701
|
Lipid transfer and metabolism across the endolysosomal-mitochondrial boundary. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:880-894. [PMID: 26852832 DOI: 10.1016/j.bbalip.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Abstract
Lysosomes and mitochondria occupy a central stage in the maintenance of cellular homeostasis, by playing complementary roles in nutrient sensing and energy metabolism. Specifically, these organelles function as signaling hubs that integrate environmental and endogenous stimuli with specific metabolic responses. In particular, they control various lipid biosynthetic and degradative pipelines, either directly or indirectly, by regulating major cellular metabolic pathways, and by physical and functional connections established with each other and with other organelles. Membrane contact sites allow the exchange of ions and molecules between organelles, even without membrane fusion, and are privileged routes for lipid transfer among different membrane compartments. These inter-organellar connections typically involve the endoplasmic reticulum. Direct membrane contacts have now been described also between lysosomes, autophagosomes, lipid droplets, and mitochondria. This review focuses on these recently identified membrane contact sites, and on their role in lipid biosynthesis, exchange, turnover and catabolism. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
702
|
Maxfield FR, Iaea DB, Pipalia NH. Role of STARD4 and NPC1 in intracellular sterol transport. Biochem Cell Biol 2016; 94:499-506. [PMID: 27421092 DOI: 10.1139/bcb-2015-0154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholesterol plays an important role in determining the biophysical properties of membranes in mammalian cells, and the concentration of cholesterol in membranes is tightly regulated. Cholesterol moves among membrane organelles by a combination of vesicular and nonvesicular transport pathways, but the details of these transport pathways are not well understood. In this review, we discuss the mechanisms for nonvesicular sterol transport with an emphasis on the role of STARD4, a small, soluble, cytoplasmic sterol transport protein. STARD4 can rapidly equilibrate sterol between membranes, especially membranes with anionic lipid headgroups. We also discuss the sterol transport in late endosomes and lysosomes, which is mediated by a soluble protein, NPC2, and a membrane protein, NPC1. Homozygous mutations in these proteins lead to a lysosomal lipid storage disorder, Niemann-Pick disease type C. Many of the disease-causing mutations in NPC1 are associated with degradation of the mutant NPC1 proteins in the endoplasmic reticulum. Several histone deacetylase inhibitors have been found to rescue the premature degradation of the mutant NPC1 proteins, and one of these is now in a small clinical trial.
Collapse
Affiliation(s)
- Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - David B Iaea
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Nina H Pipalia
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
703
|
The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:913-923. [PMID: 26825693 DOI: 10.1016/j.bbalip.2016.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/16/2016] [Accepted: 01/25/2016] [Indexed: 01/28/2023]
Abstract
The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on lipids endogenous to the cell, and the BPI-like proteins (including the Takeout-like proteins of arthropods), which act on exogenous lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
704
|
Saita E, Albanesi D, de Mendoza D. Sensing membrane thickness: Lessons learned from cold stress. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:837-846. [PMID: 26776056 DOI: 10.1016/j.bbalip.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
The lipid bilayer component of biological membranes is important for the distribution, organization, and function of bilayer spanning proteins. These physical barriers are subjected to bilayer perturbations. As a consequence, nature has evolved proteins that are able to sense changes in the bilayer properties and transform these lipid-mediated stimuli into intracellular signals. A structural feature that most signal-transducing membrane-embedded proteins have in common is one or more α-helices that traverse the lipid bilayer. Because of the interaction with the surrounding lipids, the organization of these transmembrane helices will be sensitive to membrane properties, like hydrophobic thickness. The helices may adapt to the lipids in different ways, which in turn can influence the structure and function of the intact membrane proteins. We review recent insights into the molecular basis of thermosensing via changes in membrane thickness and consider examples in which the hydrophobic matching can be demonstrated using reconstituted membrane systems. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
- Emilio Saita
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET Rosario, 2000 Rosario, Argentina
| | - Daniela Albanesi
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET Rosario, 2000 Rosario, Argentina
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET Rosario, 2000 Rosario, Argentina.
| |
Collapse
|
705
|
Whitlock JM, Hartzell HC. A Pore Idea: the ion conduction pathway of TMEM16/ANO proteins is composed partly of lipid. Pflugers Arch 2016; 468:455-73. [PMID: 26739711 PMCID: PMC4751199 DOI: 10.1007/s00424-015-1777-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Since their first descriptions, ion channels have been conceived as proteinaceous conduits that facilitate the passage of ionic cargo between segregated environments. This concept is reinforced by crystallographic structures of cation channels depicting ion conductance pathways completely lined by protein. Although lipids are sometimes present in fenestrations near the pore or may be involved in channel gating, there is little or no evidence that lipids inhabit the ion conduction pathway. Indeed, the presence of lipid acyl chains in the conductance pathway would curse the design of the channel's aqueous pore. Here, we make a speculative proposal that anion channels in the TMEM16/ANO superfamily have ion conductance pathways composed partly of lipids. Our reasoning is based on the idea that TMEM16 ion channels evolved from a kind of lipid transporter that scrambles lipids between leaflets of the membrane bilayer and the modeled structural similarity between TMEM16 lipid scramblases and TMEM16 anion channels. This novel view of the TMEM16 pore offers explanation for the biophysical and pharmacological oddness of TMEM16A. We build upon the recent X-ray structure of nhTMEM16 and develop models of both TMEM16 ion channels and lipid scramblases to bolster our proposal. It is our hope that this model of the TMEM16 pore will foster innovative investigation into TMEM16 function.
Collapse
Affiliation(s)
- Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
706
|
Abstract
Metabolism refers to the chemical reactions that occur in living cells, and the reactants and products of these reactions compose the metabolome. The lipidome is comprised by hydrophobic metabolites and includes several broad classes of structurally diverse molecules. Lipids supplied by the host cell are required for many viral processes, and many if not all viruses have evolved mechanisms to perturb host metabolism to promote viral replication. This chapter provides background and a framework for examining the role of lipid metabolites in viral processes and rational attempts to target host metabolism as an antiviral strategy.
