701
|
Foster PS, Plank M, Collison A, Tay HL, Kaiko GE, Li J, Johnston SL, Hansbro PM, Kumar RK, Yang M, Mattes J. The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol Rev 2013; 253:198-215. [DOI: 10.1111/imr.12058] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Paul S. Foster
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Maximilian Plank
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Adam Collison
- Priority Research Centre for Asthma and Respiratory Disease, Discipline of Paediatrics and Child Health, School of Medicine and Public Health, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Hock L. Tay
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Gerard E. Kaiko
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - JingJing Li
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Sebastian L. Johnston
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma; Imperial College London; London; UK
| | - Philip M. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Rakesh K. Kumar
- Department of Pathology, School of Medical Sciences; University of New South Wales; Sydney; Australia
| | - Ming Yang
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| | - Joerg Mattes
- Priority Research Centre for Asthma and Respiratory Disease, Discipline of Paediatrics and Child Health, School of Medicine and Public Health, Faculty of Health and Hunter Medical Research Institute; University of Newcastle; Newcastle; Australia
| |
Collapse
|
702
|
Tili E, Michaille JJ, Croce CM. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 2013; 253:167-84. [PMID: 23550646 DOI: 10.1111/imr.12050] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Esmerina Tili
- Department of Molecular Virology; Immunology and Medical Genetics; The Ohio State University Medical Center; Comprehensive Cancer Center; Columbus; OH; USA
| | | | - Carlo M. Croce
- Department of Molecular Virology; Immunology and Medical Genetics; The Ohio State University Medical Center; Comprehensive Cancer Center; Columbus; OH; USA
| |
Collapse
|
703
|
Spoerl D, Duroux-Richard I, Louis-Plence P, Jorgensen C. The role of miR-155 in regulatory T cells and rheumatoid arthritis. Clin Immunol 2013; 148:56-65. [PMID: 23649045 DOI: 10.1016/j.clim.2013.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
Recently, various micro(mi)RNAs have been found deregulated in the setting of rheumatoid arthritis (RA), but their role in the pathogenesis of this disease remains a matter of debate. In the meanwhile, increasing evidence indicates a defective function of regulatory T cells (Tregs) in RA. This review discusses relevant studies addressing the function of Tregs and Cytotoxic T-Lymphocyte Antigen 4 in RA, provides recent data on the role of miRNAs for Tregs homeostasis, and focuses on the role of miR-155 in Tregs. In a final perspective section we discuss the potential impact of therapeutic miR-155 modulation in RA.
Collapse
Affiliation(s)
- D Spoerl
- Inserm U844, CHU Saint Eloi, INM, 80 rue Augustin Fliche, 34295 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
704
|
Wei J, Huang X, Zhang Z, Jia W, Zhao Z, Zhang Y, Liu X, Xu G. MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264.7 cells. Mol Immunol 2013; 55:303-9. [PMID: 23522925 DOI: 10.1016/j.molimm.2013.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have been demonstrated to play a pivotal role in the regulation of target gene expression at the post-transcriptional level. In order to better understand the role of microRNA-203 (miR-203) in the immunological regulation, the function of miR-203 was explored in the macrophage RAW264.7 cells against lipopolysaccharide (LPS) or Bacille Calmette-Guerin (BCG) stimulation. The results evidenced that myeloid differentiation factor 88 (MyD88) was a novel target of miR-203, miR-203 was capable of directly targeting the 3' untranslated region (3'UTR) of MyD88 and post-transcriptionally down-regulating the expression of protein. In addition, an overexpression of miR-203 in RAW264.7 cells was correlated with repressions of MyD88, as well as its downstream signaling of NF-κB (NF-κB1), TNF-α and IL-6. These results suggest that miR-203 may be an important regulator in macrophages against LPS or mycobacteria infection, which may through a mechanism of negatively regulating MyD88-dependent Toll-like receptors signaling pathway.
Collapse
Affiliation(s)
- Jun Wei
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | | | | | | | | | | | | | | |
Collapse
|
705
|
Kaur P, Liu F, Tan JR, Lim KY, Sepramaniam S, Karolina DS, Armugam A, Jeyaseelan K. Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury. Brain Sci 2013; 3:360-95. [PMID: 24961318 PMCID: PMC4061830 DOI: 10.3390/brainsci3010360] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/19/2013] [Accepted: 03/06/2013] [Indexed: 01/24/2023] Open
Abstract
Over the past decade, scientific discoveries have highlighted new roles for a unique class of non-coding RNAs. Transcribed from the genome, these non-coding RNAs have been implicated in determining the biological complexity seen in mammals by acting as transcriptional and translational regulators. Non-coding RNAs, which can be sub-classified into long non-coding RNAs, microRNAs, PIWI-interacting RNAs and several others, are widely expressed in the nervous system with roles in neurogenesis, development and maintenance of the neuronal phenotype. Perturbations of these non-coding transcripts have been observed in ischemic preconditioning as well as ischemic brain injury with characterization of the mechanisms by which they confer toxicity. Their dysregulation may also confer pathogenic conditions in neurovascular diseases. A better understanding of their expression patterns and functions has uncovered the potential use of these riboregulators as neuroprotectants to antagonize the detrimental molecular events taking place upon ischemic-reperfusion injury. In this review, we discuss the various roles of non-coding RNAs in brain development and their mechanisms of gene regulation in relation to ischemic brain injury. We will also address the future directions and open questions for identifying promising non-coding RNAs that could eventually serve as potential neuroprotectants against ischemic brain injury.
Collapse
Affiliation(s)
- Prameet Kaur
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| | - Fujia Liu
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| | - Jun Rong Tan
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| | - Kai Ying Lim
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| | - Sugunavathi Sepramaniam
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| | - Dwi Setyowati Karolina
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| | - Arunmozhiarasi Armugam
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| | - Kandiah Jeyaseelan
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|
706
|
Liu G, Abraham E. MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol 2013; 33:170-7. [PMID: 23325473 DOI: 10.1161/atvbaha.112.300068] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is essential to combat invading microbial pathogens. In this process, the involvement of multiple immune cell populations is crucial in mounting an optimum immune response. In the past decade, a new class of noncoding small RNAs, called microRNAs (miRNAs), has emerged as important regulators in biological processes. The important role of miRNAs in inflammation and immune response is highlighted by studies in which deregulation of miRNAs was demonstrated to accompany diseases associated with excessive or uncontrolled inflammation. In this brief review, we summarize the roles of miRNAs that have been characterized in innate and adaptive immune responses. We discuss the role of miRNAs in macrophage polarization, a molecular event that has clear effect on inflammation.
Collapse
Affiliation(s)
- Gang Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
707
|
Squadrito ML, Etzrodt M, De Palma M, Pittet MJ. MicroRNA-mediated control of macrophages and its implications for cancer. Trends Immunol 2013; 34:350-9. [PMID: 23498847 DOI: 10.1016/j.it.2013.02.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 12/15/2022]
Abstract
Deregulation of microRNAs (miRNAs) can drive oncogenesis, tumor progression, and metastasis by acting cell-autonomously in cancer cells. However, solid tumors are also infiltrated by large amounts of non-neoplastic stromal cells, including macrophages, which express several active miRNAs. Tumor-associated macrophages (TAMs) enhance angiogenic, immunosuppressive, invasive, and metastatic programming of neoplastic tissue and reduce host survival. Here, we review the role of miRNAs (including miR-155, miR-146, and miR-511) in the control of macrophage production and activation, and examine whether reprogramming miRNA activity in TAMs and/or their precursors might be effective for controlling tumor progression.
Collapse
Affiliation(s)
- Mario Leonardo Squadrito
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
708
|
A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood 2013; 122:243-52. [PMID: 23487026 DOI: 10.1182/blood-2012-08-449306] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A productive immune response requires transient upregulation of the microRNA miR-155 in hematopoietic cells mediating innate and adaptive immunity. In order to investigate miR-155 in the context of tumor-associated immune responses, we stably knocked down (KD) miR-155 in the myeloid compartment of MMTV-PyMT mice, a mouse model of spontaneous breast carcinogenesis that closely mimics tumor-host interactions seen in humans. Notably, miR-155/KD significantly accelerated tumor growth by impairing classic activation of tumor-associated macrophages (TAMs). This created an imbalance toward a protumoral microenvironment as evidenced by a lower proportion of CD11c(+) TAMs, reduced expression of activation markers, and the skewing of immune cells within the tumor toward an macrophage type 2/T helper 2 response. This study highlights the importance of tumor-infiltrating hematopoietic cells in constraining carcinogenesis and establishes an antitumoral function of a prototypical oncomiR.
