701
|
Abstract
PURPOSE OF REVIEW The first monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) have been approved for clinical use. This timely review highlights recent developments. RECENT FINDINGS Low-density lipoprotein cholesterol (LDL-C) is the primary driver of atherosclerosis and the key target for intervention. Yet despite best treatment including statins, attaining sufficient LDL-C lowering can be problematic for high cardiovascular risk patients. The development of PCSK9 inhibitors, driven by novel genetic and mechanistic insights, offers an answer. Removal of circulating PCSK9 increases LDL receptor availability, and thus markedly decreases plasma LDL-C levels (by ∼50-60%), and is additive to the lipid lowering effects of statins and ezetimibe. PCSK9 inhibition also reduces (by 25-30%) plasma levels of lipoprotein(a), a causal factor in atherosclerotic vascular disease, suggestive of partial catabolism of lipoprotein(a) by LDL receptors. The ODYSSEY and PROFICIO (Programme to Reduce LDL-C and Cardiovascular Outcomes Following Inhibition of PCSK9 In Different Populations) clinical trial programmes involving a wide range of high-risk patients, including statin intolerant patients, have confirmed the consistency of the LDL response, even with concomitant high-intensity statin or nonstatin therapy. Extensive evidence to date attests to a favourable safety and tolerability profile for these innovative agents. SUMMARY The new pharmacotherapeutic era of PCSK9 inhibition is upon us, promising major reduction in cardiovascular events across a wide spectrum of high-risk patients.
Collapse
Affiliation(s)
- M. John Chapman
- National Institute for Health and Medical Research (INSERM), Pitié-Salpêtrière University Hospital, Paris , France
| | - Jane K. Stock
- PCSK9 Forum Secretariat, Minerva Mill Innovation Centre, Alcester, UK
| | - Henry N. Ginsberg
- Irving Institute, Columbia University College of Physicians and Surgeons, Department of Medicine, New York, USA
| |
Collapse
|
702
|
Abstract
PURPOSE OF REVIEW Familial hypercholesterolaemia is the commonest autosomal dominant disorder in man, but many questions about familial hypercholesterolaemia remain to be answered. Guidelines are increasing in importance as healthcare becomes standardized. The review suggests areas that require more investigation or where pertinent guidelines may need to be reviewed. RECENT FINDINGS Familial hypercholesterolaemia is commoner than previously thought, but its epidemiology needs further investigation against a background of changing environmental and lifestyle factors that may bear on its phenotypic expression. Screening for familial hypercholesterolaemia may be more difficult than might be thought as cascade testing may not capture all cases effectively and universal screening appears compelling, but requires testing and evaluation. Cardiovascular disease guidelines are moving to being risk based, but familial hypercholesterolaemia stands alone as defined by large database of lipids-cholesterol criteria. A risk-based approach may need to be considered for familial hypercholesterolaemia, but a good evidence base is required. The effects of older therapies on prognosis in familial hypercholesterolaemia are based on surrogate as opposed to cardiovascular disease outcomes. Novel efficacious but expensive therapies are on the horizon, but no specific outcome trials in familial hypercholesterolaemia are planned and they may not be cost-effective outside very severe familial hypercholesterolaemia. Further research is also required to trial and test different models of care for familial hypercholesterolaemia. SUMMARY Despite familial hypercholesterolaemia being a common genetic condition, aspects of basic epidemiology, risk assessment, treatment, and models of care remain uncertain.
Collapse
Affiliation(s)
- Anthony S Wierzbicki
- aGuy's and St Thomas' Hospitals, St. Thomas' Hospital Campus, London, UKbSchool of Medicine and Pharmacology, Cardiovascular Medicine Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
703
|
Sijbrands EJG, Nieman K, Budoff MJ. Cardiac computed tomography imaging in familial hypercholesterolaemia: implications for therapy and clinical trials. Curr Opin Lipidol 2015; 26:586-92. [PMID: 26780011 DOI: 10.1097/mol.0000000000000249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The purpose of the present review is to summarize the potential clinical applications of computed tomographic angiography (CTA) in familial hypercholesterolemia so far and recent advances of CTA research in other high-risk patients. RECENT FINDINGS Long-term, aggressively statin-treated, asymptomatic familial hypercholesterolemia patients may still have dramatic coronary artery disease (CAD). A clear association between the presence and the extent of nonobstructive CAD and all-cause mortality was found in the COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter registry. Notably, baseline statin therapy was associated with a significantly lower mortality for individuals with atherosclerotic plaque on CTA, but not for individuals with normal coronary arteries. SUMMARY CTA imaging has made clear that an increased plaque burden can be present even among asymptomatic, long-term aggressively statin-treated familial hypercholesterolemia patients. In the COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter registry, nonobstructive CAD predicted all-cause mortality and statin treatment improved the life span of persons with nonobstructive CAD. Clinical trials with CTA are required to develop and test identification of CAD and personalized treatment strategies for familial hypercholesterolemia.
Collapse
Affiliation(s)
- Eric J G Sijbrands
- aDepartment of Internal MedicinebDepartments of Cardiology and Radiology, Erasmus Medical Center, Rotterdam, The NetherlandscLos Angeles Biomedical Research Institute, Torrance, California, USA
| | | | | |
Collapse
|
704
|
Brautbar A, Leary E, Rasmussen K, Wilson DP, Steiner RD, Virani S. Genetics of familial hypercholesterolemia. Curr Atheroscler Rep 2015; 17:491. [PMID: 25712136 DOI: 10.1007/s11883-015-0491-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol and premature cardiovascular disease, with a prevalence of approximately 1 in 200-500 for heterozygotes in North America and Europe. Monogenic FH is largely attributed to mutations in the LDLR, APOB, and PCSK9 genes. Differential diagnosis is critical to distinguish FH from conditions with phenotypically similar presentations to ensure appropriate therapeutic management and genetic counseling. Accurate diagnosis requires careful phenotyping based on clinical and biochemical presentation, validated by genetic testing. Recent investigations to discover additional genetic loci associated with extreme hypercholesterolemia using known FH families and population studies have met with limited success. Here, we provide a brief overview of the genetic determinants, differential diagnosis, genetic testing, and counseling of FH genetics.
