701
|
Sommerova L, Ondrouskova E, Martisova A, Zoumpourlis V, Galtsidis S, Hrstka R. ZEB1/miR-200c/AGR2: A New Regulatory Loop Modulating the Epithelial-Mesenchymal Transition in Lung Adenocarcinomas. Cancers (Basel) 2020; 12:cancers12061614. [PMID: 32570918 PMCID: PMC7352583 DOI: 10.3390/cancers12061614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process involved not only in morphogenesis and embryonic development, but also in cancer progression, whereby tumor cells obtain a more aggressive metastatic phenotype. Anterior gradient protein 2 (AGR2) maintains the epithelial phenotype and blocks the induction of EMT, thus playing an undeniable role in tumor progression. However, the mechanism through which AGR2 expression is regulated, not only during EMT, but also in the early stages of cancer development, remains to be elucidated. In the present study, we show an inverse correlation of AGR2 with ZEB1 (zinc finger enhancer binding protein, δEF1) that was verified by analysis of several independent clinical data sets of lung adenocarcinomas. We also identified the ZEB1 binding site within the AGR2 promoter region and confirmed AGR2 as a novel molecular target of ZEB1. The overexpression of ZEB1 decreased the promoter activity of the AGR2 gene, which resulted in reduced AGR2 protein level and the acquisition of a more invasive phenotype of these lung cancer cells. Conversely, silencing of ZEB1 led not only to increased levels of AGR2 protein, but also attenuated the invasiveness of tumor cells. The AGR2 knockout, vice versa, increased ZEB1 expression, indicating that the ZEB1/AGR2 regulatory axis may function in a double negative feedback loop. In conclusion, we revealed for the first time that ZEB1 regulates AGR2 at the transcriptional level, while AGR2 presence contributes to ZEB1 mRNA degradation. Thus, our data identify a new regulatory mechanism between AGR2 and ZEB1, two rivals in the EMT process, tightly associated with the development of metastasis.
Collapse
Affiliation(s)
- Lucia Sommerova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic; (L.S.); (E.O.); (A.M.)
| | - Eva Ondrouskova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic; (L.S.); (E.O.); (A.M.)
| | - Andrea Martisova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic; (L.S.); (E.O.); (A.M.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF 48 Vassileos Constantinou Ave., 11635 Athens, Greece;
| | - Sotirios Galtsidis
- Life Sciences Research Unit, University of Luxembourg, Campus Belval, Biotech 1, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic; (L.S.); (E.O.); (A.M.)
- Correspondence: ; Tel.: +420-543-133-306
| |
Collapse
|
702
|
Cervantes-Villagrana RD, Albores-García D, Cervantes-Villagrana AR, García-Acevez SJ. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct Target Ther 2020; 5:99. [PMID: 32555170 PMCID: PMC7303203 DOI: 10.1038/s41392-020-0205-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Normal cells are hijacked by cancer cells forming together heterogeneous tumor masses immersed in aberrant communication circuits that facilitate tumor growth and dissemination. Besides the well characterized angiogenic effect of some tumor-derived factors; others, such as BDNF, recruit peripheral nerves and leukocytes. The neurogenic switch, activated by tumor-derived neurotrophins and extracellular vesicles, attracts adjacent peripheral fibers (autonomic/sensorial) and neural progenitor cells. Strikingly, tumor-associated nerve fibers can guide cancer cell dissemination. Moreover, IL-1β, CCL2, PGE2, among other chemotactic factors, attract natural immunosuppressive cells, including T regulatory (Tregs), myeloid-derived suppressor cells (MDSCs), and M2 macrophages, to the tumor microenvironment. These leukocytes further exacerbate the aberrant communication circuit releasing factors with neurogenic effect. Furthermore, cancer cells directly evade immune surveillance and the antitumoral actions of natural killer cells by activating immunosuppressive mechanisms elicited by heterophilic complexes, joining cancer and immune cells, formed by PD-L1/PD1 and CD80/CTLA-4 plasma membrane proteins. Altogether, nervous and immune cells, together with fibroblasts, endothelial, and bone-marrow-derived cells, promote tumor growth and enhance the metastatic properties of cancer cells. Inspired by the demonstrated, but restricted, power of anti-angiogenic and immune cell-based therapies, preclinical studies are focusing on strategies aimed to inhibit tumor-induced neurogenesis. Here we discuss the potential of anti-neurogenesis and, considering the interplay between nervous and immune systems, we also focus on anti-immunosuppression-based therapies. Small molecules, antibodies and immune cells are being considered as therapeutic agents, aimed to prevent cancer cell communication with neurons and leukocytes, targeting chemotactic and neurotransmitter signaling pathways linked to perineural invasion and metastasis.
Collapse
Affiliation(s)
- Rodolfo Daniel Cervantes-Villagrana
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360, Mexico City, Mexico.
| | - Damaris Albores-García
- Department of Environmental Health Sciences, Florida International University (FIU), Miami, Florida, 33199, USA
| | - Alberto Rafael Cervantes-Villagrana
- Laboratorio de investigación en Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas (UAZ), Zacatecas, México
| | - Sara Judit García-Acevez
- Dirección de Proyectos e Investigación, Grupo Diagnóstico Médico Proa, 06400 CDMX, Cuauhtémoc, México
| |
Collapse
|
703
|
Zhou T, Yu L, Huang J, Zhao X, Li Y, Hu Y, Lei Y. GDF10 inhibits proliferation and epithelial-mesenchymal transition in triple-negative breast cancer via upregulation of Smad7. Aging (Albany NY) 2020; 11:3298-3314. [PMID: 31147529 PMCID: PMC6555447 DOI: 10.18632/aging.101983] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Triple-negative breast cancer (TNBC) cannot be treated with current hormonal therapies and has a higher risk of relapse than other breast cancers. To identify potential therapeutic targets for TNBC, we conducted microRNA sequencing (RNA-Seq) in human TNBC specimens and tumor-matched controls. We found that growth differentiation factor-10 (GDF10), a member of the TGF-β superfamily, was downregulated in tumor samples. Further analysis of GDF10 expression in a larger set of clinical TNBC samples using qPCR confirmed its downregulation and association with parameters of disease severity. Using human-derived TNBC cell lines, we carried out GDF10 under- and overexpression experiments, which showed that GDF10 loss promoted cell proliferation and invasion. By contrast, overexpression of GDF10 inhibited proliferation, invasion, and epithelial mesenchymal transition (EMT) via upregulation of Smad7 and E-Cadherin, downregulation of p-Smad2 and N-Cadherin, and reduction of nuclear Smad4 expression. In addition, overexpression of GDF10 reduced tumor burden and induced apoptosis in a TNBC xenograft mouse model. These findings indicate that GDF10 acts as a tumor suppressor in mammary epithelial cells that limits proliferation and suppresses EMT. Efforts aimed at restoring GDF10 expression may thus bring a long-sought therapeutic alternative in the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lei Yu
- Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jianjun Huang
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xueke Zhao
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yanwen Li
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yaxin Hu
- Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yu Lei
- Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
704
|
Budkova Z, Sigurdardottir AK, Briem E, Bergthorsson JT, Sigurdsson S, Magnusson MK, Traustadottir GA, Gudjonsson T, Hilmarsdottir B. Expression of ncRNAs on the DLK1-DIO3 Locus Is Associated With Basal and Mesenchymal Phenotype in Breast Epithelial Progenitor Cells. Front Cell Dev Biol 2020; 8:461. [PMID: 32612992 PMCID: PMC7308478 DOI: 10.3389/fcell.2020.00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reversed process mesenchymal-to-epithelial transition (MET) play a critical role in epithelial plasticity during development and cancer progression. Among important regulators of these cellular processes are non-coding RNAs (ncRNAs). The imprinted DLK1-DIO3 locus, containing numerous maternally expressed ncRNAs including the lncRNA maternally expressed gene 3 (MEG3) and a cluster of over 50 miRNAs, has been shown to be a modulator of stemness in embryonic stem cells and in cancer progression, potentially through the tumor suppressor role of MEG3. In this study we analyzed the expression pattern and functional role of ncRNAs from the DLK1-DIO3 locus in epithelial plasticity of the breast. We studied their expression in various cell types of breast tissue and revisit the role of the locus in EMT/MET using a breast epithelial progenitor cell line (D492) and its isogenic mesenchymal derivative (D492M). Marked upregulation of ncRNAs from the DLK1-DIO3 locus was seen after EMT induction in two cell line models of EMT. In addition, the expression of MEG3 and the maternally expressed ncRNAs was higher in stromal cells compared to epithelial cell types in primary breast tissue. We also show that expression of MEG3 is concomitant with the expression of the ncRNAs from the DLK1-DIO3 locus and its expression is therefore likely indicative of activation of all ncRNAs at the locus. MEG3 expression is correlated with stromal markers in normal tissue and breast cancer tissue and negatively correlated with the survival of breast cancer patients in two different cohorts. Overexpression of MEG3 using CRISPR activation in a breast epithelial cell line induced partial EMT and enriched for a basal-like phenotype. Conversely, knock down of MEG3 using CRISPR inhibition in a mesenchymal cell line reduced the mesenchymal and basal-like phenotype of the cell line. In summary our study shows that maternally expressed ncRNAs are markers of EMT and suggests that MEG3 is a novel regulator of EMT/MET in breast tissue. Nevertheless, further studies are needed to fully dissect the molecular pathways influenced by non-coding RNAs at the DLK1-DIO3 locus in breast tissue.
