701
|
Preston CM, Harman AN, Nicholl MJ. Activation of interferon response factor-3 in human cells infected with herpes simplex virus type 1 or human cytomegalovirus. J Virol 2001; 75:8909-16. [PMID: 11533154 PMCID: PMC114459 DOI: 10.1128/jvi.75.19.8909-8916.2001] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of cellular interferon-stimulated genes (ISGs) after infection with herpes simplex virus type 1 (HSV-1) or human cytomegalovirus (HCMV) was investigated. The level of ISG54-specific RNA in human fetal lung (HFL) or human foreskin (BJ) fibroblasts increased substantially after infection with either virus in the presence of cycloheximide. HSV-1 particles lacking glycoprotein D or glycoprotein H failed to induce ISG54-specific RNA synthesis, demonstrating that entry of virus particles rather than binding of virions to the cell surface was required for the effect. A DNA-binding complex that recognized an interferon-responsive sequence motif was induced upon infection with HSV-1 or HCMV in the presence of cycloheximide, and the complex was shown to contain the cell proteins interferon response factor 3 (IRF-3) and CREB-binding protein. IRF-3 was modified after infection with HSV-1 or HCMV to a form of lower electrophoretic mobility, consistent with phosphorylation. De novo transcription of viral or cellular genes was not required for the activation of IRF-3, since the effect was not sensitive to inhibition by actinomycin D. Infection of HFL fibroblasts with HSV-1 under conditions in which viral replication proceeded normally resulted in severely reduced levels of the IRF-3-containing complex, defining the activation of IRF-3 as a target for viral interference with ISG induction. In BJ fibroblasts, however, significant activation of IRF-3 was detected even when the viral gene expression program progressed to later stages, demonstrating that the degree of inhibition of the response was dependent on host cell type. As a consequence of IRF-3 activation, endogenous interferon was released from BJ cells and was capable of triggering the appropriate signal transduction pathway in both infected and uninfected cells. Activation of ISG54-specific RNA synthesis was not detected after infection of human U-373MG glioblastoma cells, showing that the induction of the response by infection is cell type dependent.
Collapse
Affiliation(s)
- C M Preston
- Medical Research Council Virology Unit, Glasgow G11 5JR, Scotland.
| | | | | |
Collapse
|
702
|
Lin CH, Hare BJ, Wagner G, Harrison SC, Maniatis T, Fraenkel E. A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. Mol Cell 2001; 8:581-90. [PMID: 11583620 DOI: 10.1016/s1097-2765(01)00333-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The transcriptional coactivators CBP and p300 are critical regulators of metazoan gene expression. They associate with many different DNA-bound transcription factors through small, conserved domains. We have identified a compactly folded 46 residue domain in CBP and p300, the IRF-3 binding domain (IBiD), and we have determined its structure by NMR. It has a helical framework containing an apparently flexible polyglutamine loop that participates in ligand binding. Spectroscopic data indicate that induced folding accompanies association of IBiD with its partners, which exhibit no evident sequence similarities. We demonstrate the significance both in vitro and in vivo of interactions between IBiD and a number of diverse partners. Thus, IBiD is an important contributor to signal integration by CBP and p300.
Collapse
Affiliation(s)
- C H Lin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
703
|
van Pesch V, van Eyll O, Michiels T. The leader protein of Theiler's virus inhibits immediate-early alpha/beta interferon production. J Virol 2001; 75:7811-7. [PMID: 11483724 PMCID: PMC115023 DOI: 10.1128/jvi.75.17.7811-7817.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Theiler's virus is a picornavirus responsible for a persistent infection of the central nervous system of the mouse, leading to a chronic demyelinating disease considered to be a model for multiple sclerosis. The leader (L) protein encoded by Theiler's virus is a 76-amino-acid-long peptide containing a zinc-binding motif. This motif is conserved in the L proteins of all cardioviruses, including encephalomyocarditis virus. The L protein of Theiler's virus was suggested to interfere with the alpha/beta interferon (IFN-alpha/beta) response (W.-P. Kong, G. D. Ghadge, and R. P. Roos, Proc. Natl. Acad. Sci. USA 91:1796-1800, 1994). We show that expression of the L protein indeed inhibits the production of alpha/beta interferon by infected L929 cells. The L protein specifically inhibits the transcription of the IFN-alpha4 and IFN-beta genes, which are known to be activated early in response to viral infection. Mutation of the zinc finger was sufficient to block the anti-interferon activity, outlining the importance of this motif in the L protein function. In agreement with the anti-interferon role of the L protein, a virus bearing a mutation in the zinc-binding motif was dramatically impaired in its ability to persist in the central nervous system of SJL/J mice.
Collapse
Affiliation(s)
- V van Pesch
- Christian de Duve Institute of Cellular Pathology, University of Louvain, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
704
|
Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19:623-55. [PMID: 11244049 DOI: 10.1146/annurev.immunol.19.1.623] [Citation(s) in RCA: 1266] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon regulatory factors (IRFs) constitute a family of transcription factors that commonly possess a novel helix-turn-helix DNA-binding motif. Following the initial identification of two structurally related members, IRF-1 and IRF-2, seven additional members have now been reported. In addition, virally encoded IRFs, which may interfere with cellular IRFs, have also been identified. Thus far, intensive functional analyses have been done on IRF-1, revealing a remarkable functional diversity of this transcription factor in the regulation of cellular response in host defense. Indeed, IRF-1 selectively modulates different sets of genes, depending on the cell type and/or the nature of cellular stimuli, in order to evoke appropriate responses in each. More recently, much attention has also been focused on other IRF family members. Their functional roles, through interactions with their own or other members of the family of transcription factors, are becoming clearer in the regulation of host defense, such as innate and adaptive immune responses and oncogenesis.
Collapse
Affiliation(s)
- T Taniguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
705
|
Abstract
Cross talk between p53 and interferon-regulated pathways is implicated in the induction of gene expression by biologic and genotoxic stresses. We demonstrate that the interferon-stimulated gene ISG15 is induced by p53 and that p53 is required for optimal gene induction by double-stranded RNA (dsRNA), but not interferon. Interestingly, virus induces ISG15 in the absence of p53, suggesting that virus and dsRNA employ distinct signaling pathways.
Collapse
Affiliation(s)
- B T Hummer
- Greenebaum Cancer Center, The University of Maryland, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
706
|
Yokota S, Yokosawa N, Kubota T, Suzutani T, Yoshida I, Miura S, Jimbow K, Fujii N. Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and janus kinases during an early infection stage. Virology 2001; 286:119-24. [PMID: 11448165 DOI: 10.1006/viro.2001.0941] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the influence on the interferon (IFN) signaling pathway of infection with herpes simplex virus type 1 (HSV-1) strain VR3. Data from reporter gene assays showed that expression of both type I and type II IFN-inducible genes was dramatically suppressed during the early stage of HSV-1 infection (2 to 3 h postinfection). During these periods, phosphorylation levels of janus kinases (JAKs) and STATs did not increase after treatment of HSV-1-infected FL cells with IFN-alpha or IFN-gamma, although cellular protein levels of the JAKs and the STATs were not significantly changed. In contrast, the inhibitory effect of HSV-1 on phosphorylation of STAT1 was not observed in U937 cells, which show resistance to steady-state accumulation of RNA for HSV-1 immediate-early genes. The phosphorylation of STAT1 in FL cells was not inhibited by infection with a UV-inactivated virus. These results indicate that viral gene expression or viral protein production is necessary for the inhibition of phosphorylation by HSV-1.
Collapse
Affiliation(s)
- S Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, 060-8556, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
707
|
Hata N, Sato M, Takaoka A, Asagiri M, Tanaka N, Taniguchi T. Constitutive IFN-alpha/beta signal for efficient IFN-alpha/beta gene induction by virus. Biochem Biophys Res Commun 2001; 285:518-25. [PMID: 11444873 DOI: 10.1006/bbrc.2001.5159] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efficient IFN-alpha/beta gene induction in virus-infected cells is an event central to innate immunity, in which the transcription factor IRF-7 plays a critical role together with IRF-3. Unlike IRF-3, IRF-7 is short-lived and its gene expression is dependent on IFN-alpha/beta signalling; hence, the signal-dependent enhancement of IRF-7 gene induction during viral infection is essential for positive-feedback regulation of IFN-alpha/beta gene induction. Here, we provide evidence that constitutive, IRF-3/IRF-7-independent production of IFN-alpha/beta in uninfected cells is critical for setting the IRF-7 expression levels, determining whether or not the positive-feedback mechanism will operate effectively upon viral infection. In fact, spleen cells are more dependent than fibroblasts on this mechanism; the IFN-alpha/beta gene induction is impaired more severely by blocking the IRF-7 induction pathway than by introducing an IRF-3 null mutation. Thus, the constitutive IFN-alpha/beta signal provides a foundation for the IRF-7-mediated enhancement of its own production in response to virus infection.
