701
|
Abstract
Based on animal experiments, a switch of the erythropoietin (EPO) production site from the liver in the fetus to the kidneys in the adult has been postulated. To study the switch in humans, we have quantitated EPO mRNA expression in liver, kidney, spleen, and bone marrow of human fetuses and neonates by means of a competitive polymerase chain reaction (PCR). Tissue samples from 66 routine postmortem examinations were obtained. EPO mRNA was expressed in 97% of the tissue specimen derived from the liver (n = 66) and in 93% of those from the kidneys (17 weeks of gestation until 18 months after birth; n = 59). For the first time the EPO gene was found expressed in vivo in human spleen (96% of 64 samples) and in fetal and neonatal bone marrow (81% of 21 samples). EPO mRNA expression in the kidneys increased significantly beyond 30 weeks of gestation (P < .05). Although there was a slight decrease in EPO mRNA content per g liver tissue towards birth, the liver accounted for about 80% of the total body EPO mRNA. The contribution of the spleen and bone marrow were minor compared with liver and kidneys. Our results indicate that in humans the liver is the primary site of EPO gene expression not only in fetal, but also in neonatal life. A significant increase of renal EPO mRNA expression after 30 weeks of gestation might indicate the beginning switch.
© 1998 by The American Society of Hematology.
Collapse
|
702
|
Abstract
Abstract
Based on animal experiments, a switch of the erythropoietin (EPO) production site from the liver in the fetus to the kidneys in the adult has been postulated. To study the switch in humans, we have quantitated EPO mRNA expression in liver, kidney, spleen, and bone marrow of human fetuses and neonates by means of a competitive polymerase chain reaction (PCR). Tissue samples from 66 routine postmortem examinations were obtained. EPO mRNA was expressed in 97% of the tissue specimen derived from the liver (n = 66) and in 93% of those from the kidneys (17 weeks of gestation until 18 months after birth; n = 59). For the first time the EPO gene was found expressed in vivo in human spleen (96% of 64 samples) and in fetal and neonatal bone marrow (81% of 21 samples). EPO mRNA expression in the kidneys increased significantly beyond 30 weeks of gestation (P < .05). Although there was a slight decrease in EPO mRNA content per g liver tissue towards birth, the liver accounted for about 80% of the total body EPO mRNA. The contribution of the spleen and bone marrow were minor compared with liver and kidneys. Our results indicate that in humans the liver is the primary site of EPO gene expression not only in fetal, but also in neonatal life. A significant increase of renal EPO mRNA expression after 30 weeks of gestation might indicate the beginning switch.
© 1998 by The American Society of Hematology.
Collapse
|
703
|
O'Connor R. Survival factors and apoptosis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1998; 62:137-66. [PMID: 9755644 DOI: 10.1007/bfb0102309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This chapter will explore the role of survival factors in suppression of apoptosis, and illustrate how survival signals play a critical role in the survival of both normal and tumor cells. Survival factors necessary for the development and maintenance of the nervous system and hemopoietic system will be surveyed. This will be followed by a detailed discussion of the role of insulin-like growth factor I (IGF-I) and its receptor in suppression of apoptosis. The importance of survival signals from the IGF-IR for development and tumorigenesis will be discussed, and results of a mutational analysis of the receptor to assign domains necessary for suppression of apoptosis will be summarized. Finally, a discussion of the signal transduction pathways involved in survival factor-signaling will review the roles played by PI-3 kinase and AKT and speculate on how activation of these kinases by survival factors might regulate the apoptotic pathway.
Collapse
Affiliation(s)
- R O'Connor
- Department of Biochemistry, University College Cork, Ireland.
| |
Collapse
|
704
|
Cheung WK, Goon BL, Guilfoyle MC, Wacholtz MC. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther 1998; 64:412-23. [PMID: 9797798 DOI: 10.1016/s0009-9236(98)90072-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To understand the pharmacokinetic and pharmacodynamic properties of recombinant human erythropoietin (epoetin alfa) and to continue to optimize dosing regimens by determining whether administration of single high doses of epoetin alfa is as effective as repeated administration. METHODS Epoetin alfa was administered as single subcutaneous doses of 300, 450, 600, 900, 1200, 1350, 1800, and 2400 IU/kg and in multiple subcutaneous dose regimens: 150 IU/kg 3 times a week for 4 weeks and 600 IU/kg once per week for 4 weeks in 2 open-label, randomized placebo-controlled studies in healthy volunteers. RESULTS The absorption rate of epoetin alfa after subcutaneous administration was independent of dose, whereas clearance was dose-dependent in that it decreased with increasing dose. There was a linear relationship between response measured as percentage of reticulocytes area under the curve (AUC) and erythropoietin AUC for single doses up to 1800 IU/kg. Beyond the 1800 IU/kg dose, there was a saturation of response. The mean percentage of reticulocytes after single-dose regimens began to increase by days 3 to 4, reached their maximum at days 8 to 11, and returned to baseline values by day 22. In contrast, the mean percentage of reticulocytes after both multiple-dose regimens were maintained above baseline values through day 22 as both regimens stimulated modest but sustained increases in percentage of reticulocytes (1% to 2%). The mean percentage of reticulocytes AUC for 600 IU/kg epoetin alfa given once a week for 4 weeks was apparently greater than the mean percentage of reticulocytes AUC for 150 IU/kg 3 times a week for 4 weeks. Although daily oral iron supplementation was given, mean serum ferritin levels declined by approximately 75% through day 22 in subjects treated with multiple doses of epoetin alfa. CONCLUSIONS These findings show that the pharmacologic response to epoetin alfa is a function of dose and dosing regimen. Repeated administration of epoetin alfa was more effective in stimulating a reticulocyte response than single-dose administration of the same total amount of epoetin alfa.
Collapse
Affiliation(s)
- W K Cheung
- Department of Drug Metabolism, R.W. Johnson Pharmaceutical Research Institute, Raritan, NJ 08869-0602, USA
| | | | | | | |
Collapse
|
705
|
Juul SE, Yachnis AT, Christensen RD. Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev 1998; 52:235-49. [PMID: 9808074 DOI: 10.1016/s0378-3782(98)00030-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Erythropoietin receptors (Epo-R) have been demonstrated on several nonhematopoietic cell types in animal models and in cell culture. Our objective was to determine the tissue distribution and cellular specificity of erythropoietin (Epo) and its receptor in the developing human fetus. STUDY DESIGN The expression of Epo and Epo-R mRNA was ascertained by RT-PCR for organs ranging in maturity from 5 to 24 weeks postconception. The cellular location of protein immunoreactivity was then determined using specific antiEpo and antiEpo-R antibodies. Antibody specificity was established by Western analysis. RESULTS mRNA for Epo and Epo-R was found in all organs in the first two trimesters. Immunolocalization of Epo was limited to the liver parenchymal cells, kidney interstitial cells and proximal tubules, neural retina of the eye, and adrenal cortex. As development progressed, immunoreactivity in the kidney became more prominent. In contrast, immunoreactivity for Epo-R was widespread throughout the body, in cell types including endothelial cells, myocardiocytes, macrophages, retinal cells, cells of the adrenal cortex and medulla, as well as in small bowel, spleen, liver, kidney, and lung. CONCLUSIONS The distribution of Epo and its receptor is more widespread in the developing human than was initially postulated. Epo-R is expressed on many cell types during early fetal development, leading us to speculate that Epo acts in concert with somatic growth and development factors during this period. Further investigation is required to understand the nonhematopoietic role of Epo during human development.
Collapse
Affiliation(s)
- S E Juul
- Department of Pediatrics, University of Florida College of Medicine, JHMHC, Gainesville 32610-0296, USA
| | | | | |
Collapse
|
706
|
Chen X, Reitman M, Bieker JJ. Chromatin structure and transcriptional control elements of the erythroid Krüppel-like factor (EKLF) gene. J Biol Chem 1998; 273:25031-40. [PMID: 9737959 DOI: 10.1074/jbc.273.39.25031] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is a red cell-specific transcription factor whose activity is critical for the switch in expression from fetal to adult beta-globin during erythroid ontogeny. We have examined its own regulation using a number of approaches. First, the EKLF transcription unit is in an open chromatin configuration in erythroid cells. Second, in vivo transfection assays demonstrate that the more distal of the two erythroid-specific DNase-hypersensitive sites behaves as an enhancer. Although this conserved element imparts high level transcription to a heterologous promoter in all lines examined, erythroid specificity is retained only when it is fused to the proximal EKLF promoter, which contains an important GATA site. Third, extensive mutagenesis of this enhancer element has delimited its in vivo activity to a core region of 49 base pairs. Finally, in vitro footprint and gel shift assays demonstrate that three distinct DNA binding activities in erythroid cell extracts individually interact with three short sequences within this core enhancer element. These analyses reveal that high level erythroid expression of EKLF relies on the interplay between conserved proximal and distal promoter elements that alter chromatin structure and likely provide a target for genetic control via extracellular induction pathways.