Collapse
Affiliation(s)
- Ariel Brautbar
- Division of Genetics, Cook Children's Medical Center, Fort Worth, TX, USA,
| | | | | | | | | | | |
Collapse
|
705
|
Cephus CE, Qureshi AM, Sexson-Tejtel SK, Goss JA, Moodie DS. Liver Transplantation for HoFH in Children: Single Center Experience. CONGENIT HEART DIS 2015; 10:520-8. [PMID: 26556546 DOI: 10.1111/chd.12301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Constance E Cephus
- Baylor College of Medicine, Houston, Tex, USA.,Texas Children's Hospital, Houston, Tex, USA
| | - Athar M Qureshi
- Baylor College of Medicine, Houston, Tex, USA.,Texas Children's Hospital, Houston, Tex, USA
| | | | - John A Goss
- Baylor College of Medicine, Houston, Tex, USA.,Texas Children's Hospital, Houston, Tex, USA
| | - Douglas S Moodie
- Baylor College of Medicine, Houston, Tex, USA.,Texas Children's Hospital, Houston, Tex, USA
| |
Collapse
|
706
|
Thompson GR, Seed M, Naoumova RP, Neuwirth C, Walji S, Aitman TJ, Scott J, Myant NB, Soutar AK. Improved cardiovascular outcomes following temporal advances in lipid-lowering therapy in a genetically-characterised cohort of familial hypercholesterolaemia homozygotes. Atherosclerosis 2015; 243:328-33. [DOI: 10.1016/j.atherosclerosis.2015.09.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/12/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
|
707
|
Luscher TF. Cholesterol production, accumulation, reverse transport, and excretion: opportunities for statins, PPAR- agonists, and PCSK9 inhibitors. Eur Heart J 2015; 36:2965-7. [DOI: 10.1093/eurheartj/ehv576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
708
|
Di Taranto MD, D'Agostino MN, Fortunato G. Functional characterization of mutant genes associated with autosomal dominant familial hypercholesterolemia: integration and evolution of genetic diagnosis. Nutr Metab Cardiovasc Dis 2015; 25:979-987. [PMID: 26165249 DOI: 10.1016/j.numecd.2015.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
Abstract
AIMS Familial Hypercholesterolemia (FH) is one of the most frequent dyslipidemias, the autosomal dominant form of which is primarily caused by mutations in the LDL receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes, although in around 20% of patients the genetic cause remains unidentified. Genetic testing has notably improved the identification of patients suffering from FH, the most frequent cause of which is the presence of mutations in the LDLR gene. Although more than 1200 different mutations have been identified in this gene, about 80% are recognized to be pathogenic. We aim to overview the current methods used to perform the functional characterization of mutations causing FH and to highlight the conditions requiring a functional characterization of the variant in order to obtain a diagnostic report. DATA SYNTHESIS In the current review, we summarize the different types of functional assays - including their advantages and disadvantages - performed to characterize mutations in the LDLR, APOB and PCSK9 genes helping to better define their pathogenic role. We describe the evaluation of splicing alterations and two major procedures for functional characterization: 1. ex vivo methods, using cells from FH patients; 2. in vitro methods using cell lines. CONCLUSIONS Functional characterization of the LDLR, APOB and PCSK9 mutant genes associated with FH can be considered a necessary integration of its genetic diagnosis.
Collapse
Affiliation(s)
| | - M N D'Agostino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - G Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate S.C.a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
709
|
Gidding SS, Champagne MA, de Ferranti SD, Defesche J, Ito MK, Knowles JW, McCrindle B, Raal F, Rader D, Santos RD, Lopes-Virella M, Watts GF, Wierzbicki AS. The Agenda for Familial Hypercholesterolemia: A Scientific Statement From the American Heart Association. Circulation 2015; 132:2167-92. [PMID: 26510694 DOI: 10.1161/cir.0000000000000297] [Citation(s) in RCA: 513] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
710
|
Porras AM, Shanmuganayagam D, Meudt JJ, Krueger CG, Hacker TA, Rahko PS, Reed JD, Masters KS. Development of Aortic Valve Disease in Familial Hypercholesterolemic Swine: Implications for Elucidating Disease Etiology. J Am Heart Assoc 2015; 4:e002254. [PMID: 26508741 PMCID: PMC4845146 DOI: 10.1161/jaha.115.002254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Familial hypercholesterolemia (FH) is a prevalent hereditary disease associated with increased atherosclerosis and calcific aortic valve disease (CAVD). However, in both FH and non‐FH individuals, the role of hypercholesterolemia in the development of CAVD is poorly understood. This study used Rapacz FH (RFH) swine, an established model of human FH, to investigate the role of hypercholesterolemia alone in the initiation and progression of CAVD. The valves of RFH swine have not previously been examined. Methods and Results Aortic valve leaflets were isolated from wild‐type (0.25‐ and 1‐year‐old) and RFH (0.25‐, 1‐, 2‐, and 3‐year‐old) swine. Adult RFH animals exhibited numerous hallmarks of early CAVD. Significant leaflet thickening was found in adult RFH swine, accompanied by extensive extracellular matrix remodeling, including proteoglycan enrichment, collagen disorganization, and elastin fragmentation. Increased lipid oxidation and infiltration of macrophages were also evident in adult RFH swine. Intracardiac echocardiography revealed mild aortic valve sclerosis in some of the adult RFH animals, but unimpaired valve function. Microarray analysis of valves from adult versus juvenile RFH animals revealed significant upregulation of inflammation‐related genes, as well as several commonalities with atherosclerosis and overlap with human CAVD. Conclusions Adult RFH swine exhibited several hallmarks of early human CAVD, suggesting potential for these animals to help elucidate CAVD etiology in both FH and non‐FH individuals. The development of advanced atherosclerotic lesions, but only early‐stage CAVD, in RFH swine supports the hypothesis of an initial shared disease process, with additional stimulation necessary for further progression of CAVD.
Collapse
Affiliation(s)
- Ana M. Porras
- Department of Biomedical EngineeringUniversity of Wisconsin–MadisonMadisonWI
| | | | - Jennifer J. Meudt
- Department of Animal SciencesUniversity of Wisconsin–MadisonMadisonWI
| | | | - Timothy A. Hacker
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of Wisconsin–MadisonMadisonWI
| | - Peter S. Rahko
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of Wisconsin–MadisonMadisonWI
| | - Jess D. Reed
- Department of Animal SciencesUniversity of Wisconsin–MadisonMadisonWI
| | - Kristyn S. Masters
- Department of Biomedical EngineeringUniversity of Wisconsin–MadisonMadisonWI
| |
Collapse
|
711
|
Hussein H, Saheb S, Couturier M, Atassi M, Orsoni A, Carrié A, Therond P, Chantepie S, Robillard P, Bruckert E, Chapman MJ, Kontush A. Small, dense high-density lipoprotein 3 particles exhibit defective antioxidative and anti-inflammatory function in familial hypercholesterolemia: Partial correction by low-density lipoprotein apheresis. J Clin Lipidol 2015; 10:124-33. [PMID: 26892129 DOI: 10.1016/j.jacl.2015.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) features elevated oxidative stress and accelerated atherosclerosis driven by elevated levels of atherogenic lipoproteins relative to subnormal levels of atheroprotective high-density lipoprotein (HDL). Small, dense HDL3 potently protects low-density lipoprotein (LDL) against proinflammatory oxidative damage. OBJECTIVE To determine whether antioxidative and/or anti-inflammatory activities of HDL are defective in FH and whether such defects are corrected by LDL apheresis. METHODS Antioxidative and antiinflammatory activities of HDL were evaluated as protection of reference LDL from oxidative stress and capacity to prevent accumulation of proinflammatory oxidised lipids, respectively. Lipid surface rigidity of HDL was assessed using a fluorescent probe. HDL components were measured by analytical approaches. Systemic oxidative stress was characterized as plasma 8-isoprostanes. RESULTS Pre-LDL-apheresis, FH patients (n = 10) exhibited elevated systemic oxidative stress (3.3-fold, P < 0.001) vs. sex- and age-matched normolipidemic controls (n = 10). Both antioxidative and antiinflammatory activity of HDL3 were impaired (up to -91%, P < 0.01) in FH. Sphingomyelin and saturated fatty acid contents were elevated in FH HDL3, resulting in enhanced lipid surface rigidity. The surface lipid content (phospholipids, free cholesterol) was reduced in FH (up to -15%, P < 0.001), whereas content of core lipids (cholesteryl esters, triglycerides) was elevated (up to +17%, P < 0.001). Molar apolipoprotein A-I content of HDL3 was subnormal in FH. A single LDL-apheresis session partially corrected (by up to 76%) deficient HDL antiatherogenic activities, attenuated systemic oxidative stress and partially normalised both the lipid composition and surface rigidity of HDL particles. CONCLUSIONS FH features elevated oxidative stress and deficient antioxidative and anti-inflammatory activities of small, dense HDL3; such functional deficiency is intimately linked to anomalies in lipid and protein composition, which may impair the capacity of HDL to acquire and inactivate oxidized lipids.