Collapse
|
709
|
Yu HWH, Sze DMY, Cho WCS. MicroRNAs Involved in Anti-Tumour Immunity. Int J Mol Sci 2013; 14:5587-5607. [PMID: 23478435 PMCID: PMC3634477 DOI: 10.3390/ijms14035587] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/26/2012] [Accepted: 02/19/2013] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a category of small RNAs that constitute a new layer of complexity to gene regulation within the cell, which has provided new perspectives in understanding cancer biology. The deregulation of miRNAs contributes critically to the development and pathophysiology of a number of cancers. miRNAs have been found to participate in cell transformation and multiplication by acting as tumour oncogenes or suppressors; therefore, harnessing miRNAs may provide promising cancer therapeutics. Another major function of miRNAs is their activity as critical regulatory vehicles eliciting important regulatory processes in anti-tumour immunity through their influence on the development, differentiation and activation of various immune cells of both innate and adaptive immunity. This review aims to summarise recent findings focusing on the regulatory mechanisms of the development, differentiation, and proliferative aspects of the major immune populations by a diverse profile of miRNAs and may enrich our current understanding of the involvement of miRNAs in anti-tumour immunity.
Collapse
Affiliation(s)
- Hong W. H. Yu
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China; E-Mail:
| | - Daniel M. Y. Sze
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China; E-Mail:
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong, China; E-Mail: or
| |
Collapse
|
710
|
Levänen B, Bhakta NR, Paredes PT, Barbeau R, Hiltbrunner S, Pollack JL, Sköld CM, Svartengren M, Grunewald J, Gabrielsson S, Eklund A, Larsson BM, Woodruff PG, Erle DJ, Wheelock ÅM. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 2013; 131:894-903. [PMID: 23333113 PMCID: PMC4013392 DOI: 10.1016/j.jaci.2012.11.039] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/18/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Asthma is characterized by increased airway narrowing in response to nonspecific stimuli. The disorder is influenced by both environmental and genetic factors. Exosomes are nanosized vesicles of endosomal origin released from inflammatory and epithelial cells that have been implicated in asthma. In this study we characterized the microRNA (miRNA) content of exosomes in healthy control subjects and patients with mild intermittent asthma both at unprovoked baseline and in response to environmental challenge. OBJECTIVE To investigate alterations in bronchoalveolar lavage fluid (BALF) exosomal miRNA profiles due to asthma, and following subway air exposure. METHODS Exosomes were isolated from BALF from healthy control subjects (n = 10) and patients with mild intermittent asthma (n = 10) after subway and control exposures. Exosomal RNA was analyzed by using microarrays containing probes for 894 human miRNAs, and selected findings were validated with quantitative RT-PCR. Results were analyzed by using multivariate modeling. RESULTS The presence of miRNAs was confirmed in exosomes from BALF of both asthmatic patients and healthy control subjects. Significant differences in BALF exosomal miRNA was detected for 24 miRNAs with a subset of 16 miRNAs, including members of the let-7 and miRNA-200 families, providing robust classification of patients with mild nonsymptomatic asthma from healthy subjects with 72% cross-validated predictive power (Q(2) = 0.72). In contrast, subway exposure did not cause any significant alterations in miRNA profiles. CONCLUSION These studies demonstrate substantial differences in exosomal miRNA profiles between healthy subjects and patients with unprovoked, mild, stable asthma. These changes might be important in the inflammatory response leading to bronchial hyperresponsiveness and asthma.
Collapse
Affiliation(s)
- Bettina Levänen
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Nirav R. Bhakta
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
| | | | | | - Stefanie Hiltbrunner
- Translational Immunology Unit, Department of Medicine, Karolinska Institutet, Stockholm
| | | | - C. Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Magnus Svartengren
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Susanne Gabrielsson
- Translational Immunology Unit, Department of Medicine, Karolinska Institutet, Stockholm
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Britt-Marie Larsson
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
| | - David J. Erle
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
- Lung Biology Center, University of California–San Francisco
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| |
Collapse
|
711
|
Singh PK, Singh AV, Chauhan DS. Current understanding on micro RNAs and its regulation in response to Mycobacterial infections. J Biomed Sci 2013; 20:14. [PMID: 23448104 PMCID: PMC3599176 DOI: 10.1186/1423-0127-20-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/23/2013] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, naturally abundant, small, regulatory non-coding RNAs that inhibit gene expression at the post-transcriptional level in a sequence-specific manner. Due to involvement in a broad range of biological processes and diseases, miRNAs are now commanding considerable attention. Although much of the focus has been on the role of miRNAs in different types of cancer, recent evidence also points to a critical role of miRNAs in infectious disease, including those of bacterial origin. Now, miRNAs research is exploring rapidly as a new thrust area of biomedical research with relevance to deadly bacterial diseases like Tuberculosis (caused by Mycobacterium tuberculosis). The purpose of this review is to highlight the current developments in area of miRNAs regulation in Mycobacterial diseases; and how this might influence the diagnosis, understanding of disease biology, control and management in the future.
Collapse
Affiliation(s)
- Pravin Kumar Singh
- Department of Microbiology & Molecular Biology, National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Tajganj, Agra UP Pin- 282001, India
| | | | | |
Collapse
|
712
|
Olarerin-George AO, Anton L, Hwang YC, Elovitz MA, Hogenesch JB. A functional genomics screen for microRNA regulators of NF-kappaB signaling. BMC Biol 2013; 11:19. [PMID: 23448136 PMCID: PMC3621838 DOI: 10.1186/1741-7007-11-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/28/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The nuclear factor-KappaB (NF-κB) pathway is conserved from fruit flies to humans and is a key mediator of inflammatory signaling. Aberrant regulation of NF-κB is associated with several disorders including autoimmune disease, chronic inflammation, and cancer, making the NF-κB pathway an attractive therapeutic target. Many regulatory components of the NF-κB pathway have been identified, including microRNAs (miRNAs). miRNAs are small non-coding RNAs and are common components of signal transduction pathways. Here we present a cell-based functional genomics screen to systematically identify miRNAs that regulate NF-κB signaling. RESULTS We screened a library of miRNA mimics using a NF-κB reporter cell line in the presence and absence of tumor necrosis factor (+/- TNF). There were 9 and 15 hits in the -TNF and +TNF screens, respectively. We identified putative functional targets of these hits by integrating computational predictions with NF-κB modulators identified in a previous genome-wide cDNA screen. miR-517a and miR-517c were the top hits, activating the reporter 86- and 126-fold, respectively. Consistent with these results, miR-517a/c induced the expression of endogenous NF-κB targets and promoted the nuclear localization of p65 and the degradation of IκB. We identified TNFAIP3 interacting protein1 (TNIP1) as a target and characterized a functional SNP in the miR-517a/c binding site. Lastly, miR-517a/c induced apoptosis in vitro, which was phenocopied by knockdown of TNIP1. CONCLUSIONS Our study suggests that miRNAs are common components of NF-κB signaling and miR-517a/c may play an important role in linking NF-κB signaling with cell survival through TNIP1.
Collapse
Affiliation(s)
- Anthony O Olarerin-George
- Genomics and Computational Biology Graduate Group, 1420 Blockley Hall, 423 Guardian Drive, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, Smilow Translational Research Center 10-124, 3400 Civic Center Blvd., Bldg. 421, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Anton
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, 1354 Biomedical Research Building II/III, 421 Curie Blvd., Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yih-Chii Hwang
- Genomics and Computational Biology Graduate Group, 1420 Blockley Hall, 423 Guardian Drive, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, 1354 Biomedical Research Building II/III, 421 Curie Blvd., Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Genomics and Computational Biology Graduate Group, 1420 Blockley Hall, 423 Guardian Drive, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, Smilow Translational Research Center 10-124, 3400 Civic Center Blvd., Bldg. 421, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
713
|
Abstract
Toll-like receptors (TLRs) are pivotal components of the innate immune response, which is responsible for eradicating invading microorganisms through the induction of inflammatory molecules. These receptors are also involved in responding to harmful endogenous molecules and have crucial roles in the activation of the innate immune system and shaping the adaptive immune response. However, TLR signaling pathways must be tightly regulated because undue TLR stimulation may disrupt the fine balance between pro- and anti-inflammatory responses. Such disruptions may harm the host through the development of autoimmune and inflammatory diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Several studies have investigated the regulatory pathways of TLRs that are essential for modulating proinflammatory responses. These studies reported several pathways and molecules that act individually or in combination to regulate immune responses. In this review, we have summarized recent advancements in the elucidation of the negative regulation of TLR signaling. Moreover, this review covers the modulation of TLR signaling at multiple levels, including adaptor complex destabilization, phosphorylation and ubiquitin-mediated degradation of signal proteins, manipulation of other receptors, and transcriptional regulation. Lastly, synthetic inhibitors have also been briefly discussed to highlight negative regulatory approaches in the treatment of inflammatory diseases.