Collapse
Affiliation(s)
- X Chen
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
707
|
Yasuda Y, Masuda S, Chikuma M, Inoue K, Nagao M, Sasaki R. Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. J Biol Chem 1998; 273:25381-7. [PMID: 9738005 DOI: 10.1074/jbc.273.39.25381] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although erythropoietin (Epo) has been shown to possess in vitro angiogenic activity, its physiological significance has not been demonstrated. Normally angiogenesis does not occur actively in adults but an exception is the female reproductive organ. In the uterine endometrium, angiogenesis takes place actively for supporting the endometrial growth that occurs during transition from the diestrus to estrous stage. This transition is under control of 17beta-estradiol (E2), an ovarian hormone, and can be mimicked by injection of E2 to ovariectomized (OVX) mouse. Thus, the uterus is a pertinent site to examine the Epo function in angiogenesis. We found that Epo protein and its mRNA were produced in an E2-dependent manner, when the uterus from OVX mouse was cultured in vitro. The de novo protein synthesis was not needed for E2 induction of Epo mRNA. Administration of E2 to OVX mouse induced a rapid and transient increase in Epo mRNA in the uterus. Injection of Epo into the OVX mouse uterine cavity promoted blood vessel formation in the endometrium. Furthermore, injection of the soluble Epo receptor capable of binding with Epo into the uterine cavity of non-OVX mouse in diestrus stage inhibited the endometrial transition to proestrus stage, whereas heat-inactivated soluble Epo receptor allowed the transition to occur. These results, combined with our finding that the endothelial cells in uterine endometrium express Epo receptor, strongly suggest that Epo is an important factor for the E2-dependent cyclical angiogenesis in uterus.
Collapse
Affiliation(s)
- Y Yasuda
- Department of Anatomy, Kinki University School of Medicine, Osaka 589-0014, Japan
| | | | | | | | | | | |
Collapse
|
708
|
Zhang P, Iwama A, Datta MW, Darlington GJ, Link DC, Tenen DG. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis. J Exp Med 1998; 188:1173-84. [PMID: 9743535 PMCID: PMC2212540 DOI: 10.1084/jem.188.6.1173] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1998] [Revised: 06/29/1998] [Indexed: 01/08/2023] Open
Abstract
Cytokines stimulate granulopoiesis through signaling via receptors whose expression is controlled by lineage-specific transcription factors. Previously, we demonstrated that granulocyte colony-stimulating factor (G-CSF) receptor mRNA was undetectable and granulocyte maturation blocked in CCAAT enhancer binding protein alpha (C/EBPalpha)-deficient mice. This phenotype is distinct from that of G-CSF receptor-/- mice, suggesting that other genes are likely to be adversely affected by loss of C/EBPalpha. Here we demonstrate loss of interleukin 6 (IL-6) receptor and IL-6-responsive colony-forming units (CFU-IL6) in C/EBPalpha-/- mice. The observed failure of granulopoiesis could be rescued by the addition of soluble IL-6 receptor and IL-6 or by retroviral transduction of G-CSF receptors, demonstrating that loss of both of these receptors contributes to the absolute block in granulocyte maturation observed in C/EBPalpha-deficient hematopoietic cells. The results of these and other studies suggest that additional C/EBPalpha target genes, possibly other cytokine receptors, are also important for the block in granulocyte differentiation observed in vivo in C/EBPalpha-deficient mice.
Collapse
MESH Headings
- Animals
- CCAAT-Enhancer-Binding Proteins
- Cell Differentiation/genetics
- Colony-Forming Units Assay
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Drug Synergism
- Enhancer Elements, Genetic
- Fetus
- Granulocytes/physiology
- Hematopoiesis/drug effects
- Hematopoiesis/genetics
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Interleukin-6/pharmacology
- Liver/cytology
- Liver/drug effects
- Liver/physiology
- Mice
- Mice, Knockout
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Receptors, Granulocyte Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte Colony-Stimulating Factor/biosynthesis
- Receptors, Granulocyte Colony-Stimulating Factor/deficiency
- Receptors, Granulocyte Colony-Stimulating Factor/genetics
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/biosynthesis
- Receptors, Interleukin-6/deficiency
- Receptors, Interleukin-6/genetics
- Solubility
- Transcription Factors/genetics
- Transcription Factors/physiology
- Up-Regulation/genetics
- Up-Regulation/physiology
Collapse
Affiliation(s)
- P Zhang
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
709
|
Okajima Y, Matsumura I, Nishiura T, Hashimoto K, Yoshida H, Ishikawa J, Wakao H, Yoshimura A, Kanakura Y, Tomiyama Y, Matsuzawa Y. Insulin-like growth factor-I augments erythropoietin-induced proliferation through enhanced tyrosine phosphorylation of STAT5. J Biol Chem 1998; 273:22877-83. [PMID: 9722506 DOI: 10.1074/jbc.273.36.22877] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor (IGF-I) is known to synergistically stimulate the proliferation of hematopoietic cells in combination with other hematopoietic growth factors. However, the precise mechanism underlying the cooperative effects of IGF-I is unknown. In a human interleukin-3 or erythropoietin (EPO)-dependent cell line, F-36P, IGF-I alone failed to stimulate DNA synthesis but did augment the EPO-dependent DNA synthesis of F-36P cells. The treatment of F-36P cells with a combination of EPO and IGF-I (EPO/IGF-I) was found to enhance EPO-induced tyrosine phosphorylation of STAT5, whereas IGF-I alone did not. Furthermore, c-CIS mRNA expression, one of the target molecules of STAT5, was more effectively induced by EPO/IGF-I than by EPO alone. To examine the mechanisms of the EPO- and EPO/IGF-I-induced proliferation of F-36P cells, we expressed dominant negative (dn) mutants of STAT5 and Ras in an inducible system. The EPO-induced DNA synthesis and the cooperative effect of EPO/IGF-I were significantly inhibited by the inducible expression of dn-STAT5 or dn-Ras. In addition, the inducible expression of dn-Ras abolished the IGF-I-enhanced tyrosine phosphorylation of STAT5. These results suggest that IGF-I may augment EPO-induced proliferation by enhancing tyrosine phosphorylation of STAT5 and raise the possibility that Ras may be involved in the augmentation of STAT5 tyrosyl phosphorylation.
Collapse
Affiliation(s)
- Y Okajima
- Department of Internal Medicine II, Osaka University Medical School, 2-2, Yamada-oka, Suita, Osaka 565, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
710
|
The Prolactin Receptor Rescues EpoR−/− Erythroid Progenitors and Replaces EpoR in a Synergistic Interaction With c-kit. Blood 1998. [DOI: 10.1182/blood.v92.5.1491.417k40_1491_1496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently showed that a retrovirally transduced prolactin receptor (PrlR) efficiently supports the differentiation of wild-type burst-forming unit erythroid (BFU-e) and colony-forming unit erythroid (CFU-e) progenitors in response to prolactin and in the absence of erythropoietin (Epo). To examine directly whether the Epo receptor (EpoR) expressed by wild-type erythroid progenitors was essential for their terminal differentiation, we infected EpoR−/−progenitors with retroviral constructs encoding either the PrlR or a chimeric receptor containing the extracellular domain of the PrlR and intracellular domain of EpoR. In response to prolactin, both receptors were equally efficient in supporting full differentiation of the EpoR−/− progenitors into erythroid colonies in vitro. Therefore, there is no requirement for an EpoR-unique signal in erythroid differentiation; EpoR signaling has no instructive role in red blood cell differentiation. A synergistic interaction between EpoR and c-kit is essential for the production of normal numbers of red blood cells, as demonstrated by the severe anemia of mice mutant for either c-kit or its ligand, stem cell factor. We show that the addition of stem cell factor potentiates the ability of the PrlR to support differentiation of both EpoR−/− and wild-type CFU-e progenitors. This synergism is quantitatively equivalent to that observed between c-kit and EpoR. Therefore, there is no requirement for an EpoR-unique signal in the synergistic interaction between c-kit and EpoR.© 1998 by The American Society of Hematology.
Collapse
|
711
|
The Prolactin Receptor Rescues EpoR−/− Erythroid Progenitors and Replaces EpoR in a Synergistic Interaction With c-kit. Blood 1998. [DOI: 10.1182/blood.v92.5.1491] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe recently showed that a retrovirally transduced prolactin receptor (PrlR) efficiently supports the differentiation of wild-type burst-forming unit erythroid (BFU-e) and colony-forming unit erythroid (CFU-e) progenitors in response to prolactin and in the absence of erythropoietin (Epo). To examine directly whether the Epo receptor (EpoR) expressed by wild-type erythroid progenitors was essential for their terminal differentiation, we infected EpoR−/−progenitors with retroviral constructs encoding either the PrlR or a chimeric receptor containing the extracellular domain of the PrlR and intracellular domain of EpoR. In response to prolactin, both receptors were equally efficient in supporting full differentiation of the EpoR−/− progenitors into erythroid colonies in vitro. Therefore, there is no requirement for an EpoR-unique signal in erythroid differentiation; EpoR signaling has no instructive role in red blood cell differentiation. A synergistic interaction between EpoR and c-kit is essential for the production of normal numbers of red blood cells, as demonstrated by the severe anemia of mice mutant for either c-kit or its ligand, stem cell factor. We show that the addition of stem cell factor potentiates the ability of the PrlR to support differentiation of both EpoR−/− and wild-type CFU-e progenitors. This synergism is quantitatively equivalent to that observed between c-kit and EpoR. Therefore, there is no requirement for an EpoR-unique signal in the synergistic interaction between c-kit and EpoR.© 1998 by The American Society of Hematology.