Collapse
|
707
|
Montigny C, Lyons J, Champeil P, Nissen P, Lenoir G. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:767-783. [PMID: 26747647 DOI: 10.1016/j.bbalip.2015.12.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022]
Abstract
Phospholipid flippases are key regulators of transbilayer lipid asymmetry in eukaryotic cell membranes, critical to many trafficking and signaling pathways. P4-ATPases, in particular, are responsible for the uphill transport of phospholipids from the exoplasmic to the cytosolic leaflet of the plasma membrane, as well as membranes of the late secretory/endocytic pathways, thereby establishing transbilayer asymmetry. Recent studies combining cell biology and biochemical approaches have improved our understanding of the path taken by lipids through P4-ATPases. Additionally, identification of several protein families catalyzing phospholipid 'scrambling', i.e. disruption of phospholipid asymmetry through energy-independent bi-directional phospholipid transport, as well as the recent report of the structure of such a scramblase, opens the way to a deeper characterization of their mechanism of action. Here, we discuss the molecular nature of the mechanism by which lipids may 'flip' across membranes, with an emphasis on active lipid transport catalyzed by P4-ATPases. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
- Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Joseph Lyons
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Philippe Champeil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Poul Nissen
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
708
|
Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:847-861. [PMID: 26747646 DOI: 10.1016/j.bbalip.2015.12.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 11/21/2022]
Abstract
The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
709
|
Irudayanathan FJ, Trasatti JP, Karande P, Nangia S. Molecular Architecture of the Blood Brain Barrier Tight Junction Proteins–A Synergistic Computational and In Vitro Approach. J Phys Chem B 2015; 120:77-88. [DOI: 10.1021/acs.jpcb.5b09977] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - John P. Trasatti
- Department
of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Pankaj Karande
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse New York 13244, United States
| |
Collapse
|
710
|
Poggi P, Mirabella R, Neri S, Assirelli E, Dolzani P, Mariani E, Calder PC, Chatgilialoglu A. Membrane fatty acid heterogeneity of leukocyte classes is altered during in vitro cultivation but can be restored with ad-hoc lipid supplementation. Lipids Health Dis 2015; 14:165. [PMID: 26703000 PMCID: PMC4690394 DOI: 10.1186/s12944-015-0166-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Background The cell membrane is a primary and fundamental player in most cellular processes, and fatty acids form a major structural component of cell membranes. The aim of this study was to compare the membrane fatty acid profiles of different human blood leukocytes and selected cell lines, to identify the effects of in vitro culture on fatty acid profiles, and to test medium supplements for their effect on fatty acid profiles. Methods Different classes of leukocytes were isolated from human blood and their membrane fatty acid profiles were analysed and compared. After culturing in vitro immortalised and primary leukocytes, membrane fatty acids were analysed and compared. Finally, different lipid formulations were developed and used for supplementing leukocytes in vitro in an effort to maintain the in vivo fatty acid profile. Descriptive and analytical tests were performed to compare the obtained fatty acid profiles. Results Membrane fatty acid profiles of primary human CD4+ T-lymphocytes, CD8+ T-lymphocytes, B-lymphocytes and monocytes differed. Moreover, there were differences among Jurkat, Raji and THP-1 cell lines and the corresponding primary leukocyte classes, as well as between freshly prepared and in vitro cultured primary lymphocytes. A lipid supplement was able to maintain cultured Jurkat cells with a membrane fatty acid profile almost identical to that of the primary CD4+ T-lymphocytes. Finally, variations in the lipid supplement composition enabled the development of Jurkat cells with different membrane fatty acid profiles characterising different physiological or pathological human conditions. Conclusions Each leukocyte class has its own specific membrane fatty acid profile in vivo. Cultured primary leukocytes and immortalized leukocytic cells display different membrane fatty acid profiles when compared to their respective in vivo counterparts. The membrane fatty acid composition of cultured cells can be restored to reflect that of the corresponding in vivo condition through use of optimised lipid supplementation. Typical physiological or pathological leukocyte membrane fatty acid profiles can be obtained by tuning in vitro fatty acid supplementation.
Collapse
Affiliation(s)
- Paola Poggi
- Remembrane Srl, via Selice 84/A, 40026, Imola, Italy.
| | | | - Simona Neri
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Elisa Assirelli
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Paolo Dolzani
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy. .,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Tremona Road, SO16 6YD, Southampton, UK. .,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK. .,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | |
Collapse
|
711
|
Aryal P, Abd-Wahab F, Bucci G, Sansom MSP, Tucker SJ. Influence of lipids on the hydrophobic barrier within the pore of the TWIK-1 K2P channel. Channels (Austin) 2015; 9:44-9. [PMID: 25487004 PMCID: PMC4594343 DOI: 10.4161/19336950.2014.981987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Several recent ion channel structures have revealed large side portals, or ‘fenestrations’ at the interface between their transmembrane helices that potentially expose the ion conduction pathway to the lipid core of the bilayer. In a recent study we demonstrated that functional activity of the TWIK-1 K2P channel is influenced by the presence of hydrophobic residues deep within the inner pore. These residues are located near the fenestrations in the TWIK-1 structure and promote dewetting of the pore by forming a hydrophobic barrier to ion conduction. During our previous MD simulations, lipid tails were observed to enter these fenestrations. In this addendum to that study, we investigate lipid contribution to the dewetting process. Our results demonstrate that lipid tails from both the upper and lower leaflets can occupy the fenestrations and partially penetrate into the pore. The lipid tails do not sterically occlude the pore, but there is an inverse correlation between the presence of water within the hydrophobic barrier and the number of lipids tails within the lining of the pore. However, dewetting still occurs in the absence of lipids tails, and pore hydration appears to be determined primarily by those side-chains lining the narrowest part of the pore cavity.
Collapse
Affiliation(s)
- Prafulla Aryal
- a Clarendon Laboratory, Department of Physics; University of Oxford ; Oxford , UK
| | | | | | | | | |
Collapse
|
712
|
Dawaliby R, Trubbia C, Delporte C, Noyon C, Ruysschaert JM, Van Antwerpen P, Govaerts C. Phosphatidylethanolamine Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells. J Biol Chem 2015; 291:3658-67. [PMID: 26663081 DOI: 10.1074/jbc.m115.706523] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/10/2023] Open
Abstract
Adequate membrane fluidity is required for a variety of key cellular processes and in particular for proper function of membrane proteins. In most eukaryotic cells, membrane fluidity is known to be regulated by fatty acid desaturation and cholesterol, although some cells, such as insect cells, are almost devoid of sterol synthesis. We show here that insect and mammalian cells present similar microviscosity at their respective physiological temperature. To investigate how both sterols and phospholipids control fluidity homeostasis, we quantified the lipidic composition of insect SF9 and mammalian HEK 293T cells under normal or sterol-modified condition. As expected, insect cells show minimal sterols compared with mammalian cells. A major difference is also observed in phospholipid content as the ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) is inverted (4 times higher in SF9 cells). In vitro studies in liposomes confirm that both cholesterol and PE can increase rigidity of the bilayer, suggesting that both can be used by cells to maintain membrane fluidity. We then show that exogenously increasing the cholesterol amount in SF9 membranes leads to a significant decrease in PE:PC ratio whereas decreasing cholesterol in HEK 293T cells using statin treatment leads to an increase in the PE:PC ratio. In all cases, the membrane fluidity is maintained, indicating that both cell types combine regulation by sterols and phospholipids to control proper membrane fluidity.