Collapse
|
714
|
Chen Y, Liu W, Sun T, Huang Y, Wang Y, Deb DK, Yoon D, Kong J, Thadhani R, Li YC. 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 190:3687-95. [PMID: 23436936 DOI: 10.4049/jimmunol.1203273] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The negative feedback mechanism is essential to maintain effective immunity and tissue homeostasis. 1,25-dihydroxyvitamin D (1,25[OH]2D3) modulates innate immune response, but the mechanism remains poorly understood. In this article, we report that vitamin D receptor signaling attenuates TLR-mediated inflammation by enhancing the negative feedback inhibition. Vitamin D receptor inactivation leads to hyperinflammatory response in mice and macrophage cultures when challenged with LPS, because of microRNA-155 (miR-155) overproduction that excessively suppresses suppressor of cytokine signaling 1, a key regulator that enhances the negative feedback loop. Deletion of miR-155 attenuates vitamin D suppression of LPS-induced inflammation, confirming that 1,25(OH)2D3 stimulates suppressor of cytokine signaling 1 by downregulating miR-155. 1,25(OH)2D3 downregulates bic transcription by inhibiting NF-κB activation, which is mediated by a κB cis-DNA element located within the first intron of the bic gene. Together, these data identify a novel regulatory mechanism for vitamin D to control innate immunity.
Collapse
Affiliation(s)
- Yunzi Chen
- Division of Biological Sciences, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
715
|
The critical importance of epigenetics in autoimmunity. J Autoimmun 2013; 41:1-5. [PMID: 23375849 DOI: 10.1016/j.jaut.2013.01.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 11/21/2022]
Abstract
Autoimmune diseases are characterized by aberrant immune responses against healthy cells and tissues, in which a given individual's genetic susceptibilities play a central role; however, the exact mechanisms underlying the development of these conditions remain for the most part unknown. In recent years, accumulating evidence has demonstrated that, in addition to genetics, other complementary mechanisms are involved in the pathogenesis of autoimmunity, in particular, epigenetics. Epigenetics is defined as stable and heritable patterns of gene expression that do not entail any alterations to the original DNA sequence. Epigenetic mechanisms primarily consist of DNA methylation, histone modifications and small non-coding RNA transcripts. Epigenetic marks can be affected by age and other environmental triggers, providing a plausible link between environmental factors and the onset and development of various human diseases. Because of their primary function in regulating timely gene expression, epigenetic mechanisms offer potential advantages in terms of interpreting the molecular basis of complicated diseases and providing new promising therapeutic avenues for their treatment. The present review focuses on recent progress made in elucidating the relationship between epigenetics and the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, primary Sjögren's syndrome, primary biliary cirrhosis, psoriasis and type 1 diabetes.
Collapse
|
716
|
Sen D, Chapla A, Walter N, Daniel V, Srivastava A, Jayandharan GR. Nuclear factor (NF)-κB and its associated pathways are major molecular regulators of blood-induced joint damage in a murine model of hemophilia. J Thromb Haemost 2013; 11:293-306. [PMID: 23231432 DOI: 10.1111/jth.12101] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 11/26/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND The present study was designed to investigate the molecular signaling events from onset of bleeding through the development of arthropathy in a murine model of hemophilia A. METHODS AND RESULTS A sharp-injury model of hemarthrosis was used. A global gene expression array on joint-specific RNA isolated 3 h post-injury revealed nuclear factor-kappa B (NF-κB) as the major transcription factor triggering inflammation. As a number of genes encoding the cytokines, growth factors and hypoxia regulating factors are known to be activated by NF-κB and many of these are part of the pathogenesis of various joint diseases, we reasoned that NF-κB-associated pathways may play a crucial role in blood-induced joint damage. To further understand its role, we screened NF-κB-associated pathways between 1 h to 90 days after injury. After a single articular bleed, distinct members of the NF-κB family (NF-κB1/NF-κB2/RelA/RelB) and their responsive pro-inflammatory cytokines (IL-1β/IL-6/IFNγ/TNFα) were significantly up-regulated (> 2 fold, P < 0.05) in injured vs. control joints at the various time-points analyzed (1 h/3 h/7 h/24 h). After multiple bleeds (days 30/60/75/90), there was increased expression of NF-κB-associated factors that contribute to hypoxia (HIF-1α, 3.3-6.5 fold), angiogenesis (VEGF-α, 2.5-4.4 fold) and chondrocyte damage (matrix metalloproteinase-13, 2.8-3.8 fold) in the injured joints. Micro RNAs (miR) that are known to regulate NF-κB activation (miRs-9 and 155), inflammation (miRs-16, 155 and 182) and apoptosis (miRs-19a, 155 and 186) were also differentially expressed (-4 to +13-fold) after joint bleeding, indicating that the small RNAs could modulate the arthropathy phenotype. CONCLUSIONS These data suggest that NF-κB-associated signaling pathways are involved in the development of hemophilic arthropathy.
Collapse
Affiliation(s)
- D Sen
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
717
|
Ling H, Zhang W, Calin GA. Principles of microRNA involvement in human cancers. CHINESE JOURNAL OF CANCER 2013; 30:739-48. [PMID: 22035854 PMCID: PMC4013296 DOI: 10.5732/cjc.011.10243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Naturally occurring microRNAs (miRNAs), small non-coding RNAs of 19 to 24 nucleotides (nt), are encoded in the genomes of invertebrates, vertebrates, and plants. miRNAs act as regulators of gene expression during development and differentiation at the transcriptional, posttranscriptional, and/or translational levels, although most target genes are still elusive. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In this review, we present principles related to the basic and translational research that has emerged in the last decade, a period that can be truly considered the “miRNA revolution” in molecular oncology. These principles include the regulation mechanism of miRNA expression, functions of miRNAs in cancers, diagnostic values and therapeutic potentials of miRNAs. Furthermore, we present a compendium of information about the main miRNAs that have been identified in the last several years as playing important roles in cancers. Also, we orient the reader to several additional reviews that may provide a deeper understanding of this new and exciting field of research.
Collapse
Affiliation(s)
- Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
718
|
Cheng Y, Kuang W, Hao Y, Zhang D, Lei M, Du L, Jiao H, Zhang X, Wang F. Downregulation of miR-27a* and miR-532-5p and upregulation of miR-146a and miR-155 in LPS-induced RAW264.7 macrophage cells. Inflammation 2013; 35:1308-13. [PMID: 22415194 DOI: 10.1007/s10753-012-9443-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are involved in the epigenetic regulation of cellular processes. To identify more miRNAs which are involved in the macrophage inflammatory response to lipopolysaccharide (LPS) stimulation and dissect the mechanisms more clearly, microRNA profiling of LPS-treated RAW264.7 macrophage cells was performed by initial high-throughput array-based screen and further real-time RT-PCR validation; bioinformatics approaches were used to analyze the target genes of the differentially expressed miRNAs. Compared to the untreated control, two microRNAs (miR-146a and miR-155) with more than twofold higher expression and two microRNAs (miR-27a* and miR-532-5p) with twofold lower expression were detected by array-based screen, which can be validated by qRT-PCR, and more than 1,000 candidate target genes were detected by at least of one of four different algorithms (TargetScan, PicTar, miRDB, and microRNA.org); with gene ontology classification, we were able to correlate the upregulation and downregulation of miRNA to the differential expression of inflammation-related candidate target gene during LPS-induced inflammation. Our findings may provide the basic information for the precise roles of miRNAs in the macrophage inflammatory response to LPS stimulation in the future.