Collapse
|
712
|
Abstract
How an individual effector T cell acquires a particular cytokine expression pattern from many possible patterns remains unclear. CD4+ T cells from F1 mice, which allowed assignment of the parental origin of interleukin-4 (IL-4) transcripts, were divided into clones that expressed IL-4 biallelically or monoallelically from either allele. The allelic pattern was transmitted as a stable epigenetic trait. Regulation of cytokine expression by a mechanism that treats each allele independently suggests a probabilistic process by which a diverse repertoire of combinatorially assorted cytokine gene expression patterns could be generated among the clonally related daughters of a single precursor cell.
Collapse
Affiliation(s)
- M Bix
- Howard Hughes Medical Institute and Departments of Medicine and Microbiology/Immunology, University of California, San Francisco (UCSF), San Francisco, CA 94143-0654, USA
| | | |
Collapse
|
713
|
Synergistic Activation of MAP Kinase (ERK1/2) by Erythropoietin and Stem Cell Factor Is Essential for Expanded Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v92.4.1142] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractStem cell factor (SCF) and erythropoietin (EPO) work synergistically to support erythropoiesis, but the mechanism for this synergism is unknown. By using purified human erythroid colony-forming cells (ECFC), we have found that SCF and EPO synergistically activate MAP kinase (MAPK, ERK1/2), which correlates with the cell growth and thus may be responsible for the synergistic effects. Treatment of the cells with PD98059 and wortmannin, inhibitors of MEK and PI-3 kinase, respectively, inhibited the synergistic activation of MAPK and also the cell growth, further supporting this conclusion. Wortmannin only inhibits MAPK activation induced by EPO but not that by SCF, suggesting that SCF and EPO may activate MAPK through different pathways, which would facilitate synergy. Furthermore, EPO, but not SCF, led to activation of STAT5, whereas SCF and wortmannin had no effect on the EPO-induced STAT5 activation, suggesting that STAT5 is not involved in the synergistic action of SCF and EPO. Together, the data suggest that synergistic activation of MAPK by SCF and EPO is essential for expanded erythropoiesis.© 1998 by The American Society of Hematology.
Collapse
|
714
|
Abstract
Erythrocyte production in mammals is known to depend on the exposure of committed progenitor cells to the glycoprotein hormone erythropoietin (Epo). In chimeric mice, gene disruption experiments have demonstrated a critical role for Epo signaling in development beyond the erythroid colony-forming unit (CFU-e) stage. However, whether this might include the possible Epo-specific induction of red blood cell differentiation events is largely unresolved. To address this issue, mechanisms of induced globin expression in Epo-responsive SKT6 cells have been investigated. Chimeric receptors containing an epidermal growth factor (EGF) receptor extracellular domain and varied Epo receptor cytoplasmic domains first were expressed stably at physiological levels in SKT6 cells, and their activities in mediating induced hemoglobinization were assayed. While activity was exerted by a full-length chimera (EE483), truncation to remove 7 of 8 carboxyl-terminal tyrosine sites (EE372) markedly enhanced differentiation signaling. Moreover, mutation of a STAT5 binding site in this construct (EE372-Y343F) inhibited induced globin expression and SKT6 cell hemoglobinization, as did the ectopic expression of dominant-negative forms of STAT5 in parental SKT6 cells. As in normal CFU-e, SKT6 cells also were shown to express functional receptors for stem cell factor (SCF). To further define possible specific requirements for differentiation signaling, effects of SCF on SKT6 cell hemoglobinization were tested. Interestingly, SCF not only failed to promote globin expression but inhibited this Epo-induced event in a dose-dependent, STAT5-independent fashion. Thus, effects of Epo on globin expression may depend specifically on STAT5-dependent events, and SCF normally may function to attenuate terminal differentiation while promoting CFU-e expansion.© 1998 by The American Society of Hematology.
Collapse
|
715
|
Synergistic Activation of MAP Kinase (ERK1/2) by Erythropoietin and Stem Cell Factor Is Essential for Expanded Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v92.4.1142.416k42_1142_1149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell factor (SCF) and erythropoietin (EPO) work synergistically to support erythropoiesis, but the mechanism for this synergism is unknown. By using purified human erythroid colony-forming cells (ECFC), we have found that SCF and EPO synergistically activate MAP kinase (MAPK, ERK1/2), which correlates with the cell growth and thus may be responsible for the synergistic effects. Treatment of the cells with PD98059 and wortmannin, inhibitors of MEK and PI-3 kinase, respectively, inhibited the synergistic activation of MAPK and also the cell growth, further supporting this conclusion. Wortmannin only inhibits MAPK activation induced by EPO but not that by SCF, suggesting that SCF and EPO may activate MAPK through different pathways, which would facilitate synergy. Furthermore, EPO, but not SCF, led to activation of STAT5, whereas SCF and wortmannin had no effect on the EPO-induced STAT5 activation, suggesting that STAT5 is not involved in the synergistic action of SCF and EPO. Together, the data suggest that synergistic activation of MAPK by SCF and EPO is essential for expanded erythropoiesis.© 1998 by The American Society of Hematology.
Collapse
|
716
|
Abstract
AbstractErythrocyte production in mammals is known to depend on the exposure of committed progenitor cells to the glycoprotein hormone erythropoietin (Epo). In chimeric mice, gene disruption experiments have demonstrated a critical role for Epo signaling in development beyond the erythroid colony-forming unit (CFU-e) stage. However, whether this might include the possible Epo-specific induction of red blood cell differentiation events is largely unresolved. To address this issue, mechanisms of induced globin expression in Epo-responsive SKT6 cells have been investigated. Chimeric receptors containing an epidermal growth factor (EGF) receptor extracellular domain and varied Epo receptor cytoplasmic domains first were expressed stably at physiological levels in SKT6 cells, and their activities in mediating induced hemoglobinization were assayed. While activity was exerted by a full-length chimera (EE483), truncation to remove 7 of 8 carboxyl-terminal tyrosine sites (EE372) markedly enhanced differentiation signaling. Moreover, mutation of a STAT5 binding site in this construct (EE372-Y343F) inhibited induced globin expression and SKT6 cell hemoglobinization, as did the ectopic expression of dominant-negative forms of STAT5 in parental SKT6 cells. As in normal CFU-e, SKT6 cells also were shown to express functional receptors for stem cell factor (SCF). To further define possible specific requirements for differentiation signaling, effects of SCF on SKT6 cell hemoglobinization were tested. Interestingly, SCF not only failed to promote globin expression but inhibited this Epo-induced event in a dose-dependent, STAT5-independent fashion. Thus, effects of Epo on globin expression may depend specifically on STAT5-dependent events, and SCF normally may function to attenuate terminal differentiation while promoting CFU-e expansion.© 1998 by The American Society of Hematology.
Collapse
|
717
|
Bauer A, Mikulits W, Lagger G, Stengl G, Brosch G, Beug H. The thyroid hormone receptor functions as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors. EMBO J 1998; 17:4291-303. [PMID: 9687498 PMCID: PMC1170763 DOI: 10.1093/emboj/17.15.4291] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The avian erythroblastosis virus (AEV) oncoprotein v-ErbA represents a mutated, oncogenic thyroid hormone receptor alpha (c-ErbA/ TRalpha). v-ErbA cooperates with the stem cell factor-activated, endogenous receptor tyrosine kinase c-Kit to induce self-renewal and to arrest differentiation of primary avian erythroblasts, the AEV transformation target cells. In this cooperation, v-ErbA substitutes for endogenous steroid hormone receptor function required for sustained proliferation of non-transformed erythroid progenitors. In this paper, we propose a novel concept of how v-ErbA transforms erythroblasts. Using culture media strictly depleted from thyroid hormone (T3) and retinoids, the ligands for c-ErbA/TRalpha and its co-receptor RXR, we show that overexpressed, unliganded c-ErbA/ TRalpha closely resembles v-ErbA in its activity on primary erythroblasts. In cooperation with ligand-activated c-Kit, c-ErbA/ TRalpha causes steroid-independent, long-term proliferation and tightly blocks differentiation. Activation of c-ErbA/ TRalpha by physiological T3 levels causes the loss of self-renewal capacity and induces synchronous, terminal differentiation under otherwise identical conditions. This T3-induced switch in erythroid progenitor development is correlated with a decrease of c-ErbA-associated histone deacetylase activity. Our results suggest that the crucial role of the mutations activating v-erbA as an oncogene is to 'freeze' c-ErbA/ TRalpha in its non-liganded, repressive conformation and to facilitate its overexpression.
Collapse
Affiliation(s)
- A Bauer
- Institute of Molecular Pathology (I.M.P.), Vienna Biocenter, Austria
| | | | | | | | | | | |
Collapse
|
718
|
Overexpression of HOX11 Leads to the Immortalization of Embryonic Precursors With Both Primitive and Definitive Hematopoietic Potential. Blood 1998. [DOI: 10.1182/blood.v92.3.877] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Primitive and definitive erythropoiesis represent distinct hematopoietic programs that differ with respect to stage of development, transcriptional control, and growth regulation. Although these differences have been recognized for some time, the relationship of the two erythroid lineages to each other is not well established. We have used a model system based on the hematopoietic development of embryonic stem (ES) cells in culture to investigate the origins of the earliest hematopoietic populations. Using ES cells transduced with a retrovirus that overexpresses the HOX11 gene, we have established factor-dependent hematopoietic cell lines that represent novel stages of embryonic hematopoiesis. Analysis of three of these cell lines indicates that they differ with respect to cytokine responsiveness, cell surface markers, and developmental potential. Two of the cell lines, EBHX1 and EBHX11, display the unique capacity to generate both primitive and definitive erythroid progeny as defined by morphology and expression of βH1 and βmajor globin. The third line, EBHX14, has definitive erythroid and myeloid potential, but is unable to generate cells of the primitive erythroid lineage. Analysis of the cytokine responsiveness of the two lines with primitive erythroid potential has indicated that exposure to leukemia inhibitory factor (LIF) results in the upregulation of βH1 and a change in cellular morphology to that of primitive erythrocytes. These findings are the first demonstration of a clonal cell line with primitive and definitive hematopoietic potential and support the interpretation that these lineages may arise from a common precursor in embryonic life. In addition, they suggest that LIF could play a role in the regulation of primitive erythropoiesis.
