701
|
Liu D, Zhao J, Song Y. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol 2019; 12:69. [PMID: 31272471 PMCID: PMC6610960 DOI: 10.1186/s13045-019-0763-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Abstract
A traditional chimeric antigen receptor (CAR) has a fixed design, and one type of CAR T cells can only target one antigen epitope. This rigid design limits clinical application and leads to exceptionally high manufacturing cost. New CARs are being engineered with a modular approach so that the antigen recognition domain is split from the signaling domain of a conventional CAR, hence the target antigen can be switched or re-directed more readily without the requirement of re-engineering the CAR T cells. This CAR system can therefore serve as a universal CAR (UniCAR). The UniCAR platform has a modular design that splits the conventional CAR to 2 separate components: (1) a signaling module that binds to a specific epitope on the switching molecule and (2) a switching module with an antigen-binding domain and a switching epitope specifically recognized by the signaling module. A variety of switchable CARs have been engineered. The switchable modular designs include the dimerizing platforms using leucine zippers and biotin-avidin system, and the neo-epitope tagging platform using FITC, 5B9, and PNE. The switch molecule serves as a synapse between the CAR T cells and the target tumor cells. The universal CAR platforms are highly versatile, are easily re-programmable, and therefore have a vast potential for broad application and may significantly lower the cost of CAR T cell therapy. However, the current modular design of the switching molecules relies on adding exogenous sequences/epitopes. These unnatural epitopes can potentially lead to new antigenicity which may lead to generation of blocking antibodies. Furthermore, the generation, preparation, and clinical applications of the switching modules per se may involve additional clinical trials and regulatory examination for safety and efficacy, since repeated administrations of these molecules/"drugs" are anticipated. Thus, these switching molecules and UniCAR CAR T cells may require separate clinical trials and invoke different regulatory processes. This whole field is medically appealing and could present new challenges in the development of novel immunotherapeutic agents.
Collapse
Affiliation(s)
- Delong Liu
- Department of Oncology, The First affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY USA
| | - Juanjuan Zhao
- The affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008 China
| | - Yongping Song
- The affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008 China
| |
Collapse
|
702
|
Hew BE, Sato R, Mauro D, Stoytchev I, Owens JB. RNA-guided piggyBac transposition in human cells. Synth Biol (Oxf) 2019; 4:ysz018. [PMID: 31355344 PMCID: PMC6642342 DOI: 10.1093/synbio/ysz018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 01/12/2023] Open
Abstract
Safer and more efficient methods for directing therapeutic genes to specific sequences could increase the repertoire of treatable conditions. Many current approaches act passively, first initiating a double-stranded break, then relying on host repair to uptake donor DNA. Alternatively, we delivered an actively integrating transposase to the target sequence to initiate gene insertion. We fused the hyperactive piggyBac transposase to the highly specific, catalytically dead SpCas9-HF1 (dCas9) and designed guide RNAs (gRNAs) to the CCR5 safe harbor sequence. We introduced mutations to the native DNA-binding domain of piggyBac to reduce non-specific binding of the transposase and cause the fusion protein to favor binding by dCas9. This strategy enabled us, for the first time, to direct transposition to the genome using RNA. We showed that increasing the number of gRNAs improved targeting efficiency. Interestingly, over half of the recovered insertions were found at a single TTAA hotspot. We also found that the fusion increased the error rate at the genome-transposon junction. We isolated clonal cell lines containing a single insertion at CCR5 and demonstrated long-term expression from this locus. These vectors expand the utility of the piggyBac system for applications in targeted gene addition for biomedical research and gene therapy.
Collapse
Affiliation(s)
- Brian E Hew
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ryuei Sato
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Damiano Mauro
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ilko Stoytchev
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jesse B Owens
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
703
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
704
|
Juanes M, Creese O, Fernández-Trillo P, Montenegro J. Messenger RNA delivery by hydrazone-activated polymers. MEDCHEMCOMM 2019; 10:1138-1144. [PMID: 31391886 PMCID: PMC6640546 DOI: 10.1039/c9md00231f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
The intracellular delivery of DNA and RNA therapeutics requires the assistance of vectors and/or nucleotide modifications to protect the nucleic acids against host nucleases and promote cellular internalization and release. Recently, messenger RNA (mRNA) has attracted much attention due to its transient activity and lack of genome permanent recombination and persistent expression. Therefore, there is a strong interest in the development of conceptually new non-viral vectors with low toxicity that could improve mRNA transfection efficiency. We have recently introduced the potential of polyhydrazones and the importance of the degree of polymerization for the delivery of siRNA and plasmid DNA. Here, we demonstrate that this technology can be easily adapted to the more interesting complexation and delivery inside living cells of mRNA. The polyplexes resulting from the combination of the amphiphilic polyhydrazone were characterized and the transfection efficiency and cell viability were studied for a discrete collection of functionalized polyhydrazones. The results obtained demonstrated the versatility of these polymeric vectors as excellent candidates for the delivery of mRNA and validate the easy adaptability of the technology to more sensitive and therapeutically relevant nucleic acids.
Collapse
Affiliation(s)
- Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Oliver Creese
- School of Chemistry , University of Birmingham , Birmingham B15 2TT , UK .
| | | | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
705
|
Ormond KE, Bombard Y, Bonham VL, Hoffman-Andrews L, Howard H, Isasi R, Musunuru K, Riggan KA, Michie M, Allyse M. The clinical application of gene editing: ethical and social issues. Per Med 2019; 16:337-350. [DOI: 10.2217/pme-2018-0155] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene-editing techniques have progressed rapidly in the past 5 years. There are already ongoing human somatic gene-editing clinical trials for multiple diseases. And there has been one purported scenario of human germline gene editing in late 2018. In this paper, we will review the current state of the technology, discuss the ethical and social issues that surround the various forms of gene editing, as well as review emerging stakeholder data from professionals, the ‘general public’ and individuals and families dealing with genetic diseases potentially treatable by gene editing.
Collapse
Affiliation(s)
- Kelly E Ormond
- Department of Genetics & Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yvonne Bombard
- Institute of Health Policy, Management & Evaluation, University of Toronto; Li Ka Shing Knowledge Institute of St Michael’s Hospital, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute of St Michael’s Hospital, Toronto, ON, Canada
| | - Vence L Bonham
- Social & Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Lily Hoffman-Andrews
- Penn Center for Inherited Cardiac Disease, Penn Medicine, Philadelphia, PA 19104, USA
| | - Heidi Howard
- Centre for Research Ethics & Bioethics, Uppsala University, Uppsala, Sweden
- Society & Ethics Research, Connecting Science, Wellcome Genome Campus, Cambridge, UK
| | - Rosario Isasi
- Dr J T Macdonald Foundation Department of Human Genetics, Institute of Bioethics & Health Policy, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kiran Musunuru
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA 19104, USA
| | - Kirsten A Riggan
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Marsha Michie
- Department of Bioethics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Megan Allyse
- Biomedical Ethics Research Program & Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
706
|
Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 2019; 571:219-225. [PMID: 31189177 DOI: 10.1038/s41586-019-1323-z] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022]
Abstract
Conventional CRISPR-Cas systems maintain genomic integrity by leveraging guide RNAs for the nuclease-dependent degradation of mobile genetic elements, including plasmids and viruses. Here we describe a notable inversion of this paradigm, in which bacterial Tn7-like transposons have co-opted nuclease-deficient CRISPR-Cas systems to catalyse RNA-guided integration of mobile genetic elements into the genome. Programmable transposition of Vibrio cholerae Tn6677 in Escherichia coli requires CRISPR- and transposon-associated molecular machineries, including a co-complex between the DNA-targeting complex Cascade and the transposition protein TniQ. Integration of donor DNA occurs in one of two possible orientations at a fixed distance downstream of target DNA sequences, and can accommodate variable length genetic payloads. Deep-sequencing experiments reveal highly specific, genome-wide DNA insertion across dozens of unique target sites. This discovery of a fully programmable, RNA-guided integrase lays the foundation for genomic manipulations that obviate the requirements for double-strand breaks and homology-directed repair.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Phuc L H Vo
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Tyler S Halpin-Healy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
707
|
Scala S, Aiuti A. In vivo dynamics of human hematopoietic stem cells: novel concepts and future directions. Blood Adv 2019; 3:1916-1924. [PMID: 31239246 PMCID: PMC6595260 DOI: 10.1182/bloodadvances.2019000039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Unveiling the mechanisms and the cellular dynamics at the basis of human hematopoietic homeostasis has been a main focus for the scientific community since the discovery of a pool of multipotent hematopoietic stem cells (HSCs) capable of sustaining the hematopoietic output throughout life and after transplantation. Recently, new works shed light on the (1) differentiation paths, (2) size and replication rate of human HSC population at steady state, and (3) role of the distinct subpopulations comprising the hematopoietic stem and progenitor cell reservoir after transplantation. These papers exploited cutting-edge technologies, including vector integration site clonal tracking, spontaneous mutations, and deep transcriptome profiling. Here we discuss the latest updates in human hematopoietic system biology and in vivo dynamics, highlighting novel concepts and common findings deriving from different approaches and the future directions of these studies. Taken together, this information contributed to partially resolving the complexity of the in vivo HSC behavior and has major implications for HSC transplantation and gene therapy as well as for the development of future therapies.