Collapse
Affiliation(s)
- Rosie Dawaliby
- From the Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, CP 206/02, Bd du Triomphe, 1050 Brussels, Belgium
| | - Cataldo Trubbia
- From the Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, CP 206/02, Bd du Triomphe, 1050 Brussels, Belgium
| | - Cédric Delporte
- Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Caroline Noyon
- Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Jean-Marie Ruysschaert
- From the Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, CP 206/02, Bd du Triomphe, 1050 Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Cédric Govaerts
- From the Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, CP 206/02, Bd du Triomphe, 1050 Brussels, Belgium,
| |
Collapse
|
713
|
TMEM110 regulates the maintenance and remodeling of mammalian ER-plasma membrane junctions competent for STIM-ORAI signaling. Proc Natl Acad Sci U S A 2015; 112:E7083-92. [PMID: 26644574 DOI: 10.1073/pnas.1521924112] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The stromal interaction molecule (STIM)-ORAI calcium release-activated calcium modulator (ORAI) pathway controls store-dependent calcium entry, a major mechanism of physiological calcium signaling in mammalian cells. The core elements of the pathway are the regulatory protein STIM1, located in the endoplasmic reticulum (ER) membrane, the calcium channel ORAI1 in the plasma membrane, and sites of close contact between the ER and the plasma membrane that permit the two proteins to interact. Research on calcium signaling has centered on STIM1, ORAI1, and a few proteins that directly modulate STIM-ORAI function. However, little is known about proteins that organize ER-plasma membrane junctions for STIM-ORAI-dependent calcium signaling. Here, we report that an ER-resident membrane protein identified in a previous genome-wide RNAi screen, transmembrane protein 110 (TMEM110), regulates the long-term maintenance of ER-plasma membrane junctions and the short-term physiological remodeling of the junctions during store-dependent calcium signaling.
Collapse
|
714
|
Goto A, Charman M, Ridgway ND. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools. J Biol Chem 2015; 291:1336-47. [PMID: 26601944 DOI: 10.1074/jbc.m115.682997] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50-70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT.
Collapse
Affiliation(s)
- Asako Goto
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Mark Charman
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Neale D Ridgway
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
715
|
Dancy BCR, Chen SW, Drechsler R, Gafken PR, Olsen CP. 13C- and 15N-Labeling Strategies Combined with Mass Spectrometry Comprehensively Quantify Phospholipid Dynamics in C. elegans. PLoS One 2015; 10:e0141850. [PMID: 26528916 PMCID: PMC4631354 DOI: 10.1371/journal.pone.0141850] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Membranes define cellular and organelle boundaries, a function that is critical to all living systems. Like other biomolecules, membrane lipids are dynamically maintained, but current methods are extremely limited for monitoring lipid dynamics in living animals. We developed novel strategies in C. elegans combining 13C and 15N stable isotopes with mass spectrometry to directly quantify the replenishment rates of the individual fatty acids and intact phospholipids of the membrane. Using multiple measurements of phospholipid dynamics, we found that the phospholipid pools are replaced rapidly and at rates nearly double the turnover measured for neutral lipid populations. In fact, our analysis shows that the majority of membrane lipids are replaced each day. Furthermore, we found that stearoyl-CoA desaturases (SCDs), critical enzymes in polyunsaturated fatty acid production, play an unexpected role in influencing the overall rates of membrane maintenance as SCD depletion affected the turnover of nearly all membrane lipids. Additionally, the compromised membrane maintenance as defined by LC-MS/MS with SCD RNAi resulted in active phospholipid remodeling that we predict is critical to alleviate the impact of reduced membrane maintenance in these animals. Not only have these combined methodologies identified new facets of the impact of SCDs on the membrane, but they also have great potential to reveal many undiscovered regulators of phospholipid metabolism.
Collapse
Affiliation(s)
- Blair C. R. Dancy
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shaw-Wen Chen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Robin Drechsler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Philip R. Gafken
- Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Carissa Perez Olsen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
716
|
Saliba AE, Vonkova I, Gavin AC. The systematic analysis of protein-lipid interactions comes of age. Nat Rev Mol Cell Biol 2015; 16:753-61. [PMID: 26507169 DOI: 10.1038/nrm4080] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipids tailor membrane identities and function as molecular hubs in all cellular processes. However, the ways in which lipids modulate protein function and structure are poorly understood and still require systematic investigation. In this Innovation article, we summarize pioneering technologies, including lipid-overlay assays, lipid pull-down assays, affinity-purification lipidomics and the liposome microarray-based assay (LiMA), that will enable protein-lipid interactions to be deciphered on a systems level. We discuss how these technologies can be applied to the charting of system-wide networks and to the development of new pharmaceutical strategies.
Collapse
Affiliation(s)
- Antoine-Emmanuel Saliba
- Institute for Molecular Infection Biology and Core Unit Systems Medicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Ivana Vonkova
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit and Molecular Medicine Partnership Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
717
|
Jeong DW, Kim K, Choi MC, Choi SQ. Fluorescence Recovery after Merging a Droplet to Measure the Two-dimensional Diffusion of a Phospholipid Monolayer. J Vis Exp 2015:e53376. [PMID: 26556128 PMCID: PMC4692663 DOI: 10.3791/53376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We introduce a new method to measure the lateral diffusivity of a surfactant monolayer at the fluid-fluid interface, called fluorescence recovery after merging (FRAM). FRAM adopts the same principles as the fluorescence recovery after photobleaching (FRAP) technique, especially for measuring fluorescence recovery after bleaching a specific area, but FRAM uses a drop coalescence instead of photobleaching dye molecules to induce a chemical potential gradient of dye molecules. Our technique has several advantages over FRAP: it only requires a fluorescence microscope rather than a confocal microscope equipped with high power lasers; it is essentially free from the selection of fluorescence dyes; and it has far more freedom to define the measured diffusion area. Furthermore, FRAM potentially provides a route for studying the mixing or inter-diffusion of two different surfactants, when the monolayers at a surface of droplet and at a flat air/water interface are prepared with different species, independently.
Collapse
Affiliation(s)
| | - KyuHan Kim
- Information and Electrical Research Institute, KAIST
| | | | | |
Collapse
|
718
|
Wang T, Ma D. Warm up and cool down! Oncotarget 2015; 6:30449-50. [PMID: 26387141 PMCID: PMC4741542 DOI: 10.18632/oncotarget.5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Tao Wang
- Cardiovascular Research Institute and Department of Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Dengke Ma
- Cardiovascular Research Institute and Department of Physiology, UCSF School of Medicine, San Francisco, CA, USA
| |
Collapse
|
719
|
Miranda AM, Oliveira TG. Lipids under stress - a lipidomic approach for the study of mood disorders. Bioessays 2015; 37:1226-35. [DOI: 10.1002/bies.201500070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- André Miguel Miranda
- Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho; Campus Gualtar Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho; Campus Gualtar Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
720
|
|
721
|
Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F, De Camilli P. INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 2015. [PMID: 26206935 DOI: 10.1126/science.aab1370] [Citation(s) in RCA: 607] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)-related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS countertransport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM.