© 1998 by The American Society of Hematology.
Collapse
|
719
|
Overexpression of HOX11 Leads to the Immortalization of Embryonic Precursors With Both Primitive and Definitive Hematopoietic Potential. Blood 1998. [DOI: 10.1182/blood.v92.3.877.415k11_877_887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Primitive and definitive erythropoiesis represent distinct hematopoietic programs that differ with respect to stage of development, transcriptional control, and growth regulation. Although these differences have been recognized for some time, the relationship of the two erythroid lineages to each other is not well established. We have used a model system based on the hematopoietic development of embryonic stem (ES) cells in culture to investigate the origins of the earliest hematopoietic populations. Using ES cells transduced with a retrovirus that overexpresses the HOX11 gene, we have established factor-dependent hematopoietic cell lines that represent novel stages of embryonic hematopoiesis. Analysis of three of these cell lines indicates that they differ with respect to cytokine responsiveness, cell surface markers, and developmental potential. Two of the cell lines, EBHX1 and EBHX11, display the unique capacity to generate both primitive and definitive erythroid progeny as defined by morphology and expression of βH1 and βmajor globin. The third line, EBHX14, has definitive erythroid and myeloid potential, but is unable to generate cells of the primitive erythroid lineage. Analysis of the cytokine responsiveness of the two lines with primitive erythroid potential has indicated that exposure to leukemia inhibitory factor (LIF) results in the upregulation of βH1 and a change in cellular morphology to that of primitive erythrocytes. These findings are the first demonstration of a clonal cell line with primitive and definitive hematopoietic potential and support the interpretation that these lineages may arise from a common precursor in embryonic life. In addition, they suggest that LIF could play a role in the regulation of primitive erythropoiesis.
© 1998 by The American Society of Hematology.
Collapse
|
720
|
Specific Signals Generated by the Cytoplasmic Domain of the Granulocyte Colony-Stimulating Factor (G-CSF) Receptor Are Not Required for G-CSF–Dependent Granulocytic Differentiation. Blood 1998. [DOI: 10.1182/blood.v92.2.353.414k37_353_361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is the principal growth factor regulating the production of neutrophils, yet its role in lineage commitment and terminal differentiation of hematopoietic progenitor cells is controversial. In this study, we describe a system to study the role of G-CSF receptor (G-CSFR) signals in granulocytic differentiation using retroviral transduction of G-CSFR–deficient, primary hematopoietic progenitor cells. We show that ectopic expression of wild-type G-CSFR in hematopoietic progenitor cells supports G-CSF–dependent differentiation of these cells into mature granulocytes, macrophages, megakaryocytes, and erythroid cells. Furthermore, we show that two mutant G-CSFR proteins, a truncation mutant that deletes the carboxy-terminal 96 amino acids and a chimeric receptor containing the extracellular and transmembrane domains of the G-CSFR fused to the cytoplasmic domain of the erythropoietin receptor, are able to support the production of morphologically mature, chloroacetate esterase-positive, Gr-1/Mac-1–positive neutrophils in response to G-CSF. These results demonstrate that ectopic expression of the G-CSFR in hematopoietic progenitor cells allows for multilineage differentiation and suggest that unique signals generated by the cytoplasmic domain of the G-CSFR are not required for G-CSF–dependent granulocytic differentiation.
Collapse
|
721
|
Specific Signals Generated by the Cytoplasmic Domain of the Granulocyte Colony-Stimulating Factor (G-CSF) Receptor Are Not Required for G-CSF–Dependent Granulocytic Differentiation. Blood 1998. [DOI: 10.1182/blood.v92.2.353] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Granulocyte colony-stimulating factor (G-CSF) is the principal growth factor regulating the production of neutrophils, yet its role in lineage commitment and terminal differentiation of hematopoietic progenitor cells is controversial. In this study, we describe a system to study the role of G-CSF receptor (G-CSFR) signals in granulocytic differentiation using retroviral transduction of G-CSFR–deficient, primary hematopoietic progenitor cells. We show that ectopic expression of wild-type G-CSFR in hematopoietic progenitor cells supports G-CSF–dependent differentiation of these cells into mature granulocytes, macrophages, megakaryocytes, and erythroid cells. Furthermore, we show that two mutant G-CSFR proteins, a truncation mutant that deletes the carboxy-terminal 96 amino acids and a chimeric receptor containing the extracellular and transmembrane domains of the G-CSFR fused to the cytoplasmic domain of the erythropoietin receptor, are able to support the production of morphologically mature, chloroacetate esterase-positive, Gr-1/Mac-1–positive neutrophils in response to G-CSF. These results demonstrate that ectopic expression of the G-CSFR in hematopoietic progenitor cells allows for multilineage differentiation and suggest that unique signals generated by the cytoplasmic domain of the G-CSFR are not required for G-CSF–dependent granulocytic differentiation.
Collapse
|
722
|
Sato T, Watanabe S, Ishii E, Tsuji K, Nakahata T. Induction of the erythropoietin receptor gene and acquisition of responsiveness to erythropoietin by stem cell factor in HML/SE, a human leukemic cell line. J Biol Chem 1998; 273:16921-6. [PMID: 9642254 DOI: 10.1074/jbc.273.27.16921] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HML/SE is a cytokine-dependent cell line established from childhood acute megakaryoblastic leukemia. Granulocyte-macrophage colony-stimulating factor or stem cell factor (SCF) alone could stimulate proliferation of HML/SE cells, however interleukin-3, interleukin-6, granulocyte colony-stimulating factor and thrombopoietin could not. Although erythropoietin (EPO) alone stimulated neither proliferation nor differentiation of HML/SE cells, it did stimulate proliferation of HML/SE cells and production of hemoglobin in the presence of SCF. SCF activated the human EPO receptor promoter and induced EPO receptor gene expression. Given these results, we speculate that HML/SE cells acquired responsiveness to EPO via the EPO receptor induced by SCF. Mutation analysis of putative transcription factor binding sites in the human EPO receptor promoter suggested that Sp1, rather than the GATA-1 binding site, contributed to the induction of the hEPOR gene. Although it is well documented that hematopoietic stem cells and primitive progenitors require both an early-acting cytokine and a lineage-specific cytokine to differentiate to a certain lineage, related mechanisms are not well understood. HML/SE may serve as an excellent model system to analyze functions of early-acting cytokine SCF and lineage-specific cytokine EPO related to proliferation and differentiation of hematopoietic stem cells.
Collapse
MESH Headings
- Antigens, Surface/immunology
- Cell Differentiation
- Cell Division
- Erythropoietin/physiology
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/immunology
- Leukemia, Megakaryoblastic, Acute/pathology
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Receptors, Erythropoietin/genetics
- Stem Cell Factor/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Sato
- Department of Clinical Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
723
|
Abstract
Hematopoiesis is the process by which mature, functional progeny of the eight major lineages of blood cells are produced from a hierarchy of progressively less mature progenitor and stem cells. The control of hematopoiesis involves intimate cellular interactions between developing blood cells and stromal elements as well as regulation by soluble cytokines, that may act locally in the bone marrow environment or at remote tissue sites. In excess of twenty cytokines that stimulate the production and/or function of hematopoietic cells have now been cloned and are available in purified, recombinant form. The colony-stimulating factors, erythropoietin and the recently discovered thrombopoietin are key regulators of granulocyte/macrophage, erythroid and megakaryocyte/platelet production respectively. The activities of these cytokines have been extensively studied, both in vitro and in vivo, and recent analysis of mice genetically engineered to lack these regulators or their cell surface receptors have provided profound insights into their essential physiological roles. These studies have culminated in the development of these cytokines as valuable clinical reagents.