Collapse
Affiliation(s)
- Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and
- Pediatric Immunohematology and Stem Cell Programme, IRCCS San Raffaele Scientific Institute, Milan, Italy; and
- Medical School, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
708
|
De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol 2019; 21:801-811. [PMID: 31209293 DOI: 10.1038/s41556-019-0344-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Despite many reports of putative stem-cell-based treatments in genetic and degenerative disorders or severe injuries, the number of proven stem cell therapies has remained small. In this Review, we survey advances in stem cell research and describe the cell types that are currently being used in the clinic or are close to clinical trials. Finally, we analyse the scientific rationale, experimental approaches, caveats and results underpinning the clinical use of such stem cells.
Collapse
Affiliation(s)
- Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari", Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pamela Gehron Robey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
709
|
Ozog S, Chen CX, Simpson E, Garijo O, Timberlake ND, Minder P, Verhoeyen E, Torbett BE. CD46 Null Packaging Cell Line Improves Measles Lentiviral Vector Production and Gene Delivery to Hematopoietic Stem and Progenitor Cells. Mol Ther Methods Clin Dev 2019; 13:27-39. [PMID: 30603655 PMCID: PMC6310745 DOI: 10.1016/j.omtm.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022]
Abstract
Lentiviral vectors (LVs) pseudotyped with the measles virus hemagglutinin (H) and fusion (F) glycoproteins have been reported to more efficiently transduce hematopoietic stem and progenitor cells (HSPCs) compared with vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped LVs. However, a limit to H/F LV use is the low titer of produced vector. Here we show that measles receptor (CD46) expression on H/F transfected HEK293T vector-producing cells caused adjacent cell membrane fusion, resulting in multinucleate syncytia formation and death prior to peak vector production, leading to contaminating cell membranes that co-purified with LV. H/F LVs produced in CD46 null HEK293T cells, generated by CRISPR/Cas9-mediated knockout of CD46, produced 2-fold higher titer vector compared with LVs produced in CD46+ HEK293T cells. This resulted in approximately 2- to 3-fold higher transduction of HSPCs while significantly reducing target cell cytotoxicity caused by producer cell contaminates. Improved H/F LV entry into HSPCs and distinct entry mechanisms compared with VSV-G LV were also observed by confocal microscopy. Given that vector production is a major source of cost and variability in clinical trials of gene therapy, we propose that the use of CD46 null packaging cells may help to address these challenges.
Collapse
Affiliation(s)
- Stosh Ozog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Craig X. Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Bishops School, La Jolla, CA 92037, USA
| | - Elizabeth Simpson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Olivia Garijo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nina D. Timberlake
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Petra Minder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Els Verhoeyen
- CIRI–International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111; Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1; CNRS, UMR5308, Lyon, France
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
710
|
Greene A, Pascarelli K, Broccoli D, Perkins E. Engineering Synthetic Chromosomes by Sequential Loading of Multiple Genomic Payloads over 100 Kilobase Pairs in Size. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:463-473. [PMID: 31193384 PMCID: PMC6527818 DOI: 10.1016/j.omtm.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/24/2019] [Indexed: 11/22/2022]
Abstract
Gene delivery vehicles currently in the clinic for treatment of monogenic disorders lack sufficient carrying capacity to efficiently address complex polygenic diseases. Thus, to engineer multifaceted genetic circuits for bioengineering human cells as a therapeutic option for polygenic diseases, we require new tools that are currently in their infancy. Mammalian artificial chromosomes, or synthetic chromosomes, represent a viable approach for delivery of large genetic payloads that are mitotically stable and remain independent of the host genome. Previously, we described a mammalian synthetic chromosome platform, termed the ACE system, that requires a single unidirectional integrase for the introduction of multiple genes onto the ACE platform chromosome. In this report, we provide a proof of concept that the ACE synthetic chromosome bioengineering platform is amenable to sequential delivery of off-the-shelf large genomic fragments. Specifically, large genomic clones spanning the human solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1 or GLUT1, 169 kbp), and human monocarboxylate transporter 1 (SLC16A1 or MCT1, 144 kbp) genetic loci were engineered onto the ACE platform and demonstrated to express and correctly splice both gene transcripts. Thus, the ACE system provides a facile and tractable engineering platform for the development of gene-based therapeutic agents targeting polygenic diseases.
Collapse
Affiliation(s)
- Amy Greene
- Department of Medical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- SynPloid Biotek, LLC, Savannah, GA 31404, USA
| | | | - Dominique Broccoli
- Department of Medical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- SynPloid Biotek, LLC, Savannah, GA 31404, USA
| | - Edward Perkins
- Department of Medical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- SynPloid Biotek, LLC, Savannah, GA 31404, USA
- Corresponding author: Edward Perkins, Mercer University School of Medicine, Savannah, GA 31404, USA.
| |
Collapse
|
711
|
Liefhebber JM, Martier R, Van der Zon T, Keskin S, Huseinovic A, Lubelski J, Blits B, Petry H, Konstantinova P. In-Depth Characterization of a Mifepristone-Regulated Expression System for AAV5-Mediated Gene Therapy in the Liver. Mol Ther Methods Clin Dev 2019; 13:512-525. [PMID: 31194088 PMCID: PMC6551379 DOI: 10.1016/j.omtm.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
Gene therapy is being developed for the treatment of inherited diseases, whereby a therapeutic gene is continuously expressed in patients after delivery via viral vectors such as adeno-associated virus (AAV). Depending on the transgene, there could be a limited therapeutic window, and regulating timing and levels of transgene expression is advantageous. To control transgene transcription, the regulatory system GeneSwitch (GS) was evaluated in detail both in vitro and in vivo. The classical two-plasmid mifepristone (MFP)-inducible GS system was put into one plasmid or a single AAV5 vector. Our data demonstrate the inducibility of multiple transgenes and the importance of promoter and regulatory elements within the GS system. Mice injected with AAV5 containing the GS system transiently expressed mRNA and protein after MFP induction. The inducer MFP could be measured in plasma and liver tissue, and assessment of MFP and its metabolites showed rapid clearance from murine plasma. In a head-to-head comparison, our single vector outclassed the classical two-vector GS system. Finally, we show repeated inducibility of the transgene that also translated into a dynamic phenotypic change in mice. Taken together, this in-depth analysis of the GS system shows its applicability for regulated gene therapy.