Collapse
Affiliation(s)
- Jeeyun Chung
- Department of Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, and Program for Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| | - Kaori Masai
- Department of Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, and Program for Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Louise Lucast
- Department of Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, and Program for Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Heather Czapla
- Department of Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, and Program for Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lukas B Tanner
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| | - Pradeep Narayanaswamy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| | - Fubito Nakatsu
- Department of Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, and Program for Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Pietro De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, and Program for Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
722
|
Du X, Brown AJ, Yang H. Novel mechanisms of intracellular cholesterol transport: oxysterol-binding proteins and membrane contact sites. Curr Opin Cell Biol 2015; 35:37-42. [DOI: 10.1016/j.ceb.2015.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 01/08/2023]
|
723
|
Malinina L, Simanshu DK, Zhai X, Samygina VR, Kamlekar R, Kenoth R, Ochoa-Lizarralde B, Malakhova ML, Molotkovsky JG, Patel DJ, Brown RE. Sphingolipid transfer proteins defined by the GLTP-fold. Q Rev Biophys 2015; 48:281-322. [PMID: 25797198 PMCID: PMC4691851 DOI: 10.1017/s003358351400016x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycolipid transfer proteins (GLTPs) originally were identified as small (~24 kDa), soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. GLTPs and related homologs now are known to adopt a unique, helically dominated, two-layer 'sandwich' architecture defined as the GLTP-fold that provides the structural underpinning for the eukaryotic GLTP superfamily. Recent advances now provide exquisite insights into structural features responsible for lipid headgroup selectivity as well as the adaptability of the hydrophobic compartment for accommodating hydrocarbon chains of differing length and unsaturation. A new understanding of the structural versatility and evolutionary premium placed on the GLTP motif has emerged. Human GLTP-motifs have evolved to function not only as glucosylceramide binding/transferring domains for phosphoinositol 4-phosphate adaptor protein-2 during glycosphingolipid biosynthesis but also as selective binding/transfer proteins for ceramide-1-phosphate. The latter, known as ceramide-1-phosphate transfer protein, recently has been shown to form GLTP-fold while critically regulating Group-IV cytoplasmic phospholipase A2 activity and pro-inflammatory eicosanoid production.
Collapse
Affiliation(s)
- Lucy Malinina
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Structural Biology Unit, CICbioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | - Dhirendra K. Simanshu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuhong Zhai
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Valeria R. Samygina
- Structural Biology Unit, CICbioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | | | - Roopa Kenoth
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Borja Ochoa-Lizarralde
- Structural Biology Unit, CICbioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | | | - Julian G. Molotkovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
724
|
Substrate-induced assembly of PtAu alloy nanostructures at choline functionalized monolayer interface for nitrite sensing. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
725
|
Dynamics of the Glycophorin A Dimer in Membranes of Native-Like Composition Uncovered by Coarse-Grained Molecular Dynamics Simulations. PLoS One 2015. [PMID: 26222139 PMCID: PMC4519189 DOI: 10.1371/journal.pone.0133999] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Membranes are central for cells as borders to the environment or intracellular organelle definition. They are composed of and harbor different molecules like various lipid species and sterols, and they are generally crowded with proteins. The membrane system is very dynamic and components show lateral, rotational and translational diffusion. The consequence of the latter is that phase separation can occur in membranes in vivo and in vitro. It was documented that molecular dynamics simulations of an idealized plasma membrane model result in formation of membrane areas where either saturated lipids and cholesterol (liquid-ordered character, Lo) or unsaturated lipids (liquid-disordered character, Ld) were enriched. Furthermore, current discussions favor the idea that proteins are sorted into the liquid-disordered phase of model membranes, but experimental support for the behavior of isolated proteins in native membranes is sparse. To gain insight into the protein behavior we built a model of the red blood cell membrane with integrated glycophorin A dimer. The sorting and the dynamics of the dimer were subsequently explored by coarse-grained molecular dynamics simulations. In addition, we inspected the impact of lipid head groups and the presence of cholesterol within the membrane on the dynamics of the dimer within the membrane. We observed that cholesterol is important for the formation of membrane areas with Lo and Ld character. Moreover, it is an important factor for the reproduction of the dynamic behavior of the protein found in its native environment. The protein dimer was exclusively sorted into the domain of Ld character in the model red blood cell plasma membrane. Therefore, we present structural information on the glycophorin A dimer distribution in the plasma membrane in the absence of other factors like e.g. lipid anchors in a coarse grain resolution.
Collapse
|
726
|
Moser von Filseck J, opi A, Delfosse V, Vanni S, Jackson CL, Bourguet W, Drin G. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 2015. [DOI: 10.1126/science.aab1346] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
727
|
Antonny B, Vanni S, Shindou H, Ferreira T. From zero to six double bonds: phospholipid unsaturation and organelle function. Trends Cell Biol 2015; 25:427-36. [DOI: 10.1016/j.tcb.2015.03.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 01/21/2023]
|
728
|
Tian S, Ohta A, Horiuchi H, Fukuda R. Evaluation of sterol transport from the endoplasmic reticulum to mitochondria using mitochondrially targeted bacterial sterol acyltransferase in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2015; 79:1608-14. [PMID: 26106800 DOI: 10.1080/09168451.2015.1058702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To elucidate the mechanism of interorganelle sterol transport, a system to evaluate sterol transport from the endoplasmic reticulum (ER) to the mitochondria was constructed. A bacterial glycerophospholipid: cholesterol acyltransferase fused with a mitochondria-targeting sequence and a membrane-spanning domain of the mitochondrial inner membrane protein Pet100 and enhanced green fluorescent protein was expressed in a Saccharomyces cerevisiae mutant deleted for ARE1 and ARE2 encoding acyl-CoA:sterol acyltransferases. Microscopic observation and subcellular fractionation suggested that this fusion protein, which was named mito-SatA-EGFP, was localized in the mitochondria. Steryl esters were synthesized in the mutant expressing mito-SatA-EGFP. This system will be applicable for evaluations of sterol transport from the ER to the mitochondria in yeast by examining sterol esterification in the mitochondria.
Collapse
Affiliation(s)
- Siqi Tian
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | | | | | | |
Collapse
|
729
|
Köberlin MS, Snijder B, Heinz LX, Baumann CL, Fauster A, Vladimer GI, Gavin AC, Superti-Furga G. A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses. Cell 2015; 162:170-83. [PMID: 26095250 PMCID: PMC4523684 DOI: 10.1016/j.cell.2015.05.051] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/25/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022]
Abstract
Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems.
Collapse
Affiliation(s)
- Marielle S Köberlin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Berend Snijder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph L Baumann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Astrid Fauster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gregory I Vladimer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, EMBL, 69117 Heidelberg, Germany
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
730
|
Singaravelu R, Srinivasan P, Pezacki JP. Armand-Frappier Outstanding Student Award--The emerging role of 25-hydroxycholesterol in innate immunity. Can J Microbiol 2015; 61:521-30. [PMID: 26182401 DOI: 10.1139/cjm-2015-0292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The metabolic interplay between hosts and viruses plays a crucial role in determining the outcome of viral infection. Viruses reorchestrate the host's primary metabolic gene networks, including genes associated with mevalonate and isoprenoid synthesis, to acquire the necessary energy and structural components for their viral life cycles. Recent work has demonstrated that the interferon-mediated antiviral response suppresses the sterol pathway through production of a signalling molecule, 25-hydroxycholesterol (25HC). This oxysterol has been shown to exert multiple effects, both through incorporation into host cellular membranes as well as through transcriptional control. Herein, we summarize our current understanding of the multifunctional roles of 25HC in the mammalian innate antiviral response.