Collapse
Affiliation(s)
- W S Alexander
- Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Victoria, Australia
| |
Collapse
|
724
|
Engelman JA, Zhang XL, Galbiati F, Lisanti MP. Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett 1998; 429:330-6. [PMID: 9662443 DOI: 10.1016/s0014-5793(98)00619-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caveolins (Cav-1, -2, and -3) are a gene family of cytoplasmic membrane-anchored scaffolding proteins that: (i) help to sculpt caveolae membranes from the plasma membrane proper; and (ii) participate in the sequestration of inactive signaling molecules. In the adult, caveolin-1 and -2 are co-expressed and are most abundant in type I pneumocytes, endothelia, fibroblastic cells and adipocytes, while the expression of caveolin-3 is restricted to striated muscle cells. However, little is known regarding the genomic organization and developmental expression of the caveolin gene family. Here, using the mouse as a model system, we examine the chromosomal localization, the detailed intron-exon organization, and developmental expression pattern of the caveolin gene family. cDNAs encoding caveolin-1, -2, and -3 were used as probes to isolate murine genomic clones containing these genes. Fluorescence in situ hybridization (FISH) analysis using these genomic clones as probes reveals that all three caveolin genes are localized to murine chromosome 6. Specifically, caveolin-1 and -2 co-localize to chromosomal region 6-A2, while caveolin-3 is located within the chromosomal region 6-E1. Searches of the NCBI Human/Mouse Homology map indicate that murine region 6-A2 corresponds to human chromosome 7q31. As this region (6-A2/7q31) is the site of an as yet unidentified tumor suppressor gene(s), our mapping studies clearly define caveolin-1 and caveolin-2 as candidate genes that may be deleted at these loci. All three caveolin genes show similar intron-exon organization, with the last exon of each gene encoding the bulk of the known caveolin functional domains. The boundary position of the last exon is essentially identical in all three caveolin genes, suggesting that they may have arisen through gene duplication events. Developmentally, all three caveolins were expressed late during mouse embryogenesis as assessed by Northern and Western blot analysis. We examined the localization of the caveolin proteins in sections of day 16 mouse embryos using a well-characterized panel of antibody probes. Caveolin-1 and -2 were most abundantly expressed in the developing lung parenchyma, while caveolin-3 was most abundantly expressed in developing tissues that consist primarily of skeletal muscle cells. As the expression of all three caveolins in the adult is highest in terminally differentiated cell types, this is consistent with the idea that caveolins may be viewed as late markers of differentiation during embryogenesis.
Collapse
Affiliation(s)
- J A Engelman
- Department of Molecular Pharmacology and The Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
725
|
Goldsmith MA, Mikami A, You Y, Liu KD, Thomas L, Pharr P, Longmore GD. Absence of cytokine receptor-dependent specificity in red blood cell differentiation in vivo. Proc Natl Acad Sci U S A 1998; 95:7006-11. [PMID: 9618529 PMCID: PMC22719 DOI: 10.1073/pnas.95.12.7006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is required for red blood cell development, but whether EPO-specific signals directly instruct erythroid differentiation is unknown. We used a dominant system in which constitutively active variants of the EPO receptor were introduced into erythroid progenitors in mice. Chimeric receptors were constructed by replacing the cytoplasmic tail of constitutively active variants of the EPO receptor with tails of diverse cytokine receptors. Receptors linked to granulocyte or platelet production supported complete erythroid development in vitro and in vivo, as did the growth hormone receptor, a nonhematopoietic receptor. Therefore, EPOR-specific signals are not required for terminal differentiation of erythrocytes. Furthermore, we found that cellular context can influence cytokine receptor signaling.
Collapse
Affiliation(s)
- M A Goldsmith
- Gladstone Institute of Virology and Immunology, School of Medicine, University of California, San Francisco, San Francisco, CA 94141, USA
| | | | | | | | | | | | | |
Collapse
|
726
|
Kurata H, Mancini GC, Alespeiti G, Migliaccio AR, Migliaccio G. Stem cell factor induces proliferation and differentiation of fetal progenitor cells in the mouse. Br J Haematol 1998; 101:676-87. [PMID: 9674741 DOI: 10.1046/j.1365-2141.1998.00775.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the kinetics of the amplification of the progenitor cell compartments (CFC) in haemopoietic organs during murine ontogenesis and compared the growth requirements of fetal and adult CFC. Two haemopoietic phases were recognized in the fetal liver (FL): an exponential growth phase, from 11.5 to 15.5 d post conception (p.c.), during which the mean number of nucleated cells and of CFC in the FL increased from 4.9 x 10(5) to 7.0 x 10(7) and from 4.5 x 10(3) to 2.7 x 10(5), respectively, and a recessive phase after 15.5 d p.c., during which the CFC number in the FL gradually decreased, although some CFC were still detectable in the liver after birth. In serum-deprived cultures, FL and adult marrow (AM) CFC had similar responses to GM-CSF, and did not respond to G-CSF or IL-3. In contrast, FL, but not AM, erythroid colonies grew Epo-independently whereas SCF alone induced formation of maximal numbers of erythroid bursts from FL, but not from AM cells. The proliferative and differentiative effect of SCF alone on fetal cells was confirmed in serum-deprived cultures of purified early progenitor cells isolated by cell sorting on the basis of multiple parameters from FL and AM light-density cells. In culture of purified FL cells, SCF alone induced a similar amplification of total cells (maximal amplification at day 12: 800-300-fold) and total CFC (11-38-fold of maximal amplification at day 6) to the combination of SCF plus IL-3 (1300-800-fold amplification of total cells and 31-88-fold amplification of CFC). In contrast, SCF alone allowed only survival of purified AM early progenitor cells. Therefore FL early progenitor cells have an intrinsic higher potential than their adult counterpart to respond to SCF, confirming the potent role of this growth factor in the development of the murine haemopoietic system.
Collapse
Affiliation(s)
- H Kurata
- Laboratory of Hematopoietic Growth Factors, Lindsley F. Kimball Research Institute, New York Blood Center, New York, USA
| | | | | | | | | |
Collapse
|
727
|
Abstract
A newborn infant represents the culmination of developmental events from conception through organogenesis. Red cells are critically important for survival and growth of the embryo. During development, erythropoiesis occurs in two distinct forms. The first 'primitive' form consists of nucleated erythroblasts that differentiate within the blood vessels of the extraembryonic yolk sac. The second 'definitive' form consists of anucleate erythrocytes that differentiate within the liver and third trimester bone marrow of the fetus. While adult bone marrow and cord blood now serve as sources of stem cells for the treatment by transplantation of genetic and malignant diseases, the developmental origin of hematopoietic stem cells has not been determined. During the third trimester the fetus grows rapidly and the production of red cells is approximately 3-5 times that of adult steady state levels. Birth brings dramatic changes in oxygenation and erythropoietin production that result in a tenfold drop in red cell production and in a transient 'physiologic' anemia. Other causes of fetal and infant anemias have their origins in development processes. These include globin gene switching in alpha and beta thalassemia, the expression of red cell antigens in alloimmune hemolytic disease, and the poorly understood defects in the regulation of erythropoiesis in Diamond Blackfan anemia. Even in the adult, vestiges of fetal erythropoiesis are evident during transient states of accelerated erythroid expansion. A better understanding of the development of erythropoiesis will bring improvements in the treatment of anemia, not only in the newborn, but also in the fetus and the adult.
Collapse
Affiliation(s)
- J Palis
- University of Rochester Medical Center, Department of Pediatrics, NY 14642, USA
| | | |
Collapse
|
728
|
Seshasayee D, Gaines P, Wojchowski DM. GATA-1 dominantly activates a program of erythroid gene expression in factor-dependent myeloid FDCW2 cells. Mol Cell Biol 1998; 18:3278-88. [PMID: 9584168 PMCID: PMC108909 DOI: 10.1128/mcb.18.6.3278] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/1997] [Accepted: 03/09/1998] [Indexed: 02/07/2023] Open
Abstract
Erythrocyte development has previously been shown to depend upon the expression of the lineage-restricted trans-acting factor GATA-1. Despite predicted roles for this factor during early development, GATA-1-deficient cells in chimeric mice and embryonic stem cell cultures mature to a late proerythroblast stage and express at least certain genes that normally are thought to be regulated by GATA-1 (including erythroid Krüppel-like factor [EKLF] and the erythropoietin [Epo] receptor). Opportunities to test roles for GATA-1 in erythroid gene activation in these systems therefore are limited. In the present study, in an alternate approach to test the function of GATA-1, GATA-1 has been expressed together with the Epo receptor in myeloid FDCW2 cells and the resulting effects on cytokine-dependent proliferation and erythroid gene expression have been assessed. GATA-1 expression at low levels delayed FDCW2ER cell cycle progression at the G1 phase specifically during Epo-induced mitogenesis. Upon expression of GATA-1 at increased levels, proliferation in response to Epo, interleukin-3 (IL-3), and stem cell factor was attenuated and endogenous GATA-1, EKLF and betamaj-globin gene expression was activated. Friend of GATA-1 (FOG) transcript levels also were enhanced, and ets-1 and c-mpl but not Epo receptor gene expression was induced. Finally, in FDCW2 cells expressing increased levels of GATA-1 and a carboxyl-terminally truncated Epo receptor, Epo (with respect to IL-3 as a control) was shown to markedly promote globin transcript expression. Thus, novel evidence for select hierarchical roles for GATA-1 and Epo in erythroid lineage specification is provided.
Collapse
Affiliation(s)
- D Seshasayee
- Graduate Program in Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
729
|
Migliaccio AR, Migliaccio G. The making of an erythroid cell. Molecular control of hematopoiesis. BIOTHERAPY (DORDRECHT, NETHERLANDS) 1998; 10:251-68. [PMID: 9592014 DOI: 10.1007/bf02678546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The number of circulating red cells is regulated by the daily balance between two processes: the destruction of the old red cells in the liver and the generation of new cells in the bone marrow. The process during which hematopoietic stem cells generate new red cells is called erythropoiesis. This manuscript will describe the molecular mechanisms involved in the process of erythroid differentiation as we understand them today. In particular it will review how erythroid specific growth factor-receptor interactions activate specific transcription factors to turn on the expression of the genes responsible for the establishment of the erythroid phenotype.