Collapse
Affiliation(s)
- N Hata
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
708
|
Karpova AY, Ronco LV, Howley PM. Functional characterization of interferon regulatory factor 3a (IRF-3a), an alternative splice isoform of IRF-3. Mol Cell Biol 2001; 21:4169-76. [PMID: 11390646 PMCID: PMC87078 DOI: 10.1128/mcb.21.13.4169-4176.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection of numerous cell types results in the transcriptional induction of a subset of virus- and interferon (IFN)-stimulated genes. The beta IFN (IFN-beta) gene is one of these rapidly induced genes; it serves as a fundamental component of the cellular defense response in eliciting potent antiviral, immunomodulatory, and antiproliferative effects. One of the transcription factors involved in the stringent regulation of IFN-beta production following virus infection is interferon regulatory factor (IRF) 3 (IRF-3). We have characterized an alternatively spliced isoform of IRF-3 that we have called IRF-3a. IRF-3a can selectively and potently inhibit virus-induced activation of the IFN-beta promoter. IRF-3a lacks half of the DNA binding domain found in IRF-3 and is unable to bind to the classical IRF binding elements, IFN-stimulated response elements. These studies suggest that IRF-3a may act as a modulator of IRF-3.
Collapse
Affiliation(s)
- A Y Karpova
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
709
|
Barnes BJ, Moore PA, Pitha PM. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem 2001; 276:23382-90. [PMID: 11303025 DOI: 10.1074/jbc.m101216200] [Citation(s) in RCA: 298] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interferon regulatory factor (IRF) genes encode DNA-binding proteins that are involved in the innate immune response to infection. Two of these proteins, IRF-3 and IRF-7, serve as direct transducers of virus-mediated signaling and play critical roles in the induction of type I interferon genes. We have now shown that another factor, IRF-5, participates in the induction of interferon A (IFNA) and IFNB genes and can replace the requirement for IRF-7 in the induction of IFNA genes. We demonstrate that, despite the functional similarity, IRF-5 possesses unique characteristics and does not have a redundant role. Thus, 1) activation of IRF-5 by phosphorylation is virus-specific, and its in vivo association with the IFNA promoter can be detected only in cells infected with NDV, not Sendai virus, while both viruses activate IRF-3 and IRF-7, and 2) NDV infection of IRF-5-overexpressing cells preferentially induced the IFNA8 subtype, while IFNA1 was primarily induced in IRF-7 expressing cells. These data indicate that multiple signaling pathways induced by infection may be differentially recognized by members of the IRF family and modulate transcription of individual IFNA genes in a virus and cell type-specific manner.
Collapse
Affiliation(s)
- B J Barnes
- Oncology Center and the Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
710
|
Casola A, Burger N, Liu T, Jamaluddin M, Brasier AR, Garofalo RP. Oxidant tone regulates RANTES gene expression in airway epithelial cells infected with respiratory syncytial virus. Role in viral-induced interferon regulatory factor activation. J Biol Chem 2001; 276:19715-22. [PMID: 11259439 DOI: 10.1074/jbc.m101526200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory syncytial virus (RSV) produces intense pulmonary inflammation, in part, through its ability to induce chemokine synthesis in infected airway epithelial cells. RANTES (regulated upon activation, normal T-cells expressed and secreted) is a CC chemokine which recruits and activates monocytes, lymphocytes, and eosinophils, all cell types present in the lung inflammatory infiltrate induced by RSV infection. In this study we investigated the role of reactive oxygen species in the induction of RANTES gene expression in human type II alveolar epithelial cells (A549), following RSV infection. Our results indicate that RSV infection of airway epithelial cells rapidly induces reactive oxygen species production, prior to RANTES expression, as measured by oxidation of 2',7'-dichlorofluorescein. Pretreatment of airway epithelial cells with the antioxidant butylated hydroxyanisol (BHA), as well a panel of chemically unrelated antioxidants, blocks RSV-induced RANTES gene expression and protein secretion. This effect is mediated through the ability of BHA to inhibit RSV-induced interferon regulatory factor binding to the RANTES promoter interferon-stimulated responsive element, that is absolutely required for inducible RANTES promoter activation. BHA inhibits de novo interferon regulator factor (IRF)-1 and -7 gene expression and protein synthesis, and IRF-3 nuclear translocation. Together, these data indicates that a redox-sensitive pathway is involved in RSV-induced IRF activation, an event necessary for RANTES gene expression.
Collapse
Affiliation(s)
- A Casola
- Departments of Pediatrics, Internal Medicine, Sealy Center for Molecular Sciences, Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-0366, USA
| | | | | | | | | | | |
Collapse
|
711
|
Li XL, Hassel BA. Involvement of proteasomes in gene induction by interferon and double-stranded RNA. Cytokine 2001; 14:247-52. [PMID: 11444904 DOI: 10.1006/cyto.2001.0887] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytokine induced gene expression is mediated through the ligand-dependent activation of the janus kinase (jak)/signal transducer and activator of transcription (STAT) signal transduction pathway. The ubiquitin proteasome pathway functions in the controlled degradation of cellular proteins, and regulates cytokine signal transduction through the degradation of specific signaling components. Interferon (IFN) treatment induces genes that function in ubiquitin conjugation, suggesting a reciprocal regulation of proteasome activity and IFN action; however, a role for the proteasome in IFN-alpha-induced gene expression has not been examined. In this report, we find that proteasome inhibitors markedly reduce the induction of interferon-stimulated-gene 15 (ISG15), ISG43, and STAT1 by IFN-alpha and double-stranded RNA (dsRNA). The reduction in gene expression by proteasome inhibitors was dose-dependent, and was specific for ISGs. Neither STAT1 phosphorylation nor ISGF-3 activation was affected by proteasome inhibition at early times post-IFN treatment. Cycloheximide treatment diminished the effect of proteasome inhibitors on ISG induction, implicating an IFN/dsRNA-induced protein in this activity. These findings demonstrate that a functional proteasome is required for optimal ISG induction, and are consistent with a model in which IFN and dsRNA induce a proteasome-sensitive repressor of ISG expression.
Collapse
Affiliation(s)
- X L Li
- Greenebaum Cancer Center, The University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
712
|
Sato M, Taniguchi T, Tanaka N. The interferon system and interferon regulatory factor transcription factors -- studies from gene knockout mice. Cytokine Growth Factor Rev 2001; 12:133-42. [PMID: 11325597 DOI: 10.1016/s1359-6101(00)00032-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interferon regulatory factors (IRFs) were initially identified as regulators of IFN-alpha/beta genes and to date nine members have been determined in human and mouse. They share a conserved DNA-binding domain in the N-terminal portion that recognizes similar DNA sequences. Despite their similar DNA binding specificity, the IRFs show diverse functions in response to extra cellular stimuli. Although the study of IRFs was started with respect to regulation of the IFN-alpha/beta gene expression, recent studies have revealed other aspects of IRF functions. In this review, we summarize our current knowledge of the functions of IRF family members revealed by our gene targeting study in mice, focusing on the regulation of the IFN system.
Collapse
Affiliation(s)
- M Sato
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
713
|
Xie R, van Wijnen AJ, van Der Meijden C, Luong MX, Stein JL, Stein GS. The cell cycle control element of histone H4 gene transcription is maximally responsive to interferon regulatory factor pairs IRF-1/IRF-3 and IRF-1/IRF-7. J Biol Chem 2001; 276:18624-32. [PMID: 11278666 DOI: 10.1074/jbc.m010391200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon regulatory factors (IRFs) are transcriptional mediators of interferon-responsive signaling pathways that are involved in antiviral defense, immune response, and cell growth regulation. To investigate the role of IRF proteins in the regulation of histone H4 gene transcription, we compared the transcriptional contributions of IRF-1, IRF-2, IRF-3, and IRF-7 using transient transfection assays with H4 promoter/luciferase (Luc) reporter genes. These IRF proteins up-regulate reporter gene expression but IRF-1, IRF-3, and IRF-7 are more potent activators of the H4 promoter than IRF-2. Forced expression of different IRF combinations reveals that IRF-2 reduces IRF-1 or IRF-3 dependent activation, but does not affect IRF-7 function. Thus, IRF-2 may have a dual function in histone H4 gene transcription by acting as a weak activator at low dosage and a competitive inhibitor of other strongly activating IRFs at high levels. IRF-1/IRF-3 and IRF-1/IRF-7 pairs each mediate the highest levels of site II-dependent promoter activity and can up-regulate transcription by 120-150-fold. We also find that interferon gamma up-regulates IRF-1 and site II-dependent promoter activity. This up-regulation is not observed when the IRF site is mutated or if cells are preloaded with IRF-1. Our results indicate that IRF-1, IRF-2, IRF-3, and IRF-7 can all regulate histone H4 gene expression. The pairwise utilization of distinct IRF factors provides a flexible transcriptional mechanism for integration of diverse growth-related signaling pathways.
Collapse
Affiliation(s)
- R Xie
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
714
|
Nakaya T, Sato M, Hata N, Asagiri M, Suemori H, Noguchi S, Tanaka N, Taniguchi T. Gene Induction Pathways Mediated by Distinct IRFs during Viral Infection. Biochem Biophys Res Commun 2001; 283:1150-6. [PMID: 11355893 DOI: 10.1006/bbrc.2001.4913] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During viral infection, interferon-alpha/beta (IFN-alpha/beta) and many IFN-inducible genes are induced to elicit antiviral responses of the host. Using cells with a gene disruption(s) for the IRF family of transcription factors, we provide evidence that these genes, containing similar IRF-binding cis-elements, are classified into distinct groups, based on the gene induction pathway(s). The IFN-beta gene induction is dependent on either IRF-3 or IRF-7, whereas induction of the IFN-alpha gene family is IRF-7-dependent. On the other hand, ISG15, ISG54 and IP-10 are induced by either IRF-3 or IFN stimulated gene factor 3 (ISGF3). We also show that another group of genes is totally dependent on ISGF3. Thus, during viral infection, a given gene responds either directly to a virus or virus-induced IFN-alpha/beta or both through distinct pathways. The differential utilization of these induction pathways for these genes during viral infection may reflect their distinct functional roles in the efficient antiviral response.