Collapse
Affiliation(s)
- Ragunath Singaravelu
- a Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,b Life Sciences Division, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Prashanth Srinivasan
- a Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,b Life Sciences Division, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - John Paul Pezacki
- a Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,b Life Sciences Division, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.,c Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
731
|
Yu K, Whitlock JM, Lee K, Ortlund EA, Yuan Cui Y, Hartzell HC. Identification of a lipid scrambling domain in ANO6/TMEM16F. eLife 2015; 4:e06901. [PMID: 26057829 PMCID: PMC4477620 DOI: 10.7554/elife.06901] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
Phospholipid scrambling (PLS) is a ubiquitous cellular mechanism involving the regulated bidirectional transport of phospholipids down their concentration gradient between membrane leaflets. ANO6/TMEM16F has been shown to be essential for Ca(2+)-dependent PLS, but controversy surrounds whether ANO6 is a phospholipid scramblase or an ion channel like other ANO/TMEM16 family members. Combining patch clamp recording with measurement of PLS, we show that ANO6 elicits robust Ca(2+)-dependent PLS coinciding with ionic currents that are explained by ionic leak during phospholipid translocation. By analyzing ANO1-ANO6 chimeric proteins, we identify a domain in ANO6 necessary for PLS and sufficient to confer this function on ANO1, which normally does not scramble. Homology modeling shows that the scramblase domain forms an unusual hydrophilic cleft that faces the lipid bilayer and may function to facilitate translocation of phospholipid between membrane leaflets. These findings provide a mechanistic framework for understanding PLS and how ANO6 functions in this process.
Collapse
Affiliation(s)
- Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Kyleen Lee
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Eric A Ortlund
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - Yuan Yuan Cui
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| |
Collapse
|
732
|
Kotzamanis K, Angulo A, Ghazal P. Infection homeostasis: implications for therapeutic and immune programming of metabolism in controlling infection. Med Microbiol Immunol 2015; 204:395-407. [PMID: 25800350 PMCID: PMC4439431 DOI: 10.1007/s00430-015-0402-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/28/2015] [Indexed: 12/16/2022]
Abstract
Homeostasis underpins at a systems level the regulatory control of immunity and metabolism. While physiologically these systems are often viewed as independent, there is increasing evidence showing a tight coupling between immune and metabolic functions. Critically upon infection, the homeostatic regulation for both immune and metabolic pathways is altered yet these changes are often investigated in isolation. Here, we summarise our current understanding of these processes in the context of a clinically relevant pathogen, cytomegalovirus. We synthesise from the literature an integrative view of a coupled immune-metabolic infection process, centred on sugar and lipid metabolism. We put forward the notion that understanding immune control of key metabolic enzymatic steps in infection will promote the future development of novel therapeutic modalities based on metabolic modifiers that either enhance protection or inhibit infection.
Collapse
Affiliation(s)
- Konstantinos Kotzamanis
- Division of Pathway and Infection Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Medical School, Edinburgh, Scotland, UK
| | - Ana Angulo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway and Infection Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Medical School, Edinburgh, Scotland, UK
- SynthSys, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland, UK
| |
Collapse
|
733
|
Gatta AT, Wong LH, Sere YY, Calderón-Noreña DM, Cockcroft S, Menon AK, Levine TP. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. eLife 2015; 4. [PMID: 26001273 PMCID: PMC4463742 DOI: 10.7554/elife.07253] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022] Open
Abstract
Sterol traffic between the endoplasmic reticulum (ER) and plasma membrane (PM) is a fundamental cellular process that occurs by a poorly understood non-vesicular mechanism. We identified a novel, evolutionarily diverse family of ER membrane proteins with StART-like lipid transfer domains and studied them in yeast. StART-like domains from Ysp2p and its paralog Lam4p specifically bind sterols, and Ysp2p, Lam4p and their homologs Ysp1p and Sip3p target punctate ER-PM contact sites distinct from those occupied by known ER-PM tethers. The activity of Ysp2p, reflected in amphotericin-sensitivity assays, requires its second StART-like domain to be positioned so that it can reach across ER-PM contacts. Absence of Ysp2p, Ysp1p or Sip3p reduces the rate at which exogenously supplied sterols traffic from the PM to the ER. Our data suggest that these StART-like proteins act in trans to mediate a step in sterol exchange between the PM and ER. DOI:http://dx.doi.org/10.7554/eLife.07253.001 Membranes are crucial structures for cells that are made primarily of fat molecules. The most important membrane is the external one that surrounds cells and keeps the outside world out and cellular contents in. The single most common fat component in the external membrane is cholesterol, which makes the membrane rigid and better able to withstand the outside world. So even though excess cholesterol contributes to diseases such as heart disease, stroke and Alzheimer's, the external membrane of every cell needs about a billion cholesterol molecules for its normal function. But how do cells manage the traffic of these molecules to their destination? It is known that when external membranes are short of cholesterol they make it at a different cellular location. There is an internal network—called the endoplasmic reticulum—that spreads just about everywhere throughout the cell. This network is where fats like cholesterol are made when the cell has not got enough, and where they are converted into an inert form when the cell has too much. What is not known is how cholesterol moves to and fro between this network and the external membrane. One theory is that cholesterol and other fats move only where the internal network comes into close contact with the external membrane, without quite touching. This theory comes in part from the finding that many of the proteins found in the narrow gaps between the internal network and the external membrane are capable of transferring fats across the gap. However, one of the missing supports for this theory is that no protein that transfers cholesterol across this gap has been found. Gatta, Wong, Sere et al. used computational tools to scan the database of known proteins for those that might be able to transfer cholesterol, and found a new family of fat transfer proteins. Further experiments showed that these proteins only bind to cholesterol out of all the fats. Next, Gatta, Wong, Sere et al. studied what the proteins do in cells, but instead of looking at the proteins in human cells they studied the related proteins in yeast. This is because the details of both the traffic of cholesterol and contacts between the internal network and the external membrane are in many respects understood better in yeast than in human cells. Gatta, Wong, Sere et al. found the cholesterol transfer proteins were embedded in regions where the internal network was in close contact with the external membrane. Also, in cells that lacked these proteins, cholesterol added to the external membrane had difficulty transferring to the internal network. These results together suggest that the newly identified lipid transfer proteins exchange lipids between the plasma membrane and endoplasmic reticulum at membrane contact sites. Further research is required to understand in detail how these proteins work. DOI:http://dx.doi.org/10.7554/eLife.07253.002
Collapse
Affiliation(s)
- Alberto T Gatta
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - Louise H Wong
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - Yves Y Sere
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| | | | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| | - Tim P Levine
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
734
|
Lee TH, Hirst DJ, Aguilar MI. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1868-85. [PMID: 26009270 DOI: 10.1016/j.bbamem.2015.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Biomolecular-membrane interactions play a critical role in the regulation of many important biological processes such as protein trafficking, cellular signalling and ion channel formation. Peptide/protein-membrane interactions can also destabilise and damage the membrane which can lead to cell death. Characterisation of the molecular details of these binding-mediated membrane destabilisation processes is therefore central to understanding cellular events such as antimicrobial action, membrane-mediated amyloid aggregation, and apoptotic protein induced mitochondrial membrane permeabilisation. Optical biosensors have provided a unique approach to characterising membrane interactions allowing quantitation of binding events and new insight into the kinetic mechanism of these interactions. One of the most commonly used optical biosensor technologies is surface plasmon resonance (SPR) and there have been an increasing number of studies reporting the use of this technique for investigating biophysical analysis of membrane-mediated events. More recently, a number of new optical biosensors based on waveguide techniques have been developed, allowing membrane structure changes to be measured simultaneously with mass binding measurements. These techniques include dual polarisation interferometry (DPI), plasmon waveguide resonance spectroscopy (PWR) and optical waveguide light mode spectroscopy (OWLS). These techniques have expanded the application of optical biosensors to allow the analysis of membrane structure changes during peptide and protein binding. This review provides a theoretical and practical overview of the application of biosensor technology with a specific focus on DPI, PWR and OWLS to study biomembrane-mediated events and the mechanism of biomembrane disruption. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia.