Collapse
Affiliation(s)
- Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Jon Thor Bergthorsson
- Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Snævar Sigurdsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Karl Magnusson
- Department of Pharmacology and Toxicology, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Bylgja Hilmarsdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Pathology, Landspitali - University Hospital, Reykjavik, Iceland
| |
Collapse
|
705
|
Integrative multi-omics analysis of a colon cancer cell line with heterogeneous Wnt activity revealed RUNX2 as an epigenetic regulator of EMT. Oncogene 2020; 39:5152-5164. [PMID: 32535615 DOI: 10.1038/s41388-020-1351-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transition (EMT) program, which facilitates tumor metastasis, stemness and therapy resistance, is a reversible biological process that is largely orchestrated at the epigenetic level under the regulation of different cell signaling pathways. EMT state is often heterogeneous within individual tumors, though the epigenetic drivers underlying such heterogeneity remain elusive. In colon cancer, hyperactivation of the Wnt/β-catenin signaling not only drives tumor initiation, but also promotes metastasis in late stage by promoting EMT program. However, it is unknown whether the intratumorally heterogeneous Wnt activity could directly drive EMT heterogeneity, and, if so, what are the underlying epigenetic driver(s). Here, by analyzing a phenotypically and molecularly heterogeneous colon cancer cell line using single-cell RNA sequencing, we identified two distinct cell populations with positively correlated Wnt activity and EMT state. Integrative multi-omics analysis of these two cell populations revealed RUNX2 as a critical transcription factor epigenetically driving the EMT heterogeneity. Both in vitro and in vivo genetic perturbation assays validated the EMT-enhancing effect of RUNX2, which remodeled chromatin landscape and activated a panel of EMT-associated genes through binding to their promoters and/or potential enhancers. Finally, by exploring the clinical data, we showed that RUNX2 expression is positively correlated with metastasis development and poor survival of colon cancer patients, as well as patients afflicted with other types of cancer. Taken together, our work revealed RUNX2 as a new EMT-promoting epigenetic regulator in colon cancer, which may potentially serve as a prognostic marker for tumor metastasis.
Collapse
|
706
|
Cardner M, Meyer-Schaller N, Christofori G, Beerenwinkel N. Inferring signalling dynamics by integrating interventional with observational data. Bioinformatics 2020; 35:i577-i585. [PMID: 31510686 PMCID: PMC6612850 DOI: 10.1093/bioinformatics/btz325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Motivation In order to infer a cell signalling network, we generally need interventional data from perturbation experiments. If the perturbation experiments are time-resolved, then signal progression through the network can be inferred. However, such designs are infeasible for large signalling networks, where it is more common to have steady-state perturbation data on the one hand, and a non-interventional time series on the other. Such was the design in a recent experiment investigating the coordination of epithelial–mesenchymal transition (EMT) in murine mammary gland cells. We aimed to infer the underlying signalling network of transcription factors and microRNAs coordinating EMT, as well as the signal progression during EMT. Results In the context of nested effects models, we developed a method for integrating perturbation data with a non-interventional time series. We applied the model to RNA sequencing data obtained from an EMT experiment. Part of the network inferred from RNA interference was validated experimentally using luciferase reporter assays. Our model extension is formulated as an integer linear programme, which can be solved efficiently using heuristic algorithms. This extension allowed us to infer the signal progression through the network during an EMT time course, and thereby assess when each regulator is necessary for EMT to advance. Availability and implementation R package at https://github.com/cbg-ethz/timeseriesNEM. The RNA sequencing data and microscopy images can be explored through a Shiny app at https://emt.bsse.ethz.ch. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mathias Cardner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | | | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
707
|
Ranganathan S, Kumar S, Mohanty SS, Jolly MK, Rangarajan A. Cellular Plasticity in Matrix-attached and -Detached Cells: Implications in Metastasis. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00179-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
708
|
Plasticity in Ovarian Cancer: The Molecular Underpinnings and Phenotypic Heterogeneity. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
709
|
Li XY, Wang JH, Gu LY, Yao XM, Cai FY, Jing M, Li XT, Ju RJ. Dual variable of drug loaded micelles in both particle and electrical charge on gastric cancer treatment. J Drug Target 2020; 28:1071-1084. [PMID: 32484364 DOI: 10.1080/1061186x.2020.1777419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gastric cancer is a malignant tumour characterised by the uncontrolled cell growth. The incidence and mortality of gastric cancer remain high for the invasion and metastasis. We are urgently seeking a risk-free and effective treatment strategy for gastric cancer. In this study, paclitaxel and tetrandrine were encapsulated in the inner core of micelles, and DSPE-PEG2000-CPP and HA were modified on the micellar surface. HA/CPP modified paclitaxel plus tetrandrine micelles had a suitable particle size (90 nm) for permeating tumour tissue. The zeta potential of the targeting micelles was 8.37 mV after hydrolysis by HAase solution. Results of in vitro experiments indicated that HA/CPP modified paclitaxel plus tetrandrine micelles + HAase could enhance the intracellular uptake, inhibit the formation of neovascularization, block the process of EMT and destroy the invasion and metastasis. In vivo assays indicated that HA/CPP modified paclitaxel plus tetrandrine micelles could be selectively accumulated into tumour sites and exhibited the strong antitumor activity with negligible toxicity. These results suggested that HA/CPP modified paclitaxel plus tetrandrine micelles might provide a new strategy for treating gastric cancer.
Collapse
Affiliation(s)
- Xiu-Ying Li
- School of Pharmacy, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jian-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Li-Yan Gu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
710
|
Dong X, Ma Y, Zhao X, Tian X, Sun Y, Yang Y, Zhao X. Spatial heterogeneity in epithelial to mesenchymal transition properties of circulating tumor cells associated with distant recurrence in pancreatic cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:676. [PMID: 32617296 PMCID: PMC7327339 DOI: 10.21037/atm-20-782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The spatial heterogeneity of epithelial to mesenchymal transition (EMT)-related circulating tumor cells (CTCs) within the circulatory system and its potential clinical relevance remain unclear in pancreatic cancer (PC) patients. We aimed to map the distribution of EMT-related CTCs along the spreading pathway and investigate the prognostic significance due to the potential spatial heterogeneity in the count and phenotypic properties of CTCs. Methods Both portal vein (PoV) and peripheral vein (PV) blood samples were collected from 39 PC patients. CTCs were isolated by using a CD45 negative enrichment method, and EMT-related phenotypes in CTCs were analyzed by 4-channel immunofluorescence. The correlations of CTCs with patient characteristics and recurrence-free survival (RFS) were analyzed. Results Both the number {median CTC total count, 10 [6–16] in PoV vs. 5 [1–7] in PV per mL, P<0.0001} and EMT status of CTCs [median mesenchymal CTC (M-CTC) percentage, 0.33 (0.13–0.52) in PoV vs. 0.2 (0–0.4) in PV, P=0.0211] showed significant spatial heterogeneity during dissemination from the PoV to the PV. Univariate analysis adjusting for patient age and sex revealed that CTC total count and M-CTC percentage in PoV samples could be risk factors for RFS in PC patients (P=0.003 and P=0.001, respectively), and ROC curve analysis found that both of these factors had good performance in distinguishing patients with early distant recurrence (within 6 months), with the optimal cut-off values of 14 cells/mL (AUROC =0.893, sensitivity =0.857, specificity =0.813, P=0.001) and 0.545 (AUROC =0.795, sensitivity =0.714, specificity =0.906, P=0.016), respectively. Conclusions Multivascular assessment of EMT-related CTCs suggested profound dynamic alterations in total count and phenotypes during dissemination, and the spatial heterogeneity of CTCs in circulation could help establish novel prognosis markers in PC patients.
Collapse
Affiliation(s)
- Xiu Dong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongsu Ma
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Xudong Zhao
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
711
|
Parker TM, Henriques V, Beltran A, Nakshatri H, Gogna R. Cell competition and tumor heterogeneity. Semin Cancer Biol 2020; 63:1-10. [DOI: 10.1016/j.semcancer.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
|
712
|
Qiao Y, Wang Z, Tan F, Chen J, Lin J, Yang J, Li H, Wang X, Sali A, Zhang L, Zhong G. Enhancer Reprogramming within Pre-existing Topologically Associated Domains Promotes TGF-β-Induced EMT and Cancer Metastasis. Mol Ther 2020; 28:2083-2095. [PMID: 32526202 DOI: 10.1016/j.ymthe.2020.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/10/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023] Open
Abstract
Transcription growth factor β (TGF-β) signaling-triggered epithelial-to-mesenchymal transition (EMT) process is associated with tumor stemness, metastasis, and chemotherapy resistance. However, the epigenomic basis for TGF-β-induced EMT remains largely unknown. Here we reveal that HDAC1-mediated global histone deacetylation and the gain of specific histone H3 lysine 27 acetylation (H3K27ac)-marked enhancers are essential for the TGF-β-induced EMT process. Enhancers gained upon TGF-β treatment are linked to gene activation of EMT markers and cancer metastasis. Notably, dynamic enhancer gain or loss mainly occurs within pre-existing topologically associated domains (TADs) in epithelial cells, with minimal three-dimensional (3D) genome architecture reorganization. Through motif enrichment analysis of enhancers that are lost or gained upon TGF-β stimulation, we identify FOXA2 as a key factor to activate epithelial-specific enhancer activity, and we also find that TEAD4 forms a complex with SMAD2/3 to mediate TGF-β signaling-triggered mesenchymal enhancer reprogramming. Together, our results implicate that key transcription-factor (TF)-mediated enhancer reprogramming modulates the developmental transition in TGF-β signaling-associated cancer metastasis.