Collapse
Affiliation(s)
- T Nakaya
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
715
|
Iwamura T, Yoneyama M, Yamaguchi K, Suhara W, Mori W, Shiota K, Okabe Y, Namiki H, Fujita T. Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 2001; 6:375-88. [PMID: 11318879 DOI: 10.1046/j.1365-2443.2001.00426.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Infection by virus or treatment with double-stranded RNA (dsRNA) results in the activation of transcription factors including IRF-3, IRF-7 and a pleiotropic regulator NF-kappaB by specific phosphorylation. These factors are important in triggering a cascade of antiviral responses. A protein kinase that is yet to be identified is responsible for the activation of these factors and plays a key role in the responses. RESULTS The signal cascade was analysed using sensitive assays for the activation of IRF-3 and NF-kappaB, and various inhibitors. We found that the activation of IRF-3 and NF-kappaB by dsRNA or virus involves a process that is sensitive to Geldanamycin. Although the induction of NF-kappaB by dsRNA/virus and TNF-alpha involves common downstream pathways including IKK activation, the upstream, Geldanamycin-sensitive process was unique to the dsRNA/virus-induced signal. By an in vitro assay using cell extract, we found an inducible protein kinase activity with physiological specificity of IRF-3 phosphorylation. Furthermore, the same extract specifically phosphorylated IRF-7 in a similar manner. CONCLUSIONS Double-stranded RNA or virus triggers a specific signal cascade that results in the activation of the IRF-3/-7 kinase we detected, which corresponds to the long-sought signalling machinery that is responsible for triggering the early phase of innate response. The signal branches to a common NF-kappaB activation cascade, thus resulting in the activation of a set of critical transcription factors for the response.
Collapse
Affiliation(s)
- T Iwamura
- Department of Tumor Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
716
|
Shestakova E, Bandu MT, Doly J, Bonnefoy E. Inhibition of histone deacetylation induces constitutive derepression of the beta interferon promoter and confers antiviral activity. J Virol 2001; 75:3444-52. [PMID: 11238870 PMCID: PMC114137 DOI: 10.1128/jvi.75.7.3444-3452.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2000] [Accepted: 01/03/2001] [Indexed: 11/20/2022] Open
Abstract
The induction of alpha/beta interferon (IFN-alpha/beta) genes constitutes one of the first responses of the cell to virus infection. The IFN-beta gene is constitutively repressed in uninfected cells and is transiently activated after virus infection. In this work we demonstrate that histone deacetylation regulates the silent state of the murine IFN-beta gene. Using chromatin immunoprecipitation (ChIP) assays, we show a direct in vivo correlation between the transcriptionally silent state and a state of hypoacetylation of histone H4 on the IFN-beta promoter region. Trichostatin A (TSA), a specific inhibitor of histone deacetylases, induced strong, constitutive derepression of the murine IFN-beta promoter stably integrated into a chromatin context, as well as the hyperacetylation of histone H4, without requiring de novo protein synthesis. We also show in this work that TSA treatment strongly enhances the endogenous IFN level and confers an antiviral state to murine fibroblastic L929 cells. Inhibition of histone deacetylation with TSA protected the cells against the lost of viability induced by vesicular stomatitis virus (VSV) and inhibited VSV multiplication. Using antibodies neutralizing IFN-alpha/beta, we show that the antiviral state induced by TSA is due to TSA-induced IFN production. The demonstration of the predominant role of histone deacetylation during the regulation of the constitutive repressed state of the IFN-beta promoter constitutes an interesting advance on the understanding of the negative regulation of this gene and opens up the possibility of new therapeutic perspectives.
Collapse
Affiliation(s)
- E Shestakova
- Laboratoire de Régulation de la Transcription et Maladies Génétiques, CNRS, UPR2228, UFR Biomédicale, Université René Descartes, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
717
|
Iwamura T, Yoneyama M, Koizumi N, Okabe Y, Namiki H, Samuel CE, Fujita T. PACT, a double-stranded RNA binding protein acts as a positive regulator for type I interferon gene induced by Newcastle disease virus. Biochem Biophys Res Commun 2001; 282:515-23. [PMID: 11401490 DOI: 10.1006/bbrc.2001.4606] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Virus infection triggers innate responses to host cells including production of type I interferon (IFN). Since IFN production is also induced by treatment with poly(I:C), viral double-stranded (ds) RNA has been postulated to play a direct role in the process. In the present study, we investigated the effect of dsRNA binding proteins on virus-induced activation of the IFN-beta gene. We found that PACT, originally identified as protein activator for dsRNA-dependent protein kinase (PKR) and implicated in the regulation of translation, augmented IFN-beta gene activation induced by Newcastle disease virus. Concomitantly with the augmented activity of IFN-beta enhancer, increased activity of NF-kappaB and IRF-3 and IRF-7 was observed. For the observed effect, the dsRNA-binding activity of PACT was essential. We identified residues of PACT that interact with a presumptive target molecule to exert its function. Furthermore, PACT colocalized with viral replication complex in the infected cells. Thus the observed effect of PACT is novel and PACT is involved in the regulation of viral replication and results in a marked increase of cellular IFN-beta gene expression.
Collapse
Affiliation(s)
- T Iwamura
- Department of Tumor Cell Biology, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8613, Japan
| | | | | | | | | | | | | |
Collapse
|
718
|
Smith EJ, Marié I, Prakash A, García-Sastre A, Levy DE. IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or Ikappa B kinase but is blocked by Vaccinia virus E3L protein. J Biol Chem 2001; 276:8951-7. [PMID: 11124948 DOI: 10.1074/jbc.m008717200] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Induction of interferon-alpha (IFNalpha) gene expression in virus-infected cells requires phosphorylation-induced activation of the transcription factors IRF3 and IRF7. However, the kinase(s) that targets these proteins has not been identified. Using a combined pharmacological and genetic approach, we found that none of the kinases tested was responsible for IRF phosphorylation in cells infected with Newcastle disease virus (NDV). Although the broad-spectrum kinase inhibitor staurosporine potently blocked IRF3 and -7 phosphorylation, inhibitors for protein kinase C, protein kinase A, MEK, SAPK, IKK, and protein kinase R (PKR) were without effect. Both IkappaB kinase and PKR have been implicated in IFN induction, but cells genetically deficient in IkappaB kinase, PKR, or the PKR-related genes PERK, IRE1, or GCN2 retained the ability to phosphorylate IRF7 and induce IFNalpha. Interestingly, PKR mutant cells were defective for response to double-stranded (ds) RNA but not to virus infection, suggesting that dsRNA is not the only activating viral component. Consistent with this notion, protein synthesis was required for IRF7 phosphorylation in virus-infected cells, and the kinetics of phosphorylation and viral protein production were similar. Despite evidence for a lack of involvement of dsRNA and PKR, vaccinia virus E3L protein, a dsRNA-binding protein capable of inhibiting PKR, was an effective IRF3 and -7 phosphorylation inhibitor. These results suggest that a novel cellular protein that is activated by viral products in addition to dsRNA and is sensitive to E3L inhibition is responsible for IRF activation and reveal a novel mechanism for the anti-IFN effect of E3L distinct from its inhibition of PKR.
Collapse
Affiliation(s)
- E J Smith
- Department of Pathology and Kaplan Comprehensive Cancer Center, Molecular Oncology and Immunology Program, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
719
|
Yeow WS, Au WC, Lowther WJ, Pitha PM. Downregulation of IRF-3 levels by ribozyme modulates the profile of IFNA subtypes expressed in infected human cells. J Virol 2001; 75:3021-7. [PMID: 11222729 PMCID: PMC115930 DOI: 10.1128/jvi.75.6.3021-3027.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an early response to viral infection, cells express a number of cellular genes that play a role in innate immunity, including alpha/beta interferons (IFN). IFN-alpha/beta are encoded by a single IFNB gene and multiple, closely related IFNA genes. The induction of these IFN genes in infected cells occurs at the transcriptional level, and two transcription factors of the IRF family, IRF-3 and IRF-7, were shown to play a role in their activation. While the expression of IRF-3 alone was shown to be sufficient for induction of the IFNB gene, induction of all the IFNA subtypes in human cells required the presence of IRF-7. Since IRF-3 is expressed constitutively in all cells examined, the role of IRF-3 in the induction of IFNA genes has not been clarified. Using ribozyme targeted to IRF-3 mRNA, we found that the downregulation of IRF-3 levels in the infected cells inhibited not only the induction of IFNB gene but also the expression of IFNA genes. Furthermore, downmodulation of IRF-3 levels altered the expression profile of IFNA subtypes induced by viral infection. These studies suggest that the ratio between the relative levels of IRF-3 and IRF-7 is a critical determinant for the induction of the individual IFNA subtypes in infected cells.