Collapse
Affiliation(s)
- Jolanda M. Liefhebber
- Department of Research & Development, uniQure N.V., 1105BP Amsterdam, the Netherlands
| | - Raygene Martier
- Department of Research & Development, uniQure N.V., 1105BP Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom Van der Zon
- Department of Research & Development, uniQure N.V., 1105BP Amsterdam, the Netherlands
| | - Sonay Keskin
- Department of Research & Development, uniQure N.V., 1105BP Amsterdam, the Netherlands
| | - Angelina Huseinovic
- Department of Research & Development, uniQure N.V., 1105BP Amsterdam, the Netherlands
- Amsterdam UMC, the Netherlands
| | - Jacek Lubelski
- Department of Research & Development, uniQure N.V., 1105BP Amsterdam, the Netherlands
| | - Bas Blits
- Department of Research & Development, uniQure N.V., 1105BP Amsterdam, the Netherlands
| | - Harald Petry
- Department of Research & Development, uniQure N.V., 1105BP Amsterdam, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure N.V., 1105BP Amsterdam, the Netherlands
| |
Collapse
|
712
|
Espinoza DA, Fan X, Yang D, Cordes SF, Truitt LL, Calvo KR, Yabe IM, Demirci S, Hope KJ, Hong SG, Krouse A, Metzger M, Bonifacino A, Lu R, Uchida N, Tisdale JF, Wu X, DeRavin SS, Malech HL, Donahue RE, Wu C, Dunbar CE. Aberrant Clonal Hematopoiesis following Lentiviral Vector Transduction of HSPCs in a Rhesus Macaque. Mol Ther 2019; 27:1074-1086. [PMID: 31023523 PMCID: PMC6554657 DOI: 10.1016/j.ymthe.2019.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023] Open
Abstract
Lentiviral vectors (LVs) are used for delivery of genes into hematopoietic stem and progenitor cells (HSPCs) in clinical trials worldwide. LVs, in contrast to retroviral vectors, are not associated with insertion site-associated malignant clonal expansions and, thus, are considered safer. Here, however, we present a case of markedly abnormal dysplastic clonal hematopoiesis affecting the erythroid, myeloid, and megakaryocytic lineages in a rhesus macaque transplanted with HSPCs that were transduced with a LV containing a strong retroviral murine stem cell virus (MSCV) constitutive promoter-enhancer in the LTR. Nine insertions were mapped in the abnormal clone, resulting in overexpression and aberrant splicing of several genes of interest, including the cytokine stem cell factor and the transcription factor PLAG1. This case represents the first clear link between lentiviral insertion-induced clonal expansion and a clinically abnormal transformed phenotype following transduction of normal primate or human HSPCs, which is concerning, and suggests that strong constitutive promoters should not be included in LVs.
Collapse
Affiliation(s)
- Diego A Espinoza
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Di Yang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stefan F Cordes
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Lauren L Truitt
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Katherine R Calvo
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Idalia M Yabe
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Selami Demirci
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Kristin J Hope
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Allen Krouse
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mark Metzger
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Rong Lu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naoya Uchida
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - John F Tisdale
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Suk See DeRavin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Robert E Donahue
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
713
|
Killian T, Buntz A, Herlet T, Seul H, Mundigl O, Längst G, Brinkmann U. Antibody-targeted chromatin enables effective intracellular delivery and functionality of CRISPR/Cas9 expression plasmids. Nucleic Acids Res 2019; 47:e55. [PMID: 30809660 PMCID: PMC6547418 DOI: 10.1093/nar/gkz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
We report a novel system for efficient and specific targeted delivery of large nucleic acids to and into cells. Plasmid DNA and core histones were assembled to chromatin by salt gradient dialysis and subsequently connected to bispecific antibody derivatives (bsAbs) via a nucleic acid binding peptide bridge. The resulting reconstituted vehicles termed 'plasmid-chromatin' deliver packaged nucleic acids to and into cells expressing antigens that are recognized by the bsAb, enabling intracellular functionality without detectable cytotoxicity. High efficiency of intracellular nucleic acid delivery is revealed by intracellular expression of plasmid encoded genes in most (∼90%) target cells to which the vehicles were applied under normal growth/medium conditions in nanomolar concentrations. Specific targeting, uptake and transgene expression depends on antibody-mediated cell surface binding: plasmid chromatin of identical composition but with non-targeting bsAbs or without bsAbs is ineffective. Examples that demonstrate applicability, specificity and efficacy of antibody-targeted plasmid chromatin include reporter gene constructs as well as plasmids that enable CRISPR/Cas9 mediated genome editing of target cells.
Collapse
Affiliation(s)
- Tobias Killian
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Annette Buntz
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Teresa Herlet
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Heike Seul
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Gernot Längst
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| |
Collapse
|
714
|
Kaiser RA, Nicolas CT, Allen KL, Chilton JA, Du Z, Hickey RD, Lillegard JB. Hepatotoxicity and Toxicology of In Vivo Lentiviral Vector Administration in Healthy and Liver-Injury Mouse Models. HUM GENE THER CL DEV 2019; 30:57-66. [PMID: 30860398 PMCID: PMC6589498 DOI: 10.1089/humc.2018.249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
General safety and toxicology assessments supporting in vivo lentiviral vector-based therapeutic development are sparse. We have previously demonstrated the efficacy of a lentiviral vector expressing fumarylacetoacetate hydrolase (LV-FAH) to cure animal models of hereditary tyrosinemia type 1. Therefore, we performed a complete preclinical toxicological evaluation of LV-FAH, in a large cohort (n = 20/group) of wildtype mice and included matched groups of N-nitrosodiethylamine/carbon tetrachloride (DEN/CCl4)-induced liver injury mice to assess specific toxicity in fibrotic liver tissue. Mice receiving LV-FAH alone (109 TU/mouse) or in combination with DEN/CCl4 presented clinically similar to control animals, with only slight reductions in total body weight gains over the study period (3.2- to 3.7-fold vs. 4.2-fold). There were no indications of toxicity attributed to administration of LV-FAH alone over the duration of this study. The known hepatotoxic combination of DEN/CCl4 induced fibrotic liver injury, and co-administration with LV-FAH was associated with exaggeration of some findings such as an increased liver:body weight ratio and progression to focal hepatocyte necrosis in some animals. Hepatocellular degeneration/regeneration was present in DEN/CCl4-dosed animals regardless of LV-FAH as evaluated by Ki-67 immunohistochemistry and circulating alpha fetoprotein levels, but there were no tumors identified in any tissue in any dose group. These data demonstrate the inherent safety of LV-FAH and support broader clinical development of lentiviral vectors for in vivo administration.
Collapse
Affiliation(s)
- Robert Allen Kaiser
- Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, Minnesota
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Kari Lynn Allen
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Zeji Du
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Joseph Benjamin Lillegard
- Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, Minnesota
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
- Pediatric Surgical Associates, Minneapolis, Minnesota
| |
Collapse
|
715
|
Nakano C, Kitabatake Y, Takeyari S, Ohata Y, Kubota T, Taketani K, Kogo M, Ozono K. Genetic correction of induced pluripotent stem cells mediated by transcription activator-like effector nucleases targeting ALPL recovers enzyme activity and calcification in vitro. Mol Genet Metab 2019; 127:158-165. [PMID: 31178256 DOI: 10.1016/j.ymgme.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 01/22/2023]
Abstract
Hypophosphatasia (HPP) is an inheritable disease affecting both skeletal systems and extra-skeletal organs due to mutations of the gene ALPL, which encodes tissue-nonspecific alkaline phosphatase. Recently, an enzyme replacement therapy using asfotase alfa was developed to ameliorate the complications of HPP. However, it requires frequent injections and is expensive to maintain. As an alternative, cell and gene therapy using human induced pluripotent stem cells (iPSCs) after precise correction of the mutation is feasible due to advances in genome-editing technology. In the study, we examined the alkaline phosphatase (ALP) activity and calcification in vitro of two childhood HPP patient-derived iPSCs after the correction of the c.1559delT mutation, which is the most frequent mutation in Japanese patients with HPP, using transcription activator-like effector nucleases (TALENs). The gene correction targeting vector was designed for site-directed mutagenesis using TALEN. After selection with antibiotics, some clones with the selection cassette were obtained. Gene correction was confirmed by Sanger sequencing. The mutation was corrected in one allele of ALPL in homozygous patients and compound heterozygous patients. The correction of ALPL did not result in an increase in ALP when the selection cassette remained. Conversely, iPSCs exhibited ALP activity after the elimination of the cassette using Cre/LoxP. The quantitative analysis showed the half ALP activity in corrected iPSCs of that of control iPSCs, corresponding to heterozygous correction of the mutation. In addition, osteoblasts differentiated from the corrected iPSCs exhibited high ALP activity and some calcification in vitro. Moreover, the osteoblast-like phenotype was confirmed by increased expression of osteoblast-specific genes such as COL1A1 and osteocalcin. These results suggest that gene correction in iPSCs may be a candidate treatment for HPP patients.
