD, Bellamy HD, White MA, Fox RO. The crystal structure of Escherichia coli heat shock protein YedU reveals three potential catalytic active sites. Protein Sci 2004; 12:2303-11. [PMID: 14500888 PMCID: PMC2366919 DOI: 10.1110/ps.03121403] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mRNA of Escherichia coli yedU gene is induced 31-fold upon heat shock. The 31-kD YedU protein, also calls Hsp31, is highly conserved in several human pathogens and has chaperone activity. We solved the crystal structure of YedU at 2.2 A resolution. YedU monomer has an alpha/beta/alpha sandwich domain and a small alpha/beta domain. YedU is a dimer in solution, and its crystal structure indicates that a significant amount of surface area is buried upon dimerization. There is an extended hydrophobic patch that crosses the dimer interface on the surface of the protein. This hydrophobic patch is likely the substrate-binding site responsible for the chaperone activity. The structure also reveals a potential protease-like catalytic triad composed of Cys184, His185, and Asp213, although no enzymatic activity could be identified. YedU coordinates a metal ion using His85, His122, and Glu90. This 2-His-1-carboxylate motif is present in carboxypeptidase A (a zinc enzyme), and a number of dioxygenases and hydroxylases that utilize iron as a cofactor, suggesting another potential function for YedU.
Collapse
Affiliation(s)
- Yonghong Zhao
- Department of Physiology and Biophysics, and The Graduate Program in Cellular Physiology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|
750
|
Khatun J, Khare SD, Dokholyan NV. Can Contact Potentials Reliably Predict Stability of Proteins? J Mol Biol 2004; 336:1223-38. [PMID: 15037081 DOI: 10.1016/j.jmb.2004.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 01/08/2004] [Accepted: 01/08/2004] [Indexed: 11/17/2022]
Abstract
The simplest approximation of interaction potential between amino acid residues in proteins is the contact potential, which defines the effective free energy of a protein conformation by a set of amino acid contacts formed in this conformation. Finding a contact potential capable of predicting free energies of protein states across a variety of protein families will aid protein folding and engineering in silico on a computationally tractable time-scale. We test the ability of contact potentials to accurately and transferably (across various protein families) predict stability changes of proteins upon mutations. We develop a new methodology to determine the contact potentials in proteins from experimental measurements of changes in protein's thermodynamic stabilities (DeltaDeltaG) upon mutations. We apply our methodology to derive sets of contact interaction parameters for a hierarchy of interaction models including solvation and multi-body contact parameters. We test how well our models reproduce experimental measurements by statistical tests. We evaluate the maximum accuracy of predictions obtained by using contact potentials and the correlation between parameters derived from different data-sets of experimental (DeltaDeltaG) values. We argue that it is impossible to reach experimental accuracy and derive fully transferable contact parameters using the contact models of potentials. However, contact parameters may yield reliable predictions of DeltaDeltaG for datasets of mutations confined to the same amino acid positions in the sequence of a single protein.
Collapse
Affiliation(s)
- Jainab Khatun
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|