Collapse
Affiliation(s)
- Ying Cheng
- College of Agriculture, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research (Construction Period), Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haidian Island, Haikou, 570228, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
719
|
Zhang Y, Zhang M, Zhong M, Suo Q, Lv K. Expression profiles of miRNAs in polarized macrophages. Int J Mol Med 2013; 31:797-802. [PMID: 23443577 DOI: 10.3892/ijmm.2013.1260] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/21/2012] [Indexed: 11/05/2022] Open
Abstract
microRNAs (miRNAs) play a crucial role in tissue development and the pathology of various diseases. However, the effects and roles of miRNAs in macrophage polarization have yet to be investigated. In this study, we analyzed and compared the miRNA expression profiles of bone marrow-derived macrophages (BMDMs) with two distinct polarizing conditions (classical macrophage activation 'M1' and alternative activation 'M2') using miRNA microarray. In total, 109 miRNAs were differentially expressed between M1 and M2. The differential expression of selected miRNAs was validated by real-time qRT-PCR: miR-181a, miR-155-5p, miR-204-5p and miR-451 were upregulated (fold change >2, P<0.05) and miR-125-5p, miR-146a-3p, miR-143-3p and miR-145-5p were downregulated (fold change <-2, P<0.05) in M1 compared with M2. In conclusion, our study may be useful for exploring the precise roles of miRNAs in macrophage differentiation and polarized activation processes in the future.
Collapse
Affiliation(s)
- Yingying Zhang
- Laboratory Medicine of Yijishan Hospital, Wuhu, Anhui 241001, PR China
| | | | | | | | | |
Collapse
|
720
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
721
|
Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 2013; 33:679-89. [PMID: 23353819 PMCID: PMC3925335 DOI: 10.1038/onc.2012.636] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 12/17/2022]
Abstract
MicroRNA-155 (miR-155) is frequently up-regulated in various types of human cancer; however, its role in cancer angiogenesis remains unknown. Here, we demonstrate the role of miR-155 in angiogenesis through targeting von Hippel-Lindau tumour suppressor (VHL) in breast cancer. Ectopic expression of miR-155 induced whereas knockdown of miR-155 inhibited HUVEC network formation, proliferation, invasion, and migration. Furthermore, mammary fat pad xenotransplantation of ectopically expressed miR-155 resulted in extensive angiogenesis, proliferation, tumour necrosis, and recruitment of pro-inflammatory cells such as tumour associated macrophages. Expression of VHL abrogated these miR-155 effects. Moreover, miR-155 expression inversely correlates with VHL expression level and is associated with late stage, lymph node metastasis, and poor prognosis as well as triple-negative tumour in breast cancer. These findings indicate that miR-155 plays a pivotal role in tumour angiogenesis by downregulation of VHL, and provide a basis for miR-155-expressing tumours to embody an aggressive malignant phenotype, and therefore, miR-155 is an important therapeutic target in breast cancer.
Collapse
|
722
|
Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W, Pan T, Zhang Y, Cao X, Wang Q. MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem 2013; 288:7956-7967. [PMID: 23355465 DOI: 10.1074/jbc.m112.445429] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) play a critical role in the initiation of immune responses against invading pathogens. MicroRNAs have been shown to be important regulators of TLR signaling. In this study, we have found that the stimulation of multiple TLRs rapidly reduced the levels of microRNA-92a (miRNA-92a) and some other members of the miRNA-92a family in macrophages. miR-92a mimics significantly decreased, whereas miR-92a knockdown increased, the activation of the JNK/c-Jun pathway and the production of inflammatory cytokines in macrophages when stimulated with ligands for TLR4. Furthermore, mitogen-activated protein kinase kinase 4 (MKK4), a kinase that activates JNK/stress-activated protein kinase, was found to be directly targeted by miR-92a. Similar to the effects of the miR-92a mimics, knockdown of MKK4 inhibited the activation of JNK/c-Jun signaling and the production of TNF-α and IL-6. In conclusion, we have demonstrated that TLR-mediated miR-92a reduction feedback enhances TLR-triggered production of inflammatory cytokines in macrophages, thus outlining new mechanisms for fine-tuning the TLR-triggered inflammatory response.
Collapse
Affiliation(s)
- Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yinjing Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingyun Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Quan Han
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weilin Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ting Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanyuan Zhang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
723
|
Yang R, Zheng T, Cai X, Yu Y, Yu C, Guo L, Huang S, Zhu W, Zhu R, Yan Q, Ren Z, Chen S, Xu A. Genome-Wide Analyses of Amphioxus MicroRNAs Reveal an Immune Regulation via miR-92d Targeting C3. THE JOURNAL OF IMMUNOLOGY 2013; 190:1491-500. [DOI: 10.4049/jimmunol.1200801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
724
|
Thounaojam MC, Kaushik DK, Basu A. MicroRNAs in the brain: it's regulatory role in neuroinflammation. Mol Neurobiol 2013; 47:1034-44. [PMID: 23315269 DOI: 10.1007/s12035-013-8400-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/03/2013] [Indexed: 11/27/2022]
Abstract
MicroRNAs (miRNAs) are single-stranded noncoding regions of approximately 21 nucleotides that regulate protein synthesis by targeting mRNAs for translational repression or degradation at the post-transcriptional level. These classes of RNAs are highly conserved across species and are known to regulate several protein-coding genes in humans. Therefore, their dysregulation is synonymous with inflammation, autoimmunity, neurodegeneration, viral infections, heart diseases, and cancer, among other conditions. Recent years have witnessed considerable amount of research interest in studies on miRNA-mediated modulation of gene function during neuroinflammation. This review is a meticulous compilation of information on biogenesis of miRNAs and their role in neuroinflammatory diseases. Further, their potential as markers of inflammatory diseases or novel therapeutic agents against neuroinflammation has also been discussed in detail.
Collapse
|
725
|
Ware CF. Protein therapeutics targeted at the TNF superfamily. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:51-80. [PMID: 23433455 DOI: 10.1016/b978-0-12-404717-4.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-based drugs with their unequivocal specificity achieved the long sought milestone of selectively disrupting cytokine pathways to alleviate ongoing inflammation. Tumor necrosis factor (TNF), a member of the superfamily of cytokines involved in regulating immune and inflammatory processes, provides an exemplary model of protein therapeutics. Antibody and receptor-based inhibitors of TNF modify inflammation leading to dramatic improvement in patients with certain autoimmune diseases. Collectively, the structure, specificity and valence of these protein-based drugs provide direct evidence that the essential mechanism of action is antagonism of the ligand-receptor interaction. Accumulating clinical knowledge regarding TNF inhibitors also provide insights into the mechanisms involved in different autoimmune diseases. Experience in the development of an arsenal of biologics directed at TNF has additionally contributed to knowledge toward overcoming the challenges of protein drugs, which include production, delivery, antigenicity and pharmacodynamics. Dramatic clinical outcomes with TNF inhibitors are driving investigation and development of biologics toward other members of the TNF superfamily to selectively alter functional properties of the immune system.
Collapse
Affiliation(s)
- Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
726
|
Zhang Y, Li Y. Regulation of innate receptor pathways by microRNAs. SCIENCE CHINA. LIFE SCIENCES 2013; 56:13-8. [PMID: 23269554 DOI: 10.1007/s11427-012-4428-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/26/2012] [Indexed: 01/03/2023]
Abstract
The innate immune response provides the initial defense against infection. This is accomplished by families of pattern recognition receptors (PRRs) that bind to conserved molecules in bacteria, fungi and viruses. PRRs are finely regulated by elaborate mechanisms to ensure a beneficial outcome in response to foreign invaders. MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that are emerging as important regulators in immune responses at the post-transcriptional level, through the inhibition of translation, or by inducing mRNA degradation. It has been shown that miRNAs have unique expression profiles in cells of the innate immune systems and play pivotal roles in regulating the signal pathways of innate receptors, including Toll-like receptors, RIG-I-like receptors and Nod-like receptors. We have summarized the recent literature providing new insights into the regulation of innate receptor pathways by miRNAs.