Collapse
Affiliation(s)
- Chiho Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan; Unit of Dentistry, Osaka University Hospital, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken Taketani
- Department of Pediatrics, Shimane University, Osaka, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
716
|
Wang Y, Wang B, Xie H, Ren Q, Liu X, Li F, Lv X, He X, Cheng C, Deng R, Li J, Zhao J, Song Z, Gu F. Efficient Human Genome Editing Using SaCas9 Ribonucleoprotein Complexes. Biotechnol J 2019; 14:e1800689. [PMID: 30927491 DOI: 10.1002/biot.201800689] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/27/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yufei Wang
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| | - Bang Wang
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| | - Haihua Xie
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| | - Qianwen Ren
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| | - Xiexie Liu
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| | - Fanfan Li
- The Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhou Zhejiang 325000 China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| | - Xiubin He
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| | - Congsheng Cheng
- The Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhou Zhejiang 325000 China
- Henan Eye Institute, Henan Eye HospitalHenan Provincial People's HospitalZhengzhou UniversityZhengzhou Henan 450003 China
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of PhiladelphiaPhiladelphia PA 19104 USA
| | - Ruzhi Deng
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| | - Jin Li
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhou Zhejiang 325000 China
| | - Zongming Song
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
- Henan Eye Institute, Henan Eye HospitalHenan Provincial People's HospitalZhengzhou UniversityZhengzhou Henan 450003 China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye HospitalState Key Laboratory of OphthalmologyOptometry and Vision ScienceWenzhou Medical University270 Xueyuan West Road Wenzhou Zhejiang 325027 China
- Zhejiang Provincial Key Laboratory of Ophthalmology and OptometryWenzhou Medical UniversityWenzhou Zhejiang 325027 China
| |
Collapse
|
717
|
Wang J, Ren KF, Gao YF, Zhang H, Huang WP, Qian HL, Xu ZK, Ji J. Photothermal Spongy Film for Enhanced Surface-Mediated Transfection to Primary Cells. ACS APPLIED BIO MATERIALS 2019; 2:2676-2684. [DOI: 10.1021/acsabm.9b00358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yi-Fan Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - He Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei-Pin Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
718
|
Locating and Characterizing a Transgene Integration Site by Nanopore Sequencing. G3-GENES GENOMES GENETICS 2019; 9:1481-1486. [PMID: 30837263 PMCID: PMC6505145 DOI: 10.1534/g3.119.300582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The introduction of foreign DNA into cells and organisms has facilitated much of modern biological research, and it promises to become equally important in clinical practice. Locating sites of foreign DNA incorporation in mammalian genomes has proven burdensome, so the genomic location of most transgenes remains unknown. To address this challenge, we applied nanopore sequencing in search of the site of integration of Tg(Pou5f1-EGFP)2Mnn (also known as Oct4:EGFP), a widely used fluorescent reporter in mouse germ line research. Using this nanopore-based approach, we identified the site of Oct4:EGFP transgene integration near the telomere of Chromosome 9. This methodology simultaneously yielded an estimate of transgene copy number, provided direct evidence of transgene inversions, revealed contaminating E. coli genomic DNA within the transgene array, validated the integrity of neighboring genes, and enabled definitive genotyping. We suggest that such an approach provides a rapid, cost-effective method for identifying and analyzing transgene integration sites.
Collapse
|
719
|
Manna D, Maji B, Gangopadhyay SA, Cox KJ, Zhou Q, Law BK, Mazitschek R, Choudhary A. A Singular System with Precise Dosing and Spatiotemporal Control of CRISPR‐Cas9. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Debasish Manna
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Soumyashree A. Gangopadhyay
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Kurt J. Cox
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
| | - Qingxuan Zhou
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
| | - Benjamin K. Law
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
| | - Ralph Mazitschek
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Harvard T. H. Chan School of Public Health Boston MA 02115 USA
- Center for Systems Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| |
Collapse
|
720
|
Manna D, Maji B, Gangopadhyay SA, Cox KJ, Zhou Q, Law BK, Mazitschek R, Choudhary A. A Singular System with Precise Dosing and Spatiotemporal Control of CRISPR-Cas9. Angew Chem Int Ed Engl 2019; 58:6285-6289. [PMID: 30834641 PMCID: PMC7067309 DOI: 10.1002/anie.201900788] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/24/2019] [Indexed: 12/29/2022]
Abstract
Several genome engineering applications of CRISPR-Cas9, an RNA-guided DNA endonuclease, require precision control of Cas9 activity over dosage, timing, and targeted site in an organism. While some control of Cas9 activity over dose and time have been achieved using small molecules, and spatial control using light, no singular system with control over all the three attributes exists. Furthermore, the reported small-molecule systems lack wide dynamic range, have background activity in the absence of the small-molecule controller, and are not biologically inert, while the optogenetic systems require prolonged exposure to high-intensity light. We previously reported a small-molecule-controlled Cas9 system with some dosage and temporal control. By photocaging this Cas9 activator to render it biologically inert and photoactivatable, and employing next-generation protein engineering approaches, we have built a system with a wide dynamic range, low background, and fast photoactivation using a low-intensity light while rendering the small-molecule activator biologically inert. We anticipate these precision controls will propel the development of practical applications of Cas9.
Collapse
Affiliation(s)
- Debasish Manna
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Soumyashree A Gangopadhyay
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Kurt J Cox
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Qingxuan Zhou
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Benjamin K Law
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ralph Mazitschek
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
721
|
Stanimirovic DB, Sandhu JK, Costain WJ. Emerging Technologies for Delivery of Biotherapeutics and Gene Therapy Across the Blood-Brain Barrier. BioDrugs 2019; 32:547-559. [PMID: 30306341 PMCID: PMC6290705 DOI: 10.1007/s40259-018-0309-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibody, immuno- and gene therapies developed for neurological indications face a delivery challenge posed by various anatomical and physiological barriers within the central nervous system (CNS); most notably, the blood–brain barrier (BBB). Emerging delivery technologies for biotherapeutics have focused on trans-cellular pathways across the BBB utilizing receptor-mediated transcytosis (RMT). ‘Traditionally’ targeted RMT receptors, transferrin receptor (TfR) and insulin receptor (IR), are ubiquitously expressed and pose numerous translational challenges during development, including species differences and safety risks. Recent advances in antibody engineering technologies and discoveries of RMT targets and BBB-crossing antibodies that are more BBB-selective have combined to create a new preclinical pipeline of BBB-crossing biotherapeutics with improved efficacy and safety. Novel BBB-selective RMT targets and carrier antibodies have exposed additional opportunities for re-targeting gene delivery vectors or nanocarriers for more efficient brain delivery. Emergence and refinement of core technologies of genetic engineering and editing as well as biomanufacturing of viral vectors and cell-derived products have de-risked the path to the development of systemic gene therapy approaches for the CNS. In particular, brain-tropic viral vectors and extracellular vesicles have recently expanded the repertoire of brain delivery strategies for biotherapeutics. Whereas protein biotherapeutics and bispecific antibodies enabled for BBB transcytosis are rapidly heading towards clinical trials, systemic gene therapy approaches for CNS will likely remain in research phase for the foreseeable future. The promise and limitations of these emerging cross-BBB delivery technologies are further discussed in this article.