Collapse
Affiliation(s)
- W S Yeow
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
720
|
Lin R, Genin P, Mamane Y, Sgarbanti M, Battistini A, Harrington WJ, Barber GN, Hiscott J. HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene 2001; 20:800-11. [PMID: 11314014 DOI: 10.1038/sj.onc.1204163] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2000] [Revised: 11/29/2000] [Accepted: 12/07/2000] [Indexed: 11/10/2022]
Abstract
Human herpes virus 8 (HHV-8) has developed unique mechanisms for altering cellular proliferative and apoptotic control pathways by incorporating viral homologs to several cellular regulatory genes into its genome. One of the important pirated genes encoded by the ORF K9 reading frame is a viral homolog of the interferon regulatory factors (IRF), a family of cellular transcription proteins that regulates expression of genes involved in pathogen response, immune modulation and cell proliferation. vIRF-1 has been shown to downregulate the interferon- and IRF-mediated transcriptional activation of ISG and murine IFNA4 gene promoters. In this study we demonstrate that vIRF-1 efficiently inhibited virus-induced expression of endogenous interferon B, CC chemokine RANTES and CXC chemokine IP-10 genes. Co-expression analysis revealed that vIRF-1 selectively blocked IRF-3 but not IRF-7-mediated transactivation. vIRF-1 was able to bind to both IRF-3 and IRF-7 in vivo as detected by coimmunoprecipitation analysis, but did not affect IRF-3 dimerization, nuclear translocation and DNA binding activity. Rather, vIRF-1 interacted with the CBP/p300 coactivators and efficiently inhibited the formation of transcriptionally competent IRF-3-CBP/p300 complexes. These results illustrate that vIRF-1 is able to block the early stages of the IFN response to virus infection by interfering with the activation of IRF-3 responsive, immediate early IFN genes.
Collapse
Affiliation(s)
- R Lin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec H3T IE2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
721
|
Au WC, Yeow WS, Pitha PM. Analysis of functional domains of interferon regulatory factor 7 and its association with IRF-3. Virology 2001; 280:273-82. [PMID: 11162841 DOI: 10.1006/viro.2000.0782] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IRF-7 plays an essential role in virus-activated transcription of IFNA genes. To analyze functional domains of IRF-7 we have constructed an amino-terminal deletion mutant of IRF-7 (237-514) which exerted a dominant negative (DN) effect on virus-induced expression of the endogenous Type I IFN genes. Focusing on the molecular mechanism underlying the dominant negative effect of IRF-7 DN, we found that virus-activated transcription of endogenous IFNA genes requires full-length IRF-7 and that Serine 483 and 484 play an essential role. While IRF-7 DN had no effect on virus-stimulated nuclear translocation of IRF-3 and IRF-7, the binding of IRF-7 DN to IRF-3 and IRF-7 was detected by GST pull-down assay as well as by immunoprecipitation in infected cells, indicating that IRF-7 DN targets both IRF-7 and IRF-3. The region by which IRF-7 interacts with IRF-3 was mapped between amino acid 418 and 473. Overexpression of IRF-7 DN in virus-infected 2FTGH cells resulted in an inhibition of IFN synthesis and in a significant reduction of binding of both IRF-3 and IRF-7 to the IFNA1 promoter. Interestingly, the IRF-7 DN-mediated suppression of IFNA gene expression can be negated by overexpression of IRF-3. Altogether these results suggest that the IRF-3/IRF-7 complexes are biologically active and are involved in virus-activated transcription of endogenous IFNA genes.
Collapse
Affiliation(s)
- W C Au
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
722
|
Barber GN. Host defense, viruses and apoptosis. Cell Death Differ 2001; 8:113-26. [PMID: 11313713 DOI: 10.1038/sj.cdd.4400823] [Citation(s) in RCA: 435] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Accepted: 12/04/2000] [Indexed: 02/08/2023] Open
Abstract
To thwart viral infection, the host has developed a formidable and integrated defense network that comprises our innate and adaptive immune response. In recent years, it has become clear that in an attempt to prevent viral replication, viral dissemination or persistent viral infection of the cell, many of these protective measures actually involve the induction of programmed cell death, or apoptosis. An initial response to viral infection primarily involves the innate arm of immunity and the killing of infected cells with cytotoxic lymphocytes such as natural killer (NK) cells through mechanisms that include the employment of perforin and granzymes. Once the virus has invaded the cell, however, a second host defense-mediated response is also triggered which involves the induction of a family of cytokines known as the interferons (IFNs). The IFNs, which are essential for initiating and coordinating a successful antiviral response, function by stimulating the adaptive arm of immunity involving cytotoxic T cells (CTLs), and by inducing a number of intracellular genes that directly prevent virus replication/cytolysis or that facilitate apoptosis. The IFN-induced gene family is now known to comprise the death ligand TRAIL, the dsRNA-dependent protein kinase (PKR), interferon regulatory factors (IRFs) and the promyelocytic leukemia gene (PML), all of which have been reported to be mediators of cell death. That DNA array analyses indicate that numerous cellular genes, many as yet uncharacterized, may similarly be induced by IFN, further emphasizes the likely importance that these cytokines have in the modulation of apoptosis. This likelihood is additionally underlined by the elaborate strategies developed by viruses to inhibit IFN-antiviral function and the mechanisms of cell death.
Collapse
Affiliation(s)
- G N Barber
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, FL 33136, USA.
| |
Collapse
|
723
|
Weaver BK, Ando O, Kumar KP, Reich NC. Apoptosis is promoted by the dsRNA-activated factor (DRAF1) during viral infection independent of the action of interferon or p53. FASEB J 2001; 15:501-15. [PMID: 11156966 DOI: 10.1096/fj.00-0222com] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An apoptotic cellular defense mechanism is triggered in response to viral dsRNA generated during the course of infection by many DNA and RNA viruses. We demonstrate that apoptosis induced by dsRNA or a paramyxovirus is independent of the action of interferon as it can proceed in a variety of cell lines and primary cells deficient in an interferon response. Initiation of apoptosis appears to be triggered by activation of a cellular transcription factor, the dsRNA-activated factor (DRAF1). DRAF1 is composed of interferon regulatory factor 3 (IRF-3) and the transcriptional coactivators CREB binding protein (CBP) or p300. We find that activation of IRF-3 in the absence of viral infection stimulates apoptosis. In addition, a negative interfering mutant blocks both target gene induction and apoptosis, demonstrating a requirement for gene expression by IRF-3/DRAF1 to promote apoptosis. IRF-3/DRAF1 target gene expression is also induced in response to a distinct apoptotic stimulus, the DNA damaging agent etoposide. The activity of the p53 tumor suppressor does not appear to be required for IRF-3/DRAF1-mediated apoptosis.
Collapse
Affiliation(s)
- B K Weaver
- Department of Pathology, State University of New York at Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
724
|
Servant MJ, ten Oever B, LePage C, Conti L, Gessani S, Julkunen I, Lin R, Hiscott J. Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J Biol Chem 2001; 276:355-63. [PMID: 11035028 DOI: 10.1074/jbc.m007790200] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Infection of host cells by viruses leads to the activation of multiple signaling pathways, resulting in the expression of host genes involved in the establishment of the antiviral state. Among the transcription factors mediating the immediate response to virus is interferon regulatory factor-3 (IRF-3) which is post-translationally modified as a result of virus infection. Phosphorylation of latent cytoplasmic IRF-3 on serine and threonine residues in the C-terminal region leads to dimerization, cytoplasmic to nuclear translocation, association with the p300/CBP coactivator, and stimulation of DNA binding and transcriptional activities. We now demonstrate that IRF-3 is a phosphoprotein that is uniquely activated via virus-dependent C-terminal phosphorylation. Paramyxoviridae including measles virus and rhabdoviridae, vesicular stomatitis virus, are potent inducers of a unique virus-activated kinase activity. In contrast, stress inducers, growth factors, DNA-damaging agents, and cytokines do not induce C-terminal IRF-3 phosphorylation, translocation or transactivation, but rather activate a MAPKKK-related signaling pathway that results in N-terminal IRF-3 phosphorylation. The failure of numerous well characterized pharmacological inhibitors to abrogate virus-induced IRF-3 phosphorylation suggests the involvement of a novel kinase activity in IRF-3 regulation by viruses.
Collapse
Affiliation(s)
- M J Servant
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, H3T 1E2 Canada
| | | | | | | | | | | | | | | |
Collapse
|
725
|
Cohen H, Azriel A, Cohen T, Meraro D, Hashmueli S, Bech-Otschir D, Kraft R, Dubiel W, Levi BZ. Interaction between interferon consensus sequence-binding protein and COP9/signalosome subunit CSN2 (Trip15). A possible link between interferon regulatory factor signaling and the COP9/signalosome. J Biol Chem 2000; 275:39081-9. [PMID: 10991940 DOI: 10.1074/jbc.m004900200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon consensus sequence-binding protein (ICSBP) is a member of the interferon regulatory factors (IRF) that has a pivotal role in mediating resistance to pathogenic infections in mice and in promoting the differentiation of myeloid cells. ICSBP exerts some of its transcriptional activities via association with other factors that enable its binding to a variety of promoters containing DNA composite elements. These interactions are mediated through a specific COOH-terminal domain termed IAD (IRF association domain). To gain a broader insight of the capacity of ICSBP to interact with other factors, yeast two-hybrid screens were performed using ICSBP-IAD as a bait against a B-cell cDNA library. Trip15 was identified as a specific interacting factor with ICSBP in yeast cells, which was also confirmed by in vitro glutathione S-transferase pull-down assays and by coimmunoprecipitation studies in COS7 cells. Trip15 was recently identified as a component of the COP9/signalosome (CSN) complex composed of eight evolutionary conserved subunits and thus termed CSN2. This complex has a role in cell-signaling processes, which is manifested by its associated novel kinase activity and by the involvement of its subunits in regulating multiple cell-signaling pathways and cell-cycle progression. We show that in vitro association of ICSBP with the CSN leads to phosphorylation of ICSBP at a unique serine residue within its IAD. The phosphorylated residue is essential for efficient association with IRF-1 and thus for the repressor activity of ICSBP exerted on IRF-1. This suggests that the CSN has a role in integrating incoming signals that affect the transcriptional activity of ICSBP.