Collapse
Affiliation(s)
- Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Zejian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianxiang Lin
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jie Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Guisheng Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
713
|
Rapanotti MC, Campione E, Suarez Viguria TM, Spallone G, Costanza G, Rossi P, Orlandi A, Valenti P, Bernardini S, Bianchi L. Stem-Mesenchymal Signature Cell Genes Detected in Heterogeneous Circulating Melanoma Cells Correlate With Disease Stage in Melanoma Patients. Front Mol Biosci 2020; 7:92. [PMID: 32548126 PMCID: PMC7272706 DOI: 10.3389/fmolb.2020.00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of metastasis, cancer cells dissociate from primary tumors, migrate to distal sites, and finally colonize, eventually leading to the formation of metastatic tumors. These cancer cells, defined circulating tumor cells (CTCs) spreading through the blood stream, may develop metastatic lesions or remain dormant. Some emerging clinical evidence supports that some tumor cells may possess metastatic properties already in the earlier stages of tumorigenesis. Because the initiation and progression of vertical growth in human melanoma is fundamental to the notion of tumor virulence and progression, we decided to immune-magnetic collect and molecularly characterize circulating melanoma cells (CMCs) from melanoma patients AJCC staged = pT1b (i.e., transition from radial to vertical phase). CMCs are phenotypically and molecularly heterogeneous, thus we performed a "home-made Liquid-Biopsy," by targeting the melanoma-associated-antigen, MCAM/MUC18/CD146, and/or the melanoma-initiating marker, ABCB5. We assessed a biomarker qualitative expression panel, contemplating the angiogenic-potential, melanoma-initiating and melanoma-differentiation drivers, cell-cell adhesion molecules, matrix-metallo-proteinases, which was performed on three enriched subpopulations from a total of 61 blood-samples from 21 melanoma patients. At first, a significant differential expression of the specific transcripts was documented between and within the CMC fractions enriched with MCAM-, ABCB5-, and both MCAM/ABCB5-coated beads, when analyzing two distinct groups: early AJCC- (stage I-II) and advanced- staged patients (stage II-IV). Moreover, in the early-AJCC staged-group, we could distinguish "endothelial," CD45-MCAM+ enriched-, "stem" S-CMCs, CD45-ABCB5+ enriched- and a third hybrid bi-phenotypic CD45-MCAM+/ABCB5+ enriched-fractions, due to three distinct gene-expression profiles. In particular, the endothelial-CMCs were characterized by positive expression of genes involved in migration and invasion, whilst the stem CMC-fraction only expressed stem and differentiation markers. The third subpopulation isolated based on concurrent MCAM and ABCB5 protein expression showed an invasive phenotype. All three distinct CMCs sub-populations, exhibited a primitive, "stem-mesenchymal" profile suggesting a highly aggressive and metastasizing phenotype. This study confirms the phenotypic and molecular heterogeneity observed in melanoma and highlights those putative genes involved in early melanoma spreading and disease progression.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Elena Campione
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Tara Mayte Suarez Viguria
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Giulia Spallone
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Gaetana Costanza
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piero Rossi
- Surgery Division, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Luca Bianchi
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
714
|
Liu J, Miao X, Xiao B, Huang J, Tao X, Zhang J, Zhao H, Pan Y, Wang H, Gao G, Xiao GG. Obg-Like ATPase 1 Enhances Chemoresistance of Breast Cancer via Activation of TGF-β/Smad Axis Cascades. Front Pharmacol 2020; 11:666. [PMID: 32528278 PMCID: PMC7266972 DOI: 10.3389/fphar.2020.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding the molecular mechanism of drug resistance helps to identify an effective target for breast cancer therapy. In this study we investigated the regulatory role of Obg-like ATPase 1 which is involved in multiple uses of drug resistance against breast cancer. Paclitaxel resistant cell line (MCF-7-PTR) was developed by a continuous increasing paclitaxel concentration. MTT assay was used to validate either acquired resistant or OLA1 modified cell lines. qRT-PCR, western blotting, apoptosis, and cell cycle assays were executed to evaluate gene and protein expression in cell lines. A series of in vitro assays was performed in the cells with RNAi-mediated knockdown to expound the regulatory function of OLA1 in breast cancer. We demonstrated that OLA1 was highly correlated with either acquired or intrinsic resistance of breast cancer. Further study showed that escalated expression of OLA1 promoted the EMT process in tumor cells through TGF-β/Smad signaling cascades, resulting in the enhanced expression of anti-apoptosis-related proteins (cleaved caspase3, Bax, Bcl-2) and the strengthening depolymerization of microtubules in tumor cells. Our findings revealed that OLA1 enhanced the anti-apoptotic ability and elucidated a regulatory role of OLA1 in promoting chemotherapy resistance of breast cancer. Chemo-sensitivity of the disease can be thus enhanced significantly by knocked down OLA1, which led to the inactivation of the TGF-β/Smad signaling cascades, polymerized microtubules, and promoted cell apoptosis. Our data suggest that OLA1 may be developed as a potential target to improve chemotherapy of patients with breast cancer.
Collapse
Affiliation(s)
- Jianzhou Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.,School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Miao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Bowen Xiao
- Cardiothoracic Surgery, Changsha Central Hospital Affiliated to Nanhua University, Changsha, China
| | - Jing Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xufeng Tao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jiong Zhang
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
| | - Hua Zhao
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hongwei Wang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.,School of Bioengineering, Dalian University of Technology, Dalian, China.,Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States
| |
Collapse
|
715
|
Wang Z, Xia F, Labib M, Ahmadi M, Chen H, Das J, Ahmed SU, Angers S, Sargent EH, Kelley SO. Nanostructured Architectures Promote the Mesenchymal-Epithelial Transition for Invasive Cells. ACS NANO 2020; 14:5324-5336. [PMID: 32369335 DOI: 10.1021/acsnano.9b07350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamic modulation of cellular phenotypes between the epithelial and mesenchymal states-the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET)-plays an important role in cancer progression. Nanoscale topography of culture substrates is known to affect the migration and EMT of cancer cells. However, existing platforms heavily rely on simple geometries such as grooved lines or cylindrical post arrays, which may oversimplify the complex interaction between cells and nanotopography in vivo. Here, we use electrodeposition to construct finely controlled surfaces with biomimetic fractal nanostructures as a means of examining the roles of nanotopography during the EMT/MET process. We found that nanostructures in the size range of 100 to 500 nm significantly promote MET for invasive breast and prostate cancer cells. The "METed" cells acquired distinct expression of epithelial and mesenchymal markers, displayed perturbed morphologies, and exhibited diminished migration and invasion, even after the removal of a nanotopographical stimulus. The phosphorylation of GSK-3 was decreased, which further tuned the expression of Snail and modulated the EMT/MET process. Our findings suggest that invasive cancer cells respond to the geometries and dimensions of complex nanostructured architectures.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| | - Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Moloud Ahmadi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Haijie Chen
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
| | - Jagotamoy Das
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Stéphane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|
716
|
Turcu AL, Versini A, Khene N, Gaillet C, Cañeque T, Müller S, Rodriguez R. DMT1 Inhibitors Kill Cancer Stem Cells by Blocking Lysosomal Iron Translocation. Chemistry 2020; 26:7369-7373. [DOI: 10.1002/chem.202000159] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC) Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina University of Barcelona Av. Joan XXIII 27–31 08028 Barcelona Spain
| | - Antoine Versini
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Nadjib Khene
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Christine Gaillet
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Tatiana Cañeque
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Sebastian Müller
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Raphaël Rodriguez
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| |
Collapse
|
717
|
Hakin-1, a New Specific Small-Molecule Inhibitor for the E3 Ubiquitin-Ligase Hakai, Inhibits Carcinoma Growth and Progression. Cancers (Basel) 2020; 12:cancers12051340. [PMID: 32456234 PMCID: PMC7281109 DOI: 10.3390/cancers12051340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
The requirement of the E3 ubiquitin-ligase Hakai for the ubiquitination and subsequent degradation of E-cadherin has been associated with enhanced epithelial-to-mesenchymal transition (EMT), tumour progression and carcinoma metastasis. To date, most of the reported EMT-related inhibitors were not developed for anti-EMT purposes, but indirectly affect EMT. On the other hand, E3 ubiquitin-ligase enzymes have recently emerged as promising therapeutic targets, as their specific inhibition would prevent wider side effects. Given this background, a virtual screening was performed to identify novel specific inhibitors of Hakai, targeted against its phosphotyrosine-binding pocket, where phosphorylated-E-cadherin specifically binds. We selected a candidate inhibitor, Hakin-1, which showed an important effect on Hakai-induced ubiquitination. Hakin-1 also inhibited carcinoma growth and tumour progression both in vitro, in colorectal cancer cell lines, and in vivo, in a tumour xenograft mouse model, without apparent systemic toxicity in mice. Our results show for the first time that a small molecule putatively targeting the E3 ubiquitin-ligase Hakai inhibits Hakai-dependent ubiquitination of E-cadherin, having an impact on the EMT process. This represents an important step forward in a future development of an effective therapeutic drug to prevent or inhibit carcinoma tumour progression.
Collapse
|
718
|
Lu JT, Tan CC, Wu XR, He R, Zhang X, Wang QS, Li XQ, Zhang R, Feng YM. FOXF2 deficiency accelerates the visceral metastasis of basal-like breast cancer by unrestrictedly increasing TGF-β and miR-182-5p. Cell Death Differ 2020; 27:2973-2987. [PMID: 32424142 DOI: 10.1038/s41418-020-0555-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
The mesenchymal transcription factor forkhead box F2 (FOXF2) is a critical regulator of embryogenesis and tissue homeostasis. Our previous studies demonstrated that FOXF2 is ectopically expressed in basal-like breast cancer (BLBC) cells and that FOXF2 deficiency promotes the epithelial-mesenchymal transition and aggressiveness of BLBC cells. In this study, we found that FOXF2 controls transforming growth factor-beta (TGF-β)/SMAD signaling pathway activation through transrepression of TGF-β-coding genes in BLBC cells. FOXF2-deficient BLBC cells adopt a myofibroblast-/cancer-associated fibroblast (CAF)-like phenotype, and tend to metastasize to visceral organs by increasing autocrine TGF-β signaling and conferring aggressiveness to neighboring cells by increasing paracrine TGF-β signaling. In turn, TGF-β silences FOXF2 expression through upregulating miR-182-5p, a posttranscriptional regulator of FOXF2 and inducer of metastasis. In addition to mediating a reciprocal repression loop between FOXF2 and TGF-β through direct transrepression by SMAD3, miR-182-5p forms a reciprocal repression loop with FOXF2 that directly transrepresses MIR182 expression. Therefore, FOXF2 deficiency accelerates the visceral metastasis of BLBC through unrestricted increases in autocrine and paracrine TGF-β signaling, and miR-182-5p expression. Our findings provide novel mechanisms underlying the roles of TGF-β, miR-182-5p, and FOXF2 in accelerating BLBC dissemination and metastasis, and may facilitate the development of therapeutic strategies for aggressive BLBC.