Collapse
Affiliation(s)
- Hala Hussein
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Samir Saheb
- AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France
| | - Martine Couturier
- National Institute for Health and Medical Research (INSERM), Paris, France; Hôpital Bicetre, Bicetre, France
| | | | - Alexina Orsoni
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Alain Carrié
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | | | - Sandrine Chantepie
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Paul Robillard
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Eric Bruckert
- AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France
| | - M John Chapman
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Anatol Kontush
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France.
| |
Collapse
|
712
|
Stoekenbroek RM, Kastelein JJP, Huijgen R. PCSK9 inhibition: the way forward in the treatment of dyslipidemia. BMC Med 2015; 13:258. [PMID: 26456772 PMCID: PMC4601145 DOI: 10.1186/s12916-015-0503-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Barely a decade after the discovery of the gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its recognition as a key player in cholesterol metabolism, PCSK9 inhibition is now considered an exciting approach in the reduction of residual risk of cardiovascular disease. The progress from PCSK9 discovery to the development of targeted treatment has been unprecedented in terms of scale and speed. The first suggestion of a link between PCSK9 and hypercholesterolemia was published in 2003; a decade later, two meta-analyses of clinical trials comparing anti-PCSK9 treatment to placebo or ezetimibe, including >10,000 hypercholesterolemic individuals, were published. Currently, three PCSK9 inhibitors are being evaluated in clinical outcome trials and the results will determine the future of these lipid-lowering therapies by establishing their clinical efficacy in terms of cardiovascular event reduction, safety, and the consequences of prolonged exposure to very low levels of LDL-cholesterol. Irrespective of their outcomes, the exceptionally rapid development of these drugs exemplifies how novel technologies, genetic validation, and rapid clinical progression provide the tools to expedite the development of new drugs.
Collapse
Affiliation(s)
- Robert M Stoekenbroek
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, PO Box 22660, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, PO Box 22660, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
| | - Roeland Huijgen
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, PO Box 22660, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
| |
Collapse
|
713
|
Abstract
Glucose and lipid metabolism are linked to each other in many ways. The most important clinical manifestation of this interaction is diabetic dyslipidemia, characterized by elevated triglycerides, low high density lipoprotein cholesterol (HDL-C), and predominance of small-dense LDL particles. However, in the last decade we have learned that the interaction is much more complex. Hypertriglyceridemia and low HDL-C cannot only be the consequence but also the cause of a disturbed glucose metabolism. Furthermore, it is now well established that statins are associated with a small but significant increase in the risk for new onset diabetes. The underlying mechanisms are not completely understood but modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA)-reductase may play a central role as genetic data indicate that mutations resulting in lower HMG CoA-reductase activity are also associated with obesity, higher glucose concentrations and diabetes. Very interestingly, this statin induced increased risk for new onset type 2 diabetes is not detectable in subjects with familial hypercholesterolemia. Furthermore, patients with familial hypercholesterolemia seem to have a lower risk for type 2 diabetes, a phenomenon which seems to be dose-dependent (the higher the low density lipoprotein cholesterol, the lower the risk). Whether there is also an interaction between lipoprotein(a) and diabetes is still a matter of debate.
Collapse
Affiliation(s)
- Klaus G. Parhofer
- Department of Medicine 2-Grosshadern, University of Munich, Munich, Germany
| |
Collapse
|
714
|
Lüscher TF. Treating lipid disorders and diabetes with novel and established drugs. Eur Heart J 2015; 36:2405-7. [DOI: 10.1093/eurheartj/ehv410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
715
|
Hegele RA, Gidding SS, Ginsberg HN, McPherson R, Raal FJ, Rader DJ, Robinson JG, Welty FK. Nonstatin Low-Density Lipoprotein-Lowering Therapy and Cardiovascular Risk Reduction-Statement From ATVB Council. Arterioscler Thromb Vasc Biol 2015; 35:2269-80. [PMID: 26376908 DOI: 10.1161/atvbaha.115.306442] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
Pharmacological reduction of low-density lipoprotein (LDL) cholesterol using statin drugs is foundational therapy to reduce cardiovascular disease (CVD) risk. Here, we consider the place of nonstatin therapies that also reduce LDL cholesterol in prevention of CVD. Among conventional nonstatins, placebo-controlled randomized clinical trials showed that bile acid sequestrants, niacin, and fibrates given as monotherapy each reduce CVD end points. From trials in which patients' LDL cholesterol was already well controlled on a statin, adding ezetimibe incrementally reduced CVD end points, whereas adding a fibrate or niacin showed no incremental benefit. Among emerging nonstatins, monoclonal antibodies against proprotein convertase subtilisin kexin type 9 added to a statin and given for ≤78 weeks showed preliminary evidence of reductions in CVD outcomes. Although these promising early findings contributed to the recent approval of these agents in Europe and in North America, much larger and longer duration outcomes studies are ongoing for definitive proof of CVD benefits. Other nonstatin agents recently approved in the United States include lomitapide and mipomersen, which both act via distinctive LDL receptor independent mechanisms to substantially reduce LDL cholesterol in homozygous familial hypercholesterolemia. We also address some unanswered questions, including measuring alternative biochemical variables to LDL cholesterol, evidence for treating children with monitoring of subclinical atherosclerosis, and potential risks of extremely low LDL cholesterol. As evidence for benefit in CVD prevention accumulates, we anticipate that clinical practice will shift toward more assertive LDL-lowering treatment, using both statins and nonstatins initiated earlier in appropriately selected patients.