| |
Collapse
|
735
|
Ma DK, Li Z, Lu AY, Sun F, Chen S, Rothe M, Menzel R, Sun F, Horvitz HR. Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Cell 2015; 161:1152-1163. [PMID: 25981666 PMCID: PMC4441829 DOI: 10.1016/j.cell.2015.04.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/26/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.
Collapse
Affiliation(s)
- Dengke K Ma
- Department of Biology, Howard Hughes Medical Institute, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Zhijie Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Alice Y Lu
- Department of Biology, Howard Hughes Medical Institute, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fang Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sidi Chen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Rothe
- Lipidomix GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Ralph Menzel
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Spaethstrasse 80/81, 12437 Berlin, Germany
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - H Robert Horvitz
- Department of Biology, Howard Hughes Medical Institute, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
736
|
Aimo L, Liechti R, Hyka-Nouspikel N, Niknejad A, Gleizes A, Götz L, Kuznetsov D, David FPA, van der Goot FG, Riezman H, Bougueleret L, Xenarios I, Bridge A. The SwissLipids knowledgebase for lipid biology. Bioinformatics 2015; 31:2860-6. [PMID: 25943471 PMCID: PMC4547616 DOI: 10.1093/bioinformatics/btv285] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. RESULTS To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology-SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. AVAILABILITY SwissLipids is freely available at http://www.swisslipids.org/. CONTACT alan.bridge@isb-sib.ch SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lucila Aimo
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Robin Liechti
- Vital-IT, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland
| | - Nevila Hyka-Nouspikel
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Anne Niknejad
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Anne Gleizes
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Lou Götz
- Vital-IT, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland
| | - Dmitry Kuznetsov
- Vital-IT, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland
| | - Fabrice P A David
- Bioinformatics and Biostatistics Core Facility, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland, Switzerland National Centre of Competence in Research "Chemical Biology", University of Geneva, CH-1211 Geneva, Switzerland and
| | - Lydie Bougueleret
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Ioannis Xenarios
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland, Vital-IT, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland, Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland, Centre for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
737
|
Molino D, Nola S, Lam SM, Verraes A, Proux-Gillardeaux V, Boncompain G, Perez F, Wenk M, Shui G, Danglot L, Galli T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein in membrane domains transport and homeostasis. CELLULAR LOGISTICS 2015. [PMID: 26196023 PMCID: PMC4501207 DOI: 10.1080/21592799.2015.1025182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Biological membranes in eukaryotes contain a large variety of proteins and lipids often distributed in domains in plasma membrane and endomembranes. Molecular mechanisms responsible for the transport and the organization of these membrane domains along the secretory pathway still remain elusive. Here we show that vesicular SNARE TI-VAMP/VAMP7 plays a major role in membrane domains composition and transport. We found that the transport of exogenous and endogenous GPI-anchored proteins was altered in fibroblasts isolated from VAMP7-knockout mice. Furthermore, disassembly and reformation of the Golgi apparatus induced by Brefeldin A treatment and washout were impaired in VAMP7-depleted cells, suggesting that loss of VAMP7 expression alters biochemical properties and dynamics of the Golgi apparatus. In addition, lipid profiles from these knockout cells indicated a defect in glycosphingolipids homeostasis. We conclude that VAMP7 is required for effective transport of GPI–anchored proteins to cell surface and that VAMP7-dependent transport contributes to both sphingolipids and Golgi homeostasis.
Collapse
Key Words
- BFA, Brefeldin A
- Cer, Ceramide
- ER, Endoplasmic Reticulum
- GM3, ganglioside monosialic acid 3
- GPI, Glycosylphosphatidylinositol
- GSL, Glycosphingolipids
- GlcCer, Glucosylceramide
- Golgi apparatus
- LC, Long Chain
- PI, Phosphatidylinositide
- PM, Plasma Membrane
- SM, Sphingomyelin
- SNARE
- TGN, = Trans-Golgi Network
- TI-VAMP/VAMP7
- TI-VAMP/VAMP7, Tetanus neurotoxin-insensitive vesicle-associated membrane protein / Vesicle associated membrane protein 7
- VLC, very long vhain
- VSVG, Vesicular Stomatitis Virus Glycoprotein
- exocytosis
- sphingolipids
Collapse
Affiliation(s)
- Diana Molino
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France ; Ecole Normale Supérieure-PSL Research University; Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06 ; CNRS UMR 8640 PASTEUR ; Paris, France
| | - Sébastien Nola
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences ; Beijing, China
| | - Agathe Verraes
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| | - Véronique Proux-Gillardeaux
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| | | | | | - Markus Wenk
- Department of Biochemistry; National University of Singapore; Yong Loo Lin School of Medicine ; Singapore
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences ; Beijing, China
| | - Lydia Danglot
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| | - Thierry Galli
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| |
Collapse
|
738
|
Panatala R, Hennrich H, Holthuis JCM. Inner workings and biological impact of phospholipid flippases. J Cell Sci 2015; 128:2021-32. [PMID: 25918123 DOI: 10.1242/jcs.102715] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The plasma membrane, trans-Golgi network and endosomal system of eukaryotic cells are populated with flippases that hydrolyze ATP to help establish asymmetric phospholipid distributions across the bilayer. Upholding phospholipid asymmetry is vital to a host of cellular processes, including membrane homeostasis, vesicle biogenesis, cell signaling, morphogenesis and migration. Consequently, defining the identity of flippases and their biological impact has been the subject of intense investigations. Recent work has revealed a remarkable degree of kinship between flippases and cation pumps. In this Commentary, we review emerging insights into how flippases work, how their activity is controlled according to cellular demands, and how disrupting flippase activity causes system failure of membrane function, culminating in membrane trafficking defects, aberrant signaling and disease.