Collapse
Affiliation(s)
- Yue Zhang
- Department of General Surgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | | |
Collapse
|
727
|
Li Y, Shi X. MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 2013; 10:65-71. [PMID: 23262976 PMCID: PMC4003181 DOI: 10.1038/cmi.2012.55] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022] Open
Abstract
The innate immune system recognizes invading pathogens through germline-encoded pattern recognition receptors (PRRs), which elicit innate antimicrobial and inflammatory responses and initiate adaptive immunity to control or eliminate infection. Toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I) are the key innate immune PRRs and are tightly regulated by elaborate mechanisms to ensure a beneficial outcome in response to foreign invaders. Although much of the focus in the literature has been on the study of protein regulators of inflammation, microRNAs (miRNAs) have emerged as important controllers of certain features of the inflammatory process. Several miRNAs are induced by TLR and RIG-I activation in myeloid cells and act as feedback regulators of TLR and RIG-I signaling. In this review, we comprehensively discuss the recent understanding of how miRNA networks respond to TLR and RIG-I signaling and their role in the initiation and termination of inflammatory responses. Increasing evidence also indicates that both virus-encoded miRNAs and cellular miRNAs have important functions in viral replication and host anti-viral immunity.
Collapse
Affiliation(s)
- Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | | |
Collapse
|
728
|
|
729
|
MicroRNA-146a negatively regulates PTGS2 expression induced by Helicobacter pylori in human gastric epithelial cells. J Gastroenterol 2013; 48:86-92. [PMID: 22699322 DOI: 10.1007/s00535-012-0609-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/29/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori is a major human pathogenic bacterium in the gastric mucosa, but to date the regulatory mechanism of the H. pylori-induced inflammatory response is not clear. MicroRNAs have recently emerged as key post-transcriptional regulators of gene expression. We have previously reported that miR-146a negatively regulates the H. pylori-induced inflammatory response, but its molecular mechanism is just beginning to be explored. Our aim was to further explore the key targets of miR-146a and its role of regulation in H. pylori infection. METHODS The potential targets of miR-146a were screened through bioinformatic approaches and identified by luciferase reporter assays and green fluorescent protein (GFP) repression experiments. Overexpression and inhibition of miR-146a were used to examine the impacts of miR-146a on its target gene, determined by quantitative real-time polymerase chain reaction (PCR) and western blotting. RESULTS Prostaglandin endoperoxide synthase 2 (PTGS2) is a target gene of miR-146a, and miR-146a decreased PTGS2 expression by degradation of its mRNA, suggesting that the miR-146a-mediated inhibition is a post-transcriptional event. Furthermore, miR-146a and PTGS2 were significantly increased in H. pylori -infected human gastric epithelial cells. Overexpression of miR-146a resulted in significantly reduced PTGS2 production induced by H. pylori infection. CONCLUSIONS These results suggest that miR-146a may be involved in negatively regulating H. pylori-induced PTGS2 expression in human gastric epithelial cells.
Collapse
|
730
|
Li C, He H, Zhu M, Zhao S, Li X. Molecular characterisation of porcine miR-155 and its regulatory roles in the TLR3/TLR4 pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:110-116. [PMID: 22301067 DOI: 10.1016/j.dci.2012.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 05/31/2023]
Abstract
MiR-155 plays very important roles in host inflammation and immunity. However, few studies have focused on miR-155 in livestock. In this study, the molecular characterisation of miR-155 and its functional roles in TLR3/TLR4 signalling pathways were investigated in pigs. The results indicated that miR-155 was highly expressed in the spleen and fat tissues of the pig. In PK-15 cells, miR-155 was up-regulated 4h after LPS stimulation and up-regulated 12h and 24h after poly (I:C) stimulation. Furthermore, the overexpression of miR-155 significantly activated the TLR3/TLR4 signalling pathways, and the inhibition of miR-155 suppressed these pathways. Thus, miR-155 played positive regulatory roles in TLR3/TLR4 signalling pathways. Additionally, one T/C SNP of miR-155 was significantly associated with basophil percentage (BA%), absolute eosinophili value (EO) and the distribution width of the least squares mean of CD3-CD4-CD8+ T cells (DWT) in pigs. Our study offers new evidence on the immune function of miR-155 in pigs.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | | | | | | | | |
Collapse
|
731
|
Lind EF, Elford AR, Ohashi PS. Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges. THE JOURNAL OF IMMUNOLOGY 2012; 190:1210-6. [PMID: 23275599 DOI: 10.4049/jimmunol.1202700] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have begun to define the role of micro-RNAs in regulating the immune response. Micro-RNA155 (mir-155) has been shown to play a role in germinal center formation, T cell inflammation, and regulatory T cell development. In this study, we evaluated the role of mir-155 in cytotoxic T cell function. We report in this study that mice lacking mir-155 have impaired CD8(+) T cell responses to infections with lymphocytic choriomeningitis virus and the intracellular bacteria Listeria monocytogenes. We show by a series of adoptive transfer studies that the impaired CD8(+) T cell response to L. monocytogenes is T cell intrinsic. In addition, we observed that CD8(+) T cells lacking mir-155 have impaired activation of the prosurvival Akt pathway after TCR cross-linking. These data suggest that mir-155 may be a good target for therapies aimed at modulating immune responses.
Collapse
Affiliation(s)
- Evan F Lind
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario M5G 2C1, Canada
| | | | | |
Collapse
|
732
|
Enhanced susceptibility to Citrobacter rodentium infection in microRNA-155-deficient mice. Infect Immun 2012; 81:723-32. [PMID: 23264052 DOI: 10.1128/iai.00969-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding molecules that control gene expression posttranscriptionally, with microRNA-155 (miR-155) one of the first to be implicated in immune regulation. Here, we show that miR-155-deficient mice are less able to eradicate a mucosal Citrobacter rodentium infection than wild-type C57BL/6 mice. miR-155-deficient mice exhibited prolonged colonization associated with a higher C. rodentium burden in gastrointestinal tissue and spread into systemic tissues. Germinal center formation and humoral immune responses against C. rodentium were severely impaired in infected miR-155-deficient mice. A similarly susceptible phenotype was observed in μMT mice reconstituted with miR-155-deficient B cells, indicating that miR-155 is required intrinsically for mediating protection against this predominantly luminal bacterial pathogen.
Collapse
|
733
|
Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene 2012; 532:1-12. [PMID: 23246696 DOI: 10.1016/j.gene.2012.12.009] [Citation(s) in RCA: 369] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs), a family of small nonprotein-coding RNAs, play a critical role in posttranscriptional gene regulation by acting as adaptors for the miRNA-induced silencing complex to inhibit gene expression by targeting mRNAs for translational repression and/or cleavage. miR-155-5p and miR-155-3p are processed from the B-cell Integration Cluster (BIC) gene (now designated, MIR155 host gene or MIR155HG). MiR-155-5p is highly expressed in both activated B- and T-cells and in monocytes/macrophages. MiR-155-5p is one of the best characterized miRNAs and recent data indicate that miR-155-5p plays a critical role in various physiological and pathological processes such as hematopoietic lineage differentiation, immunity, inflammation, viral infections, cancer, cardiovascular disease, and Down syndrome. In this review we summarize the mechanisms by which MIR155HG expression can be regulated. Given that the pathologies mediated by miR-155-5p result from the over-expression of this miRNA it may be possible to therapeutically attenuate miR-155-5p levels in the treatment of several pathological processes.
Collapse
Affiliation(s)
- Terry S Elton
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH, USA; Department of Medicine, Division of Cardiology, The Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
734
|
Fabbri M, Calore F, Paone A, Galli R, Calin GA. Epigenetic regulation of miRNAs in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 754:137-48. [PMID: 22956499 DOI: 10.1007/978-1-4419-9967-2_6] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs with gene regulatory functions. It has been demonstrated that the genes encoding for miRNAs undergo the same regulatory epigenetic processes of protein coding genes. In turn, a specific subgroup of miRNAs, called epi-miRNAs, is able to directly target key enzymatic effectors of the epigenetic machinery (such as DNA methyltransferases, histone deacetylases, and polycomb genes), therefore indirectly affecting the expression of epigenetically regulated oncogenes and tumor suppressor genes. Also, several of the epigenetic drugs currently approved as anticancer agents affect the expression of miRNAs and this might explain part of their mechanism of action. This chapter focuses on the tight relationship between epigenetics and miRNAs and provides some insights on the translational implications of these findings, leading to the upcoming introduction of epigenetically related miRNAs in the treatment of cancer.