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada (R.A.H.); Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE (S.S.G.); Irving Institute for Clinical and Translational Research, Department of Medicine, Columbia University, New York, NY (H.N.G.); Department of Medicine and Biochemistry, Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa (F.J.R); Department of Genetics (D.J.R.) and Division of Translational Medicine and Human Genetics, Department of Medicine (D.J.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Department of Epidemiology and Medicine, University of Iowa, Iowa City (J.G.R.); and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.K.W.).
| | - Samuel S Gidding
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada (R.A.H.); Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE (S.S.G.); Irving Institute for Clinical and Translational Research, Department of Medicine, Columbia University, New York, NY (H.N.G.); Department of Medicine and Biochemistry, Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa (F.J.R); Department of Genetics (D.J.R.) and Division of Translational Medicine and Human Genetics, Department of Medicine (D.J.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Department of Epidemiology and Medicine, University of Iowa, Iowa City (J.G.R.); and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.K.W.)
| | - Henry N Ginsberg
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada (R.A.H.); Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE (S.S.G.); Irving Institute for Clinical and Translational Research, Department of Medicine, Columbia University, New York, NY (H.N.G.); Department of Medicine and Biochemistry, Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa (F.J.R); Department of Genetics (D.J.R.) and Division of Translational Medicine and Human Genetics, Department of Medicine (D.J.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Department of Epidemiology and Medicine, University of Iowa, Iowa City (J.G.R.); and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.K.W.)
| | - Ruth McPherson
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada (R.A.H.); Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE (S.S.G.); Irving Institute for Clinical and Translational Research, Department of Medicine, Columbia University, New York, NY (H.N.G.); Department of Medicine and Biochemistry, Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa (F.J.R); Department of Genetics (D.J.R.) and Division of Translational Medicine and Human Genetics, Department of Medicine (D.J.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Department of Epidemiology and Medicine, University of Iowa, Iowa City (J.G.R.); and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.K.W.)
| | - Frederick J Raal
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada (R.A.H.); Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE (S.S.G.); Irving Institute for Clinical and Translational Research, Department of Medicine, Columbia University, New York, NY (H.N.G.); Department of Medicine and Biochemistry, Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa (F.J.R); Department of Genetics (D.J.R.) and Division of Translational Medicine and Human Genetics, Department of Medicine (D.J.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Department of Epidemiology and Medicine, University of Iowa, Iowa City (J.G.R.); and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.K.W.)
| | - Daniel J Rader
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada (R.A.H.); Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE (S.S.G.); Irving Institute for Clinical and Translational Research, Department of Medicine, Columbia University, New York, NY (H.N.G.); Department of Medicine and Biochemistry, Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa (F.J.R); Department of Genetics (D.J.R.) and Division of Translational Medicine and Human Genetics, Department of Medicine (D.J.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Department of Epidemiology and Medicine, University of Iowa, Iowa City (J.G.R.); and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.K.W.)
| | - Jennifer G Robinson
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada (R.A.H.); Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE (S.S.G.); Irving Institute for Clinical and Translational Research, Department of Medicine, Columbia University, New York, NY (H.N.G.); Department of Medicine and Biochemistry, Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa (F.J.R); Department of Genetics (D.J.R.) and Division of Translational Medicine and Human Genetics, Department of Medicine (D.J.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Department of Epidemiology and Medicine, University of Iowa, Iowa City (J.G.R.); and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.K.W.)
| | - Francine K Welty
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada (R.A.H.); Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE (S.S.G.); Irving Institute for Clinical and Translational Research, Department of Medicine, Columbia University, New York, NY (H.N.G.); Department of Medicine and Biochemistry, Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa (F.J.R); Department of Genetics (D.J.R.) and Division of Translational Medicine and Human Genetics, Department of Medicine (D.J.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Department of Epidemiology and Medicine, University of Iowa, Iowa City (J.G.R.); and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.K.W.)
| |
Collapse
|
716
|
Patel G, King A, Dutta S, Korb S, Wade JR, Foulds P, Sumeray M. Evaluation of the effects of the weak CYP3A inhibitors atorvastatin and ethinyl estradiol/norgestimate on lomitapide pharmacokinetics in healthy subjects. J Clin Pharmacol 2015; 56:47-55. [DOI: 10.1002/jcph.581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Gina Patel
- Covance Early Clinical Biometrics; Madison WI USA
| | - Alex King
- Covance Clinical Research Unit, Inc.; Dallas TX USA
| | | | - Sarah Korb
- Covance Early Clinical Biometrics; Madison WI USA
| | | | | | - Mark Sumeray
- Aegerion Pharmaceuticals, Inc.; Cambridge MA USA
| |
Collapse
|
717
|
Abstract
Cardiovascular disease (CVD) is still the most prominent cause of death and morbidity in the world, and one of the major risk factors for developing CVD is hypercholesterolemia. Familial hypercholesterolemia (FH) is a dominantly inherited disorder characterized by markedly elevated plasma low-density lipoprotein cholesterol and premature coronary heart disease. Currently, several treatment options are available for children with FH. Lifestyle adjustments are the first step in treatment. If this is not sufficient, statins are the preferred initial pharmacological therapy and they have been proven effective and safe. However, treatment goals are often not achieved and, hence, there is a need for novel treatment options. Currently, several options are being studied in adults and first results are promising. However, studies in children are still to be awaited.
Collapse
Affiliation(s)
- Ilse K Luirink
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
718
|
Stock J. Landmark position paper on paediatric familial hypercholesterolaemia from the EAS Consensus Panel. Atherosclerosis 2015; 242:277-80. [DOI: 10.1016/j.atherosclerosis.2015.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023]
|
719
|
Mansoorian M, Kazemi K, Nikeghbalian S, Shamsaeefar A, Mokhtari M, Dehghani SM, Bahador A, Salahi H, Amoozgar H, Malek Hosseini SA. Liver transplantation as a definitive treatment for familial hypercholesterolemia: A series of 36 cases. Pediatr Transplant 2015; 19:605-611. [PMID: 26215798 DOI: 10.1111/petr.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 02/05/2023]
Abstract
FH is a genetic disorder characterized by an increase in serum LDL and total cholesterol values. The afflicted patients are at increased risk of premature atherosclerosis and myocardial infarction. Different treatment modalities are present, including pharmacological agents and surgical procedures. The most effective method of therapy in refractive cases is liver transplantation. Herein, we report our experience on 36 cases of patients with FH undergoing liver transplantation in our center, the main referral center of liver transplantation in Iran. The clinical findings, hospital courses, post-operative complications, and patient follow-up are also described.
Collapse
Affiliation(s)
- Mohsenreza Mansoorian
- Surgery Department, Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kourosh Kazemi
- Surgery Department, Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Surgery Department, Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Surgery Department, Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Mokhtari
- Pathology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohsen Dehghani
- Pediatric Gastroenterology and Hepatology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Bahador
- Surgery Department, Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heshmatollah Salahi
- Surgery Department, Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Amoozgar
- Cardiac and Neonatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Malek Hosseini
- Surgery Department, Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
720
|
Affiliation(s)
- Akihiro Asai
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
721
|
Treating homozygous familial hypercholesterolemia in a real-world setting: Experiences with lomitapide. J Clin Lipidol 2015; 9:607-17. [DOI: 10.1016/j.jacl.2015.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/03/2015] [Accepted: 05/07/2015] [Indexed: 01/02/2023]
|
722
|
Lüscher TF. Novel risk markers and mediators in coronary disease and stroke. Eur Heart J 2015; 36:1557-9. [DOI: 10.1093/eurheartj/ehv218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
723
|
De Backer G, Besseling J, Chapman J, Hovingh G, Kastelein JJ, Kotseva K, Ray K, Reiner Ž, Wood D, De Bacquer D. Prevalence and management of familial hypercholesterolaemia in coronary patients: An analysis of EUROASPIRE IV, a study of the European Society of Cardiology. Atherosclerosis 2015; 241:169-75. [DOI: 10.1016/j.atherosclerosis.2015.04.809] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 01/17/2023]
|
724
|
|
725
|
Sun LY, Zhang YB, Jiang L, Wan N, Wu WF, Pan XD, Yu J, Zhang F, Wang LY. Identification of the gene defect responsible for severe hypercholesterolaemia using whole-exome sequencing. Sci Rep 2015; 5:11380. [PMID: 26077743 PMCID: PMC4468422 DOI: 10.1038/srep11380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/28/2015] [Indexed: 12/30/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is a serious genetic metabolic disease. We identified a specific family in which the proband had typical homozygous phenotype of FH, but couldn’t detect any mutations in usual pathogenic genes using traditional sequencing. This study is the first attempt to use whole exome sequencing (WES) to identify the pathogenic genes in Chinese FH. The routine examinations were performed on all parentage members, and WES on 5 members. We used bioinformatics methods to splice and filter out the pathogenic gene. Finally, Sanger sequencing and cDNA sequencing were used to verify the candidate genes. Half of parentage members had got hypercholesterolaemia. WES identified LDLR IVS8[−10] as a candidate mutation from 222,267 variations. The Sanger sequencing showed proband had a homozygous mutation inherited from his parents, and this loci were cosegregated with FH phenotype. The cDNA sequencing revealed that this mutations caused abnormal shearing. This mutation was first identified in Chinese patients, and this homozygous mutation is a new genetic type of FH. This is the first time that WES was used in Chinese FH patients. We detected a novel genetic type of LDLR homozygous mutation. WES is powerful tools to identify specific FH families with potentially pathogenic gene mutations.