Collapse
Affiliation(s)
- Jun-Tao Lu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Cong-Cong Tan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiao-Ran Wu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Rui He
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Qing-Shan Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiao-Qing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Rui Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Yu-Mei Feng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| |
Collapse
|
719
|
D'Aniello C, Patriarca EJ, Phang JM, Minchiotti G. Proline Metabolism in Tumor Growth and Metastatic Progression. Front Oncol 2020; 10:776. [PMID: 32500033 PMCID: PMC7243120 DOI: 10.3389/fonc.2020.00776] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells show a formidable capacity to survive under stringent conditions, to elude mechanisms of control, such as apoptosis, and to resist therapy. Cancer cells reprogram their metabolism to support uncontrolled proliferation and metastatic progression. Phenotypic and functional heterogeneity are hallmarks of cancer cells, which endow them with aggressiveness, metastatic capacity, and resistance to therapy. This heterogeneity is regulated by a variety of intrinsic and extrinsic stimuli including those from the tumor microenvironment. Increasing evidence points to a key role for the metabolism of non-essential amino acids in this complex scenario. Here we discuss the impact of proline metabolism in cancer development and progression, with particular emphasis on the enzymes involved in proline synthesis and catabolism, which are linked to pathways of energy, redox, and anaplerosis. In particular, we emphasize how proline availability influences collagen synthesis and maturation and the acquisition of cancer cell plasticity and heterogeneity. Specifically, we propose a model whereby proline availability generates a cycle based on collagen synthesis and degradation, which, in turn, influences the epigenetic landscape and tumor heterogeneity. Therapeutic strategies targeting this metabolic-epigenetic axis hold great promise for the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Cristina D'Aniello
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Naples, Italy
| | - Eduardo J. Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Naples, Italy
| | - James M. Phang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, United States
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Naples, Italy
| |
Collapse
|
720
|
A dual role of Irf1 in maintaining epithelial identity but also enabling EMT and metastasis formation of breast cancer cells. Oncogene 2020; 39:4728-4740. [PMID: 32404986 DOI: 10.1038/s41388-020-1326-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/06/2023]
Abstract
An epithelial to mesenchymal transition (EMT) is an embryonic dedifferentiation program which is aberrantly activated in cancer cells to acquire cellular plasticity. This plasticity increases the ability of breast cancer cells to invade into surrounding tissue, to seed metastasis at distant sites and to resist to chemotherapy. In this study, we have observed a higher expression of interferon-related factors in basal-like and claudin-low subtypes of breast cancer in patients, known to be associated with EMT. Notably, Irf1 exerts essential functions during the EMT process, yet it is also required for the maintenance of an epithelial differentiation status of mammary gland epithelial cells: RNAi-mediated ablation of Irf1 in mammary epithelial cells results in the expression of mesenchymal factors and Smad transcriptional activity. Conversely, ablation of Irf1 during TGFβ-induced EMT prevents a mesenchymal transition and stabilizes the expression of E-cadherin. In the basal-like murine breast cancer cell line 4T1, RNAi-mediated ablation of Irf1 reduces colony formation and cell migration in vitro and shedding of circulating tumor cells and metastasis formation in vivo. This context-dependent dual role of Irf1 in the regulation of epithelial-mesenchymal plasticity provides important new insights into the functional contribution and therapeutic potential of interferon-regulated factors in breast cancer.
Collapse
|
721
|
Vernot JP. Senescence-Associated Pro-inflammatory Cytokines and Tumor Cell Plasticity. Front Mol Biosci 2020; 7:63. [PMID: 32478091 PMCID: PMC7237636 DOI: 10.3389/fmolb.2020.00063] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
The well-recognized cell phenotypic heterogeneity in tumors is a great challenge for cancer treatment. Dynamic interconversion and movement within a spectrum of different cell phenotypes (cellular plasticity) with the acquisition of specific cell functions is a fascinating biological puzzle, that represent an additional difficulty for cancer treatment and novel therapies development. The understanding of the molecular mechanisms responsible for moving or stabilizing tumor cells within this spectrum of variable states constitutes a valuable tool to overcome these challenges. In particular, cell transitions between epithelial and mesenchymal phenotypes (EMT-MET) and de-and trans-differentiation processes are relevant, since it has been shown that they confer invasiveness, drug resistance, and metastatic ability, due to the simultaneous acquisition of stem-like cell properties. Multiple drivers participate in these cell conversions events. In particular, cellular senescence and senescence-associated soluble factors have been shown to unveil stem-like cell properties and cell plasticity. By modulating gradually the composition of their secretome and the time of exposure, senescent cells may have differential effect not only on tumor cells but also on surrounding cells. Intriguingly, tumor cells that scape from senescence acquire stem-like cell properties and aggressiveness. The reinforcement of senescence and inflammation by soluble factors and the participation of immune cells may provide a dynamic milieu having varied effects on cell transitions, reprogramming, plasticity, stemness and therefore heterogeneity. This will confer different epithelial/mesenchymal traits (hybrid phenotype) and stem-like cell properties, combinations of which, in a particular cell context, could be responsible for different cellular functions during cancer progression (survival, migration, invasion, colonization or proliferation). Additionally, cooperative behavior between cell subpopulations with different phenotypes/stemness functions could also modulate their cellular plasticity. Here, we will discuss the role of senescence and senescence-associated pro-inflammatory cytokines on the induction of cellular plasticity, their effect role in establishing particular states within this spectrum of cell phenotypes and how this is accompanied by stem-like cell properties that, as the epithelial transitions, may also have a continuum of characteristics providing tumor cells with functional adaptability specifically useful in the different stages of carcinogenesis.
Collapse
Affiliation(s)
- Jean Paul Vernot
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
722
|
Feng Y, Zhan F, Zhong Y, Tan B. Effects of human umbilical cord mesenchymal stem cells derived from exosomes on migration ability of endometrial glandular epithelial cells. Mol Med Rep 2020; 22:715-722. [PMID: 32626977 PMCID: PMC7339775 DOI: 10.3892/mmr.2020.11137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of human umbilical cord mesenchymal stem cells (Huc‑MSCs)‑derived exosomes on the migratory abilities of endometrial glandular epithelial cells, and to evaluate the underlying mechanism from the perspective of epithelial‑mesenchymal transition (EMT). Huc‑MSCs were prepared from human umbilical cord, and eutopic endometrial glandular epithelial cells were isolated from patients with endometriosis. The exosomes derived from Huc‑MSCs (Huc‑MSCs‑exo) were prepared using an exosome extraction kit. The endometrial glandular epithelial cells were randomly divided into two groups: Huc‑MSCs‑exo and control. Cell migratory ability was assessed and western blotting was used to detect the expression levels of EMT. The results of the present study demonstrated that Huc‑MSCs‑exo treatment significantly enhanced the migration of endometrial glandular epithelial cells from patients with endometriosis (P<0.05). The present study also demonstrated that treatment with Huc‑MSCs‑exo inhibited the expression levels of E‑cadherin and promoted the expression levels of Vimentin and N‑cadherin at both the mRNA and protein level. The results of the current study indicate that Huc‑MSCs‑exo enhance the migratory ability of endometrial glandular epithelial cells via promotion of EMT.
Collapse
Affiliation(s)
- Ying Feng
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fuliang Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanying Zhong
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Buzhen Tan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
723
|
TGFB2 serves as a link between epithelial-mesenchymal transition and tumor mutation burden in gastric cancer. Int Immunopharmacol 2020; 84:106532. [PMID: 32388013 DOI: 10.1016/j.intimp.2020.106532] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023]
Abstract
Immune checkpoint blockade (ICB) has been a major breakthrough in various cancers including gastric cancer (GC), yet the clinical outcomes remain poor. Currently, epithelial-mesenchymal transition (EMT) has been reported to be associated with tumor mutational burden (TMB), which can cause lack of response to ICB. However, the underlying mechanism remains unknown. Members of the transforming growth factorβ (TGFB) family are regarded as the main mediators of EMT, yet how TGFB2 drives EMT in GC is not fully understood. In this study, we found that overexpression of TGFB2 was correlated with poor prognosis in TGCA-STAD and four GEO GC datasets.Gene set enrichment analysis revealed that the EMT pathway was significantly enriched in the high TGFB2 expression group, whilst the TMB-related pathways including mismatch repair, base excision repair, and DNA replication were strongly enriched in the low expression group. Furthermore, EMT score analysis, WGCNA and functional analysis showed that TGFB2 was co-expressed with neurite-related pathways that might drive EMT. Also, CIBERSORT analysis revealed that tumor-infiltrating immune cells like T follicular helper cells might participate in the process of TGFB2 affecting TMB levels in GC. Moreover, in other various cancers, TGFB2 was also negatively correlated with TMB levels as well as ICB response. Overall, these results revealed that TGFB2 could play a vital role in linking EMT and TMB in GC, suggesting that TGFB2 may be a predictive therapeutic target for GC.
Collapse
|
724
|
SNAI1-Driven Sequential EMT Changes Attributed by Selective Chromatin Enrichment of RAD21 and GRHL2. Cancers (Basel) 2020; 12:cancers12051140. [PMID: 32370157 PMCID: PMC7281482 DOI: 10.3390/cancers12051140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023] Open
Abstract
Over two decades of research on cancer-associated epithelial-mesenchymal transition (EMT) led us to ascertain the occurrence of transitional intermediate states (collectively referred to as the EMT spectrum). Among the molecular factors that drive EMT, SNAI1 plays an indispensable role in regulating other core transcription factors, and this regulation is highly context-dependent. However, molecular investigation on this context-dependent regulation is still lacking. Using two ovarian cancer cell lines, we show that SNAI1 regulation on other core EMT-TFs switches from a repressive control in highly epithelial cells to an activation signaling in intermediate epithelial cells. Upon further scrutiny, we identify that the expression of early epithelial genes PERP and ERBB3 are differentially regulated in SNAI1-induced sequential EMT changes. Mechanistically, we show that changes in PERP and ERBB3 transcript levels could be correlated to the selective enrichment loss of RAD21, a cohesin component, at the distal enhancer sites of PERP and ERBB3, which precedes that of the proximal promoter-associated sites. Furthermore, the RAD21 enrichment at the distal enhancer sites is dependent on GRHL2 expression. In a nutshell, the alteration of GRHL2-associated RAD21 enrichment in epithelial genes is crucial to redefine the transition of cellular states along the EMT spectrum.
