701
|
Fukunishi H, Watanabe O, Takada S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. J Chem Phys 2002. [DOI: 10.1063/1.1472510] [Citation(s) in RCA: 602] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
702
|
Pappenberger G, Wilsher JA, Roe SM, Counsell DJ, Willison KR, Pearl LH. Crystal structure of the CCTgamma apical domain: implications for substrate binding to the eukaryotic cytosolic chaperonin. J Mol Biol 2002; 318:1367-79. [PMID: 12083524 DOI: 10.1016/s0022-2836(02)00190-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chaperonin containing TCP-1 (CCT, also known as TRiC) is the only member of the chaperonin family found in the cytosol of eukaryotes. Like other chaperonins, it assists the folding of newly synthesised proteins. It is, however, unique in its specificity towards only a small subset of non-native proteins. We determined two crystal structures of mouse CCTgamma apical domain at 2.2 A and 2.8 A resolution. They reveal a surface patch facing the inside of the torus that is highly evolutionarily conserved and specific for the CCTgamma apical domain. This putative substrate-binding region consists of predominantly positively charged side-chains. It suggests that the specificity of this apical domain towards its substrate, partially folded tubulin, is conferred by polar and electrostatic interactions. The site and nature of substrate interaction are thus profoundly different between CCT and its eubacterial homologue GroEL, consistent with their different functions in general versus specific protein folding assistance.
Collapse
|
703
|
Hansen JJ, Dürr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine CS, Brice A, Fontaine B, Gregersen N, Bross P. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 2002; 70:1328-32. [PMID: 11898127 PMCID: PMC447607 DOI: 10.1086/339935] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Accepted: 01/29/2002] [Indexed: 11/03/2022] Open
Abstract
SPG13, an autosomal dominant form of pure hereditary spastic paraplegia, was recently mapped to chromosome 2q24-34 in a French family. Here we present genetic data indicating that SPG13 is associated with a mutation, in the gene encoding the human mitochondrial chaperonin Hsp60, that results in the V72I substitution. A complementation assay showed that wild-type HSP60 (also known as "HSPD1"), but not HSP60 (V72I), together with the co-chaperonin HSP10 (also known as "HSPE1"), can support growth of Escherichia coli cells in which the homologous chromosomal groESgroEL chaperonin genes have been deleted. Taken together, our data strongly indicate that the V72I variation is the first disease-causing mutation that has been identified in HSP60.
Collapse
Affiliation(s)
- Jens Jacob Hansen
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Alexandra Dürr
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Isabelle Cournu-Rebeix
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Costa Georgopoulos
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Debbie Ang
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Marit Nyholm Nielsen
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Claire-Sophie Davoine
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Alexis Brice
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Bertrand Fontaine
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| | - Peter Bross
- Research Unit for Molecular Medicine, Århus University Hospital and Faculty of Health Sciences, Århus, Denmark; Fédération de Neurologie, INSERM U289, and Département de Génétique, Cytogénétique et Embryologie, Groupe Hospitalier Pitié-Salpêtrière, and INSERM U546, Faculté de Médecine et Groupe Hospitalier Pitié-Salpêtrière, Paris; and Biochimie Médicale, Centre Médical Universitaire, Geneva
| |
Collapse
|
704
|
Abstract
HSP60 is an essential gene in Saccharomyces cerevisiae. The protein forms homotetradecameric double toroid complexes. The flexible C-terminal end of each subunit, which is hydrophobic in nature, protrudes inside the central cavity where protein folding occurs. In order to study the functional role of the C-terminus of Hsp60, we generated and characterized yeast strains expressing mutants of Hsp60 proteins. Most of the yeast strains expressing Hsp60 with C-terminal deletions grew normally, unless the deletion impaired the interaction between neighboring subunits. The cells carrying Hsp60 mutants with an epitope of influenza hemagglutinin (HA) and T7 alone in the C-terminal region grew normally, but the mutant containing both HA and T7 was unable to grow in nonfermentable carbon sources. In vitro biochemical assays were performed using purified Hsp60 proteins. All the mutants examined remained capable of interacting with Hsp10 in a nucleotide-dependent manner. However, binding and/or refolding of denatured rhodanese became defective in most of the hsp60 mutants. Therefore, the hydrophobic C-terminal tail of Hsp60 plays an important role in the refolding of protein substrates, although it is flexible in structure.
Collapse
Affiliation(s)
- Yi-Chien Fang
- Institute of Genetics, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | | |
Collapse
|
705
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
706
|
|
707
|
Abstract
Proteins are linear polymers synthesized by ribosomes from activated amino acids. The product of this biosynthetic process is a polypeptide chain, which has to adopt the unique three-dimensional structure required for its function in the cell. In 1972, Christian Anfinsen was awarded the Nobel Prize for Chemistry for showing that this folding process is autonomous in that it does not require any additional factors or input of energy. Based on in vitro experiments with purified proteins, it was suggested that the correct three-dimensional structure can form spontaneously in vivo once the newly synthesized protein leaves the ribosome. Furthermore, proteins were assumed to maintain their native conformation until they were degraded by specific enzymes. In the last decade this view of cellular protein folding has changed considerably. It has become clear that a complicated and sophisticated machinery of proteins exists which assists protein folding and allows the functional state of proteins to be maintained under conditions in which they would normally unfold and aggregate. These proteins are collectively called molecular chaperones, because, like their human counterparts, they prevent unwanted interactions between their immature clients. In this review, we discuss the principal features of this peculiar class of proteins, their structure-function relationships, and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Stefan Walter
- Institut für Organische Chemie & Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Deutschland
| | | |
Collapse
|
708
|
Abstract
Recent years have witnessed dramatic advances in our understanding of how newly translated proteins fold in the cell and the contribution of molecular chaperones to this process. Folding in the cell must be achieved in a highly crowded macromolecular environment, in which release of nonnative polypeptides into the cytosolic solution might lead to formation of potentially toxic aggregates. Here I review the cellular mechanisms that ensure efficient folding of newly translated proteins in vivo. De novo protein folding appears to occur in a protected environment created by a highly processive chaperone machinery that is directly coupled to translation. Genetic and biochemical analysis shows that several distinct chaperone systems, including Hsp70 and the cylindrical chaperonins, assist the folding of proteins upon translation in the cytosol of both prokaryotic and eukaryotic cells. The cellular chaperone machinery is specifically recruited to bind to ribosomes and protects nascent chains and folding intermediates from nonproductive interactions. In addition, initiation of folding during translation appears to be important for efficient folding of multidomain proteins.
Collapse
Affiliation(s)
- J Frydman
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
709
|
Abstract
Efficient folding of many newly synthesized proteins depends on assistance from molecular chaperones, which serve to prevent protein misfolding and aggregation in the crowded environment of the cell. Nascent chain--binding chaperones, including trigger factor, Hsp70, and prefoldin, stabilize elongating chains on ribosomes in a nonaggregated state. Folding in the cytosol is achieved either on controlled chain release from these factors or after transfer of newly synthesized proteins to downstream chaperones, such as the chaperonins. These are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.
Collapse
Affiliation(s)
- F Ulrich Hartl
- Department of Cellular Biochemistry, Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, D-82152 Martinsried, Germany.
| | | |
Collapse
|
710
|
Ricca A, Bauschlicher CW. Theoretical Study of the Interaction of Water and Imidazole with Iron and Nickel Dications. J Phys Chem A 2002. [DOI: 10.1021/jp014133y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
711
|
Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 2002; 66:64-93; table of contents. [PMID: 11875128 PMCID: PMC120782 DOI: 10.1128/mmbr.66.1.64-93.2002] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse alpha-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called alpha-crystallin domain; and (iv) molecular chaperone activity. Since alpha-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, alpha-Hsps. Alpha-crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, alpha-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of alpha-Hsps with an emphasis on the microbial members of this chaperone family.