Collapse
MESH Headings
- 3T3 Cells
- Alanine/chemistry
- Animals
- B-Lymphocytes/metabolism
- Blotting, Northern
- COP9 Signalosome Complex
- COS Cells
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- DNA/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Gene Library
- Glutathione Transferase/metabolism
- HL-60 Cells
- HeLa Cells
- Humans
- Interferon Regulatory Factors
- Mice
- Models, Biological
- Multiprotein Complexes
- Mutagenesis, Site-Directed
- Nuclear Proteins
- Peptide Hydrolases
- Phosphorylation
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Thyroid Hormone
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Serine/chemistry
- Signal Transduction
- Transcription Factors
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- H Cohen
- Department of Food Engineering and Biotechnology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
726
|
Marié I, Smith E, Prakash A, Levy DE. Phosphorylation-induced dimerization of interferon regulatory factor 7 unmasks DNA binding and a bipartite transactivation domain. Mol Cell Biol 2000; 20:8803-14. [PMID: 11073981 PMCID: PMC86519 DOI: 10.1128/mcb.20.23.8803-8814.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon regulatory factor 7 (IRF7) is an interferon (IFN)-inducible transcription factor required for activation of a subset of IFN-alpha genes that are expressed with delayed kinetics following viral infection. IRF7 is synthesized as a latent protein and is posttranslationally modified by protein phosphorylation in infected cells. Phosphorylation required a carboxyl-terminal regulatory domain that controlled the retention of the active protein exclusively in the nucleus, as well as its binding to specific DNA target sequences, multimerization, and ability to induce target gene expression. Transcriptional activation by IRF7 mapped to two distinct regions, both of which were required for full activity, while all functions were masked in latent IRF7 by an autoinhibitory domain mapping to an internal region. A conditionally active form of IRF7 was constructed by fusing IRF7 with the ligand-binding and dimerization domain of estrogen receptor (ER). Hormone-dependent dimerization of chimeric IRF7-ER stimulated DNA binding and transcriptional transactivation of endogenous target genes. These studies demonstrate the regulation of IRF7 activity by phosphorylation-dependent allosteric changes that result in dimerization and that facilitate nuclear retention, derepress transactivation, and allow specific DNA binding.
Collapse
Affiliation(s)
- I Marié
- Department of Pathology and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
727
|
Kirchhoff S, Oumard A, Nourbakhsh M, Levi BZ, Hauser H. Interplay between repressing and activating domains defines the transcriptional activity of IRF-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6753-61. [PMID: 11082185 DOI: 10.1046/j.1432-1033.2000.01750.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interferon regulatory factor-1 (IRF-1) is a transcriptional activator with weak activation capacity. By defining the transcriptional activation domain of IRF-1 we identified two activator fragments located between amino acids 185 and 256 functioning in an additive manner. Another fragment of IRF-1, which has no activator function alone, acts as a strong enhancer element of these activator sequences. This enhancer element resides between the activator domains and the C-terminus. In addition, we identified a novel type of inhibitory domain in the N-terminal 60 amino acids of IRF-1 which strongly inhibits its transcriptional activity. Because this fragment is conserved in all interferon regulatory factors, we found similar repression effects in the corresponding fragments in IRF-2, IRF-3 and interferon consensus sequence binding protein (ICSBP/IRF-8). Interestingly, the corresponding sequence in p48/IRF-9 is divergent, so that it does not show this inhibitory activity. A five-amino-acid sequence distinguishes the p48/IRF-9 N-terminus from the homologous parts in other interferon regulatory factors containing the repressing function. Replacing the diverged amino acids in IRF-1 with the corresponding sequence of p48/IRF-9 resulted in a loss of inhibitory activity within IRF-1. The opposing activities within interferon regulatory factors may contribute to balanced or tuned regulation of gene activation, depending on the promoter context.
Collapse
Affiliation(s)
- S Kirchhoff
- National Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
728
|
Grant CE, May DL, Deeley RG. DNA binding and transcription activation by chicken interferon regulatory factor-3 (chIRF-3). Nucleic Acids Res 2000; 28:4790-9. [PMID: 11095692 PMCID: PMC115154 DOI: 10.1093/nar/28.23.4790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of transcription factors involved in the cellular response to interferons and viral infection. Previously we isolated an IRF from a chicken embryonic liver cDNA library. Using a PCR-based binding site selection assay, we have characterised the binding specificity of chIRF-3. The optimal binding site (OBS) fits within the consensus interferon-stimulated response element (ISRE) but the specificity of chIRF-3 binding allows less variation in nucleotides outside the core IRF-binding sequence. A comparison of IRF-1 and chIRF-3 binding to ISREs in electrophoretic mobility shift assays confirmed that the binding specificity of chIRF-3 was clearly distinguishable from IRF-1. The selection assay also showed that chIRF-3 is capable of binding an inverted repeat of two half OBSs separated by 10-13 nt. ChIRF-3 appears to bind both the OBS and inverted repeat sites as a dimer with the protein-protein interaction requiring a domain between amino acids 117 and 311. In transfection experiments expression of chIRF-3 strongly activated a promoter containing the OBS. The activation domain was mapped to between amino acids 138 and 221 and a domain inhibitory to activation was also mapped to the C-terminal portion of chIRF-3.
Collapse
Affiliation(s)
- C E Grant
- Cancer Research Laboratories, Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
729
|
Karpova AY, Howley PM, Ronco LV. Dual utilization of an acceptor/donor splice site governs the alternative splicing of the IRF-3 gene. Genes Dev 2000; 14:2813-8. [PMID: 11090129 PMCID: PMC317057 DOI: 10.1101/gad.813800] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interferon regulatory factors constitute a family of transcriptional activators and repressors involved in a large number of vital cellular processes. Interferon regulatory factor-3 (IRF-3) has been implicated in virus and double-stranded RNA mediated induction of IFNbeta and RANTES, in DNA damage signaling, and in virus-induced apoptosis. With its critical role in these pathways, the activity of IRF-3 is tightly regulated in myriad ways. Here we describe novel regulation of IRF-3 at the level of RNA splicing. We show that an unprecedented dual utilization of a splice acceptor/donor site within the IRF-3 mRNA governs the production of two alternative splice isoforms.
Collapse
Affiliation(s)
- A Y Karpova
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
730
|
Lin R, Mamane Y, Hiscott J. Multiple regulatory domains control IRF-7 activity in response to virus infection. J Biol Chem 2000; 275:34320-7. [PMID: 10893229 DOI: 10.1074/jbc.m002814200] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent studies implicate the interferon regulatory factors (IRF), IRF-3 and IRF-7, as key activators of Type 1 interferon genes, as well as the RANTES (regulated on activation normal T cell expressed) chemokine gene. Both IRF-3 and IRF-7 are regulated in part by virus-induced C-terminal phosphorylation, leading to nuclear translocation, stimulation of DNA binding, and transcriptional activities. Structure-function studies with IRF-7 suggested a complex organization of the C-terminal region, with a constitutive activation domain located between amino acids 150-246, an accessory inducibility region at the very end of IRF-7 between amino acids 467 and 503, and an inhibitory region (amino acids 341-467) adjacent to the C-terminal end that interferes with transactivation. Furthermore, an element that increases basal and virus-inducible activity is located between amino acids 278 and 305. A transcriptionally active form of IRF-7 was also generated by substitution of Ser-477 and Ser-479 residues with the phosphomimetic Asp. IRF-7, particularly IRF-7(S477D/S479D), was a strong transactivator of type I interferon and RANTES chemokine gene expression. Unlike wild type IRF-3, IRF-7 overexpression was able to stimulate inteferon gene expression in the absence of virus infection. Using tagged versions of IRF-7 and IRF-3, the formation of homo- and heterodimers was detected by co-immunoprecipitation. These results demonstrate that IRF-3 and IRF-7 transcription factors possess distinct structural characteristics that impart complementary rather than redundant functional roles in cytokine gene activation.