Collapse
|
725
|
Thankamony AP, Saxena K, Murali R, Jolly MK, Nair R. Cancer Stem Cell Plasticity - A Deadly Deal. Front Mol Biosci 2020; 7:79. [PMID: 32426371 PMCID: PMC7203492 DOI: 10.3389/fmolb.2020.00079] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intratumoral heterogeneity is a major ongoing challenge in the effective therapeutic targeting of cancer. Accumulating evidence suggests that a fraction of cells within a tumor termed Cancer Stem Cells (CSCs) are primarily responsible for this diversity resulting in therapeutic resistance and metastasis. Adding to this complexity, recent studies have shown that there can be different subpopulations of CSCs with varying biochemical and biophysical traits resulting in varied dissemination and drug-resistance potential. Moreover, cancer cells can exhibit a high level of plasticity or the ability to dynamically switch between CSC and non-CSC states or among different subsets of CSCs. In addition, CSCs also display extensive metabolic plasticity. The molecular mechanisms underlying these different interconnected axes of plasticity has been under extensive investigation and the trans-differentiation process of Epithelial to Mesenchymal transition (EMT) has been identified as a major contributing factor. Besides genetic and epigenetic factors, CSC plasticity is also shaped by non-cell-autonomous effects such as the tumor microenvironment (TME). In this review, we discuss the latest developments in decoding mechanisms and implications of CSC plasticity in tumor progression at biochemical and biophysical levels, and the latest in silico approaches being taken for characterizing cancer cell plasticity. These efforts can help improve existing therapeutic approaches by taking into consideration the contribution of cellular plasticity/heterogeneity in enabling drug resistance.
Collapse
Affiliation(s)
- Archana P. Thankamony
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Reshma Murali
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
726
|
Evaluation of Anti-Tumor Effects of Whole-Body Low-Dose Irradiation in Metastatic Mouse Models. Cancers (Basel) 2020; 12:cancers12051126. [PMID: 32365904 PMCID: PMC7281283 DOI: 10.3390/cancers12051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
Low-dose irradiation (LDI) has recently been shown to have various beneficial effects on human health, such as on cellular metabolic activities, DNA repair, antioxidant activity, homeostasis potency, and immune activation. Although studies on the immunogenic effects of LDI are rapidly accumulating, clinical trials for cancer treatment are considered premature owing to the lack of available preclinical results and protocols. Here, we aim to investigate anti-tumor and anti-metastatic effects of whole-body LDI in several tumor-bearing mouse models. Mice were exposed to single or fractionated whole-body LDI prior to tumor transplantation, and tumor growth and metastatic potential were determined, along with analysis of immune cell populations and expression of epithelial-mesenchymal transition (EMT) markers. Whole-body fractionated-LDI decreased tumor development and lung metastasis not only by infiltration of CD4+, CD8+ T-cells, and dendritic cells (DCs) but also by attenuating EMT. Moreover, a combination of whole-body LDI with localized high-dose radiation therapy reduced the non-irradiated abscopal tumor growth and increased infiltration of effector T cells and DCs. Therefore, whole-body LDI in combination with high-dose radiation therapy could be a potential therapeutic strategy for treating cancer.
Collapse
|
727
|
Ma X, Wang J, Zhuang J, Ma X, Zheng N, Song Y, Xia W. P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells. Oncol Lett 2020; 20:257-265. [PMID: 32565952 PMCID: PMC7285890 DOI: 10.3892/ol.2020.11569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the role of prolyl 4-hydroxylase beta polypeptide (P4HB) in the chemoresistance of liver cancer. Drug-resistant liver cancer cell lines, such as HepG2/adriamycin (ADR) cells, were treated and screened using adriamycin. Gene interference was used to silence the expression of P4HB in liver cancer cells. Cell viability, invasiveness and migration were assessed using CCK8, Transwell and wound healing assays, respectively. In addition, changes to key genes and proteins in the epithelial-mesenchymal transition (EMT) and β-catenin/Snail pathway were analyzed using reverse transcription-quantitative PCR and western blotting. Drug-resistant HepG2/ADR cells were successfully cultivated; the IC50 to ADR for HepG2/ADR and HepG2 cell lines was 4.85 and 0.61 µM, respectively. HepG2/ADR cells exhibited higher invasion and migration abilities compared with HepG2 cells (P<0.05). E-cadherin mRNA and protein expression levels in HepG2/ADR cells were decreased significantly, whereas P4HB, N-cadherin and vimentin mRNA and protein levels were significantly increased compared with HepG2 cells (all P<0.05). Knockdown of P4HB significantly decreased cell viability and the invasion and migration ability of HepG2/ADR cells. In addition, P4HB knockdown enhanced E-cadherin mRNA and protein expression levels, whereas N-cadherin, vimentin, total β-catenin, nuclear β-catenin and Snail mRNA and protein levels were significantly decreased (all P<0.05). Overall, the present study demonstrated that EMT and β-catenin/Snail pathway influence P4HB modulation in liver cancer chemoresistance.
Collapse
Affiliation(s)
- Xing Ma
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiening Wang
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Juhua Zhuang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Xiaokun Ma
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ni Zheng
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yanan Song
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
728
|
Bhatia S, Wang P, Toh A, Thompson EW. New Insights Into the Role of Phenotypic Plasticity and EMT in Driving Cancer Progression. Front Mol Biosci 2020; 7:71. [PMID: 32391381 PMCID: PMC7190792 DOI: 10.3389/fmolb.2020.00071] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor cells demonstrate substantial plasticity in their genotypic and phenotypic characteristics. Epithelial-mesenchymal plasticity (EMP) can be characterized into dynamic intermediate states and can be orchestrated by many factors, either intercellularly via epigenetic reprograming, or extracellularly via growth factors, inflammation and/or hypoxia generated by the tumor stromal microenvironment. EMP has the capability to alter phenotype and produce heterogeneity, and thus by changing the whole cancer landscape can attenuate oncogenic signaling networks, invoke anti-apoptotic features, defend against chemotherapeutics and reprogram angiogenic and immune recognition functions. We discuss here the role of phenotypic plasticity in tumor initiation, progression and metastasis and provide an update of the modalities utilized for the molecular characterization of the EMT states and attributes of cellular behavior, including cellular metabolism, in the context of EMP. We also summarize recent findings in dynamic EMP studies that provide new insights into the phenotypic plasticity of EMP flux in cancer and propose therapeutic strategies to impede the metastatic outgrowth of phenotypically heterogeneous tumors.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Peiyu Wang
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Alan Toh
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
729
|
Chiodi I, Mondello C. Life style factors, tumor cell plasticity and cancer stem cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108308. [PMID: 32430096 DOI: 10.1016/j.mrrev.2020.108308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Cancers are heterogeneous tissues and a layer of heterogeneity is determined by the presence of cells showing stemness traits, known as cancer stem cells (CSCs). Evidence indicates that CSCs are important players in tumor development, progression and relapse. Oncogenic transformation of normal stem cells can give rise to CSCs, but CSCs can also originate from de-differentiation of bulk tumor cells. Thus, factors promoting the increase of normal stem cell pools or stimulating the acquisition of stemness features by tumor cells can have serious consequences on cancer origin and progression. In this review, we will first give an overview of the CSC model of cancer development and we will then discuss the role of life style factors, such as high caloric diet, alcohol drinking and smoking, on the widening of stem cell pools and the induction of CSC features in tumors. Finally, we will discuss some healthy life style factors that can help to prevent cancer.
Collapse
Affiliation(s)
- Ilaria Chiodi
- Istituto di Genetica Molecolare L. L. Cavalli-Sforza, CNR, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Chiara Mondello
- Istituto di Genetica Molecolare L. L. Cavalli-Sforza, CNR, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
730
|
Maltseva D, Raygorodskaya M, Knyazev E, Zgoda V, Tikhonova O, Zaidi S, Nikulin S, Baranova A, Turchinovich A, Rodin S, Tonevitsky A. Knockdown of the α5 laminin chain affects differentiation of colorectal cancer cells and their sensitivity to chemotherapy. Biochimie 2020; 174:107-116. [PMID: 32334043 DOI: 10.1016/j.biochi.2020.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
The interaction of tumor cells with the extracellular matrix (ECM) may affect the rate of cancer progression and metastasis. One of the major components of ECM are laminins, the heterotrimeric glycoproteins consisting of α-, β-, and γ-chains (αβγ). Laminins interact with their cell surface receptors and, thus, regulate multiple cellular processes. In this work, we demonstrate that shRNA-mediated knockdown of the α5 laminin chain results in Wnt- and mTORC1-dependent partial dedifferentiation of colorectal cancer cells. Furthermore, we showed that this dedifferentiation involved activation of ER-stress signaling, pathway promoting the sensitivity of cells to 5-fluorouracil.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia; Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.
| | - Maria Raygorodskaya
- Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya str. 10, 119121, Moscow, Russia
| | - Olga Tikhonova
- Institute of Biomedical Chemistry, Pogodinskaya str. 10, 119121, Moscow, Russia
| | - Shan Zaidi
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700, Dolgoprudny, Russia
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA; Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700, Dolgoprudny, Russia; Research Center of Medical Genetics, Moskvorechye str. 1, 115522, Moscow, Russia
| | | | - Sergey Rodin
- Department of Surgical Sciences, Ångström Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia; Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.
| |
Collapse
|
731
|
Fanelli GN, Naccarato AG, Scatena C. Recent Advances in Cancer Plasticity: Cellular Mechanisms, Surveillance Strategies, and Therapeutic Optimization. Front Oncol 2020; 10:569. [PMID: 32391266 PMCID: PMC7188928 DOI: 10.3389/fonc.2020.00569] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The processes of recurrence and metastasis, through which cancer relapses locally or spreads to distant sites in the body, accounts for more than 90% of cancer-related deaths. At present there are very few treatment options for patients at this stage of their disease. The main obstacle to successfully treat advanced cancer is the cells' ability to change in ways that make them resistant to treatment. Understanding the cellular mechanisms that mediate this cancer cell plasticity may lead to improved patient survival. Epigenetic reprogramming, together with tumor microenvironment, drives such dynamic mechanisms favoring tumor heterogeneity, and cancer cell plasticity. In addition, the development of new approaches that can report on cancer plasticity in their native environment have profound implications for studying cancer biology and monitoring tumor progression. We herein provide an overview of recent advancements in understanding the mechanisms regulating cell plasticity and current strategies for their monitoring and therapy management.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
732
|
Wilson MM, Weinberg RA, Lees JA, Guen VJ. Emerging Mechanisms by which EMT Programs Control Stemness. Trends Cancer 2020; 6:775-780. [PMID: 32312682 DOI: 10.1016/j.trecan.2020.03.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023]
Abstract
Tissue regeneration relies on adult stem cells (SCs) that possess the ability to self-renew and produce differentiating progeny. In an analogous manner, the development of certain cancers depends on a subset of tumor cells, called cancer stem cells (CSCs), with SC-like properties. In addition to being responsible for tumorigenesis, CSCs exhibit elevated resistance to therapy and thus drive tumor relapse post-treatment. The epithelial-mesenchymal transition (EMT) programs promote SC and CSC stemness in many epithelial tissues. Here, we provide an overview of the mechanisms underlying the relationship between stemness and EMT programs, which may represent therapeutic vulnerabilities for the treatment of cancers.