Collapse
Affiliation(s)
- Franz Narberhaus
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| |
Collapse
|
712
|
Yoshida T, Kawaguchi R, Taguchi H, Yoshida M, Yasunaga T, Wakabayashi T, Yohda M, Maruyama T. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J Mol Biol 2002; 315:73-85. [PMID: 11771967 DOI: 10.1006/jmbi.2001.5220] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group II chaperonins of archaea and eukaryotes are distinct from group I chaperonins of bacteria. Whereas group I chaperonins require the co-chaperonin Cpn-10 or GroES for protein folding, no co-chaperonin has been known for group II. The protein folding mechanism of group II chaperonins is not yet clear. To understand this mechanism, we examined protein refolding by the recombinant alpha or beta-subunit chaperonin homo-oligomer (alpha16mer and beta16mer) from a hyperthermoplilic archaeum, Thermococcus strain KS-1, using a model substrate, green fluorescent protein (GFP). The alpha16mer and beta16mer captured the non-native GFP and promoted its refolding without any co-chaperonin in an ATP dependent manner. A non-hydrolyzable ATP analog, AMP-PNP, induced the GFP refolding mediated by beta16mer but not by the alpha16mer. A mutant alpha-subunit chaperonin homo-oligomer (trap-alpha) could capture the non-native protein but lacked the ability to refold it. Although trap-alpha suppressed ATP-dependent refolding of GFP mediated by alpha16mer or beta16mer, it did not affect the AMP-PNP-dependent refolding. This indicated that the GFP refolding mediated by beta16mer with AMP-PNP was not accessible to the trap-alpha. Gel filtration chromatography and a protease protection experiment revealed that this refolded GFP, in the presence of AMP-PNP, was associated with beta16mer. After the completion of GFP refolding mediated by beta16mer with AMP-PNP, addition of ATP induced an additional refolding of GFP. Furthermore, the beta16mer preincubated with AMP-PNP showed the ability to capture the non-native GFP. These suggest that AMP-PNP induced one of two chaperonin rings (cis-ring) to close and induced protein refolding in this ring, and that the other ring (trans-ring) could capture the unfolded GFP which was refolded by adding ATP. The present data indicate that, in the group II chaperonin of Thermococcus strain KS-1, the protein folding proceeds in its cis-ring in an ATP-dependent fashion without any co-chaperonin.
Collapse
Affiliation(s)
- Takao Yoshida
- Kamaishi Laboratories, Marine Biotechnology Institute Co. Ltd., 3-75-1 Heita, Kamaishi, 026-0001, Iwate, Japan
| | | | | | | | | | | | | | | |
Collapse
|
713
|
Akiko OK, Wang Y, Sachiko K, Kenji T, Yukimichi K, Fujiharu Y. Cloning and Characterization of groESL Operon in Acetobacter aceti. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80134-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
714
|
Ranson NA, Farr GW, Roseman AM, Gowen B, Fenton WA, Horwich AL, Saibil HR. ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 2001; 107:869-79. [PMID: 11779463 DOI: 10.1016/s0092-8674(01)00617-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chaperonin GroEL drives its protein-folding cycle by cooperatively binding ATP to one of its two rings, priming that ring to become folding-active upon GroES binding, while simultaneously discharging the previous folding chamber from the opposite ring. The GroEL-ATP structure, determined by cryo-EM and atomic structure fitting, shows that the intermediate domains rotate downward, switching their intersubunit salt bridge contacts from substrate binding to ATP binding domains. These observations, together with the effects of ATP binding to a GroEL-GroES-ADP complex, suggest structural models for the ATP-induced reduction in affinity for polypeptide and for cooperativity. The model for cooperativity, based on switching of intersubunit salt bridge interactions around the GroEL ring, may provide general insight into cooperativity in other ring complexes and molecular machines.
Collapse
Affiliation(s)
- N A Ranson
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
715
|
Abstract
Many proteins display complex folding kinetics, which represent multiple parallel folding pathways emanating from multiple unfolded forms and converging to the unique native form. The small protein thioredoxin from Escherichia coli is one such protein. The effect of the chaperonin GroEL on modulating the complex energy landscape that separates the unfolded ensemble from the native state of thioredoxin has been studied. It is shown that while the fluorescence change accompanying folding occurs in five kinetic phases in the absence of GroEL, only the two slowest kinetic phases are discernible in the presence of saturating concentrations of GroEL. This result is shown to be consistent with only one out of several available folding routes being operational in the presence of GroEL. It is shown that native protein, which forms via fast as well as slow routes in the absence of GroEL, forms only via a slow route in its presence. The effect of GroEL on the folding of thioredoxin is shown to be the consequence of it binding differentially to the many folding-competent forms. While some of these forms can continue folding when bound to GroEL, others cannot. All molecules are then drawn into the operational folding route by the law of mass action. This observation indicates a new role for GroEL, which is to bias the energy landscape of a folding polypeptide towards fewer available pathways. It is suggested that such channeling might be a mechanism to avoid possible aggregation-prone routes available to a refolding polypeptide in vivo.
Collapse
Affiliation(s)
- N Bhutani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560065, India
| | | |
Collapse
|
716
|
Hernández H, Robinson CV. Dynamic protein complexes: insights from mass spectrometry. J Biol Chem 2001; 276:46685-8. [PMID: 11585844 DOI: 10.1074/jbc.r100024200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- H Hernández
- Oxford Centre for Molecular Sciences, South Parks Road, Oxford OX1 3QT, United Kingdom
| | | |
Collapse
|
717
|
Lewthwaite JC, Coates AR, Tormay P, Singh M, Mascagni P, Poole S, Roberts M, Sharp L, Henderson B. Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 2001; 69:7349-55. [PMID: 11705907 PMCID: PMC98821 DOI: 10.1128/iai.69.12.7349-7355.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much attention has focused on the Mycobacterium tuberculosis molecular chaperone chaperonin (Cpn) 60.2 (Hsp 65) in the pathology of tuberculosis because of its immunogenicity and ability to directly activate human monocytes and vascular endothelial cells. However, M. tuberculosis is one of a small group of bacteria that contain multiple genes encoding Cpn 60 proteins. We have now cloned and expressed both M. tuberculosis proteins and report that the novel chaperonin 60, Cpn 60.1, is a more potent inducer of cytokine synthesis than is Cpn 60.2. This is in spite of 76% amino acid sequence similarity between the two mycobacterial chaperonins. The M. tuberculosis Cpn 60.2 protein activates human peripheral blood mononuclear cells by a CD14-independent mechanism, whereas Cpn 60.1 is partially CD14 dependent and contains a peptide sequence whose actions are blocked by anti-CD14 monoclonal antibodies. The cytokine-inducing activity of both chaperonins is extremely resistant to heat. Cpn 60.1 may be an important virulence factor in tuberculosis, able to activate cells by diverse receptor-driven mechanisms.