Collapse
Affiliation(s)
- Radhakrishnan Panatala
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 Utrecht, The Netherlands Molecular Cell Biology Division, University of Osnabrück, 49076 Osnabrück, Germany
| | - Hanka Hennrich
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 Utrecht, The Netherlands
| | - Joost C M Holthuis
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 Utrecht, The Netherlands Molecular Cell Biology Division, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
739
|
Saita EA, de Mendoza D. Thermosensing via transmembrane protein-lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1757-64. [PMID: 25906947 DOI: 10.1016/j.bbamem.2015.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022]
Abstract
Cell membranes are composed of a lipid bilayer containing proteins that cross and/or interact with lipids on either side of the two leaflets. The basic structure of cell membranes is this bilayer, composed of two opposing lipid monolayers with fascinating properties designed to perform all the functions the cell requires. To coordinate these functions, lipid composition of cellular membranes is tailored to suit their specialized tasks. In this review, we describe the general mechanisms of membrane-protein interactions and relate them to some of the molecular strategies organisms use to adjust the membrane lipid composition in response to a decrease in environmental temperature. While the activities of all biomolecules are altered as a function of temperature, the thermosensors we focus on here are molecules whose temperature sensitivity appears to be linked to changes in the biophysical properties of membrane lipids. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Emilio A Saita
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET, 2000-Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET, 2000-Rosario, Argentina.
| |
Collapse
|
740
|
Block MA, Jouhet J. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites. Curr Opin Cell Biol 2015; 35:21-9. [PMID: 25868077 DOI: 10.1016/j.ceb.2015.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
Glycerolipid synthesis in plant cells is characterized by an intense trafficking of lipids between the endoplasmic reticulum (ER) and chloroplasts. Initially, fatty acids are synthesized within chloroplasts and are exported to the ER where they are used to build up phospholipids and triacylglycerol. Ultimately, derivatives of these phospholipids return to chloroplasts to form galactolipids, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, the main and essential lipids of photosynthetic membranes. Lipid trafficking was proposed to transit through membrane contact sites (MCSs) connecting both organelles. Here, we review recent insights into ER-chloroplast MCSs and lipid trafficking between chloroplasts and the ER.
Collapse
Affiliation(s)
- Maryse A Block
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France.
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France
| |
Collapse
|
741
|
Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. Proc Natl Acad Sci U S A 2015; 112:E2004-13. [PMID: 25787254 DOI: 10.1073/pnas.1503191112] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The close apposition between the endoplasmic reticulum (ER) and the plasma membrane (PM) plays important roles in Ca(2+) homeostasis, signaling, and lipid metabolism. The extended synaptotagmins (E-Syts; tricalbins in yeast) are ER-anchored proteins that mediate the tethering of the ER to the PM and are thought to mediate lipid transfer between the two membranes. E-Syt cytoplasmic domains comprise a synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain followed by five C2 domains in E-Syt1 and three C2 domains in E-Syt2/3. Here, we used cryo-electron tomography to study the 3D architecture of E-Syt-mediated ER-PM contacts at molecular resolution. In vitrified frozen-hydrated mammalian cells overexpressing individual E-Syts, in which E-Syt-dependent contacts were by far the predominant contacts, ER-PM distance (19-22 nm) correlated with the amino acid length of the cytosolic region of E-Syts (i.e., the number of C2 domains). Elevation of cytosolic Ca(2+) shortened the ER-PM distance at E-Syt1-dependent contacts sites. E-Syt-mediated contacts displayed a characteristic electron-dense layer between the ER and the PM. These features were strikingly different from those observed in cells exposed to conditions that induce contacts mediated by the stromal interaction molecule 1 (STIM1) and the Ca(2+) channel Orai1 as well as store operated Ca(2+) entry. In these cells the gap between the ER and the PM was spanned by filamentous structures perpendicular to the membranes. Our results define specific ultrastructural features of E-Syt-dependent ER-PM contacts and reveal their structural plasticity, which may impact on the cross-talk between the ER and the PM and the functions of E-Syts in lipid transport between the two bilayers.
Collapse
|
742
|
Yamagami K, Yamamoto T, Sakai S, Mioka T, Sano T, Igarashi Y, Tanaka K. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants. PLoS One 2015; 10:e0120108. [PMID: 25781026 PMCID: PMC4363822 DOI: 10.1371/journal.pone.0120108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.
Collapse
Affiliation(s)
- Kanako Yamagami
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takaharu Yamamoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Shota Sakai
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takamitsu Sano
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
- * E-mail:
| |
Collapse
|
743
|
Zeliger HI, Lipinski B. Physiochemical basis of human degenerative disease. Interdiscip Toxicol 2015; 8:15-21. [PMID: 27486355 PMCID: PMC4961921 DOI: 10.1515/intox-2015-0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 11/16/2022] Open
Abstract
The onset of human degenerative diseases in humans, including type 2 diabetes, cardiovascular disease, neurological disorders, neurodevelopmental disease and neurodegenerative disease has been shown to be related to exposures to persistent organic pollutants, including polychlorinated biphenyls, chlorinated pesticides, polybrominated diphenyl ethers and others, as well as to polynuclear aromatic hydrocarbons, phthalates, bisphenol-A and other aromatic lipophilic species. The onset of these diseases has also been related to exposures to transition metal ions. A physiochemical mechanism for the onset of degenerative environmental disease dependent upon exposure to a combination of lipophilic aromatic hydrocarbons and transition metal ions is proposed here. The findings reported here also, for the first time, explain why aromatic hydrocarbons exhibit greater toxicity than aliphatic hydrocarbons of equal carbon numbers.
Collapse
Affiliation(s)
| | - Boguslaw Lipinski
- Harvard Medical School, Joslin Diabetes Center, Boston, Massachusetts, USA
| |
Collapse
|
744
|
|
745
|
Wu SH, Bi JF, Cloughesy T, Cavenee WK, Mischel PS. Emerging function of mTORC2 as a core regulator in glioblastoma: metabolic reprogramming and drug resistance. Cancer Biol Med 2015; 11:255-63. [PMID: 25610711 PMCID: PMC4296088 DOI: 10.7497/j.issn.2095-3941.2014.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/08/2014] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM) is one of the most lethal human cancers. Genomic analyses define the molecular architecture of GBM and highlight a central function for mechanistic target of rapamycin (mTOR) signaling. mTOR kinase exists in two multi-protein complexes, namely, mTORC1 and mTORC2. These complexes differ in terms of function, regulation and rapamycin sensitivity. mTORC1 is well established as a cancer drug target, whereas the functions of mTORC2 in cancer, including GBM, remains poorly understood. This study reviews the recent findings that demonstrate a central function of mTORC2 in regulating tumor growth, metabolic reprogramming, and targeted therapy resistance in GBM, which makes mTORC2 as a critical GBM drug target.