Collapse
Affiliation(s)
- Danica B Stanimirovic
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada.
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| | - Will J Costain
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| |
Collapse
|
722
|
Adeno-associated virus as a gene therapy vector: strategies to neutralize the neutralizing antibodies. Clin Exp Med 2019; 19:289-298. [DOI: 10.1007/s10238-019-00557-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/23/2019] [Indexed: 11/26/2022]
|
723
|
González-Romero E, Martínez-Valiente C, García-Ruiz C, Vázquez-Manrique RP, Cervera J, Sanjuan-Pla A. CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica 2019; 104:881-893. [PMID: 30923099 PMCID: PMC6518885 DOI: 10.3324/haematol.2018.211359] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in genome engineering in the last decade, particularly in the development of programmable nucleases, have made it possible to edit the genomes of most cell types precisely and efficiently. Chief among these advances, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a novel, versatile and easy-to-use tool to edit genomes irrespective of their complexity, with multiple and broad applications in biomedicine. In this review, we focus on the use of CRISPR/Cas9 genome editing in the context of hematologic diseases and appraise the major achievements and challenges in this rapidly moving field to gain a clearer perspective on the potential of this technology to move from the laboratory to the clinic. Accordingly, we discuss data from studies editing hematopoietic cells to understand and model blood diseases, and to develop novel therapies for hematologic malignancies. We provide an overview of the applications of gene editing in experimental, preclinical and clinical hematology including interrogation of gene function, target identification and drug discovery and chimeric antigen receptor T-cell engineering. We also highlight current limitations of CRISPR/Cas9 and the possible strategies to overcome them. Finally, we consider what advances in CRISPR/Cas9 are needed to move the hematology field forward.
Collapse
Affiliation(s)
| | | | | | - Rafael P Vázquez-Manrique
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia
- CIBER de Enfermedades Raras, Madrid
| | - José Cervera
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia
- CIBER de Oncología, Madrid, Spain
| | | |
Collapse
|
724
|
|
725
|
Santo D, Mendonça PV, Lima MS, Cordeiro RA, Cabanas L, Serra A, Coelho JFJ, Faneca H. Poly(ethylene glycol)- block-poly(2-aminoethyl methacrylate hydrochloride)-Based Polyplexes as Serum-Tolerant Nanosystems for Enhanced Gene Delivery. Mol Pharm 2019; 16:2129-2141. [PMID: 30986077 DOI: 10.1021/acs.molpharmaceut.9b00101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Incorporation of poly(ethylene glycol) (PEG) into polyplexes has been used as a promising approach to enhance their stability and reduce unwanted interactions with biomolecules. However, this strategy generally has a negative influence on cellular uptake and, consequently, on transfection of target cells. In this work, we explore the effect of PEGylation on biological and physicochemical properties of poly(2-aminoethyl methacrylate) (PAMA)-based polyplexes. For this purpose, different tailor-made PEG- b-PAMA block copolymers, and the respective homopolymers, were synthesized using the controlled/"living" radical polymerization method based on activators regenerated by electron transfer atom transfer radical polymerization. The obtained data show that PEG- b-PAMA-based polyplexes exhibited a much better transfection activity/cytotoxicity relationship than the corresponding non-PEGylated nanocarriers. The best formulation, prepared with the largest block copolymer (PEG45- b-PAMA168) at a 25:1 N/P ratio, presented a 350-fold higher transfection activity in the presence of serum than that obtained with polyplexes generated with the gold standard bPEI. This higher transfection activity was associated to an improved capability to overcome the intracellular barriers, namely the release from the endolysosomal pathway and the vector unpacking and consequent DNA release from the nanosystem inside cells. Moreover, these nanocarriers exhibit suitable physicochemical properties for gene delivery, namely reduced sizes, high DNA protection, and colloidal stability. Overall, these findings demonstrate the high potential of the PEG45- b-PAMA168 block copolymer as a gene delivery system.
Collapse
Affiliation(s)
- Daniela Santo
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| | - Patrícia V Mendonça
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Mafalda S Lima
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Rosemeyre A Cordeiro
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| | - Luis Cabanas
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| | - Arménio Serra
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Henrique Faneca
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| |
Collapse
|
726
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
727
|
Xu F, Guo Y. Communicable diseases and the genome revolution. LANCET GLOBAL HEALTH 2019; 6:e720-e721. [PMID: 29903368 DOI: 10.1016/s2214-109x(18)30261-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Fujie Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; School of Public Health, Peking University, Beijing 100191, China
| | - Yan Guo
- School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
728
|
Craciun BF, Gavril G, Peptanariu D, Ursu LE, Clima L, Pinteala M. Synergistic Effect of Low Molecular Weight Polyethylenimine and Polyethylene Glycol Components in Dynamic Nonviral Vector Structure, Toxicity, and Transfection Efficiency. Molecules 2019; 24:E1460. [PMID: 31013863 PMCID: PMC6515267 DOI: 10.3390/molecules24081460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/17/2022] Open
Abstract
When studying polyethylenimine derivatives as nonviral vectors for gene delivery, among the important issues to be addressed are high toxicity, low transfection efficiency, and nucleic acid polyplex condensation. The molecular weight of polyethylenimine, PEGylation, biocompatibility and, also, supramolecular structure of potential carrier can all influence the nucleic acid condensation behavior, polyplex size, and transfection efficiency. The main challenge in building an efficient carrier is to find a correlation between the constituent components, as well as the synergy between them, to transport and to release, in a specific manner, different molecules of interest. In the present study, we investigated the synergy between components in dynamic combinatorial frameworks formed by connecting PEGylated squalene, poly-(ethyleneglycol)-bis(3-aminopropyl) and low molecular weight polyethylenimine components to 1,3,5-benzenetrialdehyde, via reversible imine bond, applying a dynamic combinatorial chemistry approach. We report comparative structural and morphological data, DNA binding affinity, toxicity and transfection efficiency concerning the ratio of polyethylenimine and presence or absence of poly-(ethyleneglycol)-bis(3-aminopropyl) in composition of dynamic combinatorial frameworks. In vitro biological assessments have revealed the fact that nonviral vectors containing poly-(ethyleneglycol)-bis(3-aminopropyl) and the lowest amount of polyethylenimine have significant transfection efficiency at N/P 50 ratio and display insignificant cytotoxicity on the HeLa cell line.