Collapse
Affiliation(s)
- Muller Fabbri
- Department of Pediatrics, Division of Hematology-Oncology, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop #57, Los Angeles, CA 90027, USA.
| | | | | | | | | |
Collapse
|
735
|
Brenu EW, Ashton KJ, van Driel M, Staines DR, Peterson D, Atkinson GM, Marshall-Gradisnik SM. Cytotoxic lymphocyte microRNAs as prospective biomarkers for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J Affect Disord 2012; 141:261-9. [PMID: 22572093 DOI: 10.1016/j.jad.2012.03.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Immune dysfunction associated with a disease often has a molecular basis. A novel group of molecules known as microRNAs (miRNAs) have been associated with suppression of translational processes involved in cellular development and proliferation, protein secretion, apoptosis, immune function and inflammatory processes. MicroRNAs may be implicated in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME), where immune function is impaired. The objective of this study was to determine the association between miRNAs in cytotoxic cells and CFS/ME. METHODS Natural Killer (NK) and CD8(+)T cells were preferentially isolated from peripheral blood mononuclear cells from all participants (CFS/ME, n=28; mean age=41.8±9.6 years and controls, n=28; mean age=45.3±11.7 years), via negative cell enrichment. Following total RNA extraction and subsequent synthesis of cDNA, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to determine the expression levels of nineteen miRNAs. RESULTS There was a significant reduction in the expression levels of miR-21, in both the NK and CD8(+)T cells in the CFS/ME sufferers. Additionally, the expression of miR-17-5p, miR-10a, miR-103, miR-152, miR-146a, miR-106, miR-223 and miR-191 was significantly decreased in NK cells of CFS/ME patients in comparison to the non-fatigued controls. LIMITATIONS The results from these investigations are not yet transferable into the clinical setting, further validatory studies are now required. CONCLUSIONS Collectively these miRNAs have been associated with apoptosis, cell cycle, development and immune function. Changes in miRNAs in cytotoxic cells may reduce the functional capacity of these cells and disrupt effective cytotoxic activity along with other immune functions in CFS/ME patients.
Collapse
Affiliation(s)
- Ekua W Brenu
- Faculty of Health Science and Medicine, Population Health and Neuroimmunology Unit, Bond University, Robina, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
736
|
Zhang J, Xie S, Ma W, Teng Y, Tian Y, Huang X, Zhang Y. A newly identified microRNA, mmu-miR-7578, functions as a negative regulator on inflammatory cytokines tumor necrosis factor-α and interleukin-6 via targeting Egr1 in vivo. J Biol Chem 2012. [PMID: 23184950 DOI: 10.1074/jbc.m112.351197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate innate immune responses are required to protect an organism against foreign pathogens, and the immune response must be tightly controlled. Here, we report a new microRNA (miRNA) identified from a small RNA library from the epididymis, termed miR-7578, that acts as a negative regulator of inflammatory responses. It was abundantly expressed in immune-related organs and induced by lipopolysaccharide in the lung and epididymis, as well as macrophages stimulated with diverse Toll-like receptor ligands, in an NF-κB-dependent manner. mmu-miR-7578 inhibited the release of pro-inflammatory cytokines, including TNFα and IL6, by regulating its target gene Egr1, which encodes a transcription factor that activates TNFα and NF-κB expression. Transgenic mice overexpressing mmu-miR-7578 displayed higher resistance to endotoxin shock and lower plasma levels of TNFα and IL6, indicating that this miRNA acted as a negative molecule of immune response. In sum, we report a previously uncharacterized LPS-responsive miRNA that controls inflammatory response in a feedback loop by fine-tuning a key transcription factor in vivo.
Collapse
Affiliation(s)
- Jinsong Zhang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | | | | | | |
Collapse
|
737
|
Abstract
The role of myelomonocytic cells like monocytes and macrophages as first line of host defense is well established. Recent understanding of these cells using systems biology, transgenesis and in disease models has brought them to a center stage in orchestrating crucial functions during homeostasis and pathogenesis. Thus, understanding the functional diversity of these cells in health and disease as well as the mechanisms that control these events would be crucial for designing strategies for regulating disease and reinstate homeostasis.
Collapse
|
738
|
Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 2012; 41:542-53. [PMID: 23143100 PMCID: PMC3592429 DOI: 10.1093/nar/gks1030] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many microRNAs (miRNAs) are co-regulated during the same physiological process but the underlying cellular logic is often little understood. The conserved, immunomodulatory miRNAs miR-146 and miR-155, for instance, are co-induced in many cell types in response to microbial lipopolysaccharide (LPS) to feedback-repress LPS signalling through Toll-like receptor TLR4. Here, we report that these seemingly co-induced regulatory RNAs dramatically differ in their induction behaviour under various stimuli strengths and act non-redundantly through functional specialization; although miR-146 expression saturates at sub-inflammatory doses of LPS that do not trigger the messengers of inflammation markers, miR-155 remains tightly associated with the pro-inflammatory transcriptional programmes. Consequently, we found that both miRNAs control distinct mRNA target profiles; although miR-146 targets the messengers of LPS signal transduction components and thus downregulates cellular LPS sensitivity, miR-155 targets the mRNAs of genes pervasively involved in pro-inflammatory transcriptional programmes. Thus, miR-155 acts as a broad limiter of pro-inflammatory gene expression once the miR-146 dependent barrier to LPS triggered inflammation has been breached. Importantly, we also report alternative miR-155 activation by the sensing of bacterial peptidoglycan through cytoplasmic NOD-like receptor, NOD2. We predict that dose-dependent responses to environmental stimuli may involve functional specialization of seemingly co-induced miRNAs in other cellular circuitries as well.
Collapse
Affiliation(s)
- Leon N Schulte
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider Strasse 2/D15, D-97080 Würzburg, Germany
| | | | | |
Collapse
|
739
|
Rafehi H, El-Osta A, Karagiannis TC. Epigenetic mechanisms in the pathogenesis of diabetic foot ulcers. J Diabetes Complications 2012; 26:554-61. [PMID: 22739801 DOI: 10.1016/j.jdiacomp.2012.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022]
Abstract
The incidence of diabetes mellitus, a chronic metabolic disease associated with both predisposing genetic and environmental factors, is increasing globally. As a result, it is expected that there will also be an increasing incidence of diabetic complications which arise as a result of poor glycemic control. Complications include cardiovascular diseases, nephropathy, retinopathy and diabetic foot ulcers. The findings of several major clinical trials have identified that diabetic complications may arise even after many years of proper glycemic control. This has led to the concept of persistent epigenetic changes. Various epigenetic mechanisms have been identified as important contributors to the pathogenesis of diabetes and diabetic complications. The aim of this review is to provide an overview of the pathobiology of type 2 diabetes with an emphasis on complications, particularly diabetic foot ulcers. An overview of epigenetic mechanisms is provided and the focus is on the emerging evidence for aberrant epigenetic mechanisms in diabetic foot ulcers.
Collapse
Affiliation(s)
- Haloom Rafehi
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
740
|
Ren D, Wang X, Ha T, Liu L, Kalbfleisch J, Gao X, Williams D, Li C. SR-A deficiency reduces myocardial ischemia/reperfusion injury; involvement of increased microRNA-125b expression in macrophages. Biochim Biophys Acta Mol Basis Dis 2012; 1832:336-46. [PMID: 23123599 DOI: 10.1016/j.bbadis.2012.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 01/04/2023]
Abstract
The macrophage scavenger receptor class A (SR-A) participates in the innate immune and inflammatory responses. This study examined the role of macrophage SR-A in myocardial ischemia/reperfusion (I/R) injury and hypoxia/reoxygenation (H/R)-induced cell damage. SR-A(-/-) and WT mice were subjected to ischemia (45min) followed by reperfusion for up to 7days. SR-A(-/-) mice showed smaller myocardial infarct size and better cardiac function than did WT I/R mice. SR-A deficiency attenuated I/R-induced myocardial apoptosis by preventing p53-mediated Bak-1 apoptotic signaling. The levels of microRNA-125b in SR-A(-/-) heart were significantly greater than in WT myocardium. SR-A is predominantly expressed on macrophages. To investigate the role of SR-A macrophages in H/R-induced injury, we isolated peritoneal macrophages from SR-A deficient (SR-A(-/-)) and wild type (WT) mice. Macrophages were subjected to hypoxia followed by reoxygenation. H/R markedly increased NF-κB binding activity as well as KC and MCP-1 production in WT macrophages but not in SR-A(-/-) macrophages. H/R induced caspase-3/7 and -8 activities and cell death in WT macrophages, but not in SR-A(-/-) macrophages. The levels of miR-125b in SR-A(-/-) macrophages were significantly higher than in WT macrophages. Transfection of WT macrophages with miR-125b mimics attenuated H/R-induced caspase-3/7 and -8 activities and H/R-decreased viability, and prevented H/R-increased p-53, Bak-1 and Bax expression. The data suggest that SR-A deficiency attenuates myocardial I/R injury by targeting p53-mediated apoptotic signaling. SR-A(-/-) macrophages contain high levels of miR-125b which may play a role in the protective effect of SR-A deficiency on myocardial I/R injury and H/R-induced cell damage.