Collapse
Affiliation(s)
- Li-Yuan Sun
- 1] Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Department of Atherosclerosis, Beijing 100029, China [2] Beijing AnZhen Hospital, Affiliated to Capital Medical University, Department of Dermatology, Beijing 100029, China
| | - Yong-Biao Zhang
- Institute of Genomics, Chinese Academy of Sciences and Key Laboratory of Genome Science and Information, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Jiang
- Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Department of Atherosclerosis, Beijing 100029, China
| | - Ning Wan
- 1] Institute of Genomics, Chinese Academy of Sciences and Key Laboratory of Genome Science and Information, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Feng Wu
- Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Department of Atherosclerosis, Beijing 100029, China
| | - Xiao-Dong Pan
- Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Department of Atherosclerosis, Beijing 100029, China
| | - Jun Yu
- Institute of Genomics, Chinese Academy of Sciences and Key Laboratory of Genome Science and Information, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Zhang
- 1] Institute of Genomics, Chinese Academy of Sciences and Key Laboratory of Genome Science and Information, Chinese Academy of Sciences, Beijing 100101, China [2] National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, Jilin, China
| | - Lu-Ya Wang
- Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Department of Atherosclerosis, Beijing 100029, China
| |
Collapse
|
726
|
Abstract
PURPOSE OF REVIEW To compare the European and US guidelines for familial hypercholesterolaemia, but also all the European and US position/consensus papers on heterozygous and homozygous familial hypercholesterolaemia published recently. RECENT FINDINGS It has been established that the prevalence of familial hypercholesterolaemia was previously markedly underestimated. The disease is characterized by a lifelong significant increase in LDL cholesterol (LDL-C) levels and therefore premature atherosclerotic cardiovascular disease. Recommendations on familial hypercholesterolaemia have been included as a special chapter in the recent European (European Society of Cardiology/European Atherosclerosis Society) guidelines on dyslipidaemia, whereas in the new US (American College of Cardiology/American Heart Association) lipid guidelines they have been included only generally and these guidelines avoid mentioning familial hypercholesterolaemia explicitly. Both of these guidelines recommend statins in high doses as the treatment option. However, in the American College of Cardiology/American Heart Association guidelines, there is no requirement to attain a specific LDL-C target which is different from the European Society of Cardiology/European Atherosclerosis Society guidelines. Although these two guidelines differ markedly in a number of aspects, they both stress the need to diagnose familial hypercholesterolaemia patients as early as possible and to treat them with intensive LDL-C-lowering therapy. SUMMARY All the guidelines and consensus papers stress that earlier diagnosis and effective treatment can markedly improve life expectancy among familial hypercholesterolaemia patients.
Collapse
Affiliation(s)
- Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
727
|
Abstract
This Review discusses new developments in understanding the basis of chylomicronaemia--a challenging metabolic disorder for which there is an unmet clinical need. Chylomicronaemia presents in two distinct primary forms. The first form is very rare monogenic early-onset chylomicronaemia, which presents in childhood or adolescence and is often caused by homozygous mutations in the gene encoding lipoprotein lipase (LPL), its cofactors apolipoprotein C-II or apolipoprotein A-V, the LPL chaperone lipase maturation factor 1 or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1. The second form, polygenic late-onset chylomicronaemia, which is caused by an accumulation of several genetic variants, can be exacerbated by secondary factors, such as poor diet, obesity, alcohol intake and uncontrolled type 1 or type 2 diabetes mellitus, and is more common than early-onset chylomicronaemia. Both forms of chylomicronaemia are associated with an increased risk of life-threatening pancreatitis; the polygenic form might also be associated with an increased risk of cardiovascular disease. Treatment of chylomicronaemia focuses on restriction of dietary fat and control of secondary factors, as available pharmacological therapies are only minimally effective. Emerging therapies that might prove more effective than existing agents include LPL gene therapy, inhibition of microsomal triglyceride transfer protein and diacylglycerol O-acyltransferase 1, and interference with the production and secretion of apoC-III and angiopoietin-like protein 3.
Collapse
Affiliation(s)
- Amanda J Brahm
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
728
|
Sjouke B, Hovingh GK, Kastelein JJP, Stefanutti C. Homozygous autosomal dominant hypercholesterolaemia: prevalence, diagnosis, and current and future treatment perspectives. Curr Opin Lipidol 2015; 26:200-9. [PMID: 25950706 DOI: 10.1097/mol.0000000000000179] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Homozygous autosomal dominant hypercholesterolemia (hoADH) is a rare genetic disorder caused by mutations in LDL receptor, apolipoprotein B, and/or proprotein convertase subtilisin-kexin type 9. Both the genetic mutations and the clinical phenotype vary largely among individual patients, but patients with hoADH are typically characterized by extremely elevated LDL-cholesterol (LDL-C) levels, and a very high-risk for premature cardiovascular disease. Current lipid-lowering therapies include bile acid sequestrants, statins, and ezetimibe. To further decrease LDL-C levels in hoADH, lipoprotein apheresis is recommended, but this therapy is not available in all countries. RECENT FINDINGS Recently, the microsomal triglyceride transfer protein inhibitor lomitapide and the RNA antisense inhibitor of apolipoprotein B mipomersen were approved by the Food and Drug Administration/European Medicine Agency and the Food and Drug Administration, respectively. Several other LDL-C-lowering strategies and therapeutics targeting the HDL-C pathway are currently in the clinical stage of development. SUMMARY Novel therapies have been introduced for LDL-C-lowering and innovative drug candidates for HDL-C modulation for the treatment of hoADH. Here, we review the current available literature on the prevalence, diagnosis, and therapeutic strategies for hoADH.