Collapse
Affiliation(s)
- Bogdan Florin Craciun
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Gabriela Gavril
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Dragos Peptanariu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Laura Elena Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Lilia Clima
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Mariana Pinteala
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| |
Collapse
|
729
|
Abstract
Cardioprotective engineering is an emerging bioengineering discipline aiming to develop engineering strategies to optimize cardioprotective actions against cardiac injuries and disorders. Although there exist innate cardioprotective mechanisms capable of supporting cardiomyocyte survival in response to an insult, not all these mechanisms are optimized in promptness and effectiveness, suggesting the necessity of cardioprotective engineering. Various cardioprotective strategies have been developed and used in experimental and clinical investigations; however, few of these strategies have exerted a significant clinical impact. There are two major challenges in cardioprotective engineering - understanding the innate cardioprotective mechanisms and developing engineering strategies for precise control of the types, levels, timing, and coordination of cardioprotective actions to facilitate recovery from injuries and disorders. Understanding the innate mechanisms is the foundation for developing cardioprotective engineering strategies. Here, ischemic myocardial injury is used as an example to demonstrate the concept of cardioprotective engineering.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston IL, 60208-3107
| |
Collapse
|
730
|
Wu J, Zheng Y, Jiang S, Qu Y, Wei T, Zhan W, Wang L, Yu Q, Chen H. Two-in-One Platform for High-Efficiency Intracellular Delivery and Cell Harvest: When a Photothermal Agent Meets a Thermoresponsive Polymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12357-12366. [PMID: 30859807 DOI: 10.1021/acsami.9b01586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Efficient intracellular delivery of exogenous macromolecules is a key operation in biological research and for clinical applications. Moreover, under particular in vitro or ex vivo conditions, harvesting the engineered cells that maintain good viability is also important. However, none of the methods currently available is truly satisfactory in all respects. Herein, a "two-in-one" platform based on a polydopamine/poly( N-isopropylacrylamide) (PDA/PNIPAAm) hybrid film is developed, showing high efficiency in both cargo delivery and cell harvest without compromising cell viability. Due to the strong photothermal effect of PDA in response to near-infrared irradiation, this film can deliver diverse molecules to a number of cell types (including three hard-to-transfect cells) with an efficiency of ∼99% via membrane-disruption mechanism. Moreover, due to the thermoresponsive properties of PNIPAAm, the cells are harvested from the film without compromising viability by simply decreasing the temperature. A proof-of-concept experiment demonstrates that, using this platform, "recalcitrant" endothelial cells can be transfected by the functional ZNF580 gene and the harvested transfected cells can be recultured with high retention of viability and improved migration. In general, this "two-in-one" platform provides a reliable, universally applicable approach for both intracellular delivery and cell harvest in a highly efficient and nondestructive way, with great potential for use in a wide range of biomedical applications.
Collapse
Affiliation(s)
- Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Shuaibing Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
731
|
Miyoshi T, Hiratsuka K, Saiz EG, Morizane R. Kidney organoids in translational medicine: Disease modeling and regenerative medicine. Dev Dyn 2019; 249:34-45. [PMID: 30843293 DOI: 10.1002/dvdy.22] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The kidney is one of the most complex organs composed of multiple cell types, functioning to maintain homeostasis by means of the filtering of metabolic wastes, balancing of blood electrolytes, and adjustment of blood pressure. Recent advances in 3D culture technologies in vitro enabled the generation of "organoids" which mimic the structure and function of in vivo organs. Organoid technology has allowed for new insights into human organ development and human pathophysiology, with great potential for translational research. Increasing evidence shows that kidney organoids are a useful platform for disease modeling of genetic kidney diseases when derived from genetic patient iPSCs and/or CRISPR-mutated stem cells. Although single cell RNA-seq studies highlight the technical difficulties underlying kidney organoid generation reproducibility and variation in differentiation protocols, kidney organoids still hold great potential to understand kidney pathophysiology as applied to kidney injury and fibrosis. In this review, we summarize various studies of kidney organoids, disease modeling, genome-editing, and bioengineering, and additionally discuss the potential of and current challenges to kidney organoid research.
Collapse
Affiliation(s)
- Tomoya Miyoshi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ken Hiratsuka
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Edgar Garcia Saiz
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ryuji Morizane
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Harvard Stem Cell Institute, Cambridge, Massachusetts.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
732
|
Affiliation(s)
- Dao Pan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
733
|
Li C, Chan DCW, Yang X, Ke Y, Yung WH. Prediction of Forelimb Reach Results From Motor Cortex Activities Based on Calcium Imaging and Deep Learning. Front Cell Neurosci 2019; 13:88. [PMID: 30914924 PMCID: PMC6422863 DOI: 10.3389/fncel.2019.00088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
Brain-wide activities revealed by neuroimaging and recording techniques have been used to predict motor and cognitive functions in both human and animal models. However, although studies have shown the existence of micrometer-scale spatial organization of neurons in the motor cortex relevant to motor control, two-photon microscopy (TPM) calcium imaging at cellular resolution has not been fully exploited for the same purpose. Here, we ask if calcium imaging data recorded by TPM in rodent brain can provide enough information to predict features of upcoming movement. We collected calcium imaging signal from rostral forelimb area in layer 2/3 of the motor cortex while mice performed a two-dimensional lever reaching task. Images of average calcium activity collected during motion preparation period and inter-trial interval (ITI) were used to predict the forelimb reach results. The evaluation was based on a deep learning model that had been applied for object recognition. We found that the prediction accuracy for both maximum reaching location and trial outcome based on motion preparation period but not ITI were higher than the probabilities governed by chance. Our study demonstrated that imaging data encompassing information on the spatial organization of functional neuronal clusters in the motor cortex is useful in predicting motor acts even in the absence of detailed dynamics of neural activities.
Collapse
Affiliation(s)
- Chunyue Li
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Danny C W Chan
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaofeng Yang
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing-Ho Yung
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
734
|
Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 2019; 18:447-462. [DOI: 10.1038/s41573-019-0020-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
735
|
Naldini L. Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Mol Med 2019; 11:e9958. [PMID: 30670463 PMCID: PMC6404113 DOI: 10.15252/emmm.201809958] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
Here I review the scientific background, current stage of development and future perspectives that I foresee in the field of genetic manipulation of hematopoietic stem cells with a special emphasis on clinical applications.
Collapse
Affiliation(s)
- Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital and Research Institute, "Vita - Salute San Raffaele" University Medical School, Milan, Italy
| |
Collapse
|
736
|
French BA, Holmes JW. Implications of scar structure and mechanics for post-infarction cardiac repair and regeneration. Exp Cell Res 2019; 376:98-103. [PMID: 30610848 DOI: 10.1016/j.yexcr.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 01/14/2023]
Abstract
Regenerating cardiac muscle lost during a heart attack is a topic of broad interest and enormous potential impact. One promising approach is to regenerate or re-engineer new myocardium in situ, at the site of damage, by injecting cells, growth factors, and other materials, or by reprogramming aspects of the normal wound healing process. A wide variety of strategies have been explored, from promoting angiogenesis to injection of a variety of different progenitor cell types, to re-engineering resident cells to produce key growth factors or even transdifferentiate into myocytes. Despite substantial progress and continued promise, clinical impact of this work has fallen short of expectations. One contributing factor may be that many efforts focus primarily on generating cardiomyocytes, with less attention to re-engineering the extracellular matrix (ECM). Yet the role of the ECM is particularly crucial to consider following myocardial infarction, which leads to rapid formation of a collagen-rich scar. This review combines a brief summary of current efforts to regenerate cardiomyocytes with what is currently known about the structure and mechanics of post-infarction scar, with the goal of identifying principles that can guide efforts to produce new myocytes embedded in an extracellular environment that facilitates their differentiation, maintenance, and function.
Collapse
Affiliation(s)
- Brent A French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Radiology, University of Virginia, Charlottesville, VA, USA; Department of Medicine, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Medicine, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
737
|
Mechanism-Based Precision Therapy for the Treatment of Primary Immunodeficiency and Primary Immunodysregulatory Diseases. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:761-773. [DOI: 10.1016/j.jaip.2018.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
|
738
|
Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH, Asokan A, Gersbach CA. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 2019; 25:427-432. [PMID: 30778238 PMCID: PMC6455975 DOI: 10.1038/s41591-019-0344-3] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic disorder and a candidate for therapeutic genome editing. There have been several recent reports of genome editing in preclinical models of Duchenne muscular dystrophy1-6, however, the long-term persistence and safety of these genome editing approaches have not been addressed. Here we show that genome editing and dystrophin protein restoration is sustained in the mdx mouse model of Duchenne muscular dystrophy for 1 year after a single intravenous administration of an adeno-associated virus that encodes CRISPR (AAV-CRISPR). We also show that AAV-CRISPR is immunogenic when administered to adult mice7; however, humoral and cellular immune responses can be avoided by treating neonatal mice. Additionally, we describe unintended genome and transcript alterations induced by AAV-CRISPR that should be considered for the development of AAV-CRISPR as a therapeutic approach. This study shows the potential of AAV-CRISPR for permanent genome corrections and highlights aspects of host response and alternative genome editing outcomes that require further study.