Collapse
Affiliation(s)
- Si-Han Wu
- 1 Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Neuro-Oncology Program, University of California, Los Angeles, CA 90095, USA
| | - Jun-Feng Bi
- 1 Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Neuro-Oncology Program, University of California, Los Angeles, CA 90095, USA
| | - Timothy Cloughesy
- 1 Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Neuro-Oncology Program, University of California, Los Angeles, CA 90095, USA
| | - Webster K Cavenee
- 1 Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Neuro-Oncology Program, University of California, Los Angeles, CA 90095, USA
| | - Paul S Mischel
- 1 Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Neuro-Oncology Program, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
746
|
Lee S, Uchida Y, Wang J, Matsudaira T, Nakagawa T, Kishimoto T, Mukai K, Inaba T, Kobayashi T, Molday RS, Taguchi T, Arai H. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase. EMBO J 2015; 34:669-88. [PMID: 25595798 PMCID: PMC4365035 DOI: 10.15252/embj.201489703] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
P4-ATPases translocate aminophospholipids, such as phosphatidylserine (PS), to the cytosolic leaflet of membranes. PS is highly enriched in recycling endosomes (REs) and is essential for endosomal membrane traffic. Here, we show that PS flipping by an RE-localized P4-ATPase is required for the recruitment of the membrane fission protein EHD1. Depletion of ATP8A1 impaired the asymmetric transbilayer distribution of PS in REs, dissociated EHD1 from REs, and generated aberrant endosomal tubules that appear resistant to fission. EHD1 did not show membrane localization in cells defective in PS synthesis. ATP8A2, a tissue-specific ATP8A1 paralogue, is associated with a neurodegenerative disease (CAMRQ). ATP8A2, but not the disease-causative ATP8A2 mutant, rescued the endosomal defects in ATP8A1-depleted cells. Primary neurons from Atp8a2-/- mice showed a reduced level of transferrin receptors at the cell surface compared to Atp8a2+/+ mice. These findings demonstrate the role of P4-ATPase in membrane fission and give insight into the molecular basis of CAMRQ.
Collapse
Affiliation(s)
- Shoken Lee
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Jiao Wang
- Departments of Biochemistry and Molecular Biology and Ophthalmology and Visual Sciences, Centre for Macular Research University of British Columbia, Vancouver, BC, Canada
| | - Tatsuyuki Matsudaira
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Takatoshi Nakagawa
- Department of Pharmacology, Osaka Medical College, Takatsuki-city Osaka, Japan
| | | | - Kojiro Mukai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan Lipid Biology Laboratory, RIKEN, Wako-shi Saitama, Japan
| | - Takehiko Inaba
- Lipid Biology Laboratory, RIKEN, Wako-shi Saitama, Japan
| | | | - Robert S Molday
- Departments of Biochemistry and Molecular Biology and Ophthalmology and Visual Sciences, Centre for Macular Research University of British Columbia, Vancouver, BC, Canada
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| |
Collapse
|
747
|
Norris SE, Friedrich MG, Mitchell TW, Truscott RJW, Else PL. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. Neurobiol Aging 2015; 36:1659-1669. [PMID: 25676385 DOI: 10.1016/j.neurobiolaging.2015.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/16/2014] [Accepted: 01/03/2015] [Indexed: 11/19/2022]
Abstract
Membrane phospholipids make up a substantial portion of the human brain, and changes in their amount and composition are thought to play a role in the pathogenesis of age-related neurodegenerative disease. Nevertheless, little is known about the changes that phospholipids undergo during normal adult aging. This study examined changes in phospholipid composition in the mitochondrial and microsomal membranes of human dorsolateral prefrontal cortex over the adult life span. The largest age-related changes were an increase in the abundance of both mitochondrial and microsomal phosphatidylserine 18:0_22:6 by approximately one-third from age 20 to 100 years and a 25% decrease in mitochondrial phosphatidylethanolamine 18:0_20:4. Generally, increases were seen with age in phospholipids containing docosahexaenoic acid across both membrane fractions, whereas phospholipids containing either arachidonic or adrenic acid decreased with age. These findings suggest a gradual change in membrane lipid composition over the adult life span.
Collapse
Affiliation(s)
- Sarah E Norris
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Todd W Mitchell
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Paul L Else
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
748
|
Membrane contact sites, gateways for lipid homeostasis. Curr Opin Cell Biol 2015; 33:82-87. [PMID: 25569848 DOI: 10.1016/j.ceb.2014.12.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Maintaining the proper lipid composition of cellular membranes is critical for numerous cellular processes but mechanisms of membrane lipid homeostasis are not well understood. There is growing evidence that membrane contact sites (MCSs), regions where two organelles come in close proximity to one another, play major roles in the regulation of intracellular lipid composition and distribution. MCSs are thought to mediate the exchange of lipids and signals between organelles. In this review, we discuss how lipid exchange occurs at MCSs and evidence for roles of MCSs in regulating lipid synthesis and degradation. We also discuss how networks of organelles connected by MCSs may modulate cellular lipid homeostasis and help determine organelle lipid composition.
Collapse
|
749
|
Beales PA, Ciani B, Cleasby AJ. Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments. Phys Chem Chem Phys 2015; 17:15489-507. [DOI: 10.1039/c5cp00480b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our understanding of the membrane sculpting capabilities of proteins from experimental model systems could be used to construct functional compartmentalised architectures for the engineering of synthetic cells.
Collapse
Affiliation(s)
- Paul A. Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Barbara Ciani
- Centre for Membrane Interaction and Dynamics
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF
- UK
| | - Alexa J. Cleasby
- Centre for Membrane Interaction and Dynamics
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF
- UK
| |
Collapse
|
750
|
Naguib A, Bencze G, Engle DD, Chio IIC, Herzka T, Watrud K, Bencze S, Tuveson DA, Pappin DJ, Trotman LC. p53 mutations change phosphatidylinositol acyl chain composition. Cell Rep 2014; 10:8-19. [PMID: 25543136 DOI: 10.1016/j.celrep.2014.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/27/2014] [Accepted: 12/04/2014] [Indexed: 01/01/2023] Open
Abstract
Phosphatidylinositol phosphate (PIP) second messengers relay extracellular growth cues through the phosphorylation status of the inositol sugar, a signal transduction system that is deregulated in cancer. In stark contrast to PIP inositol head-group phosphorylation, changes in phosphatidylinositol (PI) lipid acyl chains in cancer have remained ill-defined. Here, we apply a mass-spectrometry-based method capable of unbiased high-throughput identification and quantification of cellular PI acyl chain composition. Using this approach, we find that PI lipid chains represent a cell-specific fingerprint and are unperturbed by serum-mediated signaling in contrast to the inositol head group. We find that mutation of Trp53 results in PIs containing reduced-length fatty acid moieties. Our results suggest that the anchoring tails of lipid second messengers form an additional layer of PIP signaling in cancer that operates independently of PTEN/PI3-kinase activity but is instead linked to p53.
Collapse
Affiliation(s)
- Adam Naguib
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Gyula Bencze
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Dannielle D Engle
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Iok I C Chio
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Tali Herzka
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Szilvia Bencze
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|