Collapse
Affiliation(s)
- Barbara Sjouke
- aDepartment of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands bDepartment of Molecular Medicine, Extracorporeal Therapeutic Techniques Unit - Lipid Clinic and Atherosclerosis Prevention Centre, 'Sapienza' University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
729
|
Medeiros AM, Alves AC, Bourbon M. Mutational analysis of a cohort with clinical diagnosis of familial hypercholesterolemia: considerations for genetic diagnosis improvement. Genet Med 2015; 18:316-24. [DOI: 10.1038/gim.2015.71] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/21/2015] [Indexed: 11/09/2022] Open
|
730
|
Wiegman A, Gidding SS, Watts GF, Chapman MJ, Ginsberg HN, Cuchel M, Ose L, Averna M, Boileau C, Borén J, Bruckert E, Catapano AL, Defesche JC, Descamps OS, Hegele RA, Hovingh GK, Humphries SE, Kovanen PT, Kuivenhoven JA, Masana L, Nordestgaard BG, Pajukanta P, Parhofer KG, Raal FJ, Ray KK, Santos RD, Stalenhoef AFH, Steinhagen-Thiessen E, Stroes ES, Taskinen MR, Tybjærg-Hansen A, Wiklund O. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J 2015; 36:2425-37. [PMID: 26009596 PMCID: PMC4576143 DOI: 10.1093/eurheartj/ehv157] [Citation(s) in RCA: 593] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/19/2015] [Indexed: 12/27/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is a common genetic cause of premature coronary heart disease (CHD). Globally, one baby is born with FH every minute. If diagnosed and treated early in childhood, individuals with FH can have normal life expectancy. This consensus paper aims to improve awareness of the need for early detection and management of FH children. Familial hypercholesterolaemia is diagnosed either on phenotypic criteria, i.e. an elevated low-density lipoprotein cholesterol (LDL-C) level plus a family history of elevated LDL-C, premature coronary artery disease and/or genetic diagnosis, or positive genetic testing. Childhood is the optimal period for discrimination between FH and non-FH using LDL-C screening. An LDL-C ≥5 mmol/L (190 mg/dL), or an LDL-C ≥4 mmol/L (160 mg/dL) with family history of premature CHD and/or high baseline cholesterol in one parent, make the phenotypic diagnosis. If a parent has a genetic defect, the LDL-C cut-off for the child is ≥3.5 mmol/L (130 mg/dL). We recommend cascade screening of families using a combined phenotypic and genotypic strategy. In children, testing is recommended from age 5 years, or earlier if homozygous FH is suspected. A healthy lifestyle and statin treatment (from age 8 to 10 years) are the cornerstones of management of heterozygous FH. Target LDL-C is <3.5 mmol/L (130 mg/dL) if >10 years, or ideally 50% reduction from baseline if 8–10 years, especially with very high LDL-C, elevated lipoprotein(a), a family history of premature CHD or other cardiovascular risk factors, balanced against the long-term risk of treatment side effects. Identifying FH early and optimally lowering LDL-C over the lifespan reduces cumulative LDL-C burden and offers health and socioeconomic benefits. To drive policy change for timely detection and management, we call for further studies in the young. Increased awareness, early identification, and optimal treatment from childhood are critical to adding decades of healthy life for children and adolescents with FH.
Collapse
Affiliation(s)
- Albert Wiegman
- Department of Paediatrics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Samuel S Gidding
- Nemours Cardiac Center, A. I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Gerald F Watts
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, The University of Western Australia, Western Australia, Australia
| | - M John Chapman
- Pierre and Marie Curie University, Paris, France National Institute for Health and Medical Research (INSERM), Pitié-Salpêtrière University Hospital, Paris, France
| | - Henry N Ginsberg
- Columbia University College of Physicians and Surgeons, New York, NY, USA Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, USA
| | - Marina Cuchel
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Leiv Ose
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway Lipid Clinic, Oslo University Hospital, Oslo, Norway
| | - Maurizio Averna
- Department of Internal Medicine, University of Palermo, Italy
| | - Catherine Boileau
- Diderot Medical School, University Paris 7, Paris, France Genetics Department, Bichat University Hospital, Paris, France INSERM U698, Paris, France
| | - Jan Borén
- Department of Medicine, Sahlgrenska Academy, Göteborg University, Gothenburg, Sweden Wallenberg Laboratory for Cardiovascular Research, Gothenburg, Sweden
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Disease, University Hospital Pitié-Salpêtrière, Paris, France
| | - Alberico L Catapano
- Department of Pharmacology, Faculty of Pharmacy, University of Milano, Milan, Italy Multimedica IRCSS, Milan, Italy
| | - Joep C Defesche
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | - Robert A Hegele
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, University College London, Institute of Cardiovascular Sciences, London, UK
| | | | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Luis Masana
- Vascular Medicine and Metabolic Unit, Department of Medicine and Surgery, University Rovira and Virgili, Reus-Tarragona, Spain
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Päivi Pajukanta
- Department of Human Genetics, Center for Metabolic Disease Prevention, University of California, Los Angeles, USA
| | - Klaus G Parhofer
- Department of Endocrinology and Metabolism, University of Munich, Munich, Germany
| | - Frederick J Raal
- Carbohydrate & Lipid Metabolism Research Unit; and Division of Endocrinology & Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, School of Public Health, Imperial College, London, UK
| | - Raul D Santos
- Lipid Clinic of the Heart Institute (InCor), University of São Paulo, São Paulo, Brazil Department of Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Anton F H Stalenhoef
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Erik S Stroes
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Marja-Riitta Taskinen
- Research Programs Unit, Diabetes & Obesity, University of Helsinki and Heart & Lung Centre, Helsinki University Hospital, Helsinki, Finland
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olov Wiklund
- Department of Experimental and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | |
Collapse
|
731
|
Langbein H, Hofmann A, Brunssen C, Goettsch W, Morawietz H. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice. ATHEROSCLEROSIS SUPP 2015; 18:59-66. [DOI: 10.1016/j.atherosclerosissup.2015.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
732
|
Recent advances in the understanding and care of familial hypercholesterolaemia: significance of the biology and therapeutic regulation of proprotein convertase subtilisin/kexin type 9. Clin Sci (Lond) 2015; 129:63-79. [DOI: 10.1042/cs20140755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Familial hypercholesterolaemia (FH) is an autosomal co-dominant disorder that markedly raises plasma low-density lipoprotein-cholesterol (LDL-C) concentration, causing premature atherosclerotic coronary artery disease (CAD). FH has recently come under intense focus and, although there is general consensus in recent international guidelines regarding diagnosis and treatment, there is debate about the value of genetic studies. Genetic testing can be cost-effective as part of cascade screening in dedicated centres, but the full mutation spectrum responsible for FH has not been established in many populations, and its use in primary care is not at present logistically feasible. Whether using genetic testing or not, cholesterol screening of family members of index patients with an abnormally raised LDL-C must be used to determine the need for early treatment to prevent the development of CAD. The metabolic defects in FH extend beyond LDL, and may affect triacylglycerol-rich and high-density lipoproteins, lipoprotein(a) and oxidative stress. Achievement of the recommended targets for LDL-C with current treatments is difficult, but this may be resolved by new drug therapies. Lipoprotein apheresis remains an effective treatment for severe FH and, although expensive, it costs less than the two recently introduced orphan drugs (lomitapide and mipomersen) for homozygous FH. Recent advances in understanding of the biology of proprotein convertase subtilisin/kexin type 9 (PCSK9) have further elucidated the regulation of lipoprotein metabolism and led to new drugs for effectively treating hypercholesterolaemia in FH and related conditions, as well as for treating many patients with statin intolerance. The mechanisms of action of PCSK9 inhibitors on lipoprotein metabolism and atherosclerosis, as well as their impact on cardiovascular outcomes and cost-effectiveness, remain to be established.