Collapse
Affiliation(s)
- Christopher E Nelson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew P Gemberling
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Matthew L Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew A Waller
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Joel D Bohning
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jacqueline N Robinson-Hamm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Karen Bulaklak
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
739
|
Tan L, Shang L. Smart Delivery Systems Based on Poly(glycidyl methacrylate)s‐Coated Organic/Inorganic Core–Shell Nanohybrids. Macromol Rapid Commun 2019; 40:e1800879. [DOI: 10.1002/marc.201800879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li‐Li Tan
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) Xi'an 710072 P. R. China
| | - Li Shang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) Xi'an 710072 P. R. China
| |
Collapse
|
740
|
Herzog RW, Kuteyeva V, Saboungi R, Terhorst C, Biswas M. Reprogrammed CD4 + T Cells That Express FoxP3 + Control Inhibitory Antibody Formation in Hemophilia A Mice. Front Immunol 2019; 10:274. [PMID: 30842776 PMCID: PMC6391332 DOI: 10.3389/fimmu.2019.00274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 01/16/2023] Open
Abstract
Coagulation Factor VIII (FVIII) replacement therapy in hemophilia A patients is complicated by the development of inhibitory antibodies, which often render the treatment ineffective. Previous studies demonstrated a strong correlation between induction of regulatory T cells (Treg) and tolerance to the therapeutic protein. We, therefore, set out to evaluate whether the adoptive transfer of FVIII-specific CD4+ Treg cells prevents inhibitor response to FVIII protein therapy. To this end, we first retrovirally transduced FoxP3+ into FVIII-specific CD4+ cells, which resulted in cells that stably express FoxP3, are phenotypically similar to peripherally induced Tregs and are antigen specific suppressors, as judged by in vitro assays. Upon transfer of the FVIII-specific CD4+ FoxP3+ cells into hemophilia A mice, development of inhibitory antibodies in response to administering FVIII protein was completely suppressed. Suppression was extended for 2 months, even after transferred cells were no longer detectable in the secondary lymphoid organs of recipient animals. Upon co-transfer of FoxP3+-transduced cells with the B cell depleting anti-CD20 into mice with pre-existing inhibitory antibodies to FVIII, the escalation of inhibitory antibody titers in response to subsequent FVIII protein therapy was dramatically reduced. We conclude that reprogramed FoxP3 expressing cells are capable of inducing the in vivo conversion of endogenous FVIII peripheral Tregs, which results in sustained suppression of FVIII inhibitors caused by replacement therapy in recipient hemophilia A animals.
Collapse
Affiliation(s)
- Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Veronica Kuteyeva
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rania Saboungi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States,*Correspondence: Moanaro Biswas
| |
Collapse
|
741
|
Zhao J, Song Y, Liu D. Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. J Hematol Oncol 2019; 12:17. [PMID: 30764841 PMCID: PMC6376657 DOI: 10.1186/s13045-019-0705-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/07/2019] [Indexed: 02/08/2023] Open
Abstract
The current treatment for pediatric acute lymphoblastic leukemia (ALL) is highly successful with high cure rate. However, the treatment of adult ALL remains a challenge, particularly for refractory and/or relapsed (R/R) ALL. The advent of new targeted agents, blinatumomab, inotuzumab ozogamycin, and chimeric antigen receptor (CAR) T cells, are changing the treatment paradigm for ALL. Tisagenlecleucel (kymriah, Novartis) is an autologous CD19-targeted CAR T cell product approved for treatment of R/R B cell ALL and lymphoma. In an attempt to reduce the relapse rate and treat those relapsed patients with antigen loss, donor-derived CAR T cells and CD19/CD22 dual-target CAR T cells are in clinical trials. Gene-edited “off-the-shelf” universal CAR T cells are also undergoing active clinical development. This review summarized new clinical trials and latest updates at the 2018 ASH Annual Meeting on CAR T therapy for ALL with a focus on dual-target CAR T and universal CAR T cell trials.
Collapse
Affiliation(s)
- Juanjuan Zhao
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China
| | - Delong Liu
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China.
| |
Collapse
|
742
|
Amado DA, Rieders JM, Diatta F, Hernandez-Con P, Singer A, Mak JT, Zhang J, Lancaster E, Davidson BL, Chen-Plotkin AS. AAV-Mediated Progranulin Delivery to a Mouse Model of Progranulin Deficiency Causes T Cell-Mediated Toxicity. Mol Ther 2019; 27:465-478. [PMID: 30559071 PMCID: PMC6369714 DOI: 10.1016/j.ymthe.2018.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 11/16/2022] Open
Abstract
Adeno-associated virus-mediated gene replacement is emerging as a safe and effective means of correcting single-gene mutations affecting the CNS. AAV-mediated progranulin gene (GRN) delivery has been proposed as a treatment for GRN-deficient frontotemporal dementia and neuronal ceroid lipofuscinosis, and recent studies using intraparenchymal AAV-Grn delivery to brain have shown moderate success in histopathologic and behavioral rescue in mouse models. Here, we used AAV9 to deliver GRN to the lateral ventricle to achieve widespread expression in the Grn null mouse brain. We found that, despite a global increase in progranulin, overexpression resulted in dramatic and selective hippocampal toxicity and degeneration affecting neurons and glia. Hippocampal degeneration was preceded by T cell infiltration and perivascular cuffing. GRN delivery with an ependymal-targeting AAV for selective secretion of progranulin into the cerebrospinal fluid similarly resulted in T cell infiltration, as well as ependymal hypertrophy. Interestingly, overexpression of GRN in wild-type animals also provoked T cell infiltration. These results call into question the safety of GRN overexpression in the CNS, with evidence for both a region-selective immune response and cellular proliferative response. Our results highlight the importance of careful consideration of target gene biology and cellular response to overexpression prior to progressing to the clinic.
Collapse
Affiliation(s)
- Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianne M Rieders
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5060 CTRB, Philadelphia, PA 19104, USA
| | - Fortunay Diatta
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pilar Hernandez-Con
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adina Singer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan T Mak
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junxian Zhang
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5060 CTRB, Philadelphia, PA 19104, USA.
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
743
|
Czechowicz A, Palchaudhuri R, Scheck A, Hu Y, Hoggatt J, Saez B, Pang WW, Mansour MK, Tate TA, Chan YY, Walck E, Wernig G, Shizuru JA, Winau F, Scadden DT, Rossi DJ. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat Commun 2019; 10:617. [PMID: 30728354 PMCID: PMC6365495 DOI: 10.1038/s41467-018-08201-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a curative therapy for blood and immune diseases with potential for many settings beyond current standard-of-care. Broad HSCT application is currently precluded largely due to morbidity and mortality associated with genotoxic irradiation or chemotherapy conditioning. Here we show that a single dose of a CD117-antibody-drug-conjugate (CD117-ADC) to saporin leads to > 99% depletion of host HSCs, enabling rapid and efficient donor hematopoietic cell engraftment. Importantly, CD117-ADC selectively targets hematopoietic stem cells yet does not cause clinically significant side-effects. Blood counts and immune cell function are preserved following CD117-ADC treatment, with effective responses by recipients to both viral and fungal challenges. These results suggest that CD117-ADC-mediated HSCT pre-treatment could serve as a non-myeloablative conditioning strategy for the treatment of a wide range of non-malignant and malignant diseases, and might be especially suited to gene therapy and gene editing settings in which preservation of immunity is desired. Hematopoietic stem cell (HSC) transplantation is a desirable treatment for many non-malignant and malignant diseases, but its use requires preconditioning of recipients with irradiation or chemotherapy that often induces high toxicity. Here the authors show that antibody-drug-conjugate to CD117, a HSC marker, allows specific and efficient preconditioning for HSC therapy.