Collapse
Affiliation(s)
- J C Lewthwaite
- Cellular Microbiology Research Group, Eastman Dental Institute, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
718
|
Abstract
Protein folding in the cell, long thought to be a spontaneous process, in fact often requires the assistance of molecular chaperones. This is thought to be largely because of the danger of incorrect folding and aggregation of proteins, which is a particular problem in the crowded environment of the cell. Molecular chaperones are involved in numerous processes in bacterial cells, including assisting the folding of newly synthesized proteins, both during and after translation; assisting in protein secretion, preventing aggregation of proteins on heat shock, and repairing proteins that have been damaged or misfolded by stresses such as a heat shock. Within the cell, a balance has to be found between refolding of proteins and their proteolytic degradation, and molecular chaperones play a key role in this. In this review, the evidence for the existence and role of the major cytoplasmic molecular chaperones will be discussed, mainly from the physiological point of view but also in relationship to their known structure, function and mechanism of action. The two major chaperone systems in bacterial cells (as typified by Escherichia coli) are the GroE and DnaK chaperones, and the contrasting roles and mechanisms of these chaperones will be presented. The GroE chaperone machine acts by providing a protected environment in which protein folding of individual protein molecules can proceed, whereas the DnaK chaperones act by binding and protecting exposed regions on unfolded or partially folded protein chains. DnaK chaperones interact with trigger factor in protein translation and with ClpB in reactivating proteins which have become aggregated after heat shock. The nature of the other cytoplasmic chaperones in the cell will also be reviewed, including those for which a clear function has not yet been determined, and those where an in vivo chaperone function has still to be proven, such as the small heat shock proteins IbpA and IbpB. The regulation of expression of the genes of the heat shock response will also be discussed, particularly in the light of the signals that are needed to induce the response. The major signals for induction of the heat shock response are elevated temperature and the presence of unfolded protein within the cell, but these are sensed and transduced differently by different bacteria. The best characterized example is the sigma 32 subunit of RNA polymerase from E. coli, which is both more efficiently translated and also transiently stabilized following heat shock. The DnaK chaperones modulate this effect. However, a more widely conserved system appears to be typified by the HrcA repressor in Bacillus subtilis, the activity of which is modulated by the GroE chaperone machine. Other examples of regulation of molecular chaperones will also be discussed. Finally, the likely future research directions for molecular chaperone biology in the post-genomic era will be briefly evaluated.
Collapse
Affiliation(s)
- P A Lund
- School of BioSciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
719
|
Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL. GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 2001; 107:235-46. [PMID: 11672530 DOI: 10.1016/s0092-8674(01)00523-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The chaperonin GroEL binds nonnative proteins too large to fit inside the productive GroEL-GroES cis cavity, but whether and how it assists their folding has remained unanswered. We have examined yeast mitochondrial aconitase, an 82 kDa monomeric Fe(4)S(4) cluster-containing enzyme, observed to aggregate in chaperonin-deficient mitochondria. We observed that aconitase folding both in vivo and in vitro requires both GroEL and GroES, and proceeds via multiple rounds of binding and release. Unlike the folding of smaller substrates, however, this mechanism does not involve cis encapsulation but, rather, requires GroES binding to the trans ring to release nonnative substrate, which likely folds in solution. Following the phase of ATP/GroES-dependent refolding, GroEL stably bound apoaconitase, releasing active holoenzyme upon Fe(4)S(4) cofactor formation, independent of ATP and GroES.
Collapse
Affiliation(s)
- T K Chaudhuri
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
720
|
Brinker A, Pfeifer G, Kerner MJ, Naylor DJ, Hartl FU, Hayer-Hartl M. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 2001; 107:223-33. [PMID: 11672529 DOI: 10.1016/s0092-8674(01)00517-7] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The GroEL/GroES chaperonin system mediates the folding of a range of newly synthesized polypeptides in the bacterial cytosol. Using a rapid biotin-streptavidin-based inhibition of chaperonin function, we show that the cage formed by GroEL and its cofactor GroES can have a dual role in promoting folding. First, enclosure of nonnative protein in the GroEL:GroES complex is essential for folding to proceed unimpaired by aggregation. Second, folding inside the cage can be significantly faster than folding in free solution, independently of ATP-driven cycles of GroES binding and release. This suggests that confinement of unfolded protein in the narrow hydrophilic space of the chaperonin cage smoothes the energy landscape for the folding of some proteins, increasing the flux of folding intermediates toward the native state.
Collapse
Affiliation(s)
- A Brinker
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
721
|
Valle F, Dietler G, Londei P. Single-molecule imaging by atomic force microscopy of the native chaperonin complex of the thermophilic archaeon Sulfolobus solfataricus. Biochem Biophys Res Commun 2001; 288:258-62. [PMID: 11594782 DOI: 10.1006/bbrc.2001.5750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperonin of the extremely thermophilic archaeon Sulfolobus solfataricus has been imaged for the first time under native conditions using the atomic force microscope. This technique allows to visualize the structure of biomolecules in solution under physiological conditions providing a nanometer resolution topographic image of the sample. Single molecule studies can reveal fine structural details, providing a powerful insight into the active conformation of a macromolecule, and also allowing to detect different conformational states corresponding to functional changes.
Collapse
Affiliation(s)
- F Valle
- Institut de Physique de la Matière Condensée, Université de Lausanne, BSP, CH-1015 Lausanne-Dorigny, Switzerland.
| | | | | |
Collapse
|
722
|
Abstract
The bacterial chaperonin GroEL functions with its cofactor GroES in assisting the folding of a wide range of proteins in an ATP-dependent manner. GroELGroES constitute one of the main chaperone systems in the Escherichia coli cytoplasm. The chaperonin facilitates protein folding by enclosing substrate proteins in a cage defined by the GroEL cylinder and the GroES cap where folding can take place in a protected environment. The in vivo role of GroEL has recently been elucidated. GroEL is found to interact with 1015% of newly synthesized proteins, with a strong preference for proteins in the molecular weight range of 2060 kDa. A large number of GroEL substrates have been identified and were found to preferentially contain proteins with multiple αβ domains that have α-helices and β-sheets with extensive hydrophobic surfaces. Based on the preferential binding of GroEL to these proteins and structural and biochemical data, a model of substrate recognition by GroEL is proposed. According to this model, binding takes place preferentially between the hydrophobic residues in the apical domains of GroEL and the hydrophobic faces exposed by the β-sheets or α-helices in the αβ domains of protein substrates.Key words: chaperone, folding, binding, hydrophobic interaction, structure.
Collapse
|
723
|
Abstract
Chaperonins are a subclass of molecular chaperones that assist both the folding of newly synthesized proteins and the maintenance of proteins in a folded state during periods of stress. The best studied members of this family are the type I chaperonins, occurring in bacteria and evolutionarily derived organelles. Type II chaperonins occur in archaea and the eukaryotic cytosol. An intriguing question pertains to the mechanism by which chaperonins themselves are folded and assembled into functional oligomers. The available evidence for the assembly/disassembly of type I and II chaperonins points to a process that is highly cooperative and suggests a prominent role for nucleotides. Interestingly, the intracellular assembly of type I chaperonins appears to be a chaperone-dependent process itself and requires functional preformed chaperonin complexes.
Collapse
Affiliation(s)
- A R Kusmierczyk
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Box G-J2, Providence, RI 02912, USA
| | | |
Collapse
|
724
|
Abstract
Two classes of chaperonins are known in all groups of organisms to participate in the folding of newly synthesized proteins. Whereas bacterial type I chaperonins use a reversibly binding cofactor to temporarily sequester folding substrate proteins within the cylindrical chaperonin cavity, type II chaperonins in archaea and the eukaryotic cytosol appear to have evolved a built-in lid for this purpose. Not entirely surprisingly, this has consequences for the folding modes of the two types of chaperonins.