Collapse
Affiliation(s)
- A R Migliaccio
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanitá, Rome, Italy
| | | |
Collapse
|
730
|
Wessely O, Deiner EM, Lim KC, Mellitzer G, Steinlein P, Beug H. Mammalian granulocyte-macrophage colony-stimulating factor receptor expressed in primary avian hematopoietic progenitors: lineage-specific regulation of proliferation and differentiation. J Cell Biol 1998; 141:1041-51. [PMID: 9585421 PMCID: PMC2132768 DOI: 10.1083/jcb.141.4.1041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cytokine Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) regulates proliferation, differentiation, and apoptosis during myelopoiesis and erythropoiesis. Structure-function relationships of GM-CSF interactions with its receptor (GM-R), the biochemistry of GM-R signal transduction, and GM-CSF action in vivo are relatively well understood. Much less is known, however, about GM-R function in primary hematopoietic cells. In this paper we show that expression of the human GM-R in a heterologous cell system (primary avian erythroid and myeloid cells) confirms respective results in murine or human cell lines, but also provides new insights how the GM-R regulates progenitor proliferation and differentiation. As expected, the hGM-CSF stimulated myeloid progenitor proliferation and differentiation and enhanced erythroid progenitor proliferation during terminal differentiation. In the latter cells, however, the hGM-R only partially substituted for the activities of the erythropoietin receptor (EpoR). It failed to replace the EpoR in its cooperation with c-Kit to induce long-term proliferation of erythroid progenitors. Furthermore, the hGM-R alpha chain specifically interfered with EpoR signaling, an activity neither seen for the betac subunit of the receptor complex alone, nor for the alpha chain of the closely related Interleukin-3 receptor. These results point to a novel role of the GM-R alpha chain in defining cell type-specific functions of the GM-R.
Collapse
Affiliation(s)
- O Wessely
- Institute for Molecular Pathology, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
731
|
Abstract
AbstractErythropoietin (EPO) is a factor essential for erythroid cell proliferation, differentiation, and survival. The production of EPO by the kidneys in response to hypoxia and anemia is well documented. To determine whether EPO is also produced by hematopoietic cells, we analyzed the expression of EPO in normal human hematopoietic progenitors and in their progeny. Undifferentiated CD34+lin− hematopoietic progenitors do not have detectable EPO mRNA. Differentiating CD34+ cells that are stimulated with recombinant human EPO in serum-free liquid cultures express both EPO and EPO receptor (EPOR). Because CD34+ cells represent a heterogeneous cell population, we analyzed individual burst-forming units–erythroid (BFU-E) and nonerythroid colony-forming unit–granulocyte-macrophage colonies for EPO mRNA. Only BFU-E colonies were positive for EPO mRNA. Lysates from pooled BFU-E colonies stained positively for EPO by immunoblotting. To further confirm the intrinsic nature of erythroid EPO, we replaced extrinsic EPO in erythroid colony cultures with EPO-mimicking peptide (EMP). We show EPO expression in the EMP-stimulated BFU-Es at both mRNA and protein levels. Stimulation of bone marrow mononuclear cells (BMMCs) with EMP upregulated EPO expression. Furthermore, we found EPO and EPOR mRNAs as well as EPO protein in K562 cells, a human erythroleukemia cell line. Stimulation of K562 cells with EMP upregulated EPO expression. We suggest that EPO of erythroid origin may have a role in the regulation of erythropoiesis.
Collapse
|
732
|
Abstract
Erythropoietin (EPO) is a factor essential for erythroid cell proliferation, differentiation, and survival. The production of EPO by the kidneys in response to hypoxia and anemia is well documented. To determine whether EPO is also produced by hematopoietic cells, we analyzed the expression of EPO in normal human hematopoietic progenitors and in their progeny. Undifferentiated CD34+lin− hematopoietic progenitors do not have detectable EPO mRNA. Differentiating CD34+ cells that are stimulated with recombinant human EPO in serum-free liquid cultures express both EPO and EPO receptor (EPOR). Because CD34+ cells represent a heterogeneous cell population, we analyzed individual burst-forming units–erythroid (BFU-E) and nonerythroid colony-forming unit–granulocyte-macrophage colonies for EPO mRNA. Only BFU-E colonies were positive for EPO mRNA. Lysates from pooled BFU-E colonies stained positively for EPO by immunoblotting. To further confirm the intrinsic nature of erythroid EPO, we replaced extrinsic EPO in erythroid colony cultures with EPO-mimicking peptide (EMP). We show EPO expression in the EMP-stimulated BFU-Es at both mRNA and protein levels. Stimulation of bone marrow mononuclear cells (BMMCs) with EMP upregulated EPO expression. Furthermore, we found EPO and EPOR mRNAs as well as EPO protein in K562 cells, a human erythroleukemia cell line. Stimulation of K562 cells with EMP upregulated EPO expression. We suggest that EPO of erythroid origin may have a role in the regulation of erythropoiesis.
Collapse
|
733
|
Neubauer H, Cumano A, Müller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998; 93:397-409. [PMID: 9590174 DOI: 10.1016/s0092-8674(00)81168-x] [Citation(s) in RCA: 619] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Janus kinases (Jaks) play an important role in signal transduction via cytokine and growth factor receptors. A targeted inactivation of Jak2 was performed. Jak2-/- embryos are anemic and die around day 12.5 postcoitum. Primitive erythrocytes are found, but definitive erythropoiesis is absent. Compared to erythropoietin receptor-deficient mice, the phenotype of Jak2 deficiency is more severe. Fetal liver BFU-E and CFU-E colonies are completely absent. However, multilineage hematopoietic stem cells (CD34low, c-kit(pos)) can be found, and B lymphopoiesis appears intact. In contrast to IFNalpha stimulation, Jak2-/- cells do not respond to IFNgamma. Jak2-/- embryonic stem cells are competent for LIF signaling. The data provided demonstrate that Jak2 has pivotal functions for signal transduction of a set of cytokine receptors required in definitive erythropoiesis.
Collapse
Affiliation(s)
- H Neubauer
- Institute of Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Germany
| | | | | | | | | | | |
Collapse
|
734
|
Abstract
An immortalized cell line representing the primitive erythroid (EryP) lineage was established from in vitro–differentiated progeny (embryoid bodies [EBs]) of embryonic stem (ES) cells using a retroviral insertional mutation, and has been termed EB-PE for embryoid body–derived primitive erythroid. Even though EB-PE cells are immortalized, they show characteristics of normal EryP cells, such as gene expression and growth factor dependency. In addition, EB-PE cells can differentiate further in culture. Investigation of growth factor requirements of EB-PE cells showed that basic fibroblast growth factor (bFGF) and erythropoietin (Epo) play unique roles in EB-PE proliferation and differentiation. While bFGF was a strong mitogen, Epo was required for both proliferation and differentiation. The unique proliferative response to bFGF coincided with upregulation of its receptor, fibroblast growth factor receptor (fgfr-1), and downregulation of erythropoietin receptor (EpoR) gene expression. Studies of primary EryP cells derived from early EBs, when tested in a colony-formation assay, also provided evidence for the mitogenic role of bFGF in concert with Epo.
Collapse
|
735
|
Dzierzak E, Medvinsky A, de Bruijn M. Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. IMMUNOLOGY TODAY 1998; 19:228-36. [PMID: 9613041 DOI: 10.1016/s0167-5699(98)01258-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- E Dzierzak
- Dept of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
736
|
Generation of a Primitive Erythroid Cell Line and Promotion of Its Growth by Basic Fibroblast Growth Factor. Blood 1998. [DOI: 10.1182/blood.v91.9.3202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
An immortalized cell line representing the primitive erythroid (EryP) lineage was established from in vitro–differentiated progeny (embryoid bodies [EBs]) of embryonic stem (ES) cells using a retroviral insertional mutation, and has been termed EB-PE for embryoid body–derived primitive erythroid. Even though EB-PE cells are immortalized, they show characteristics of normal EryP cells, such as gene expression and growth factor dependency. In addition, EB-PE cells can differentiate further in culture. Investigation of growth factor requirements of EB-PE cells showed that basic fibroblast growth factor (bFGF) and erythropoietin (Epo) play unique roles in EB-PE proliferation and differentiation. While bFGF was a strong mitogen, Epo was required for both proliferation and differentiation. The unique proliferative response to bFGF coincided with upregulation of its receptor, fibroblast growth factor receptor (fgfr-1), and downregulation of erythropoietin receptor (EpoR) gene expression. Studies of primary EryP cells derived from early EBs, when tested in a colony-formation assay, also provided evidence for the mitogenic role of bFGF in concert with Epo.
Collapse
|
737
|
Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998; 93:385-95. [PMID: 9590173 DOI: 10.1016/s0092-8674(00)81167-8] [Citation(s) in RCA: 806] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A variety of cytokines activate receptor-associated members of the Janus family of protein tyrosine kinases (Jaks). To assess the role of Jak2, we have derived Jak2-deficient mice. The mutation causes an embryonic lethality due to the absence of definitive erythropoiesis. Fetal liver myeloid progenitors, although present based on the expression of lineage specific markers, fail to respond to erythropoietin, thrombopoietin, interleukin-3 (IL-3), or granulocyte/macrophage colony-stimulating factor. In contrast, the response to granulocyte specific colony-stimulating factor is unaffected. Jak2-deficient fibroblasts failed to respond to interferon gamma (IFNgamma), although the responses to IFNalpha/beta and IL-6 were unaffected. Lastly, reconstitution experiments demonstrate that Jak2 is not required for the generation of lymphoid progenitors, their amplification, or functional differentiation. Therefore, Jak2 plays a critical, nonredundant role in the function of a specific group of cytokines receptors.