Collapse
Affiliation(s)
- Danyang Ren
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | | | | | |
Collapse
|
741
|
Piccinini AM, Midwood KS. Endogenous control of immunity against infection: tenascin-C regulates TLR4-mediated inflammation via microRNA-155. Cell Rep 2012; 2:914-26. [PMID: 23084751 PMCID: PMC3607221 DOI: 10.1016/j.celrep.2012.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/30/2012] [Accepted: 09/07/2012] [Indexed: 01/08/2023] Open
Abstract
Endogenous molecules generated upon pathogen invasion or tissue damage serve as danger signals that activate host defense; however, their precise immunological role remains unclear. Tenascin-C is an extracellular matrix glycoprotein that is specifically induced upon injury and infection. Here, we show that its expression is required to generate an effective immune response to bacterial lipopolysaccharide (LPS) during experimental sepsis in vivo. Tenascin-C enables macrophage translation of proinflammatory cytokines upon LPS activation of toll-like receptor 4 (TLR4) and suppresses the synthesis of anti-inflammatory cytokines. It mediates posttranscriptional control of a specific subset of inflammatory mediators via induction of the microRNA miR-155. Thus, tenascin-C plays a key role in regulating the inflammatory axis during pathogenic activation of TLR signaling.
Collapse
Affiliation(s)
- Anna M Piccinini
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, 65 Aspenlea Road, London W6 8LH, UK
| | | |
Collapse
|
742
|
IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A 2012; 109:E3101-10. [PMID: 23071313 DOI: 10.1073/pnas.1209100109] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IL-10 is a potent anti-inflammatory molecule that, in phagocytes, negatively targets cytokine expression at transcriptional and posttranscriptional levels. Posttranscriptional checkpoints also represent the specific target of a recently discovered, evolutionary conserved class of small silencing RNAs known as "microRNAs" (miRNAs), which display the peculiar function of negatively regulating mRNA processing, stability, and translation. In this study, we report that activation of primary human monocytes up-regulates the expression of miR-187 both in vitro and in vivo. Accordingly, we identify miR-187 as an IL-10-dependent miRNA playing a role in IL-10-mediated suppression of TNF-α, IL-6, and the p40 subunit of IL-12 (IL-12p40) produced by primary human monocytes following activation of Toll-like receptor 4 (TLR4). Ectopic expression of miR-187 consistently and selectively reduces TNFα, IL-6, and IL-12p40 produced by LPS-activated monocytes. Conversely, the production of LPS-induced TNF-α, IL-6, and IL-12p40 is increased significantly when miR-187 expression is silenced. Our data demonstrate that miR-187 directly targets TNF-α mRNA stability and translation and indirectly decreases IL-6 and IL-12p40 expression via down-modulation of IκBζ, a master regulator of the transcription of these latter two cytokines. These results uncover an miRNA-mediated pathway controlling cytokine expression and demonstrate a central role of miR-187 in the physiological regulation of IL-10-driven anti-inflammatory responses.
Collapse
|
743
|
Oshima H, Oshima M. The role of PGE2-associated inflammatory responses in gastric cancer development. Semin Immunopathol 2012; 35:139-50. [PMID: 23053397 DOI: 10.1007/s00281-012-0353-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/30/2012] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that inflammation plays a critical role in cancer development. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme for prostanoid biosynthesis, including prostaglandin E(2) (PGE(2)), and plays a key role in both inflammation and cancer. It has been demonstrated that inhibition of COX-2 and PGE(2) receptor signaling results in the suppression of tumor development in a variety of animal models. However, the molecular mechanisms underlying COX-2/PGE(2)-associated inflammation in carcinogenesis have not yet been fully elucidated. In order to study the role of PGE(2)-associated inflammatory responses in tumorigenesis, it is important to use in vivo mouse models that recapitulate human cancer development from molecular mechanisms with construction of tumor microenvironment. We have developed a gastritis model (K19-C2mE mice) in which an inflammatory microenvironment is constructed in the stomach via induction of the COX-2/PGE(2) pathway. We also developed a gastric cancer mouse model (Gan mice) in which the mice develop inflammation-associated gastric tumors via activation of both the COX-2/PGE(2) pathway and Wnt signaling. Expression analyses using these in vivo models have revealed novel mechanisms of the inflammatory responses underlying gastric cancer development. PGE(2)-associated inflammatory responses activate epidermal growth factor receptor (EGFR) signaling through the induction of EGFR ligands and ADAMs that release EGFR ligands from the cell membrane. In Gan mice, a combination treatment with EGFR and COX-2 inhibitors significantly suppresses gastric tumorigenesis. Moreover, PGE(2)-associated inflammation downregulates tumor suppressor microRNA, miR-7, in gastric cancer cells, which suppresses epithelial differentiation. These results indicate that PGE(2)-associated inflammatory responses promote in vivo gastric tumorigenesis via several different molecular mechanisms.
Collapse
Affiliation(s)
- Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | |
Collapse
|
744
|
Kanaan Z, Barnett R, Gardner S, Keskey B, Druen D, Billeter A, Cheadle WG. Differential microRNA (miRNA) expression could explain microbial tolerance in a novel chronic peritonitis model. Innate Immun 2012; 19:203-12. [PMID: 23060456 DOI: 10.1177/1753425912460557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We observed persistent peritoneal bacteria despite a transient early innate immune response to intraperitoneal (IP) Klebsiella pneumoniae. Pretreatment with LPS prior to peritonitis induced a tolerant pattern of pro-inflammatory cytokine protein production over 72 h, but not at the mRNA level. MicroRNAs (miRNAs) regulate inflammatory cytokines and may explain this paradox. After pretreatment with IP LPS or saline, C57BL/6 mice were given 10(3) CFU of K. pneumoniae IP. Total RNA was isolated from peritoneal exudate cells (4 h, 24 h and 48 h following infection). mRNA and miRNA expression levels were detected and bioinformatics pathway analysis was performed, followed by measuring TNF-α, IL-1β, IL-6 and High-mobility Group Box 1 (HMBG1) protein levels. Of 88 miRNAs studied, 30 were significantly dysregulated at all time points in the LPS-pretreated group, including MiR-155, -146a, -142-3p, -299, and -200c -132 and -21. TNF-α, regulated by miR-155 and miR-146a, was decreased in the LPS-pretreated group at all time points (P < 0.05), as were HMGB1, a key alarmin regulated by miR-146, -142-3p, -299 and -200c (P < 0.05), and IL-1β and IL-6, both regulated by miR-132and miR-21 respectively (P < 0.05). Specific dysregulation of miR-155, -146a, -142-3p, -299, and -200c -132 and -21 with their corresponding effects on the TLR and NF-κB signaling pathways during inflammation, suggests a plausible mechanism for tolerance in this novel chronic model with persistent peritoneal infection.
Collapse
Affiliation(s)
- Ziad Kanaan
- Department of Internal Medicine, Wayne State University, School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
745
|
Oshima H, Oshima M. The role of PGE2-associated inflammatory responses in gastric cancer development. Semin Immunopathol 2012. [PMID: 23053397 DOI: 10.1007/s00281- 012-0353-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Accumulating evidence indicates that inflammation plays a critical role in cancer development. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme for prostanoid biosynthesis, including prostaglandin E(2) (PGE(2)), and plays a key role in both inflammation and cancer. It has been demonstrated that inhibition of COX-2 and PGE(2) receptor signaling results in the suppression of tumor development in a variety of animal models. However, the molecular mechanisms underlying COX-2/PGE(2)-associated inflammation in carcinogenesis have not yet been fully elucidated. In order to study the role of PGE(2)-associated inflammatory responses in tumorigenesis, it is important to use in vivo mouse models that recapitulate human cancer development from molecular mechanisms with construction of tumor microenvironment. We have developed a gastritis model (K19-C2mE mice) in which an inflammatory microenvironment is constructed in the stomach via induction of the COX-2/PGE(2) pathway. We also developed a gastric cancer mouse model (Gan mice) in which the mice develop inflammation-associated gastric tumors via activation of both the COX-2/PGE(2) pathway and Wnt signaling. Expression analyses using these in vivo models have revealed novel mechanisms of the inflammatory responses underlying gastric cancer development. PGE(2)-associated inflammatory responses activate epidermal growth factor receptor (EGFR) signaling through the induction of EGFR ligands and ADAMs that release EGFR ligands from the cell membrane. In Gan mice, a combination treatment with EGFR and COX-2 inhibitors significantly suppresses gastric tumorigenesis. Moreover, PGE(2)-associated inflammation downregulates tumor suppressor microRNA, miR-7, in gastric cancer cells, which suppresses epithelial differentiation. These results indicate that PGE(2)-associated inflammatory responses promote in vivo gastric tumorigenesis via several different molecular mechanisms.