Collapse
Affiliation(s)
- A R Kusmierczyk
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, P.O. Box G-J2, Providence, RI 02912, USA
| | | |
Collapse
|
725
|
Fukami TA, Yohda M, Taguchi H, Yoshida M, Miki K. Crystal structure of chaperonin-60 from Paracoccus denitrificans. J Mol Biol 2001; 312:501-9. [PMID: 11563912 DOI: 10.1006/jmbi.2001.4961] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of chaperonin-60 from Paracoccus denitrificans (P.cpn60) has been determined at 3.2 A resolution by the molecular replacement method. Two heptameric rings of identical subunits of P.cpn60 in adjacent asymmetric units are stacked in a back-to-back manner and form a cylinder, as found in GroEL, cpn60 from Escherichia coli. With respect to the unliganded GroEL structure, each subunit of P.cpn60 tilts 2 degrees outwards and the apical domain twists 4 degrees counter-clockwise in the top view in a hinge-like manner, rendering the central hole 5 A wider. Despite the subunit tilts, both rings in P.cpn60 contact at two sites of the equatorial domain in the same way as in GroEL. Interactions between residues 434 and 434, and 463 and 463 observed in GroEL were not found in P.cpn60, and the interaction between 452 and 461 was weaker in P.cpn60 than in GroEL. The unique hydrogen bond between 468 and 471 was observed at the right site in P.cpn60, which could account for why the subunits tilt outwards. The contact surface area was reduced at the left site, which is similar to the observed changes in the GroEL structures induced by ATP binding. In general, inter-ring interactions in P.cpn60 were weakened, which is consistent with findings that P.cpn60 is observed in single-ring forms as well as in double-ring forms.
Collapse
Affiliation(s)
- T A Fukami
- Department of Chemistry Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502, Japan
| | | | | | | | | |
Collapse
|
726
|
Makio T, Takasu-Ishikawa E, Kuwajima K. Nucleotide-induced transition of GroEL from the high-affinity to the low-affinity state for a target protein: effects of ATP and ADP on the GroEL-affected refolding of alpha-lactalbumin. J Mol Biol 2001; 312:555-67. [PMID: 11563916 DOI: 10.1006/jmbi.2001.4959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the refolding kinetics of alpha-lactalbumin in the presence of wild-type GroEL and its ATPase-deficient mutant D398A at various concentrations of nucleotides (ATP and ADP). We evaluated the apparent binding constant between GroEL and the alpha-lactalbumin refolding intermediate quantitatively by numerical simulation analysis of the alpha-lactalbumin refolding curves in the presence and absence of GroEL. The binding constant showed a co-operative decrease with an increase in ATP concentration, whereas the binding constant decreased in a non-co-operative manner with respect to ADP concentration. For the D398A mutant, the ATP-induced decrease in affinity occurred much faster than the steady-state ATP hydrolysis by this mutant, suggesting that ATP binding to GroEL rather than ATP hydrolysis, was responsible for the co-operative decrease in the affinity for the target protein. We thus analyzed the nucleotide-concentration dependence of affinity of GroEL for the target protein using an allosteric Monod-Wyman-Changeux model in which GroEL underwent an ATP-induced co-operative conformational transition between the high-affinity and low-affinity states of the target protein. The transition midpoint of the ATP-induced transition of GroEL has been found to be around 30 microM, in good agreement with the midpoint evaluated in other structural studies of GroEL. The results show that the observed difference between ATP and ADP-induced transitions of GroEL are brought about by a small difference in an allosteric parameter (the ratio of the nucleotide affinities of GroEL in the high-affinity and the low-affinity states), i.e. 4.1 for ATP and 2.6 for ADP.
Collapse
Affiliation(s)
- T Makio
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | |
Collapse
|
727
|
Taguchi H, Ueno T, Tadakuma H, Yoshida M, Funatsu T. Single-molecule observation of protein-protein interactions in the chaperonin system. Nat Biotechnol 2001; 19:861-5. [PMID: 11533646 DOI: 10.1038/nbt0901-861] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have analyzed the dynamics of the chaperonin (GroEL)-cochaperonin (GroES) interaction at the single-molecule level. In the presence of ATP and non-native protein, binding of GroES to the immobilized GroEL occurred at a rate that is consistent with bulk kinetics measurements. However, the release of GroES from GroEL occurred after a lag period ( approximately 3 s) that was not recognized in earlier bulk-phase studies. This observation suggests a new kinetic intermediate in the GroEL-GroES reaction pathway.
Collapse
Affiliation(s)
- H Taguchi
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
728
|
Shewmaker F, Maskos K, Simmerling C, Landry SJ. The disordered mobile loop of GroES folds into a defined beta-hairpin upon binding GroEL. J Biol Chem 2001; 276:31257-64. [PMID: 11395498 DOI: 10.1074/jbc.m102765200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GroES mobile loop is a stretch of approximately 16 amino acids that exhibits a high degree of flexible disorder in the free protein. This loop is responsible for the interaction between GroES and GroEL, and it undergoes a folding transition upon binding to GroEL. Results derived from a combination of transferred nuclear Overhauser effect NMR experiments and molecular dynamics simulations indicate that the mobile loop adopts a beta-hairpin structure with a Type I, G1 Bulge turn. This structure is distinct from the conformation of the loop in the co-crystal of GroES with GroEL-ADP but identical to the conformation of the bacteriophage-panned "strongly binding peptide" in the co-crystal with GroEL. Analysis of sequence conservation suggests that sequences of the mobile loop and strongly binding peptide were selected for the ability to adopt this hairpin conformation.
Collapse
Affiliation(s)
- F Shewmaker
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
729
|
Thirumalai D, Lorimer GH. Chaperonin-mediated protein folding. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:245-69. [PMID: 11340060 DOI: 10.1146/annurev.biophys.30.1.245] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones are required to assist folding of a subset of proteins in Escherichia coli. We describe a conceptual framework for understanding how the GroEL-GroES system assists misfolded proteins to reach their native states. The architecture of GroEL consists of double toroids stacked back-to-back. However, most of the fundamentals of the GroEL action can be described in terms of the single ring. A key idea in our framework is that, with coordinated ATP hydrolysis and GroES binding, GroEL participates actively by repeatedly unfolding the substrate protein (SP), provided that it is trapped in one of the misfolded states. We conjecture that the unfolding of SP becomes possible because a stretching force is transmitted to the SP when the GroEL particle undergoes allosteric transitions. Force-induced unfolding of the SP puts it on a higher free-energy point in the multidimensional energy landscape from which the SP can either reach the native conformation with some probability or be trapped in one of the competing basins of attraction (i.e., the SP undergoes kinetic partitioning). The model shows, in a natural way, that the time scales in the dynamics of the allosteric transitions are intimately coupled to folding rates of the SP. Several scenarios for chaperonin-assisted folding emerge depending on the interplay of the time scales governing the cycle. Further refinement of this framework may be necessary because single molecule experiments indicate that there is a great dispersion in the time scales governing the dynamics of the chaperonin cycle.