Collapse
Affiliation(s)
- R Lin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Montreal H3T 1E2, Canada.
| | | | | |
Collapse
|
731
|
Matikainen S, Pirhonen J, Miettinen M, Lehtonen A, Govenius-Vintola C, Sareneva T, Julkunen I. Influenza A and sendai viruses induce differential chemokine gene expression and transcription factor activation in human macrophages. Virology 2000; 276:138-47. [PMID: 11022002 DOI: 10.1006/viro.2000.0542] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemokines regulate leukocyte traffic and extravasation into the site of inflammation. Here we show that influenza A- or Sendai virus-infected human macrophages produce MIP-1alpha, MIP-1beta, RANTES, MCP-1, MCP-3, MIP-3alpha, IP-10, and IL-8, whereas no upregulation of MIP-3beta, eotaxin, or MDC production was detected. Influenza A virus was a better inducer of MCP-1 and MCP-3 production than Sendai virus, whereas MIP-1alpha, MIP-1beta, RANTES, MIP-3alpha, and IL-8 were induced preferentially by Sendai virus. Infection in the presence of protein synthesis inhibitor indicated that ongoing protein synthesis was required for influenza A virus-induced expression of MCP-1, MCP-3, and IP-10 genes, whereas Sendai virus-induced chemokine mRNA expression took place in the absence of de novo protein synthesis. Neutralization of virus-induced IFN-alpha/beta resulted in downregulation of virus-induced IP-10, MCP-1, and MCP-3 mRNA expression. IFN-alpha or IFN-gamma were found to directly enhance MCP-1, MCP-3, and IP-10 mRNA expression. Both influenza A and Sendai viruses similarly activated transcription factor NF-kappaB. In contrast to NF-kappaB, IRFs and STATs, the other transcription factors involved in the regulation of chemokine gene expression, were differentially activated by these viruses. Influenza A virus more efficiently activated ISGF3 complex formation and Stat1 DNA-binding compared to Sendai virus, which in turn was a more potent activator of IRF-1. Our results show that during viral infections macrophages predominantly produce monocyte and Th1 cell attracting chemokines. Furthermore, virus-induced IFN-alpha/beta enhanced chemokine gene expression in macrophages emphasizing the role of IFN-alpha/beta in the development of Th1 immune responses.
Collapse
Affiliation(s)
- S Matikainen
- Department of Virology, National Public Health Institute, Helsinki, FIN-00300, Finland
| | | | | | | | | | | | | |
Collapse
|
732
|
Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 2000; 13:539-48. [PMID: 11070172 DOI: 10.1016/s1074-7613(00)00053-4] [Citation(s) in RCA: 1090] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Induction of the interferon (IFN)-alpha/beta gene transcription in virus-infected cells is an event central to innate immunity. Mice lacking the transcription factor IRF-3 are more vulnerable to virus infection. In embryonic fibroblasts, virus-induced IFN-alpha/beta gene expression levels are reduced and the spectrum of the IFN-alpha mRNA subspecies altered. Furthermore, cells additionally defective in IRF-7 expression totally fail to induce these genes in response to infections by any of the virus types tested. In these cells, a normal profile of IFN-alpha/beta mRNA induction can be achieved by coexpressing both IRF-3 and IRF-7. These results demonstrate the essential and distinct roles of thetwo factors, which together ensure the transcriptional efficiency and diversity of IFN-alpha/beta genes for the antiviral response.
Collapse
Affiliation(s)
- M Sato
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
733
|
Lubyova B, Pitha PM. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J Virol 2000; 74:8194-201. [PMID: 10933732 PMCID: PMC112355 DOI: 10.1128/jvi.74.17.8194-8201.2000] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the human herpesvirus 8 (HHV-8) contains a cluster of open reading frames (ORFs) encoding proteins with homology to the cellular transcription factors of the interferon regulatory factor (IRF) family. Two of these homologues, vIRF-1 and vIRF-2, were previously identified and functionally analyzed. In this study, we have characterized a novel gene, designated vIRF-3, encoded within the previously predicted ORF K10.5 and our newly identified ORF K10. 6. Northern blotting of RNA extracted from BCBL-1 cells with a vIRF-3-specific probe and reverse transcription-PCR analyses revealed a single transcript of 2.2 kb with a splice present in the coding region. The vIRF-3 mRNA levels in BCBL-1 cells were increased upon 12-O-tetradecanoylphorbol-13-acetate treatment, with kinetics of expression similar to those of the early immediate genes. The vIRF-3 ORF encodes a 73-kDa protein with homology to cellular IRF-4 and HHV-8-encoded vIRF-2 and K11. In transient transfection assays with the IFNACAT reporter, vIRF-3 functioned as a dominant-negative mutant of both IRF-3 and IRF-7 and inhibited virus-mediated transcriptional activity of the IFNA promoter. Similarly, the overexpression of vIRF-3 in mouse L929 cells resulted in inhibition of virus-mediated synthesis of biologically active interferons. These results suggest that by targeting IRF-3 and IRF-7, which play a critical role in the activation of alpha/beta interferon (IFN) genes, HHV-8 has evolved a mechanism by which it directly subverts the functions of IRFs and down-regulates the induction of the IFN genes that are important components of the innate immunity.
Collapse
Affiliation(s)
- B Lubyova
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
734
|
Lin R, Génin P, Mamane Y, Hiscott J. Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol 2000; 20:6342-53. [PMID: 10938111 PMCID: PMC86109 DOI: 10.1128/mcb.20.17.6342-6353.2000] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies implicate the interferon (IFN) regulatory factors (IRF) IRF-3 and IRF-7 as key activators of the alpha/beta IFN (IFN-alpha/beta) genes as well as the RANTES chemokine gene. Using coexpression analysis, the human IFNB, IFNA1, and RANTES promoters were stimulated by IRF-3 coexpression, whereas the IFNA4, IFNA7, and IFNA14 promoters were preferentially induced by IRF-7 only. Chimeric proteins containing combinations of different IRF-7 and IRF-3 domains were also tested, and the results provided evidence of distinct DNA binding properties of IRF-3 and IRF-7, as well as a preferential association of IRF-3 with the CREB binding protein (CBP) coactivator. Interestingly, some of these fusion proteins led to supraphysiological levels of IFN promoter activation. DNA binding site selection studies demonstrated that IRF-3 and IRF-7 bound to the 5'-GAAANNGAAANN-3' consensus motif found in many virus-inducible genes; however, a single nucleotide substitution in either of the GAAA half-site motifs eliminated IRF-3 binding and transactivation activity but did not affect IRF-7 interaction or transactivation activity. These studies demonstrate that IRF-3 possesses a restricted DNA binding site specificity and interacts with CBP, whereas IRF-7 has a broader DNA binding specificity that contributes to its capacity to stimulate delayed-type IFN gene expression. These results provide an explanation for the differential regulation of IFN-alpha/beta gene expression by IRF-3 and IRF-7 and suggest that these factors have complementary rather than redundant roles in the activation of the IFN-alpha/beta genes.
Collapse
Affiliation(s)
- R Lin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada H3T 1E2.
| | | | | | | |
Collapse
|
735
|
Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, García-Sastre A. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol 2000; 74:7989-96. [PMID: 10933707 PMCID: PMC112330 DOI: 10.1128/jvi.74.17.7989-7996.2000] [Citation(s) in RCA: 479] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene expression. IRF-3 activation and, as a consequence, IFN-beta mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses.
Collapse
Affiliation(s)
- J Talon
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
736
|
Azimi N, Shiramizu KM, Tagaya Y, Mariner J, Waldmann TA. Viral activation of interleukin-15 (IL-15): characterization of a virus-inducible element in the IL-15 promoter region. J Virol 2000; 74:7338-48. [PMID: 10906187 PMCID: PMC112254 DOI: 10.1128/jvi.74.16.7338-7348.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified an interferon regulatory factor motif (IRF-E) upstream of an NF-kappaB binding site in the interleukin-15 (IL-15) promoter. Since these two motifs are part of the virus-inducible enhancer region of the beta interferon promoter, we speculated that there might be similar responses of these two genes to stimuli such as viruses. To test this hypothesis, L929 cells were infected with Newcastle disease virus (NDV), which led to the induction of IL-15 mRNA and protein expression. Using IL-15 promoter-reporter deletion constructs, a virus-inducible region, encompassing IRF-E, NF-kappaB, and a 13-nucleotide sequence flanked by these two motifs, was mapped to the -295-to--243 position relative to the transcription initiation site. Using cotransfection studies, it was demonstrated that all three motifs were essential to achieve the maximum promoter activity induced by IRF-1 and NF-kappaB expression plasmids. The presence of a virus-inducible region in the IL-15 promoter suggests a role for IL-15 as a component of host antiviral defense mechanisms.
Collapse
Affiliation(s)
- N Azimi
- Metabolism Branch, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1374, USA.
| | | | | | | | | |
Collapse
|
737
|
Abstract
This review describes the diverse array of pathways and molecular targets that are used by viruses to elude immune detection and destruction. These include targeting of pathways for major histocompatibility complex-restricted antigen presentation, apoptosis, cytokine-mediated signaling, and humoral immune responses. The continuous interactions between host and pathogens during their coevolution have shaped the immune system, but also the counter measures used by pathogens. Further study of their interactions should improve our ability to manipulate and exploit the various pathogens.