Collapse
Affiliation(s)
- Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | |
Collapse
|
746
|
Oshima H, Oshima M. The role of PGE2-associated inflammatory responses in gastric cancer development. Semin Immunopathol 2012. [PMID: 23053397 DOI: 10.1007/s00281-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulating evidence indicates that inflammation plays a critical role in cancer development. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme for prostanoid biosynthesis, including prostaglandin E(2) (PGE(2)), and plays a key role in both inflammation and cancer. It has been demonstrated that inhibition of COX-2 and PGE(2) receptor signaling results in the suppression of tumor development in a variety of animal models. However, the molecular mechanisms underlying COX-2/PGE(2)-associated inflammation in carcinogenesis have not yet been fully elucidated. In order to study the role of PGE(2)-associated inflammatory responses in tumorigenesis, it is important to use in vivo mouse models that recapitulate human cancer development from molecular mechanisms with construction of tumor microenvironment. We have developed a gastritis model (K19-C2mE mice) in which an inflammatory microenvironment is constructed in the stomach via induction of the COX-2/PGE(2) pathway. We also developed a gastric cancer mouse model (Gan mice) in which the mice develop inflammation-associated gastric tumors via activation of both the COX-2/PGE(2) pathway and Wnt signaling. Expression analyses using these in vivo models have revealed novel mechanisms of the inflammatory responses underlying gastric cancer development. PGE(2)-associated inflammatory responses activate epidermal growth factor receptor (EGFR) signaling through the induction of EGFR ligands and ADAMs that release EGFR ligands from the cell membrane. In Gan mice, a combination treatment with EGFR and COX-2 inhibitors significantly suppresses gastric tumorigenesis. Moreover, PGE(2)-associated inflammation downregulates tumor suppressor microRNA, miR-7, in gastric cancer cells, which suppresses epithelial differentiation. These results indicate that PGE(2)-associated inflammatory responses promote in vivo gastric tumorigenesis via several different molecular mechanisms.
Collapse
Affiliation(s)
- Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | |
Collapse
|
747
|
Nana-Sinkam SP, Karsies T, Riscili B, Ezzie M, Piper M. Lung microRNA: from development to disease. Expert Rev Respir Med 2012; 3:373-85. [PMID: 20477329 DOI: 10.1586/ers.09.30] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent evidence demonstrates the importance of microRNAs (miRNAs) in several human diseases, including solid and hematological malignancies, diabetes and diseases of the nervous system. However, little is known about the role that miRNAs play in the development and pathogenesis of lung diseases. Murine models of disease suggest that the loss of specific miRNAs is vital to lung development and modulation of the immune system that consequently results in the development of uncontrolled inflammation in the lung. Other studies have found that bacterial challenges also upregulate the expression of specific miRNAs. In this article, we will focus on miRNA involvement in lung development and the possibility that dysregulation and/or reactivation of miRNAs may contribute to lung disease. We will also review the role of miRNAs in the pathogenesis of specific diseases, such as lung cancer, sepsis and smoking-related lung disease.
Collapse
Affiliation(s)
- Serge Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, 201 Davis Heart and Lung Research Institute, 473 West 12th Avenue, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
748
|
Sarma NJ, Tiriveedhi V, Ramachandran S, Crippin J, Chapman W, Mohanakumar T. Modulation of immune responses following solid organ transplantation by microRNA. Exp Mol Pathol 2012; 93:378-85. [PMID: 23036474 DOI: 10.1016/j.yexmp.2012.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Organ transplantation, an accepted treatment for end stage organ failure, is often complicated by allograft rejection and disease recurrence. In this review we will discuss the potential role of microRNAs in allograft immunity especially leading to rejection of the transplanted organ. microRNAs (miRNAs), originally identified in C. elegans, are short non-coding 21-24 nucleotide sequences that bind to its complementary sequences in functional messenger RNAs and inhibits post-translational processes through RNA duplex formation resulting in gene silencing (Lau et al., 2001). Gene specific translational silencing by miRNAs regulates pathways for immune responses such as development of innate immunity, inflammation, T-cell and B-cell differentiation and signaling that are implicated in various stages of allograft rejection. miRNAs also play a role in development of post-transplant complicacies like fibrosis, cirrhosis, carcinogenesis often leading to graft loss and poor patient outcome. Recent advancements in the methods for detecting and quantifying miRNA in tissue biopsies, as well as in serum and urine samples, has led to identification of specific miRNA signatures in patients with allograft rejection and have been utilized to predict allograft status and survival. Therefore, miRNAs play a significant role in post-transplant events including allograft rejection, disease recurrence and tumor development impacting patient outcome.
Collapse
Affiliation(s)
- Nayan J Sarma
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
749
|
Tili E, Michaille JJ, Luo Z, Volinia S, Rassenti LZ, Kipps TJ, Croce CM. The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state. Blood 2012; 120:2631-2638. [PMID: 22723551 PMCID: PMC3460685 DOI: 10.1182/blood-2012-03-415737] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/10/2012] [Indexed: 12/13/2022] Open
Abstract
MiR-125b-1 maps at 11q24, a chromosomal region close to the epicenter of 11q23 deletions in chronic lymphocytic leukemias (CLLs). Our results establish that both aggressive and indolent CLL patients show reduced expression of miR-125b. Overexpression of miR-125b in CLL-derived cell lines resulted in the repression of many transcripts encoding enzymes implicated in cell metabolism. Metabolomics analyses showed that miR-125b overexpression modulated glucose, glutathione, lipid, and glycerolipid metabolism. Changes on the same metabolic pathways also were observed in CLLs. We furthermore analyzed the expression of some of miR-125b-target transcripts that are potentially involved in the aforementioned metabolic pathways and defined a miR-125b-dependent CLL metabolism-related transcript signature. Thus, miR-125b acts as a master regulator for the adaptation of cell metabolism to a transformed state. MiR-125b and miR-125b-dependent metabolites therefore warrant further investigation as possible novel therapeutic approaches for patients with CLL.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Metabolomics
- MicroRNAs/genetics
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Esmerina Tili
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
750
|
Lee KH, Biswas A, Liu YJ, Kobayashi KS. Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components. J Biol Chem 2012; 287:39800-11. [PMID: 23019338 DOI: 10.1074/jbc.m112.410027] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The innate immune system serves as the first line of defense by detecting microbes and initiating inflammatory responses. Although both Toll-like receptor (TLR) and nucleotide binding domain and leucine-rich repeat (NLR) proteins are important for this process, their excessive activation is hazardous to hosts; thus, tight regulation is required. Endotoxin tolerance is refractory to repeated lipopolysaccharide (LPS) stimulation and serves as a host defense mechanism against septic shock caused by an excessive TLR4 response during gram-negative bacterial infection. Gram-positive bacteria as well as their cell wall components also induce shock. However, the mechanism underlying tolerance is not understood. Here, we show that activation of Nod2 by its ligand, muramyl dipeptide (MDP) in the bacterial cell wall, induces rapid degradation of Nod2, which confers MDP tolerance in vitro and in vivo. Nod2 is constitutively associated with a chaperone protein, Hsp90, which is required for Nod2 stability and protects Nod2 from degradation. Upon MDP stimulation, Hsp90 rapidly dissociates from Nod2, which subsequently undergoes ubiquitination and proteasomal degradation. The SOCS-3 protein induced by Nod2 activation further facilitates this degradation process. Therefore, Nod2 protein stability is a key factor in determining responsiveness to MDP stimulation. This indicates that TLRs and NLRs induce a tolerant state through distinct molecular mechanisms that protect the host from septic shock.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|