Collapse
Affiliation(s)
- D Thirumalai
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, Collge Park, Maryland 20742,
| | | |
Collapse
|
730
|
Koumoto Y, Shimada T, Kondo M, Hara-Nishimura I, Nishimura M. Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J Biol Chem 2001; 276:29688-94. [PMID: 11402030 DOI: 10.1074/jbc.m102330200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we characterized a mitochondrial co-chaperonin (Cpn10) and a chloroplast co-chaperonin (Cpn20) from Arabidopsis thaliana (Koumoto, Y., Tsugeki, R., Shimada, T., Mori, H., Kondo, M., Hara-Nishimura, I., and Nishimura, M. (1996) Plant J. 10, 1119-1125; Koumoto, Y., Shimada, T., Kondo, M., Takao, T., Shimonishi, Y., Hara-Nishimura, I., and Nishimura, M. (1999) Plant J. 17, 467-477). Here, we report a third co-chaperonin. The cDNA was 603 base pairs long, encoding a protein of 139 amino acids. From a sequence analysis, the protein was predicted to have one Cpn10 domain with an amino-terminal extension that might work as a chloroplast transit peptide. This novel Cpn10 was confirmed to be localized in chloroplasts, and we refer to it as chloroplast Cpn10 (chl-Cpn10). The phylogenic tree that was generated with amino acid sequences of other co-chaperonins indicates that chl-Cpn10 is highly divergent from the others. In the GroEL-assisted protein folding assay, about 30% of the substrates were refolded with chl-Cpn10, indicating that chl-Cpn10 works as a co-chaperonin. A Northern blot analysis revealed that mRNA for chl-Cpn10 is accumulated in the leaves and stems, but not in the roots. In germinating cotyledons, the accumulation of chl-Cpn10 was similar to that of chloroplastic proteins and accelerated by light. It was proposed that two kinds of co-chaperonins, Cpn20 and chl-Cpn10, work independently in the chloroplast.
Collapse
Affiliation(s)
- Y Koumoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
731
|
Ruepp A, Rockel B, Gutsche I, Baumeister W, Lupas AN. The Chaperones of the archaeon Thermoplasma acidophilum. J Struct Biol 2001; 135:126-38. [PMID: 11580262 DOI: 10.1006/jsbi.2001.4402] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chaperonesare an essential component of a cell's ability to respond to environmental challenges. Chaperones have been studied primarily in bacteria, but in recent years it has become apparent that some classes of chaperones either are very divergent in bacteria relative to archaea and eukaryotes or are missing entirely. In contrast, a high degree of similarity was found between the chaperonins of archaea and those of the eukaryotic cytosol, which has led to the establishment of archaeal model systems. The archaeon most extensively used for such studies is Thermoplasma acidophilum, which thrives at 59 degrees C and pH 2. Here we review information on its chaperone complement in light of the recently determined genome sequence.
Collapse
Affiliation(s)
- A Ruepp
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, Martinsried, D-82152, Germany
| | | | | | | | | |
Collapse
|
732
|
Abstract
Chaperonins mediate protein folding in an ATP-dependent manner. ATP binding and hydrolysis by chaperonins are subject to both homotropic and heterotropic allosteric regulation. In the case of GroEL and CCT, homotropic regulation by ATP is manifested in nested cooperativity, which involves positive intra-ring cooperativity and negative inter-ring cooperativity in ATP binding. Both types of cooperativity are modulated by various heterotropic allosteric effectors, which include nonfolded proteins, ADP, Mg2+, monovalent ions such as K+, and cochaperonins in the case of type I chaperonins such as GroEL. Here, the allosteric properties of chaperonins are reviewed and new results of ours are presented with regard to allosteric effects of ADP. The role of allostery in the reaction cycle and folding function of chaperonins is discussed.
Collapse
Affiliation(s)
- A Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | |
Collapse
|
733
|
Roseman AM, Ranson NA, Gowen B, Fuller SD, Saibil HR. Structures of unliganded and ATP-bound states of the Escherichia coli chaperonin GroEL by cryoelectron microscopy. J Struct Biol 2001; 135:115-25. [PMID: 11580261 DOI: 10.1006/jsbi.2001.4374] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an angular refinement procedure incorporating correction for the microscope contrast transfer function, to determine cryoelectron microscopy (cryo-EM) structures of the Escherichia coli chaperonin GroEL in its apo and ATP-bound forms. This image reconstruction procedure is verified to 13-A resolution by comparison of the cryo-EM structure of unliganded GroEL with the crystal structure. Binding, encapsulation, and release of nonnative proteins by GroEL and its cochaperone GroES are controlled by the binding and hydrolysis of ATP. Seven ATP molecules bind cooperatively to one heptameric ring of GroEL. This binding causes long-range conformational changes that determine the orientations of remote substrate-binding sites, and it also determines the conformation of subunits in the opposite ring of GroEL, in a negatively cooperative mechanism. The conformation of GroEL-ATP was determined at approximately 15-A resolution. In one ring of GroEL-ATP, the apical (substrate-binding) domains are extremely disordered, consistent with the high mobility needed for them to achieve the 60 degrees elevation and 90 degrees twist of the GroES-bound state. Unexpectedly, ATP binding also increases the separation between the two rings, although the interring contacts are present in the density map.
Collapse
Affiliation(s)
- A M Roseman
- Department of Crystallography, Birkbeck College London, Malet Street, London, WC1E 7HX, United Kingdom
| | | | | | | | | |
Collapse
|
734
|
Donnelly MI, Stevens PW, Stols L, Su SX, Tollaksen S, Giometti C, Joachimiak A. Expression of a highly toxic protein, Bax, in Escherichia coli by attachment of a leader peptide derived from the GroES cochaperone. Protein Expr Purif 2001; 22:422-9. [PMID: 11483004 PMCID: PMC4113414 DOI: 10.1006/prep.2001.1442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Expression of the human apoptosis modulator protein Bax in Escherichia coli is highly toxic, resulting in cell lysis at very low concentrations (Asoh, S., et al., J. Biol. Chem. 273, 11384-11391, 1998). Attempts to express a truncated form of murine Bax in the periplasm by using an expression vector that attached the OmpA signal sequence to the protein failed to alleviate this toxicity. In contrast, attachment of a peptide based on a portion of the E. coli cochaperone GroES reduced Bax's toxicity significantly and allowed good expression. The peptide, which was attached to the N-terminus, included the amino acid sequence of the mobile loop of GroES that has been demonstrated to interact with the chaperonin, GroEL. Under normal growth conditions, expression of this construct was still toxic, but generated a small amount of detectable recombinant Bax. However, when cells were grown in the presence of 2% ethanol, which stimulated overproduction of the molecular chaperones GroEL and DnaK, toxicity was reduced and good overexpression occurred. Two-dimensional gel electrophoresis analysis showed that approximately 15-fold more GroES-loop-Bax was produced under these conditions than under standard conditions and that GroEL and DnaK were elevated approximately 3-fold.