Collapse
Affiliation(s)
- D Tortorella
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
738
|
Falvo JV, Parekh BS, Lin CH, Fraenkel E, Maniatis T. Assembly of a functional beta interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation. Mol Cell Biol 2000; 20:4814-25. [PMID: 10848607 PMCID: PMC85927 DOI: 10.1128/mcb.20.13.4814-4825.2000] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterodimeric transcription factors, including the basic region-leucine zipper (bZIP) protein ATF-2-c-jun, are well-characterized components of an enhanceosome that mediates virus induction of the human beta interferon (IFN-beta) gene. Here we report that within the IFN-beta enhanceosome the ATF-2-c-jun heterodimer binds in a specific orientation, which is required for assembly of a complex between ATF-2-c-jun and interferon regulatory factor 3 (IRF-3). We demonstrate that correct orientation of the ATF-2-c-jun binding site is required for virus induction of the IFN-beta gene and for IRF-3-dependent activation of a composite ATF-2- c-jun-IRF site in the IFN-beta promoter. We also show that in vitro the DNA-bound ATF-2-c-jun heterodimer adopts a fixed orientation upon the binding of IRF-3 at an adjacent site in the IFN-beta enhancer and that the DNA-binding domain of IRF-3 is sufficient to mediate this effect. In addition, we show that the DNA-binding domain of ATF-2 is necessary and sufficient for selective protein-protein interactions with IRF-3. Strikingly, in vivo chromatin immunoprecipitation experiments with IFN-beta reporter constructs reveal that recruitment of IRF-3 to the IFN-beta promoter upon virus infection is dependent on the orientation of the ATF-2-c-jun heterodimer binding site. These observations demonstrate functional and physical cooperativity between the bZIP and IRF transcription factor families and illustrate the critical role of heterodimeric transcription factors in formation of the IFN-beta enhanceosome.
Collapse
Affiliation(s)
- J V Falvo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
739
|
Kim T, Kim TY, Lee WG, Yim J, Kim TK. Signaling pathways to the assembly of an interferon-beta enhanceosome. Chemical genetic studies with a small molecule. J Biol Chem 2000; 275:16910-7. [PMID: 10747925 DOI: 10.1074/jbc.m000524200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small molecules that modulate specific protein functions are valuable tools for dissecting complex signaling pathways. Here, we identified a small molecule that induces the assembly of the interferon-beta (IFN-beta) enhanceosome by stimulating all the enhancer-binding activator proteins: ATF2/c-JUN, IRF3, and p50/p65 of NF-kappaB. This compound stimulates mitogen-activated protein kinase kinase kinase 1 (MEKK1), which is a member of a family of proteins involved in stress-mediated signaling pathways. Consistent with this, MEKK1 activates IRF3 in addition to ATF2/c-JUN and NF-kappaB for the assembly of the IFN-beta enhanceosome. MEKK1 activates IRF3 through the c-JUN amino-terminal kinase (JNK) pathway but not the p38 and IkappaB kinase (IKK) pathway. Taken together with previous observations, these results implicate that, for the assembly of an IFN-beta enhanceosome, MEKK1 can induce IRF3 and ATF2/c-JUN through the JNK pathway, whereas it can induce NF-kappaB through the IKK pathway. Thus, specific MEKK family proteins may be able to integrate some of multiple signal transduction pathways leading to the specific activation of the IFN-beta enhanceosome.
Collapse
Affiliation(s)
- T Kim
- National Creative Research Initiative Center for Genetic Reprogramming, Institute for Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea.
| | | | | | | | | |
Collapse
|
740
|
Kumar KP, McBride KM, Weaver BK, Dingwall C, Reich NC. Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1. Mol Cell Biol 2000; 20:4159-68. [PMID: 10805757 PMCID: PMC85785 DOI: 10.1128/mcb.20.11.4159-4168.2000] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1999] [Accepted: 03/13/2000] [Indexed: 11/20/2022] Open
Abstract
Viral double-stranded RNA (dsRNA) generated during the course of infection leads to the activation of a latent transcription factor, dsRNA-activated factor 1 (DRAF1). DRAF1 binds to a DNA target containing the type I interferon-stimulated response element and induces transcription of responsive genes. DRAF1 is a multimeric transcription factor containing the interferon regulatory factor 3 (IRF-3) protein and one of the histone acetyl transferases, CREB binding protein (CBP) or p300 (CBP/p300). In uninfected cells, the IRF-3 component of DRAF1 resides in the cytoplasm. The cytoplasmic localization of IRF-3 is dependent on a nuclear export signal, and we demonstrate IRF-3 recognition by the chromosome region maintenance 1 (CRM1) (also known as exportin 1) shuttling receptor. Following infection and specific phosphorylation, IRF-3 accumulates in the nucleus where it associates with CBP and p300. We identify a nuclear localization signal (NLS) in IRF-3 that is critical for nuclear accumulation. Mutation of the NLS abrogates nuclear localization even following infection. The NLS appears to be active constitutively, but it is recognized by only a subset of importin-alpha shuttling receptors. Evidence is presented to support a model in which IRF-3 normally shuttles between the nucleus and the cytoplasm but cytoplasmic localization is dominant prior to infection. Following infection, phosphorylated IRF-3 can bind to the CBP/p300 proteins resident in the nucleus. We provide the evidence of a role for CBP/p300 binding in the nuclear sequestration of a transcription factor that normally resides in the cytoplasm.
Collapse
Affiliation(s)
- K P Kumar
- Department of Pathology, SUNY at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
741
|
Génin P, Algarté M, Roof P, Lin R, Hiscott J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-kappa B and IFN-regulatory factor transcription factors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5352-61. [PMID: 10799898 DOI: 10.4049/jimmunol.164.10.5352] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Virus infection of host cells activates a set of cellular genes, including cytokines, IFNs, and chemokines, involved in antiviral defense and immune activation. Previous studies demonstrated that virus-induced transcriptional activation of a member of the human CC-chemokine RANTES required activation of the latent transcription factors IFN-regulatory factor (IRF)-3 and NF-kappa B via posttranslational phosphorylation. In the present study, we further characterized the regulatory control of RANTES transcription during virus infection using in vivo genomic footprinting analyses. IRF-3, the related IRF-7, and NF-kappa B are identified as important in vivo binding factors required for the cooperative induction of RANTES transcription after virus infection. Using fibroblastic or myeloid cells, we demonstrate that the kinetics and strength of RANTES virus-induced transcription are highly dependent on the preexistence of IRFs and NF-kappa B. Use of dominant negative mutants of either I kappa B-alpha or IRF-3 demonstrate that disruption of either pathway dramatically abolishes the ability of the other to bind and activate RANTES expression. Furthermore, coexpression of IRF-3, IRF-7, and p65/p50 leads to synergistic activation of RANTES promoter transcription. These studies reveal a model of virus-mediated RANTES promoter activation that involves cooperative synergism between IRF-3/IRF-7 and NF-kappa B factors.
Collapse
Affiliation(s)
- P Génin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Departments of Microbiology, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
742
|
Deonarain R, Alcamí A, Alexiou M, Dallman MJ, Gewert DR, Porter AC. Impaired antiviral response and alpha/beta interferon induction in mice lacking beta interferon. J Virol 2000; 74:3404-9. [PMID: 10708458 PMCID: PMC111842 DOI: 10.1128/jvi.74.7.3404-3409.2000] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have generated mice lacking the gene for beta interferon and report that they are highly susceptible to vaccinia virus infection. Furthermore, in cultured embryo fibroblasts, viral induction of alpha interferon and of 2-5A synthetase genes is impaired. We also show that beta interferon does not prime its own expression.
Collapse
Affiliation(s)
- R Deonarain
- MRC Clinical Science Centre, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom
| | | | | | | | | | | |
Collapse
|
743
|
Abstract
We study a family of transcription factors, the interferon regulatory factors (IRFs), as originally identified in the context of the regulation of type-I interferon (IFN-alpha/beta) system. Most notably, studies on IRF-1 have revealed its remarkable functional diversity in the regulation of cellular responses of host defense, including oncogenesis. The IRF family has now expanded to nine members, and gene disruption studies have revealed critical involvement of some of the members in the regulation of cell growth and oncogenesis. In this review, we summarize our current knowledge on the involvement of members of the IRF family members, in particular, IRF-1, in oncogenesis.
Collapse
Affiliation(s)
- N Tanaka
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
744
|
Heylbroeck C, Balachandran S, Servant MJ, DeLuca C, Barber GN, Lin R, Hiscott J. The IRF-3 transcription factor mediates Sendai virus-induced apoptosis. J Virol 2000; 74:3781-92. [PMID: 10729153 PMCID: PMC111887 DOI: 10.1128/jvi.74.8.3781-3792.2000] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection of target cells can result in different biological outcomes: lytic infection, cellular transformation, or cell death by apoptosis. Cells respond to virus infection by the activation of specific transcription factors involved in cytokine gene regulation and cell growth control. The ubiquitously expressed interferon regulatory factor 3 (IRF-3) transcription factor is directly activated following virus infection through posttranslational modification. Phosphorylation of specific C-terminal serine residues results in IRF-3 dimerization, nuclear translocation, and activation of DNA-binding and transactivation potential. Once activated, IRF-3 transcriptionally up regulates alpha/beta interferon genes, the chemokine RANTES, and potentially other genes that inhibit viral infection. We previously generated constitutively active [IRF-3(5D)] and dominant negative (IRF-3 DeltaN) forms of IRF-3 that control target gene expression. In an effort to characterize the growth regulatory properties of IRF-3, we observed that IRF-3 is a mediator of paramyxovirus-induced apoptosis. Expression of the constitutively active form of IRF-3 is toxic, preventing the establishment of stably transfected cells. By using a tetracycline-inducible system, we show that induction of IRF-3(5D) alone is sufficient to induce apoptosis in human embryonic kidney 293 and human Jurkat T cells as measured by DNA laddering, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay, and analysis of DNA content by flow cytometry. Wild-type IRF-3 expression augments paramyxovirus-induced apoptosis, while expression of IRF-3 DeltaN blocks virus-induced apoptosis. In addition, we demonstrate an important role of caspases 8, 9, and 3 in IRF-3-induced apoptosis. These results suggest that IRF-3, in addition to potently activating cytokine genes, regulates apoptotic signalling following virus infection.