Collapse
Affiliation(s)
- E Parganas
- Howard Hughes Medical Institute, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
738
|
Medvinsky AL, Dzierzak EA. Development of the definitive hematopoietic hierarchy in the mouse. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1998; 22:289-301. [PMID: 9700459 DOI: 10.1016/s0145-305x(98)00007-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent research on the ontogeny of the hematopoietic system in mammals has shown that a simple textbook steady-state hematopoietic hierarchy can not be strictly applied to the hematopoietic cells found within the embryo. During embryonic development, hematopoietic cells originate, migrate and differentiate in a number of distinct anatomical sites such as the yolk sac AGM region and liver and thus represent various classes of cells within diverse microenvironments. In this manuscript we review both cellular and molecular aspects of developmental hematopoiesis and present our current views on the numerous complex mechanisms underlying the establishment of definitive hematopoiesis.
Collapse
Affiliation(s)
- A L Medvinsky
- Erasmus University, Medical Faculty, Department of Cell Biology and Genetics, Rotterdam, The Netherlands
| | | |
Collapse
|
739
|
Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A 1998; 95:4635-40. [PMID: 9539790 PMCID: PMC22542 DOI: 10.1073/pnas.95.8.4635] [Citation(s) in RCA: 737] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) produced by the kidney and the liver (in fetuses) stimulates erythropoiesis. In the central nervous system, neurons express EPO receptor (EPOR) and astrocytes produce EPO. EPO has been shown to protect primary cultured neurons from N-methyl-D-aspartate (NMDA) receptor-mediated glutamate toxicity. Here we report in vivo evidence that EPO protects neurons against ischemia-induced cell death. Infusion of EPO into the lateral ventricles of gerbils prevented ischemia-induced learning disability and rescued hippocampal CA1 neurons from lethal ischemic damage. The neuroprotective action of exogenous EPO was also confirmed by counting synapses in the hippocampal CA1 region. Infusion of soluble EPOR (an extracellular domain capable of binding with the ligand) into animals given a mild ischemic treatment that did not produce neuronal damage, caused neuronal degeneration and impaired learning ability, whereas infusion of the heat-denatured soluble EPOR was not detrimental, demonstrating that the endogenous brain EPO is crucial for neuronal survival. The presence of EPO in neuron cultures did not repress a NMDA receptor-mediated increase in intracellular Ca2+, but rescued the neurons from NO-induced death. Taken together EPO may exert its neuroprotective effect by reducing the NO-mediated formation of free radicals or antagonizing their toxicity.
Collapse
Affiliation(s)
- M Sakanaka
- Department of Anatomy, Ehime University School of Medicine, Shigenobu, Ehime 791-0295, Japan
| | | | | | | | | | | | | |
Collapse
|
740
|
Olweus J. Early events in human myelopoiesis. APMIS 1998. [DOI: 10.1111/j.1600-0463.1998.tb05618.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
741
|
Pierce A, Heyworth CM, Nicholls SE, Spooncer E, Dexter TM, Lord JM, Owen-Lynch PJ, Wark G, Whetton AD. An activated protein kinase C alpha gives a differentiation signal for hematopoietic progenitor cells and mimicks macrophage colony-stimulating factor-stimulated signaling events. J Cell Biol 1998; 140:1511-8. [PMID: 9508782 PMCID: PMC2132662 DOI: 10.1083/jcb.140.6.1511] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/1997] [Revised: 12/23/1997] [Indexed: 02/06/2023] Open
Abstract
Highly enriched, bipotent, hematopoietic granulocyte macrophage colony-forming cells (GM-CFC) require cytokines for their survival, proliferation, and development. GM-CFC will form neutrophils in the presence of the cytokines stem cell factor and granulocyte colony-stimulating factor, whereas macrophage colony-stimulating factor leads to macrophage formation. Previously, we have shown that the commitment to the macrophage lineage is associated with lipid hydrolysis and translocation of protein kinase C alpha (PKCalpha) to the nucleus. Here we have transfected freshly prepared GM-CFC with a constitutively activated form of PKCalpha, namely PKAC, in which the regulatory domain has been truncated. Greater than 95% of the transfected cells showed over a twofold increase in PKCalpha expression with the protein being located primarily within the nucleus. The expression of PKAC caused macrophage development even in the presence of stimuli that normally promote only neutrophilic development. Thus, M-CSF-stimulated translocation of PKCalpha to the nucleus is a signal associated with macrophage development in primary mammalian hematopoietic progenitor cells, and this signal can be mimicked by ectopic PKAC, which is also expressed in the nucleus.
Collapse
Affiliation(s)
- A Pierce
- Leukaemia Research Fund Cellular Development Unit, University of Manchester Institute of Science and Technology, Manchester, M60 1QD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
742
|
Chan JY, Kwong M, Lu R, Chang J, Wang B, Yen TS, Kan YW. Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. EMBO J 1998; 17:1779-87. [PMID: 9501099 PMCID: PMC1170525 DOI: 10.1093/emboj/17.6.1779] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The CNC-basic leucine zipper (CNC-bZIP) family is a subfamily of bZIP proteins identified from independent searches for factors that bind the AP-1-like cis-elements in the beta-globin locus control region. Three members, p45-Nf-e2, Nrf-1 and Nrf-2 have been identified in mammals. Expression of p45-Nf-e2 is largely restricted to hematopoietic cells while Nrf-1 and Nrf-2 are expressed in a wide range of tissues. To determine the function of Nrf-1, targeted disruption of the Nrf-1 gene was carried out. Homozygous Nrf-1 mutant mice are anemic due to a non-cell autonomous defect in definitive erythropoiesis and die in utero.
Collapse
Affiliation(s)
- J Y Chan
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
743
|
Pierce A, Whetton AD, Owen-Lynch PJ, Tavernier J, Spooncer E, Dexter TM, Heyworth CM. Ectopic interleukin-5 receptor expression promotes proliferation without development in a multipotent hematopoietic cell line. J Cell Sci 1998; 111 ( Pt 6):815-23. [PMID: 9472009 DOI: 10.1242/jcs.111.6.815] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interleukin-5 (IL-5) receptor is a heterodimer that consists of an IL-5 specific alpha subunit and a common ssc chain that is shared with the receptors for granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-3 (IL-3). In contrast to IL-5, which acts mainly as an eosinophil lineage specific factor in vivo, IL-3 and GM-CSF stimulate the survival, proliferation and development of various hematopoietic cell lineages and also multipotent progenitor cells. IL-5 has little effect on the survival or proliferation of the multipotent stem cell line FDCP-Mix A4 but does promote some eosinophil development. To investigate whether the lineage specificity of IL-5 is due to the restricted expression of the IL-5 receptor alpha subunit we transfected the FDCP-Mix A4 cells with a retroviral vector containing this alpha subunit. The ectopic expression of the IL-5 receptor alpha subunit in the FDCP-Mix cells did not increase the observed eosinophilic development but did stimulate survival and proliferation of the transfected cells when IL-5 was added. IL-5 thus acts like IL-3 in these cells, promoting proliferation and survival. The results suggest that IL-5, whilst having a capacity to promote proliferation, does not influence eosinophilic lineage commitment in these multipotent cells. The results further argue that the observed lineage specificity of IL-5 is probably due to factors in addition to the restricted expression of the IL-5 receptor alpha subunit.
Collapse
Affiliation(s)
- A Pierce
- Leukemia Research Fund, Cellular Development Unit, UMIST, Manchester M60 1QD, UK
| | | | | | | | | | | | | |
Collapse
|
744
|
Abstract
AbstractKit is a tyrosine kinase receptor that plays an important role in human hematopoietic cell growth. The promoter elements that modulate the gene's expression have not been extensively studied. Because of c-kit's acknowledged importance in hematopoiesis, we sought to address this issue in more detail. To perform these studies we analyzed a human c-kit 5′ flanking fragment ∼1 kilobase in length. Deletion constructs showed a region ∼139 nucleotides upstream from the translation initiation site that was critical for promoter activity. A region containing a potential silencing element was also identified. Sequence analysis indicated several potential Myb- and Ets-binding sites. The functional significance of these sites was explored by showing that both wild-type Myb and Ets-2 protein, but not a DNA binding-deficient Myb mutant protein, bound to distinct 5′ flanking fragments that included these sites. Furthermore, binding of recombinant Myb and Ets-2 protein to these fragments could be competed with an excess of double stranded oligodeoxynucleotides containing canonical, but not mutated,Myb- or Ets-binding sites. We also showed that the 5′ flanking region of c-kit exhibited promoter activity in nonhematopoietic cells only when the cells were transfected with c-myb or ets-2 expression vectors. Moreover,Myb and Ets-2 coexpression in such cells augmented transactivation of c-kit promoter constructs in comparison to that observed in cells transfected with either construct alone. Promoter constructs lacking various Myb and Ets sites deleted were much less effective in this same system. Finally,Myb and Ets-2 mRNA expression was detected in CD34+, Kitlow as well as CD34+, Kitbright cells. In aggregate, these data further define the human c-kit promoter's functional anatomy and suggest that Myb and Etsproteins play an important, perhaps cooperative, role in regulating expression of this critical hematopoietic cell receptor.