Collapse
Affiliation(s)
- Mark I. Donnelly
- Environmental Research Division, Argonne National Laboratory, Argonne, Illinois 60439
| | | | - Lucy Stols
- Environmental Research Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Sharyn Xiaoyin Su
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Sandra Tollaksen
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Carol Giometti
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrzej Joachimiak
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
- To whom correspondence should be addressed: Fax: (630) 252-6126.
| |
Collapse
|
735
|
Steinbacher S, Ditzel L. Review: nucleotide binding to the thermoplasma thermosome: implications for the functional cycle of group II chaperonins. J Struct Biol 2001; 135:147-56. [PMID: 11580264 DOI: 10.1006/jsbi.2001.4382] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural information on group II chaperonins became available during recent years from electron microscopy and X-ray crystallography. Three conformational states have been identified for both archaeal and eukaryotic group II chaperonins: an open state, a spherical closed conformation, and an intermediate asymmetric bullet-shaped form. However, the functional cycle of group II chaperonins appears less well understood, although major principles are conserved when compared to group I chaperonins: binding of the substrate polypeptide to the apical domains of the open state and MgATP-driven conformational changes that result in encapsulation of the substrate where folding can proceed presumably in the closed ring of the bullet-shaped form. Binding of the transition state analogue MgADP-AlF3-H2O in the crystal structure of the Thermoplasma acidophilum thermosome suggests that the closed geometry is the enzymatically active conformation that performs ATP hydrolysis. Domain movements observed by electron microscopy suggest a coupling of ATP hydrolysis and domain movement similar to that in the GroE system. The hydrophilic interior of the closed thermosome corresponds to the cis-ring of the asymmetric GroEL-GroES complex implicated in protein folding.
Collapse
Affiliation(s)
- S Steinbacher
- Abteilung für Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, Martinsried, 82152, Germany.
| | | |
Collapse
|
736
|
Llorca O, Martín-Benito J, Grantham J, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM. The 'sequential allosteric ring' mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. EMBO J 2001; 20:4065-75. [PMID: 11483510 PMCID: PMC149171 DOI: 10.1093/emboj/20.15.4065] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Folding to completion of actin and tubulin in the eukaryotic cytosol requires their interaction with cytosolic chaperonin CCT [chaperonin containing tailless complex polypeptide 1 (TCP-1)]. Three-dimensional reconstructions of nucleotide-free CCT complexed to either actin or tubulin show that CCT stabilizes both cytoskeletal proteins in open and quasi-folded conformations mediated through interactions that are both subunit specific and geometry dependent. Here we find that upon ATP binding, mimicked by the non-hydrolysable analog AMP-PNP (5'-adenylyl-imido-diphosphate), to both CCT-alpha-actin and CCT- beta-tubulin complexes, the chaperonin component undergoes concerted movements of the apical domains, resulting in the cavity being closed off by the helical protrusions of the eight apical domains. However, in contrast to the GroE system, generation of this closed state does not induce the release of the substrate into the chaperonin cavity, and both cytoskeletal proteins remain bound to the chaperonin apical domains. Docking of the AMP-PNP-CCT-bound conformations of alpha-actin and beta-tubulin to their respective native atomic structures suggests that both proteins have progressed towards their native states.
Collapse
Affiliation(s)
- Oscar Llorca
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain and CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, Chelsea, London SW3 6JB, UK Corresponding author e-mail:
| | - Jaime Martín-Benito
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain and CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, Chelsea, London SW3 6JB, UK Corresponding author e-mail:
| | - Julie Grantham
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain and CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, Chelsea, London SW3 6JB, UK Corresponding author e-mail:
| | - Monica Ritco-Vonsovici
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain and CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, Chelsea, London SW3 6JB, UK Corresponding author e-mail:
| | - Keith R. Willison
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain and CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, Chelsea, London SW3 6JB, UK Corresponding author e-mail:
| | - José L. Carrascosa
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain and CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, Chelsea, London SW3 6JB, UK Corresponding author e-mail:
| | - José M. Valpuesta
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain and CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, Chelsea, London SW3 6JB, UK Corresponding author e-mail:
| |
Collapse
|
737
|
Abstract
The GroE chaperone system consists of two ring-shaped oligomeric components whose association creates different functional states. The most remarkable property of the GroE system is the ability to fold proteins under conditions where spontaneous folding cannot occur. To achieve this, a fully functional system consisting of GroEL, the cochaperone GroES, and ATP is necessary. Driven by ATP binding and hydrolysis, this system cycles through different conformational stages, which allow binding, folding, and release of substrate proteins. Some aspects of the ATP-driven reaction cycle are still under debate. One of these open questions is the importance of so-called "football" complexes consisting of GroEL and two bound GroES rings. Here, we summarize the evidence for the functional relevance of these complexes and their involvement in the efficient folding of substrate proteins.
Collapse
Affiliation(s)
- H Grallert
- Institut für Organische Chemie und Biochemie, Technische Universität München, Garching, 85747, Germany
| | | |
Collapse
|
738
|
Llorca O, Martín-Benito J, Gómez-Puertas P, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM. Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol 2001; 135:205-18. [PMID: 11580270 DOI: 10.1006/jsbi.2001.4359] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two mechanisms have thus far been characterized for the assistance by chaperonins of the folding of other proteins. The first and best described is that of the prokaryotic chaperonin GroEL, which interacts with a large spectrum of proteins. GroEL uses a nonspecific mechanism by which any conformation of practically any unfolded polypeptide interacts with it through exposed, hydrophobic residues. ATP binding liberates the substrate in the GroEL cavity where it is given a chance to fold. A second mechanism has been described for the eukaryotic chaperonin CCT, which interacts mainly with the cytoskeletal proteins actin and tubulin. Cryoelectron microscopy and biochemical studies have revealed that both of these proteins interact with CCT in quasi-native, defined conformations. Here we have performed a detailed study of the docking of the actin and tubulin molecules extracted from their corresponding CCT:substrate complexes obtained from cryoelectron microscopy and image processing to localize certain regions in actin and tubulin that are involved in the interaction with CCT. These regions of actin and tubulin, which are not present in their prokaryotic counterparts FtsA and FtsZ, are involved in the polymerization of the two cytoskeletal proteins. These findings suggest coevolution of CCT with actin and tubulin in order to counteract the folding problems associated with the generation in these two cytoskeletal protein families of new domains involved in their polymerization.
Collapse
Affiliation(s)
- O Llorca
- Centro Nacional de Biotecnología, C.S.I.C., Campus Universidad Autónoma de Madrid, 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
739
|
Zhang S, Li J, Wang CC. GroEL-assisted dehydrogenase folding mediated by coenzyme is ATP-independent. Biochem Biophys Res Commun 2001; 285:277-82. [PMID: 11444838 DOI: 10.1006/bbrc.2001.5182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been commonly accepted that GroEL functions as a chaperone by modulation of its affinity for folding intermediates through binding and hydrolysis of ATP. However, we have found that NAD, as a coenzyme of d-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), also stimulates the discharge of GAPDH folding intermediate from its stable complex with GroEL formed in the absence of ATP and assists refolding with the same yield as ATP/Mg(2+) does. The reactivation further increases when ATP is also present, but addition of Mg(2+) has no more effect. NADP, a coenzyme of glucose-6-phosphate dehydrogenase, also releases its folding intermediates from GroEL and increases reactivation. Different from ATP, NAD triggers the release of GAPDH intermediates bound by GroEL via binding with GAPDH itself but not with GroEL, and the released intermediates all folded to native molecules without the formation of aggregation. The collaborative effects of coenzyme and GroEL mediate GroEL-assisted dehydrogenase folding in an ATP-independent way.