Collapse
Affiliation(s)
- Molly M Wilson
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert A Weinberg
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Whitehead Institute, Cambridge, MA, USA
| | - Jacqueline A Lees
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vincent J Guen
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)- UMR 6290, F- 35000 Rennes, France.
| |
Collapse
|
733
|
Direct comparison of size-dependent versus EpCAM-dependent CTC enrichment at the gene expression and DNA methylation level in head and neck squamous cell carcinoma. Sci Rep 2020; 10:6551. [PMID: 32300118 PMCID: PMC7162906 DOI: 10.1038/s41598-020-63055-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/29/2020] [Indexed: 11/15/2022] Open
Abstract
We directly compared two different approaches used for Circulating Tumor Cell (CTC) isolation, a size-dependent microfluidic system versus an EpCAM-dependent positive selection for downstream molecular characterization of CTC both at the gene expression and DNA methylation level in Head and Neck Squamous Cell Carcinoma (HNSCC). A size-dependent microfluidic device (Parsortix, ANGLE) and an EpCAM-dependent positive immune-magnetic isolation procedure were applied in parallel, using 10 mL PB from 50 HNSCC patients and 18 healthy donors. Total RNA was isolated from enriched CTCs and RT-qPCR was used to study the expression levels of CK-19, PD-L1, EGFR, TWIST1, CDH2 and B2M (reference gene). Real time methylation specific PCR (MSP) was used to study the methylation status of RASSF1A and MLL3 genes. In identical blood draws, the label-free size-dependent CTC-isolation system was superior in terms of sensitivity when compared to the EpCAM-dependent CTC enrichment, since a significantly higher percentage of identical PB samples was found positive at the gene expression and DNA methylation level, while the specificity was not affected. Our results indicate that future studies focused on the evaluation of clinical utility of CTC molecular characterization in HNSCC should be based on size-dependent enrichment approaches.
Collapse
|
734
|
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, García de Herreros A, Goodall GJ, Hadjantonakis AK, Huang RYJ, Kalcheim C, Kalluri R, Kang Y, Khew-Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, Massagué J, Mayor R, McClay D, Mostov KE, Newgreen DF, Nieto MA, Puisieux A, Runyan R, Savagner P, Stanger B, Stemmler MP, Takahashi Y, Takeichi M, Theveneau E, Thiery JP, Thompson EW, Weinberg RA, Williams ED, Xing J, Zhou BP, Sheng G. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2020; 21:341-352. [PMID: 32300252 PMCID: PMC7250738 DOI: 10.1038/s41580-020-0237-9] [Citation(s) in RCA: 1143] [Impact Index Per Article: 285.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Epithelial–mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by ‘the EMT International Association’ (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT. In this Consensus Statement, the authors (on behalf of the EMT International Association) propose guidelines to define epithelial–mesenchymal transition, its phenotypic plasticity and the associated multiple intermediate epithelial–mesenchymal cell states. Clarification of nomenclature and definitions will help reduce misinterpretation of research data generated in different experimental model systems and promote cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Jing Yang
- Departments of Pharmacology and Pediatrics, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Parker Antin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Geert Berx
- Molecular and Cellular Oncology Lab, Department of Biomedical Molecular Biology, Ghent University, Cancer Research Institute Ghent (CRIG), VIB Center for Inflammation Research, Ghent, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, UK
| | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ & Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jordi Casanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology/Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Shoukat Dedhar
- Department of Biochemistry and Molecular Biology, University of British Columbia and British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Rik Derynck
- Departments of Cell and Tissue Biology, and Anatomy, University of California at San Francisco, San Francisco, CA, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jonas Fuxe
- Department of Laboratory Medicine (LABMED), Division of Pathology, Karolinska University Hospital and Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gregory J Goodall
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruby Y J Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute for medical Research Israel-Canada and the Safra Center for Neurosciences, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, MD Anderson Cancer Center, Houston, TX, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, an Alliance of SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Herbert Levine
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jinsong Liu
- Department of Anatomic Pathology, The Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory D Longmore
- Department of Medicine (Oncology) and Department of Cell Biology and Physiology, ICCE Institute, Washington University, St. Louis, MO, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| | - David McClay
- Department of Biology, Duke University, Durham, NC, USA
| | - Keith E Mostov
- Departments of Anatomy and Biochemistry/Biophysics, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Donald F Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH) Avda Ramon y Cajal s/n, Sant Joan d´Alacant, Spain
| | - Alain Puisieux
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Institut Curie, PSL Research University, Paris, France
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, University Paris-Saclay, Villejuif, France
| | - Ben Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Erik W Thompson
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Department of Biology, MIT Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Jianhua Xing
- Department of Computational and Systems Biology and UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry and UK Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| | | |
Collapse
|
735
|
Cognart HA, Viovy JL, Villard C. Fluid shear stress coupled with narrow constrictions induce cell type-dependent morphological and molecular changes in SK-BR-3 and MDA-MB-231 cells. Sci Rep 2020; 10:6386. [PMID: 32286431 PMCID: PMC7156718 DOI: 10.1038/s41598-020-63316-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer mortality mainly arises from metastases, due to cells that escape from a primary tumor, circulate in the blood as circulating tumor cells (CTCs), permeate across blood vessels and nest in distant organs. It is still unclear how CTCs overcome the harsh conditions of fluid shear stress and mechanical constraints within the microcirculation. Here, a minimal model of the blood microcirculation was established through the fabrication of microfluidic channels comprising constrictions. Metastatic breast cancer cells of epithelial-like and mesenchymal-like phenotypes were flowed into the microfluidic device. These cells were visualized during circulation and analyzed for their dynamical behavior, revealing long-lived plastic deformations and significant differences in biomechanics between cell types. γ-H2AX staining of cells retrieved post-circulation showed significant increase of DNA damage response in epithelial-like SK-BR-3 cells, while gene expression analysis of key regulators of epithelial-to-mesenchymal transition revealed significant changes upon circulation. This work thus documents first results of the changes at the cellular, subcellular and molecular scales induced by the two main mechanical stimuli arising from circulatory conditions, and suggest a significant role of this still elusive step of the metastatic cascade in cancer cells heterogeneity and aggressiveness.
Collapse
Affiliation(s)
- Hamizah Ahmad Cognart
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS, UMR168, Paris, France.,Université PSL, Paris, France
| | - Jean-Louis Viovy
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS, UMR168, Paris, France.,Université PSL, Paris, France
| | - Catherine Villard
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS, UMR168, Paris, France. .,Université PSL, Paris, France.
| |
Collapse
|
736
|
53BP1 Accumulation in Circulating Tumor Cells Identifies Chemotherapy-Responsive Metastatic Breast Cancer Patients. Cancers (Basel) 2020; 12:cancers12040930. [PMID: 32283863 PMCID: PMC7226269 DOI: 10.3390/cancers12040930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Evidence suggests that the DNA end-binding protein p53-binding protein 1 (53BP1) is down-regulated in subsets of breast cancer. Circulating tumor cells (CTCs) provide accessible “biopsy material” to track cell traits and functions and their alterations during treatment. Here, we prospectively monitored the 53BP1 status in CTCs from 67 metastatic breast cancer (MBC) patients with HER2- CTCs and known hormone receptor (HR) status of the primary tumor and/or metastases before, during, and at the end of chemotherapeutic treatment with Eribulin. Nuclear 53BP1 staining and genomic integrity were evaluated by immunocytochemical and whole-genome-amplification-based polymerase chain reaction (PCR) analysis, respectively. Comparative analysis of CTCs from patients with triple-negative and HR+ tumors revealed elevated 53BP1 levels in CTCs from patients with HR+ metastases, particularly following chemotherapeutic treatment. Differences in nuclear 53BP1 signals did not correlate with genomic integrity in CTCs at baseline or with nuclear γH2AX signals in MBC cell lines, indicating that 53BP1 detected features beyond DNA damage. Kaplan–Meier analysis revealed an increasing association between nuclear 53BP1-positivity and progression-free survival (PFS) during chemotherapy until the final visit. Our data suggest that 53BP1 detection in CTCs could be a useful marker to capture dynamic changes of chemotherapeutic responsiveness in triple-negative and HR+ MBC.
Collapse
|
737
|
A Novel Approach for Quantifying Cancer Cells Showing Hybrid Epithelial/Mesenchymal States in Large Series of Tissue Samples: Towards a New Prognostic Marker. Cancers (Basel) 2020; 12:cancers12040906. [PMID: 32276404 PMCID: PMC7226581 DOI: 10.3390/cancers12040906] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022] Open
Abstract
In cancer biology, epithelial-to-mesenchymal transition (EMT) is associated with tumorigenesis, stemness, invasion, metastasis, and resistance to therapy. Evidence of co-expression of epithelial and mesenchymal markers suggests that EMT should be a stepwise process with distinct intermediate states rather than a binary switch. In the present study, we propose a morphological approach that enables the detection and quantification of cancer cells with hybrid E/M states, i.e., which combine partially epithelial (E) and partially mesenchymal (M) states. This approach is based on a sequential immunohistochemistry technique performed on the same tissue section, the digitization of whole slides, and image processing. The aim is to extract quantitative indicators able to quantify the presence of hybrid E/M states in large series of human cancer samples and to analyze their relationship with cancer aggressiveness. As a proof of concept, we applied our methodology to a series of about a hundred urothelial carcinomas and demonstrated that the presence of cancer cells with hybrid E/M phenotypes at the time of diagnosis is strongly associated with a poor prognostic value, independently of standard clinicopathological features. Although validation on a larger case series and other cancer types is required, our data support the hybrid E/M score as a promising prognostic biomarker for carcinoma patients.