Collapse
|
733
|
Machado VA, Fonseca FA, Fonseca HA, Malina DT, Fonzar WT, Barbosa SA, Santana JM, Izar MC. Plant sterol supplementation on top of lipid-lowering therapies in familial hypercholesterolemia. Int J Cardiol 2015; 184:570-572. [PMID: 25767019 DOI: 10.1016/j.ijcard.2015.03.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/11/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Valéria A Machado
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Francisco A Fonseca
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Henrique A Fonseca
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniela T Malina
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Waleria T Fonzar
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sílvio A Barbosa
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Maria C Izar
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
734
|
Langslet G, Emery M, Wasserman SM. Evolocumab (AMG 145) for primary hypercholesterolemia. Expert Rev Cardiovasc Ther 2015; 13:477-88. [DOI: 10.1586/14779072.2015.1030395] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
735
|
The lipid-lowering effects of lomitapide are unaffected by adjunctive apheresis in patients with homozygous familial hypercholesterolaemia - a post-hoc analysis of a Phase 3, single-arm, open-label trial. Atherosclerosis 2015; 240:408-14. [PMID: 25897792 DOI: 10.1016/j.atherosclerosis.2015.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/05/2015] [Accepted: 03/10/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Lomitapide (a microsomal triglyceride transfer protein inhibitor) is an adjunctive treatment for homozygous familial hypercholesterolaemia (HoFH), a rare genetic condition characterised by elevated low-density lipoprotein-cholesterol (LDL-C), and premature, severe, accelerated atherosclerosis. Standard of care for HoFH includes lipid-lowering drugs and lipoprotein apheresis. We conducted a post-hoc analysis using data from a Phase 3 study to assess whether concomitant apheresis affected the lipid-lowering efficacy of lomitapide. METHODS Existing lipid-lowering therapy, including apheresis, was to remain stable from Week -6 to Week 26. Lomitapide dose was escalated on the basis of individual safety/tolerability from 5 mg to 60 mg a day (maximum). The primary endpoint was mean percent change in LDL-C from baseline to Week 26 (efficacy phase), after which patients remained on lomitapide through Week 78 for safety assessment and further evaluation of efficacy. During this latter period, apheresis could be adjusted. We analysed the impact of apheresis on LDL-C reductions in patients receiving lomitapide. RESULTS Of the 29 patients that entered the efficacy phase, 18 (62%) were receiving apheresis at baseline. Twenty-three patients (13 receiving apheresis) completed the Week 26 evaluation. Of the six patients who discontinued in the first 26 weeks, five were receiving apheresis. There were no significant differences in percent change from baseline of LDL-C at Week 26 in patients treated (-48%) and not treated (-55%) with apheresis (p = 0.545). Changes in Lp(a) levels were modest and not different between groups (p = 0.436). CONCLUSION The LDL-C lowering efficacy of lomitapide is unaffected by lipoprotein apheresis.
Collapse
|
736
|
Najam O, Ray KK. Familial Hypercholesterolemia: a Review of the Natural History, Diagnosis, and Management. Cardiol Ther 2015; 4:25-38. [PMID: 25769531 PMCID: PMC4472649 DOI: 10.1007/s40119-015-0037-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 12/17/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited disorder of lipid metabolism characterized by premature cardiovascular disease. It is one of the most common metabolic disorders affecting humans. There are two clinical manifestations: the milder heterozygous form and more severe homozygous form. Despite posing a significant health risk, FH is inadequately diagnosed and managed. As the clinical outcome is related to the degree and duration of exposure to elevated low-density lipoprotein cholesterol (LDL-C) levels, early treatment is vital. Diagnosis can usually be made using a combination of clinical characteristics such as family history, lipid levels, and genetic testing. Mutations in the gene encoding the LDL receptor (LDLR), apolipoprotein B, the pro-protein convertase subtilisin/kexin 9 (PCSK9), and LDLR adaptor protein are the commonest abnormalities. Early identification and treatment of patients, as well as screening of relatives, helps significantly reduce the risk of premature disease. Although statins remain the first-line therapy in most cases, monotherapy is usually inadequate to control elevated LDL-C levels. Additional therapy with ezetimibe and bile acid sequestrants may be required. Newer classes of pharmacotherapy currently under investigation include lomitapide, mipomersen, and monoclonal antibodies to PCSK9. Lipoprotein apheresis may be required when multiple pharmacotherapies are inadequate, especially in the homozygous form. Effective early detection and treatment of the index individual and initiation of cascade screening will help reduce the complications associated with FH. In this article, we review the disease of FH, complexity of diagnosis and management, and the challenges faced in preventing the significant morbidity and mortality associated with it.
Collapse
Affiliation(s)
- Osman Najam
- Cardiovascular Sciences Research Centre, St George's University, London, UK
| | | |
Collapse
|
737
|
Hipercolesterolemia familiar homocigota: adaptación a España del documento de posición del grupo de consenso sobre hipercolesterolemia familiar de la Sociedad Europea de Arteriosclerosis. Documento de Consenso de la Sociedad Española de Arteriosclerosis (SEA) y la Fundación Hipercolesterolemia Familiar (FHF). CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2015; 27:80-96. [DOI: 10.1016/j.arteri.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/24/2022]
|
738
|
Huang CH, Chiu PC, Liu HC, Lu YH, Huang JK, Charng MJ, Niu DM. Clinical observations and treatment of pediatric homozygous familial hypercholesterolemia due to a low-density lipoprotein receptor defect. J Clin Lipidol 2015; 9:234-40. [DOI: 10.1016/j.jacl.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/12/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
739
|
|
740
|
Vogt A. The genetics of familial hypercholesterolemia and emerging therapies. APPLICATION OF CLINICAL GENETICS 2015; 8:27-36. [PMID: 25670911 PMCID: PMC4315461 DOI: 10.2147/tacg.s44315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Familial hypercholesterolemia (FH) results in very high levels of atherogenic low-density lipoprotein (LDL) cholesterol from the time of birth. Mutations of the genes encoding for the LDL receptor, apolipoprotein B and proprotein convertase subtilisin/kexin type 9, are causes for this autosomal dominant inherited condition. Heterozygous FH is very common, while homozygous FH is rare. Affected individuals can experience premature cardiovascular disease; most homozygous patients experience this before the age of 20 years. Since effective LDL cholesterol lowering therapies are available, morbidity and mortality are decreased. The use of statins is the first choice in therapy; combining other lipid-lowering medications is recommended to lower LDL cholesterol sufficiently. In some cases, lipoprotein apheresis is necessary. In heterozygous FH, these measures are effective to lower LDL cholesterol, but in severe cases and in homozygous FH there remains an unmet need. Emerging therapies, such as the recently approved microsomal triglyceride transfer protein inhibitor and the apolipoprotein B antisense oligonucleotide, might offer further options for these patients with very high cardiovascular risk. Early diagnosis and early treatment are important to reduce cardiovascular events and premature death.