Collapse
Affiliation(s)
- C Heylbroeck
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
745
|
Yeow WS, Au WC, Juang YT, Fields CD, Dent CL, Gewert DR, Pitha PM. Reconstitution of virus-mediated expression of interferon alpha genes in human fibroblast cells by ectopic interferon regulatory factor-7. J Biol Chem 2000; 275:6313-20. [PMID: 10692430 DOI: 10.1074/jbc.275.9.6313] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I interferons constitute an important part of the innate immune response against viral infection. Unlike the expression of interferon (IFN) B gene, the expression of IFNA genes is restricted to the lymphoid cells. Both IFN regulatory factor 3 and 7 (IRF-3 and IRF-7) were suggested to play positive roles in these genes expression. However, their role in the differential expression of individual subtypes of human IFNA genes is unknown. Using various IFNA reporter constructs in transient transfection assay we found that overexpression of IRF-3 in virus infected 2FTGH cells selectively activated IFNA1 VRE, whereas IRF-7 was able to activate IFNA1, A2, and A4. The binding of recombinant IRF-7 and IRF-3 to these VREs correlated with their transcriptional activation. Nuclear proteins from infected and uninfected IRF-7 expressing 2FTGH cells formed multiple DNA-protein complexes with IFNA1 VRE, in which two unique DNA-protein complexes containing IRF-7 were detected. In 2FTGH cells, virus stimulated expression of IFNB gene but none of the IFNA genes. Reconstitution of IRF-7 synthesis in these cells resulted, upon virus infection, in the activation of seven endogenous IFNA genes in which IFNA1 predominated. These studies suggest that IRF-7 is a critical determinant for the induction of IFNA genes in infected cells.
Collapse
Affiliation(s)
- W S Yeow
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
746
|
Nakagawa K, Yokosawa H. Degradation of transcription factor IRF-1 by the ubiquitin-proteasome pathway. The C-terminal region governs the protein stability. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1680-6. [PMID: 10712599 DOI: 10.1046/j.1432-1327.2000.01163.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interferon regulatory factor-1(IRF-1) is a transcriptional activator of interferon genes and interferon-inducible genes. It has been shown that IRF-1 functions not only as a regulator of the interferon-responsive system but also as a regulator of cell growth and apoptosis. In addition, it is known that IRF-1 is a short-lived protein, but the mechanism that regulates its stability has not yet been clarified. Here, we show that IRF-1 is degraded via the ubiquitin-proteasome pathway. IRF-1 protein degradation in HeLa and NIH3T3 cells was inhibited by treatment with proteasome-specific inhibitors. Overexpression of IRF-1 protein and ubiquitin in COS7 cells revealed specific multiubiquitination of IRF-1. Although the full-length IRF-1 was unstable, IRF-1 mutants with C-terminal truncations larger than 39 amino acids were found to be almost stable, suggesting that the 39-residue C-terminal region controls the stability of IRF-1. Further analysis of the stability of a green fluorescent protein-fusion protein containing the 39-residue C-terminal region of IRF-1 showed that this C-terminal region confers instability on green fluorescent protein, a normally stable protein, suggesting that this region functions as a protein-degradation signal. Taking the results together, it can be concluded that the 39-residue C-terminal region is necessary and sufficient to control the stability of the IRF-1 protein.
Collapse
Affiliation(s)
- K Nakagawa
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
747
|
Falvo JV, Uglialoro AM, Brinkman BM, Merika M, Parekh BS, Tsai EY, King HC, Morielli AD, Peralta EG, Maniatis T, Thanos D, Goldfeld AE. Stimulus-specific assembly of enhancer complexes on the tumor necrosis factor alpha gene promoter. Mol Cell Biol 2000; 20:2239-47. [PMID: 10688670 PMCID: PMC110840 DOI: 10.1128/mcb.20.6.2239-2247.2000] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1999] [Accepted: 12/06/1999] [Indexed: 12/31/2022] Open
Abstract
The human tumor necrosis factor alpha (TNF-alpha) gene is rapidly activated in response to multiple signals of stress and inflammation. We have identified transcription factors present in the TNF-alpha enhancer complex in vivo following ionophore stimulation (ATF-2/Jun and NFAT) and virus infection (ATF-2/Jun, NFAT, and Sp1), demonstrating a novel role for NFAT and Sp1 in virus induction of gene expression. We show that virus infection results in calcium flux and calcineurin-dependent NFAT dephosphorylation; however, relatively lower levels of NFAT are present in the nucleus following virus infection as compared to ionophore stimulation. Strikingly, Sp1 functionally synergizes with NFAT and ATF-2/c-jun in the activation of TNF-alpha gene transcription and selectively associates with the TNF-alpha promoter upon virus infection but not upon ionophore stimulation in vivo. We conclude that the specificity of TNF-alpha transcriptional activation is achieved through the assembly of stimulus-specific enhancer complexes and through synergistic interactions among the distinct activators within these enhancer complexes.
Collapse
Affiliation(s)
- J V Falvo
- Department of Molecular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
748
|
Guo J, Peters KL, Sen GC. Induction of the human protein P56 by interferon, double-stranded RNA, or virus infection. Virology 2000; 267:209-19. [PMID: 10662616 DOI: 10.1006/viro.1999.0135] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
P56 is the most abundant protein induced by interferon (IFN) treatment of human cells. To facilitate studies on its induction pattern and cellular functions, we expressed recombinant P56 as a hexahistidine-tagged protein in Escherichia coli and purified it to apparent homogeneity using affinity chromatography. A polyclonal antibody raised against this recombinant protein was used to show that P56 is primarily a cytoplasmic protein. Cellular expression of P56 by transfection did not inhibit the replication of vesicular stomatitis virus and encephalomyocarditis virus. P56 synthesis was rapidly induced by IFN-beta, and the protein had a half-life of 6 h. IFN-gamma or poly(A)(+) could not induce the protein, but poly(I)-poly(C) or an 85-bp synthetic double-stranded RNA efficiently induced it. Similarly, infection of GRE cells, which are devoid of type I IFN genes, by vesicular stomatitis virus, encephalomyocarditis virus, or Sendai virus caused P56 induction. Surprisingly, Sendai virus could also induce P56 in the mutant cell line P2.1, which cannot respond to either IFN-alpha/beta or double-stranded RNA. Induction of P56 in the P2.1 cells and the parental U4C cells by virus infection was preceded by activation of IRF-3 as judged by its translocation to the nucleus from the cytoplasm.
Collapse
Affiliation(s)
- J Guo
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
749
|
Mamane Y, Sharma S, Petropoulos L, Lin R, Hiscott J. Posttranslational regulation of IRF-4 activity by the immunophilin FKBP52. Immunity 2000; 12:129-40. [PMID: 10714679 DOI: 10.1016/s1074-7613(00)80166-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Interferon regulatory factor-4 (IRF-4) plays an important role in immunoregulatory gene expression in B and T lymphocytes and is also highly expressed in human T cell leukemia virus type 1 infected cells. In this study, we characterize a novel interaction between IRF-4 and the FK506-binding protein 52 (FKBP52), a 59 kDa member of the immunophilin family with peptidyl-prolyl isomerase activity (PPIase). IRF-4-FKBP52 association inhibited IRF4-PU.1 binding to the immunoglobulin light chain enhancer E(lambda2-4) as well as IRF-4-PU.1 transactivation, effects that were dependent on functional PPIase activity. FKBP52 association also resulted in a structural modification of IRF-4, detectable by immunoblot analysis and by IRF-4 partial proteolysis. These results demonstrate a novel posttranslational mechanism of transcriptional control, mediated through the interaction of an immunophilin with a transcriptional regulator.
Collapse
Affiliation(s)
- Y Mamane
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research and Department of Microbiology, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
750
|
Navarro L, David M. p38-dependent activation of interferon regulatory factor 3 by lipopolysaccharide. J Biol Chem 1999; 274:35535-8. [PMID: 10585427 DOI: 10.1074/jbc.274.50.35535] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon regulatory factor 3 (IRF3) is known to participate in the transcriptional induction of interferon (IFN) alpha and IFNbeta genes, as well as of a number of interferon-stimulated genes (ISGs), as a result of viral infection. In the present study we demonstrate the activation of IRF3 followed by ISG induction after exposure of cells to the bacterial cell wall component lipopolysaccharide. Engagement of Toll-like receptors by lipopolysaccharide triggered the nuclear translocation of IRF3, followed by its DNA binding and the subsequent induction of several interferon-regulated genes. Transcriptional activation of ISGs occurred in a protein synthesis independent manner, but was sensitive to inhibition of the stress-activated protein kinase, p38. The activation of IRF3 by viral particles or bacterial membrane components suggests that this signaling pathway might contribute to the evolutionary conserved innate immune response.
Collapse
Affiliation(s)
- L Navarro
- Department of Biology, University of California San Diego Cancer Center, University of California, La Jolla, California 92093-0322, USA
| | | |
Collapse
|