Collapse
Affiliation(s)
- Agnieszka Czechowicz
- Program in Cellular and Molecular Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA. .,Department of Pediatrics, Division of Hematology/Oncology, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA. .,Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Rahul Palchaudhuri
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Magenta Therapeutics, Cambridge, MA, 02139, USA
| | - Amelia Scheck
- Program in Cellular and Molecular Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Division of Hematology/Oncology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yu Hu
- Program in Cellular and Molecular Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jonathan Hoggatt
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Borja Saez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Center For Applied Medical Research, Pamplona, 31008, Spain
| | - Wendy W Pang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael K Mansour
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Tiffany A Tate
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yan Yi Chan
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emily Walck
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gerlinde Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Judith A Shizuru
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Florian Winau
- Program in Cellular and Molecular Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA. .,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Derrick J Rossi
- Program in Cellular and Molecular Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatrics, Division of Hematology/Oncology, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
744
|
|
745
|
Abstract
Polymeric matrices inherently protect viral vectors from pre-existing immune conditions, limit dissemination to off-target sites, and can sustain vector release. Advancing methodologies in development of particulate based vehicles have led to improved encapsulation of viral vectors. Polymeric delivery systems have contributed to increasing cellular transduction, responsive release mechanisms, cellular infiltration, and cellular signaling. Synthetic polymers are easily customizable, and are capable of balancing matrix retention with cellular infiltration. Natural polymers contain inherent biorecognizable motifs adding therapeutic efficacy to the incorporated viral vector. Recombinant polymers use highly conserved motifs to carefully engineer matrices, allowing for precise design including elements of vector retention and responsive release mechanisms. Composite polymer systems provide opportunities to create matrices with unique properties. Carefully designed matrices can control spatiotemporal release patterns that synergize with approaches in regenerative medicine and antitumor therapies.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
746
|
Uchida S, Kataoka K. Design concepts of polyplex micelles for in vivo therapeutic delivery of plasmid DNA and messenger RNA. J Biomed Mater Res A 2019; 107:978-990. [PMID: 30665262 DOI: 10.1002/jbm.a.36614] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Nonviral delivery of plasmid (p)DNA or messenger (m)RNA is a safe and promising therapeutic option to continuously supply therapeutic proteins into diseased tissues. In most cases of in vivo pDNA and mRNA delivery, these nucleic acids are loaded into carriers based on cationic polymers and/or lipids to prevent nuclease-mediated degradation before reaching target cells. The carriers should also evade host clearance mechanisms, including uptake by scavenger cells and filtration in the spleen. Installation of ligands onto the carriers can facilitate their rapid uptake into target cells. Meanwhile, carrier toxicity should be minimized not only for preventing undesirable adverse responses in patients, but also for preserving the function of transfected cells to exert therapeutic effects. Long-term progressive improvement of platform technologies has helped overcome most of these issues, though some still remain hindering the widespread clinical application of nonviral pDNA and mRNA delivery. This review discusses design concepts of nonviral carriers for in vivo delivery and the issues to be overcome, focusing especially on our own efforts using polyplex micelles. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 978-990, 2019.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.,Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
747
|
Dai W, Xu X, Wang D, Wu J, Wang J. Cancer therapy with a CRISPR-assisted telomerase-activating gene expression system. Oncogene 2019; 38:4110-4124. [PMID: 30696954 DOI: 10.1038/s41388-019-0707-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Cancer is caused by a series of alterations in genome and epigenome and exists in multiple complex forms, making it difficult to be prevented and/or treated. Telomerase, an enzyme responsible for the maintenance of telomere, is silent in most normal somatic cells but activated in 90% of cancer cells, making it an excellent target for cancer therapy. Therefore, various telomerase activity inhibitors have been developed to treat cancer but all failed due to side effects. Here we acted oppositely to develop a cancer gene therapy named telomerase-activating gene expression (Tage) system by utilizing the telomerase activity in cancer cells. The Tage system consisted of an effector gene expression vector that carried a 3' telomerase-recognizable stick end and an artificial transcription factor expression vector that could express dCas9-VP64 and an sgRNA targeting telomere repeat sequences. By using Cas9 as an effector gene, the Tage system effectively killed various cancer cells, including HepG2, HeLa, PANC-1, MDA-MB-453, A549, HT-29, SKOV-3, Hepa1-6, and RAW264.7, without affecting normal cells MRC-5, HL7702, and bone marrow mesenchymal stem cell (BMSC). More importantly, a four-base 3' stick end produced by the homothallic switching endonuclease in cells could be recognized by telomerase, allowing the Tage system to effectively kill cancer cells in vivo. The Tage system could effectively and safely realize its in vivo application by using adeno-associated virus (AAV) as gene vector. The virus-loaded Tage system could significantly and specifically kill cancer cells in mice by intravenous drug administration without side effects or toxicity.
Collapse
Affiliation(s)
- Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, 210096, Nanjing, China
| | - Xinhui Xu
- State Key Laboratory of Bioelectronics, Southeast University, 210096, Nanjing, China
| | - Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, 210096, Nanjing, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, 210096, Nanjing, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, 210096, Nanjing, China.
| |
Collapse
|
748
|
Bardakjian TM, Naczi KF, Gonzalez-Alegre P. Attitudes of Potential Participants Towards Molecular Therapy Trials in Huntington's Disease. J Huntingtons Dis 2019; 8:79-85. [PMID: 30689592 PMCID: PMC6398921 DOI: 10.3233/jhd-180328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Advances in molecular therapeutic approaches in the last decade are translating into the design of non-traditional clinical trials. In order to improve their feasibility, it is important to understand the attitudes of potential participants towards these trials, their motivations to get involved and acceptance of risks. OBJECTIVE We aimed to better understand the willingness of potential participants to participate in different molecular therapy trials for Huntington's disease (HD) based on their clinical and genetic status, trial design and goals of the treatment. METHODS An anonymous survey was distributed through the Huntington's Disease Society of America (HDSA) on-line portal/website. Various hypothetical scenarios were presented followed by a survey consistent of Likert scale responses ascertaining willingness to participate, collecting demographic, clinical and genetic information. RESULTS There were a total of 87 responses, including patients diagnosed with HD, pre-manifesting mutation carriers and asymptomatic participants at risk. The majority of participants indicated they were very likely or likely to participate in clinical trials independent of study design or goals of the therapy, with a more favorable view in premanifesting mutation carriers. However, more invasive procedures and trials including placebo were less favorably viewed across all diagnostic groups. CONCLUSIONS In summary, most individuals in the HD community would consider participation in novel molecular therapy trials, but study design and goals could impact patient recruitment. This data can be used to inform the recruitment and consent process into clinical trials and to address common concerns by potential participants.
Collapse
Affiliation(s)
- Tanya M Bardakjian
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kaylee Faulkner Naczi
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
749
|
Brokowski C, Adli M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. J Mol Biol 2019; 431:88-101. [PMID: 29885329 PMCID: PMC6286228 DOI: 10.1016/j.jmb.2018.05.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022]
Abstract
With the emergence of CRISPR technology, targeted editing of a wide variety of genomes is no longer an abstract hypothetical, but occurs regularly. As application areas of CRISPR are exceeding beyond research and biomedical therapies, new and existing ethical concerns abound throughout the global community about the appropriate scope of the systems' use. Here we review fundamental ethical issues including the following: 1) the extent to which CRISPR use should be permitted; 2) access to CRISPR applications; 3) whether a regulatory framework(s) for clinical research involving human subjects might accommodate all types of human genome editing, including editing of the germline; and 4) whether international regulations governing inappropriate CRISPR utilization should be crafted and publicized. We conclude that moral decision making should evolve as the science of genomic engineering advances and hold that it would be reasonable for national and supranational legislatures to consider evidence-based regulation of certain CRISPR applications for the betterment of human health and progress.
Collapse
Affiliation(s)
- Carolyn Brokowski
- Department of Emergency Medicine, Yale School of Medicine, 464 Congress Avenue, New Haven, CT 06519-1362, USA
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA.
| |
Collapse
|
750
|
Applications of π-π stacking interactions in the design of drug-delivery systems. J Control Release 2019; 294:311-326. [DOI: 10.1016/j.jconrel.2018.12.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
|