Collapse
|
738
|
Nowotarski HL, Attayek PJ, Allbritton NL. Automated platform for cell selection and separation based on four-dimensional motility and matrix degradation. Analyst 2020; 145:2731-2742. [PMID: 32083265 PMCID: PMC7716803 DOI: 10.1039/c9an02224d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Motility and invasion are key steps in the metastatic cascade, enabling cells to move through normal tissue borders into the surrounding stroma. Most available in vitro assays track cell motility or cell invasion but lack the ability to measure both simultaneously and then separate single cells with unique behaviors. In this work, we developed a cell-separation platform capable of tracking cell movement (chemokinesis) and invasion through an extracellular matrix in space and time. The platform utilized a collagen scaffold with embedded tumor cells overlaid onto a microraft array. Confocal microscopy enabled high resolution (0.4 × 0.4 × 3.5 µm voxel) monitoring of cell movement within the scaffolds. Two pancreatic cancer cell lines with known differing invasiveness were characterized on this platform, with median motilities of 14 ± 6 μm and 10 ± 4 μm over 48 h. Within the same cell line, cells demonstrated highly variable motility, with XYZ movement ranging from 144 μm to 2 μm over 24 h. The ten lowest and highest motility cells, with median movements of 33 ± 11 μm and 3 ± 1 μm, respectively, were separated and sub-cultured. After 6 weeks of culture, the cell populations were assayed on a Transwell invasion assay and 227 ± 56 cells were invasive in the high motility population while only 48 ± 10 cells were invasive in the low motility population, indicating that the resulting offspring possessed a motility phenotype reflective of the parental cells. This work demonstrates the feasibility of sorting single cells based on complex phenotypes along with the capability to further probe those cells and explore biological phenomena.
Collapse
Affiliation(s)
- Hannah L Nowotarski
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
739
|
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Front Oncol 2020; 10:499. [PMID: 32318352 PMCID: PMC7154126 DOI: 10.3389/fonc.2020.00499] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Venetsana Kyriazopoulou
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Apostolos Zaravinos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.,Department of Life Sciences European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
740
|
Taverna JA, Hung CN, DeArmond DT, Chen M, Lin CL, Osmulski PA, Gaczynska ME, Wang CM, Lucio ND, Chou CW, Chen CL, Nazarullah A, Lampkin SR, Qiu L, Bearss DJ, Warner S, Whatcott CJ, Mouritsen L, Wade M, Weitman S, Mesa RA, Kirma NB, Chao WT, Huang THM. Single-Cell Proteomic Profiling Identifies Combined AXL and JAK1 Inhibition as a Novel Therapeutic Strategy for Lung Cancer. Cancer Res 2020; 80:1551-1563. [PMID: 31992541 PMCID: PMC7127959 DOI: 10.1158/0008-5472.can-19-3183] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Cytometry by time-of-flight (CyTOF) simultaneously measures multiple cellular proteins at the single-cell level and is used to assess intertumor and intratumor heterogeneity. This approach may be used to investigate the variability of individual tumor responses to treatments. Herein, we stratified lung tumor subpopulations based on AXL signaling as a potential targeting strategy. Integrative transcriptome analyses were used to investigate how TP-0903, an AXL kinase inhibitor, influences redundant oncogenic pathways in metastatic lung cancer cells. CyTOF profiling revealed that AXL inhibition suppressed SMAD4/TGFβ signaling and induced JAK1-STAT3 signaling to compensate for the loss of AXL. Interestingly, high JAK1-STAT3 was associated with increased levels of AXL in treatment-naïve tumors. Tumors with high AXL, TGFβ, and JAK1 signaling concomitantly displayed CD133-mediated cancer stemness and hybrid epithelial-to-mesenchymal transition features in advanced-stage patients, suggesting greater potential for distant dissemination. Diffusion pseudotime analysis revealed cell-fate trajectories among four different categories that were linked to clinicopathologic features for each patient. Patient-derived organoids (PDO) obtained from tumors with high AXL and JAK1 were sensitive to TP-0903 and ruxolitinib (JAK inhibitor) treatments, supporting the CyTOF findings. This study shows that single-cell proteomic profiling of treatment-naïve lung tumors, coupled with ex vivo testing of PDOs, identifies continuous AXL, TGFβ, and JAK1-STAT3 signal activation in select tumors that may be targeted by combined AXL-JAK1 inhibition. SIGNIFICANCE: Single-cell proteomic profiling of clinical samples may facilitate the optimal selection of novel drug targets, interpretation of early-phase clinical trial data, and development of predictive biomarkers valuable for patient stratification.
Collapse
Affiliation(s)
- Josephine A Taverna
- Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chia-Nung Hung
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Daniel T DeArmond
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Maria E Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Nicholas D Lucio
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Alia Nazarullah
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Shellye R Lampkin
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Lianqun Qiu
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - David J Bearss
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Steven Warner
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Clifford J Whatcott
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Lars Mouritsen
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Mark Wade
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Steven Weitman
- Institute for Drug Development, University of Texas Health Science Center, San Antonio, Texas
| | - Ruben A Mesa
- Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Nameer B Kirma
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung, Taiwan.
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas.
| |
Collapse
|
741
|
(20S)G-Rh2 Inhibits NF-κB Regulated Epithelial-Mesenchymal Transition by Targeting Annexin A2. Biomolecules 2020; 10:biom10040528. [PMID: 32244350 PMCID: PMC7225922 DOI: 10.3390/biom10040528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Epithelial-mesenchymal transition (EMT) is an essential step for cancer metastasis; targeting EMT is an important path for cancer treatment and drug development. NF-κB, an important transcription factor, has been shown to be responsible for cancer metastasis by enhancing the EMT process. Our previous studies showed that (20S)Ginsenoside Rh2 (G-Rh2) inhibits NF-κB activity by targeting Anxa2, but it is still not known whether this targeted inhibition of NF-κB can inhibit the EMT process. (2) Methods: In vivo (20S)G-Rh2-Anxa2 interaction was assessed by cellular thermal shift assay. Protein interaction was determined by immuno-precipitation analysis. NF-κB activity was determined by dual luciferase reporter assay. Gene expression was determined by RT-PCR and immuno-blot. EMT was evaluated by wound healing and Transwell assay and EMT regulating gene expression. (3) Results: Anxa2 interacted with the NF-κB p50 subunit, promoted NF-κB activation, then accelerated mesenchymal-like gene expression and enhanced cell motility; all these cellular processes were inhibited by (20S)G-Rh2. In contrast, these (20S)G-Rh2 effect were completely eliminated by overexpression of Anxa2-K301A, an (20S)G-Rh2-binding-deficient mutant of Anxa2. (4) Conclusion: (20S)G-Rh2 inhibited NF-κB activation and related EMT by targeting Anxa2 in MDA-MB-231 cells.
Collapse
|
742
|
Läsche M, Emons G, Gründker C. Shedding New Light on Cancer Metabolism: A Metabolic Tightrope Between Life and Death. Front Oncol 2020; 10:409. [PMID: 32300553 PMCID: PMC7145406 DOI: 10.3389/fonc.2020.00409] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Since the earliest findings of Otto Warburg, who discovered the first metabolic differences between lactate production of cancer cells and non-malignant tissues in the 1920s, much time has passed. He explained the increased lactate levels with dysfunctional mitochondria and aerobic glycolysis despite adequate oxygenation. Meanwhile, we came to know that mitochondria remain instead functional in cancer cells; hence, metabolic drift, rather than being linked to dysfunctional mitochondria, was found to be an active act of direct response of cancer cells to cell proliferation and survival signals. This metabolic drift begins with the use of sugars and the full oxidative phosphorylation via the mitochondrial respiratory chain to form CO2, and it then leads to the formation of lactic acid via partial oxidation. In addition to oncogene-driven metabolic reprogramming, the oncometabolites themselves alter cell signaling and are responsible for differentiation and metastasis of cancer cells. The aberrant metabolism is now considered a major characteristic of cancer within the past 15 years. However, the proliferating anabolic growth of a tumor and its spread to distal sites of the body is not explainable by altered glucose metabolism alone. Since a tumor consists of malignant cells and its tumor microenvironment, it was important for us to understand the bilateral interactions between the primary tumor and its microenvironment and the processes underlying its successful metastasis. We here describe the main metabolic pathways and their implications in tumor progression and metastasis. We also portray that metabolic flexibility determines the fate of the cancer cell and ultimately the patient. This flexibility must be taken into account when deciding on a therapy, since singular cancer therapies only shift the metabolism to a different alternative path and create resistance to the medication used. As with Otto Warburg in his days, we primarily focused on the metabolism of mitochondria when dealing with this scientific question.
Collapse
Affiliation(s)
- Matthias Läsche
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
743
|
Kutasovic JR, McCart Reed AE, Sokolova A, Lakhani SR, Simpson PT. Morphologic and Genomic Heterogeneity in the Evolution and Progression of Breast Cancer. Cancers (Basel) 2020; 12:E848. [PMID: 32244556 PMCID: PMC7226487 DOI: 10.3390/cancers12040848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology, genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management, but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds further complexity and impacts a patient's response to neoadjuvant or adjuvant therapy. Here, we review some established and more recent evidence related to the complex nature of breast cancer evolution. We describe morphologic and genomic diversity as it arises spontaneously during the early stages of tumour evolution, and also in the context of treatment where the changing subclonal architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the selective pressures of therapy.