Collapse
Affiliation(s)
- Anja Vogt
- Medizinische Klinik und Poliklinik IV, Klinikum der Unversität München, Munich, Germany
| |
Collapse
|
741
|
Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, Wasserman SM, Stein EA. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet 2015; 385:341-50. [PMID: 25282520 DOI: 10.1016/s0140-6736(14)61374-x] [Citation(s) in RCA: 552] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Homozygous familial hypercholesterolaemia is a rare, serious disorder caused by very low or absent plasma clearance of LDL, substantially raised LDL cholesterol, and accelerated development of cardiovascular disease. Conventional lipid-lowering treatments are modestly effective. Evolocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), reduced LDL cholesterol by 16% in a pilot study. We now report results with evolocumab in a randomised, double-blind, placebo-controlled phase 3 trial. METHODS This randomised, double-blind, placebo-controlled phase 3 trial was undertaken at 17 sites in ten countries in North America, Europe, the Middle East, and South Africa. 50 eligible patients (aged ≥12 years) with homozygous familial hypercholesterolaemia, on stable lipid-regulating therapy for at least 4 weeks, and not receiving lipoprotein apheresis, were randomly allocated by a computer-generated randomisation sequence in a 2:1 ratio to receive subcutaneous evolocumab 420 mg or placebo every 4 weeks for 12 weeks. Randomisation was stratified by LDL cholesterol at screening (<11 mmol/L or ≥11 mmol/L) and implemented by a computerised interactive voice-response system. Patients, study personnel, and the funder were masked to treatment and to the efficacy results by the central laboratory not returning LDL cholesterol or any lipid results to the clinical sites after the baseline visit. The primary endpoint was percentage change in ultracentrifugation LDL cholesterol from baseline at week 12 compared with placebo, analysed by intention-to-treat. This trial is registered with ClinicalTrials.gov, number NCT01588496. FINDINGS Of the 50 eligible patients randomly assigned to the two treatment groups, 49 actually received the study drug and completed the study (16 in the placebo group and 33 in the evolocumab group). Compared with placebo, evolocumab significantly reduced ultracentrifugation LDL cholesterol at 12 weeks by 30·9% (95% CI -43·9% to -18·0%; p<0·0001). Treatment-emergent adverse events occurred in ten (63%) of 16 patients in the placebo group and 12 (36%) of 33 in the evolocumab group. No serious clinical or laboratory adverse events occurred, and no anti-evolocumab antibody development was detected during the study. INTERPRETATION In patients with homozygous familial hypercholesterolaemia receiving stable background lipid-lowering treatment and not on apheresis, evolocumab 420 mg administered every 4 weeks was well tolerated and significantly reduced LDL cholesterol compared with placebo. FUNDING Amgen Inc.
Collapse
Affiliation(s)
- Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | | | - Dirk J Blom
- Division of Lipidology, Department of Medicine, University of Cape Town, UCT Faculty Health Sciences, Cape Town, South Africa
| | - G Kees Hovingh
- Vascular Medicine, Academic Medical Centre, Amsterdam, Netherlands
| | - Feng Xu
- Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA, USA
| | - Rob Scott
- Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA, USA
| | | | - Evan A Stein
- Metabolic and Atherosclerosis Research Center, Cincinnati, OH, USA.
| |
Collapse
|
742
|
Hooper AJ, Burnett JR, Watts GF. Contemporary Aspects of the Biology and Therapeutic Regulation of the Microsomal Triglyceride Transfer Protein. Circ Res 2015; 116:193-205. [DOI: 10.1161/circresaha.116.304637] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amanda J. Hooper
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA (A.J.H., J.R.B.), School of Medicine and Pharmacology (A.J.H., J.R.B., G.F.W.), School of Pathology and Laboratory Medicine (A.J.H), and Lipid Disorders Clinic, Cardiovascular Medicine (J.R.B., G.F.W), Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
| | - John R. Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA (A.J.H., J.R.B.), School of Medicine and Pharmacology (A.J.H., J.R.B., G.F.W.), School of Pathology and Laboratory Medicine (A.J.H), and Lipid Disorders Clinic, Cardiovascular Medicine (J.R.B., G.F.W), Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
| | - Gerald F. Watts
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA (A.J.H., J.R.B.), School of Medicine and Pharmacology (A.J.H., J.R.B., G.F.W.), School of Pathology and Laboratory Medicine (A.J.H), and Lipid Disorders Clinic, Cardiovascular Medicine (J.R.B., G.F.W), Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
743
|
Genetic therapies to lower cholesterol. Vascul Pharmacol 2015; 64:11-5. [DOI: 10.1016/j.vph.2014.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
|
744
|
Canadian Cardiovascular Society Position Statement on Familial Hypercholesterolemia. Can J Cardiol 2014; 30:1471-81. [DOI: 10.1016/j.cjca.2014.09.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/13/2023] Open
|
745
|
Recommendations for the Management of Patients with Familial Hypercholesterolemia. Curr Atheroscler Rep 2014; 17:473. [DOI: 10.1007/s11883-014-0473-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
746
|
Catapano AL, Farnier M, Foody JM, Toth PP, Tomassini JE, Brudi P, Tershakovec AM. Combination therapy in dyslipidemia: Where are we now? Atherosclerosis 2014; 237:319-35. [DOI: 10.1016/j.atherosclerosis.2014.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 01/06/2023]
|
747
|
Seven-year clinical follow-up of a Chinese homozygous familial hypercholesterolemia child with premature xanthomas and coronary artery disease—A need for early diagnosis and aggressive treatment. Int J Cardiol 2014; 177:188-91. [DOI: 10.1016/j.ijcard.2014.09.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022]
|
748
|
Catapano AL. Management of homozygous familial hypercholesterolaemia--unmet needs, updated recommendations, and clinical experience with the MTP inhibitor, lomitapide. Concluding comments. ATHEROSCLEROSIS SUPP 2014; 15:52. [PMID: 25257077 DOI: 10.1016/j.atherosclerosissup.2014.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alberico L Catapano
- Institute of Pharmacological Sciences, University of Milan, and IRCCS Multimedica, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
749
|
Catapano AL. New strategies for the management of patients with homozygous familial hypercholesterolaemia. ATHEROSCLEROSIS SUPP 2014; 15:17-8. [PMID: 25257072 DOI: 10.1016/j.atherosclerosissup.2014.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alberico L Catapano
- Institute of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 and IRCCS Multimedica Milan, Italy.
| |
Collapse
|
750
|
Baum SJ, Sijbrands EJG, Mata P, Watts GF. The doctor's dilemma: challenges in the diagnosis and care of homozygous familial hypercholesterolemia. J Clin Lipidol 2014; 8:542-549. [PMID: 25499935 DOI: 10.1016/j.jacl.2014.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Seth J Baum
- University of Miami Miller School of Medicine, Miami, Florida.
| | - E J G Sijbrands
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Pedro Mata
- Fundacion Hipercolesterolemia Familiar, Madrid, Spain
| | - Gerald F Watts
- Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital School of Medicine and Pharmacology, University of Western Australia, Australia
| |
Collapse
|