Collapse
Affiliation(s)
- S Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, China
| | | | | |
Collapse
|
740
|
Karpowich N, Martsinkevich O, Millen L, Yuan YR, Dai PL, MacVey K, Thomas PJ, Hunt JF. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 2001; 9:571-86. [PMID: 11470432 DOI: 10.1016/s0969-2126(01)00617-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND ATP binding cassette (ABC) transporters are ubiquitously distributed transmembrane solute pumps that play a causative role in numerous diseases. Previous structures have defined the fold of the ABC and established the flexibility of its alpha-helical subdomain. But the nature of the mechanical changes that occur at each step of the chemical ATPase cycle have not been defined. RESULTS Crystal structures were determined of the MJ1267 ABC from Methanococcus jannaschii in Mg-ADP-bound and nucleotide-free forms. Comparison of these structures reveals an induced-fit effect at the active site likely to be a consequence of nucleotide binding. In the Mg-ADP-bound structure, the loop following the Walker B moves toward the Walker A (P-loop) coupled to backbone conformational changes in the intervening "H-loop", which contains an invariant histidine. These changes affect the region believed to mediate intercassette interaction in the ABC transporter complex. Comparison of the Mg-ADP-bound structure of MJ1267 to the ATP-bound structure of HisP suggests that an outward rotation of the alpha-helical subdomain is coupled to the loss of a molecular contact between the gamma-phosphate of ATP and an invariant glutamine in a segment connecting this subdomain to the core of the cassette. CONCLUSIONS The induced-fit effect and rotation of the alpha-helical subdomain may play a role in controlling the nucleotide-dependent change in cassette-cassette interaction affinity believed to represent the power-stroke of ABC transporters. Outward rotation of the alpha-helical subdomain also likely facilitates Mg-ADP release after hydrolysis. The MJ1267 structures therefore define features of the nucleotide-dependent conformational changes that drive transmembrane transport in ABC transporters.
Collapse
Affiliation(s)
- N Karpowich
- Department of Biological Sciences, 702A Fairchild Center, MC2434, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
741
|
Rye HS. Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction. Methods 2001; 24:278-88. [PMID: 11403576 PMCID: PMC3744193 DOI: 10.1006/meth.2001.1188] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) is a sensitive and flexible method for studying protein-protein interactions. Here it is applied to the GroEL-GroES chaperonin system to examine the ATP-driven dynamics that underlie protein folding by this chaperone. Relying on the known structures of GroEL and GroES, sites for attachment of fluorescent probes are designed into the sequence of both proteins. Because these sites are brought close in space when GroEL and GroES form a complex, excitation energy can pass from a donor to an acceptor chromophore by FRET. While in ideal circumstances FRET can be used to measure distances, significant population heterogeneity in the donor-to-acceptor distances in the GroEL-GroES complex makes distance determination difficult. This is due to incomplete labeling of these large, oligomeric proteins and to their rotational symmetry. It is shown, however, that FRET can still be used to follow protein-protein interaction dynamics even in a case such as this, where distance measurements are either not practical or not meaningful. In this way, the FRET signal is used as a simple proximity sensor to score the interaction between GroEL and GroES. Similarly, FRET can also be used to follow interactions between GroEL and a fluorescently labeled substrate polypeptide. Thus, while knowledge of molecular structure aids enormously in the design of FRET experiments, structural information is not necessarily required if the aim is to measure the thermodynamics or kinetics of a protein interaction event by following changes in the binding proximity of two components.
Collapse
Affiliation(s)
- H S Rye
- Department of Molecular Biology, Princeton University, 229 Lewis Thomas Laboratory, Princeton, New Jersey 08544, USA.
| |
Collapse
|
742
|
Hammarstrom P, Persson M, Carlsson U. Protein compactness measured by fluorescence resonance energy transfer. Human carbonic anhydrase ii is considerably expanded by the interaction of GroEL. J Biol Chem 2001; 276:21765-75. [PMID: 11278767 DOI: 10.1074/jbc.m010858200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nine single-cysteine mutants were labeled with 5-(2-iodoacetylaminoethylamino)naphthalene-1-sulfonic acid, an efficient acceptor of Trp fluorescence in fluorescence resonance energy transfer. The ratio between the fluorescence intensity of the 5-(2-acetylaminoethylamino)naphthalene-1-sulfonic acid (AEDANS) moiety excited at 295 nm (Trp absorption) and 350 nm (direct AEDANS absorption) was used to estimate the average distances between the seven Trp residues in human carbonic anhydrase II (HCA II) and the AEDANS label. Guanidine HCl denaturation of the HCA II variants was also performed to obtain a curve that reflected the compactness of the protein at various stages of the unfolding, which could serve as a scale of the expansion of the protein. This approach was developed in this study and was used to estimate the compactness of HCA II during heat denaturation and interaction with GroEL. It was shown that thermally induced unfolding of HCA II proceeded only to the molten globule state. Reaching this state was sufficient to allow HCA II to bind to GroEL, and the volume of the molten globule intermediate increased approximately 2.2-fold compared with that of the native state. GroEL-bound HCA II expands to a volume three to four times that of the native state (to approximately 117,000 A(3)), which correlates well with a stretched and loosened-up HCA II molecule in an enlarged GroEL cavity. Recently, we found that HCA II binding causes such an inflation of the GroEL molecule, and this probably represents the mechanism by which GroEL actively stretches its protein substrates apart (Hammarström, P., Persson, M., Owenius, R., Lindgren, M., and Carlsson, U. (2000) J. Biol. Chem. 275, 22832-22838), thereby facilitating rearrangement of misfolded structure.
Collapse
Affiliation(s)
- P Hammarstrom
- IFM-Department of Chemistry, Linköping University, SE-581 83 Linköping, Sweden
| | | | | |
Collapse
|
743
|
Falke S, Fisher MT, Gogol EP. Structural changes in GroEL effected by binding a denatured protein substrate. J Mol Biol 2001; 308:569-77. [PMID: 11350160 DOI: 10.1006/jmbi.2001.4613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the absence of nucleotides or cofactors, the Escherichia coli chaperonin GroEL binds select proteins in non-native conformations, such as denatured glutamine synthetase (GS) monomers, preventing their aggregation and spontaneous renaturation. The nature of the GroEL-GS complexes thus formed, specifically the effect on the conformation of the GroEL tetradecamer, has been examined by electron microscopy. We find that specimens of GroEL-GS are visibly heterogeneous, due to incomplete loading of GroEL with GS. Images contain particles indistinguishable from GroEL alone, and also those with consistent identifiable differences. Side-views of the modified particles reveal additional protein density at one end of the GroEL-GS complex, and end-views display chirality in the heptameric projection not seen in the unliganded GroEL. The coordinate appearance of these two projection differences suggests that binding of GS, as representative of a class of protein substrates, induces or stabilizes a conformation of GroEL that differs from the unliganded chaperonin. Three-dimensional reconstruction of the GroEL-GS complex reveals the location of the bound protein substrate, as well as complex conformational changes in GroEL itself, both cis and trans with respect to the bound GS. The most apparent structural alterations are inward movements of the apical domains of both GroEL heptamers, protrusion of the substrate protein from the cavity of the cis ring, and a narrowing of the unoccupied opening of the trans ring.
Collapse
Affiliation(s)
- S Falke
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
744
|
Taneja B, Mande SC. Metal ions modulate the plastic nature of Mycobacterium tuberculosis chaperonin-10. PROTEIN ENGINEERING 2001; 14:391-5. [PMID: 11477217 DOI: 10.1093/protein/14.6.391] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chaperonin-10s possess a highly flexible segment of approximately 10 residues that covers their dome-like structure and closes the central cavity of the chaperonin assembly. The dome loop is believed to contribute to the plasticity of their oligomeric structure. We have exploited the presence of a single tryptophan residue occurring in the dome loop of Mycobacterium tuberculosis chaperonin-10 (cpn-10), and through intrinsic fluorescence measurements show that in the absence of metal ions, the tryptophan is almost fully solvent exposed at neutral pH. The dome loop, however, assumes a closed conformation in the presence of metal ions, or at low pH. These changes are fully reversed in the presence of chelating agents such as EDTA, confirming the role of cations in modulating the metastable states of cpn-10.