Collapse
|
745
|
Abstract
Kit is a tyrosine kinase receptor that plays an important role in human hematopoietic cell growth. The promoter elements that modulate the gene's expression have not been extensively studied. Because of c-kit's acknowledged importance in hematopoiesis, we sought to address this issue in more detail. To perform these studies we analyzed a human c-kit 5′ flanking fragment ∼1 kilobase in length. Deletion constructs showed a region ∼139 nucleotides upstream from the translation initiation site that was critical for promoter activity. A region containing a potential silencing element was also identified. Sequence analysis indicated several potential Myb- and Ets-binding sites. The functional significance of these sites was explored by showing that both wild-type Myb and Ets-2 protein, but not a DNA binding-deficient Myb mutant protein, bound to distinct 5′ flanking fragments that included these sites. Furthermore, binding of recombinant Myb and Ets-2 protein to these fragments could be competed with an excess of double stranded oligodeoxynucleotides containing canonical, but not mutated,Myb- or Ets-binding sites. We also showed that the 5′ flanking region of c-kit exhibited promoter activity in nonhematopoietic cells only when the cells were transfected with c-myb or ets-2 expression vectors. Moreover,Myb and Ets-2 coexpression in such cells augmented transactivation of c-kit promoter constructs in comparison to that observed in cells transfected with either construct alone. Promoter constructs lacking various Myb and Ets sites deleted were much less effective in this same system. Finally,Myb and Ets-2 mRNA expression was detected in CD34+, Kitlow as well as CD34+, Kitbright cells. In aggregate, these data further define the human c-kit promoter's functional anatomy and suggest that Myb and Etsproteins play an important, perhaps cooperative, role in regulating expression of this critical hematopoietic cell receptor.
Collapse
|
746
|
The Anemic Friend Virus gp55 Envelope Protein Induces Erythroid Differentiation in Fetal Liver Colony-Forming Units-Erythroid. Blood 1998. [DOI: 10.1182/blood.v91.4.1163] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe gp55 envelope proteins of the spleen focus-forming virus initiate erythroleukemia in adult mice. Because the gp55 from the polycythemic strain (gp55-P), but not from the anemic strain (gp55-A), activates the erythropoietin receptor (EpoR) for proliferation of hematopoietic cell lines, the mechanism by which gp55-A initiates erythroleukemia has remained a mystery. We show here that gp55-A activates the EpoR in fetal liver cells. In contrast to previous studies using bone marrow cells from phenylhydrazine-treated, anemic mice, we find that both gp55-A and gp55-P induce erythroid differentiation from colony-forming unit-erythroid (CFU-E) progenitors in fetal liver cells. The effects on CFU-Es of both gp55-A and -P are mediated by the EpoR, because no colonies are seen upon expression of either gp55 in EpoR−/− fetal liver cells. However, only gp55-P induces erythroid bursts from burst-forming unit-erythroid progenitors and only gp55-P induces Epo independence in Epo-dependent cell lines. Using chimeric gp55 P/A proteins, we extend earlier work showing that the transmembrane sequence determines the capacity of gp55 proteins to differentially activate EpoR signaling. We discuss the possibilities for different signaling capacities of gp55-A and -P in fetal liver and bone marrow-derived erythroid progenitor cells.
Collapse
|
747
|
Abstract
Cytokine receptors have been shown in cell culture systems to use phosphotyrosine residues as docking sites for certain signal transduction intermediates. Studies using various cellular backgrounds have yielded conflicting information about the importance of such residues. The present studies were undertaken to determine whether or not tyrosine residues within the erythropoietin receptor (EPOR) are essential for biologic activity during hematopoiesis in vivo. A variant of the EPOR was constructed that contains both a substitution (R129C) causing constitutive receptor activation as well as replacement of all eight cytoplasmic tyrosines by phenylalanines (cEPORYF). A comparison between animals exposed to recombinant retroviruses expressing cEPOR and cEPORYF showed that efficient red blood cell (RBC) development in vivo is dependent on the presence of tyrosine residues in the cytoplasmic domain of the EPOR. In addition, an inefficient EPOR tyrosine independent pathway supporting RBC development was detected. Tyrosine add-back mutants showed that multiple individual tyrosines have the capacity to restore full erythropoietic potential to the EPOR as determined in whole animals. The analysis of primary erythroid progenitors transduced with the various cEPOR tyrosine mutants and tyrosine add-backs showed that only tyrosine 343 (Y1) and tyrosine 479 (Y8) were capable of supporting immature burst-forming unit–erythroid progenitor development. Thus, this receptor is characterized by striking functional redundancy of tyrosines in a biologically relevant context. However, selective tyrosine residues may be uniquely important for early signals supporting erythroid development.
Collapse
|
748
|
Signaling Through the Interaction of Membrane-Restricted Stem Cell Factor and c-kit Receptor Tyrosine Kinase: Genetic Evidence for a Differential Role in Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v91.3.879] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractMutations of the receptor tyrosine kinase c-kit or its ligand stem cell factor (SCF), which is encoded as a soluble and membrane-associated protein by the Steel gene in mice, lead to deficiencies of germ cells, melanocytes, and hematopoiesis, including the erythroid lineage. In the present study, we have used genetic methods to study the role of membrane or soluble presentation of SCF in hematopoiesis. Bone marrow–derived stromal cells expressing only a membrane-restricted (MR) isoform of SCF induced an elevated and sustained tyrosine phosphorylation of both c-kit and erythropoietin receptor (EPO-R) and significantly greater proliferation of an erythrocytic progenitor cell line compared with stromal cells expressing soluble SCF. Transgene expression of MR-SCF inSteel-dickie (Sld) mutants resulted in a significant improvement in the production of red blood cells, bone marrow hypoplasia, and runting. In contrast, overexpression of the full-length soluble form of SCF transgene had no effect on either red blood cell production or runting but corrected the myeloid progenitor cell deficiency seen in these mutants. These data provide the first evidence of differential functions of SCF isoforms in vivo and suggest an abnormal signaling mechanism as the cause of the severe anemia seen in mutants of the Sl gene.
Collapse
|
749
|
Signaling Through the Interaction of Membrane-Restricted Stem Cell Factor and c-kit Receptor Tyrosine Kinase: Genetic Evidence for a Differential Role in Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v91.3.879.879_879_889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations of the receptor tyrosine kinase c-kit or its ligand stem cell factor (SCF), which is encoded as a soluble and membrane-associated protein by the Steel gene in mice, lead to deficiencies of germ cells, melanocytes, and hematopoiesis, including the erythroid lineage. In the present study, we have used genetic methods to study the role of membrane or soluble presentation of SCF in hematopoiesis. Bone marrow–derived stromal cells expressing only a membrane-restricted (MR) isoform of SCF induced an elevated and sustained tyrosine phosphorylation of both c-kit and erythropoietin receptor (EPO-R) and significantly greater proliferation of an erythrocytic progenitor cell line compared with stromal cells expressing soluble SCF. Transgene expression of MR-SCF inSteel-dickie (Sld) mutants resulted in a significant improvement in the production of red blood cells, bone marrow hypoplasia, and runting. In contrast, overexpression of the full-length soluble form of SCF transgene had no effect on either red blood cell production or runting but corrected the myeloid progenitor cell deficiency seen in these mutants. These data provide the first evidence of differential functions of SCF isoforms in vivo and suggest an abnormal signaling mechanism as the cause of the severe anemia seen in mutants of the Sl gene.
Collapse
|
750
|
Abstract
Stem cell factor (SCF) binding to the c-kit receptor triggers homodimerization and intermolecular tyrosine phosphorylation of the c-kit receptor, thus initiating signal transduction. Receptor dimerization is a critical early step in this process. Prior biochemical studies of c-kit receptor dimerization have mainly used affinity cross-linking techniques, which are beset with problems including low efficiency of cross-linking and the usual requirement for radiolabeled SCF to detect the cross-linked complex. We used the fluorescence resonance energy transfer (FRET) technique to examine the effects of SCF and other hematopoietic cytokines on c-kitreceptor dimerization. The nonneutralizing anti–c-kit receptor monoclonal antibody 104D2 was directly conjugated to fluorescein isothiocyanate (FITC) or to the carbocyanine dye Cy3 and used to label cytokine-responsive human hematopoietic cell lines. The ability of SCF to induce c-kit receptor dimerization was assessed by flow cytometric analysis of FRET between the donor fluorochrome FITC and the acceptor fluorochrome Cy3. SCF induced a dose-dependent increase inc-kit receptor dimerization that correlated well with the concentrations of SCF required to stimulate cell proliferation. Receptor dimerization was detectable within 3 minutes after the addition of SCF and was maximal 30 minutes after the addition of SCF. Confocal microscopy showed redistribution of the c-kit receptor (from a diffuse distribution on the cell surface to “caps” at one end of the cell) within 3 minutes after SCF addition, followed by receptor internalization. Reappearance of the c-kit receptor on the cell surface required new protein synthesis, suggesting that thec-kit receptor is not recycled to the cell surface after internalization. Finally, erythropoietin (Epo), but not the structurally and functionally related cytokine thrombopoietin (Tpo), stimulated c-kit receptor dimerization detectable by FRET, and tyrosine phosphorylation of the c-kit receptor. These results suggest that exposure to Epo can activate the c-kit receptor and provide further evidence for cross-talk between the Epo andc-kit receptors in human hematopoietic cell lines. Studies with progeny of burst-forming unit-erythroid (BFU-E) suggest that the FRET technique is sufficiently sensitive to detectc-kit receptor dimerization on normal human hematopoietic cells.
Collapse
|