Collapse
Affiliation(s)
- Jamie R. Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Anna Sokolova
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
| |
Collapse
|
744
|
Kato M, Onoyama I, Yoshida S, Cui L, Kawamura K, Kodama K, Hori E, Matsumura Y, Yagi H, Asanoma K, Yahata H, Itakura A, Takeda S, Kato K. Dual-specificity phosphatase 6 plays a critical role in the maintenance of a cancer stem-like cell phenotype in human endometrial cancer. Int J Cancer 2020; 147:1987-1999. [PMID: 32159851 PMCID: PMC7496376 DOI: 10.1002/ijc.32965] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
The prognosis of patients with high‐grade or advanced‐stage endometrial cancer remains poor. As cancer stem‐like cells (CSCs) are thought to be associated with endometrial cancers, it is essential to investigate the molecular mechanisms that regulate endometrial CSCs. Dual‐specificity phosphatase 6 (DUSP6) functions as a negative‐feedback regulator of MAPK–ERK1/2 signaling, but its role in endometrial cancer remains unknown. We investigated whether DUSP6 is involved in cancer cell stemness using endometrial cancer cell lines and specimens from endometrial cancer patients. DUSP6 induced the expression of CSC‐related genes including ALDH1, Nanog, SOX2 and Oct4A, increased the population of cells in the G0/G1 phase, and promoted sphere formation ability. DUSP6 knockdown resulted in reduced cell invasion and metastasis, whereas DUSP6 overexpression inhibited apoptosis under serum‐free conditions. Moreover, DUSP6 decreased phosphorylated ERK1/2 and increased phosphorylated Akt levels, which potentially induces CSC features. In patients with endometrial cancers, DUSP6 expression was determined using immunohistochemistry, and based on the results, the patients were dichotomized into high‐ and low‐DUSP6‐expression groups. Progression‐free survival and overall survival were significantly shorter in the high‐DUSP6‐expression group. These results suggest that DUSP6 has potential value as a biomarker of CSCs and as a target of therapies designed to eliminate CSCs in endometrial cancer. What's new? Although cancer stem‐like cells (CSCs) are involved in human endometrial cancers, the underlying molecular mechanisms and biomarkers for CSCs in endometrial cancers remain elusive. Here, the authors found that DUSP6 plays an important role in regulating endometrial CSC phenotypes by increasing self‐renewal ability and starvation resistance. DUSP6 expression was required for inducing invasion and metastasis and resulted in ERK1/2 dephosphorylation and Akt phosphorylation, which potentially contribute to the promotion of CSC phenotypes. As DUSP6 expression was also positively associated with worse progression‐free and overall survival, DUSP6 represents a potential biomarker for endometrial CSCs and a therapeutic target in endometrial cancers.
Collapse
Affiliation(s)
- Masaya Kato
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Ichiro Onoyama
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Sachiko Yoshida
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Lin Cui
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keiko Kawamura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keisuke Kodama
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Emiko Hori
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Yumiko Matsumura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Hiroshi Yagi
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kazuo Asanoma
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Hideaki Yahata
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Atsuo Itakura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Satoru Takeda
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Kiyoko Kato
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| |
Collapse
|
745
|
Chakraborty P, George JT, Tripathi S, Levine H, Jolly MK. Comparative Study of Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. Front Bioeng Biotechnol 2020; 8:220. [PMID: 32266244 PMCID: PMC7100584 DOI: 10.3389/fbioe.2020.00220] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
The Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells can stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells can undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR)-based metric was capable of distinguishing between "pure" individual hybrid E/M vs. mixtures of E and M cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: (a) it uses a small number of predictors to calculate the EMT score and (b) it can predict from the transcriptomic signature of a population whether it is comprised of "pure" hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Jason T. George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Ph.D. Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
746
|
Chakraborty P, George JT, Tripathi S, Levine H, Jolly MK. Comparative Study of Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. Front Bioeng Biotechnol 2020; 8:220. [PMID: 32266244 DOI: 10.3389/fbioe.2020.00220/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/04/2020] [Indexed: 05/28/2023] Open
Abstract
The Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells can stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells can undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR)-based metric was capable of distinguishing between "pure" individual hybrid E/M vs. mixtures of E and M cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: (a) it uses a small number of predictors to calculate the EMT score and (b) it can predict from the transcriptomic signature of a population whether it is comprised of "pure" hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Ph.D. Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
747
|
Rowling EJ, Miskolczi Z, Nagaraju R, Wilcock DJ, Wang P, Telfer B, Li Y, Lasheras-Otero I, Redondo-Muñoz M, Sharrocks AD, Arozarena I, Wellbrock C. Cooperative behaviour and phenotype plasticity evolve during melanoma progression. Pigment Cell Melanoma Res 2020; 33:695-708. [PMID: 32145051 PMCID: PMC7496243 DOI: 10.1111/pcmr.12873] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 01/06/2023]
Abstract
A major challenge for managing melanoma is its tumour heterogeneity based on individual co-existing melanoma cell phenotypes. These phenotypes display variable responses to standard therapies, and they drive individual steps of melanoma progression; hence, understanding their behaviour is imperative. Melanoma phenotypes are defined by distinct transcriptional states, which relate to different melanocyte lineage development phases, ranging from a mesenchymal, neural crest-like to a proliferative, melanocytic phenotype. It is thought that adaptive phenotype plasticity based on transcriptional reprogramming drives melanoma progression, but at which stage individual phenotypes dominate and moreover, how they interact is poorly understood. We monitored melanocytic and mesenchymal phenotypes throughout melanoma progression and detected transcriptional reprogramming at different stages, with a gain in mesenchymal traits in circulating melanoma cells (CTCs) and proliferative features in metastatic tumours. Intriguingly, we found that distinct phenotype populations interact in a cooperative manner, which generates tumours of greater "fitness," supports CTCs and expands organotropic cues in metastases. Fibronectin, expressed in mesenchymal cells, acts as key player in cooperativity and promotes survival of melanocytic cells. Our data reveal an important role for inter-phenotype communications at various stages of disease progression, suggesting these communications could act as therapeutic target.
Collapse
Affiliation(s)
- Emily J Rowling
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Raghavendar Nagaraju
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Daniel J Wilcock
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ping Wang
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian Telfer
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yaoyong Li
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Irene Lasheras-Otero
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Marta Redondo-Muñoz
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Andrew D Sharrocks
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Imanol Arozarena
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
748
|
Nicolini A, Rossi G, Ferrari P, Carpi A. Minimal residual disease in advanced or metastatic solid cancers: The G0-G1 state and immunotherapy are key to unwinding cancer complexity. Semin Cancer Biol 2020; 79:68-82. [PMID: 32201368 DOI: 10.1016/j.semcancer.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/20/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, a large amount of research has focused on elucidating the mechanisms that account for homing disseminated cancer cells (DCCs) from solid tumours to distant organs, which successively progress to overt metastatic disease; this is currently incurable. A better understanding of DCC behaviour is expected to allow detectable metastasis prevention by more effectively targeting 'metastatic seeds before they sprout'. As DCC biology co-evolved with that of the primary tumour, and due to the many similarities between them, the term 'niche' has been borrowed from normal adult stem cells (ASCs) to define the site of DCC metastatic colonisation. Moreover, heterogeneity, survival, protection, stemness and plasticity as well as the prolonged G0-G1 dormant state in the metastatic niche have been the main aspects of intense investigation. Consistent with these findings, in solid cancers with minimal residual disease (MRD), it has been proposed to prolong adjuvant therapy by targeting specific molecular pathway(s) involving DCC dormancy. However, so far, few disappointing clinical data have been reported. As an alternative strategy, because immune-surveillance contributes to the steady state of the DCC population and likely to the G0-G1 state of cancer cells, we have used prolonged immune-modulatory cytostatic chemotherapy, active immune stimulation with an INF-β/IL-2 sequence or drugs inhibiting myeloid-derived suppressor cell (MDSC)/Treg-mediated immune suppression. This strategy, mainly aimed at boosting the immune response, is based on recent findings suggesting the downregulation of immune escape mechanisms as well as other principal hallmarks during the G0-G1 state and/or in MRD. Preliminary clinical and/or laboratory data suggest the efficacy of this strategy in gastrointestinal and some endocrine-dependent cancers. Following this, we propose therapeutic schedules to prevent DCC activation and proliferation in solid cancers at a high risk of relapse or as maintenance therapy in metastatic patients after complete response (CR) to conventional treatment.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Italy.
| | - Giuseppe Rossi
- National Research Council (CNR), Epidemiology and Biostatistics Unit, Institute of Clinical Physiology and G. Monasterio Foundation, Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology 1, University Hospital of Pisa, Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
749
|
Castro-Giner F, Aceto N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med 2020; 12:31. [PMID: 32192534 PMCID: PMC7082968 DOI: 10.1186/s13073-020-00728-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
The analysis of circulating tumor cells (CTCs) is an outstanding tool to provide insights into the biology of metastatic cancers, to monitor disease progression and with potential for use in liquid biopsy-based personalized cancer treatment. These goals are ambitious, yet recent studies are already allowing a sharper understanding of the strengths, challenges, and opportunities provided by liquid biopsy approaches. For instance, through single-cell-resolution genomics and transcriptomics, it is becoming increasingly clear that CTCs are heterogeneous at multiple levels and that only a fraction of them is capable of initiating metastasis. It also appears that CTCs adopt multiple ways to enhance their metastatic potential, including homotypic clustering and heterotypic interactions with immune and stromal cells. On the clinical side, both CTC enumeration and molecular analysis may provide new means to monitor cancer progression and to take individualized treatment decisions, but their use for early cancer detection appears to be challenging compared to that of other tumor derivatives such as circulating tumor DNA. In this review, we summarize current data on CTC biology and CTC-based clinical applications that are likely to impact our understanding of the metastatic process and to influence the clinical management of patients with metastatic cancer, including new prospects that may favor the implementation of precision medicine.
Collapse
Affiliation(s)
- Francesc Castro-Giner
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.
| |
Collapse
|
750
|
Zheng Y, Zhang J, Huang M, Wang T, Qu X, Wu L, Song J, Wang W, Song Y, Yang C. Selection of Aptamers Against Vimentin for Isolation and Release of Circulating Tumor Cells Undergoing Epithelial Mesenchymal Transition. Anal Chem 2020; 92:5178-5184. [PMID: 32148021 DOI: 10.1021/acs.analchem.9b05690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Circulating tumor cells (CTCs) undergoing epithelial mesenchymal transition (EMT) play an essential role in metastasis and have a better correlation with poor disease outcomes, but the most current affinity-based enrichment methods rely on targeting epithelial markers, which are less effective in capturing CTCs undergoing EMT. Herein, we identified and optimized an aptamer (ZY5C) sequence with high binding affinity and specificity against cell surface vimentin (CSV), which is overexpressed on the post-EMT CTCs. Not only can the hairpin-structured ZY5C aptamer specifically recognize a number of cancer cells with native CSV expression, but it can also bind to CSV expressed on EMT-cells. The Kd value of the ZY5C aptamer against CSV-positive T24 cells was found to be 38 ± 4 nM. Using the evolved ZY5C aptamer and multivalent ZY5C aptamer-functionalized chip, we were able to isolate CTCs from the blood of adenocarcinoma, sarcoma, and carcinosarcoma patients. Overall, this ZY5C aptamer and isolation method bring a fresh approach to CTCs analysis, which not only detects CTCs from nonepithelial origin, but also provides an efficient way to in-depth study the role of post-EMT CTCs in clinical application and metastasis mechanisms.
Collapse
Affiliation(s)
- Yuan Zheng
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Teng Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin Qu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|