Collapse
Affiliation(s)
- B Taneja
- Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036, India
| | | |
Collapse
|
745
|
Klein G, Georgopoulos C. Identification of important amino acid residues that modulate binding of Escherichia coli GroEL to its various cochaperones. Genetics 2001; 158:507-17. [PMID: 11404317 PMCID: PMC1461677 DOI: 10.1093/genetics/158.2.507] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic experiments have shown that the GroEL/GroES chaperone machine of Escherichia coli is absolutely essential, not only for bacterial growth but also for the propagation of many bacteriophages including lambda. The virulent bacteriophages T4 and RB49 are independent of the host GroES function, because they encode their own cochaperone proteins, Gp31 and CocO, respectively. E. coli groEL44 mutant bacteria do not form colonies above 42 degrees nor do they propagate bacteriophages lambda, T4, or RB49. We found that the vast majority (40/46) of spontaneous groEL44 temperature-resistant colonies at 43 degrees were due to the presence of an intragenic suppressor mutation. These suppressors define 21 different amino acid substitutions in GroEL, each affecting one of 13 different amino acid residues. All of these amino acid residues are located at or near the hinge, which regulates the large en bloc movements of the GroEL apical domain. All of these intragenic suppressors support bacteriophages lambda, T4, and RB49 growth to various extents in the presence of the groEL44 allele. Since it is known that the GroEL44 mutant protein does not interact effectively with Gp31, the suppressor mutations should enhance cochaperone binding. Analogous intragenic suppressor studies were conducted with the groEL673 temperature-sensitive allele.
Collapse
Affiliation(s)
- G Klein
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, 1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
746
|
Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y, Nishimura K, Komai K, Matsuda K. Protein function. Chaperonin turned insect toxin. Nature 2001; 411:44. [PMID: 11333970 DOI: 10.1038/35075148] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- N Yoshida
- Department of Agricultural Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
747
|
Kumarevel TS, Gromiha MM, Ponnuswamy MN. Distribution of amino acid residues and residue-residue contacts in molecular chaperones. Prep Biochem Biotechnol 2001; 31:163-83. [PMID: 11426704 DOI: 10.1081/pb-100103382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The amino acid distribution and residue-residue contacts in molecular chaperones are different when compared to normal globular proteins. The study of molecular chaperones reveals a different surrounding environment to exist for the residues Cys, Trp, and His which may play an important role in determining the chaperone structures. Unlike globular proteins, it has been observed that a one-to-one correspondence between the amino acid distribution in a sequence and the structures of molecular chaperones. The preference of amino acid residues surrounding all 20 types of residues in secondary structures and their accessible surface areas have been analysed.
Collapse
Affiliation(s)
- T S Kumarevel
- Department of Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
748
|
Conway JF, Wikoff WR, Cheng N, Duda RL, Hendrix RW, Johnson JE, Steven AC. Virus maturation involving large subunit rotations and local refolding. Science 2001; 292:744-8. [PMID: 11326105 DOI: 10.1126/science.1058069] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Large-scale conformational changes transform viral precursors into infectious virions. The structure of bacteriophage HK97 capsid, Head-II, was recently solved by crystallography, revealing a catenated cross-linked topology. We have visualized its precursor, Prohead-II, by cryoelectron microscopy and modeled the conformational change by appropriately adapting Head-II. Rigid-body rotations ( approximately 40 degrees) cause switching to an entirely different set of interactions; in addition, two motifs undergo refolding. These changes stabilize the capsid by increasing the surface area buried at interfaces and bringing the cross-link-forming residues, initially approximately 40 angstroms apart, close together. The inner surface of Prohead-II is negatively charged, suggesting that the transition is triggered electrostatically by DNA packaging.
Collapse
Affiliation(s)
- J F Conway
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
749
|
Ishikawa T, Beuron F, Kessel M, Wickner S, Maurizi MR, Steven AC. Translocation pathway of protein substrates in ClpAP protease. Proc Natl Acad Sci U S A 2001; 98:4328-33. [PMID: 11287666 PMCID: PMC31834 DOI: 10.1073/pnas.081543698] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular protein degradation, which must be tightly controlled to protect normal proteins, is carried out by ATP-dependent proteases. These multicomponent enzymes have chaperone-like ATPases that recognize and unfold protein substrates and deliver them to the proteinase components for digestion. In ClpAP, hexameric rings of the ClpA ATPase stack axially on either face of the ClpP proteinase, which consists of two apposed heptameric rings. We have used cryoelectron microscopy to characterize interactions of ClpAP with the model substrate, bacteriophage P1 protein, RepA. In complexes stabilized by ATPgammaS, which bind but do not process substrate, RepA dimers are seen at near-axial sites on the distal surface of ClpA. On ATP addition, RepA is translocated through approximately 150 A into the digestion chamber inside ClpP. Little change is observed in ClpAP, implying that translocation proceeds without major reorganization of the ClpA hexamer. When translocation is observed in complexes containing a ClpP mutant whose digestion chamber is already occupied by unprocessed propeptides, a small increase in density is observed within ClpP, and RepA-associated density is also seen at other axial sites. These sites appear to represent intermediate points on the translocation pathway, at which segments of unfolded RepA subunits transiently accumulate en route to the digestion chamber.
Collapse
Affiliation(s)
- T Ishikawa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, and Laboratories of Cell Biology and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
750
|
Shiseki K, Murai N, Motojima F, Hisabori T, Yoshida M, Taguchi H. Synchronized domain-opening motion of GroEL is essential for communication between the two rings. J Biol Chem 2001; 276:11335-8. [PMID: 11139586 DOI: 10.1074/jbc.m010348200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli chaperonin GroEL consists of two stacked rings of seven identical subunits each. Accompanying binding of ATP and GroES to one ring of GroEL, that ring undergoes a large en bloc domain movement, in which the apical domain twists upward and outward. A mutant GroEL(AEX) (C138S,C458S,C519S,D83C,K327C) in the oxidized form is locked in a closed conformation by an interdomain disulfide cross-link and cannot hydrolyze ATP (Murai, N., Makino, Y., and Yoshida, M. (1996) J. Biol. Chem. 271, 28229-28234). By reconstitution of GroEL complex from subunits of both wild-type GroEL and oxidized GroEL(AEX), hybrid GroEL complexes containing various numbers of oxidized GroEL(AEX) subunits were prepared. ATPase activity of the hybrid GroEL containing one or two oxidized GroEL(AEX) subunits per ring was about 70% higher than that of wild-type GroEL. Based on the detailed analysis of the ATPase activity, we concluded that inter-ring negative cooperativity was lost in the hybrid GroEL, indicating that synchronized opening of the subunits in one ring is necessary for the negative cooperativity. Indeed, hybrid GroEL complex reconstituted from subunits of wild-type and GroEL mutant (D398A), which is ATPase-deficient but can undergo domain opening motion, retained the negative cooperativity of ATPase. In contrast, the ability of GroEL to assist protein folding was impaired by the presence of a single oxidized GroEL(AEX) subunit in a ring. Taken together, cooperative conformational transitions in GroEL rings ensure the functional communication between the two rings of GroEL.
Collapse
Affiliation(s)
- K Shiseki
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8503, Japan
| | | | | | | | | | | |
Collapse
|