7451
|
Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 2012; 287:31674-80. [PMID: 22822058 DOI: 10.1074/jbc.r112.384982] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular free Ca(2+) ions regulate many cellular functions, and in turn, the cell devotes many genes/proteins to keep tight control of the level of intracellular free Ca(2+). Here, we review recent work on Ca(2+)-dependent mechanisms and effectors that regulate the transcription of genes encoding proteins involved in the maintenance of the homeostasis of Ca(2+) in the cell.
Collapse
Affiliation(s)
- Jose R Naranjo
- National Center of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC) and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
| | | |
Collapse
|
7452
|
|
7453
|
Insulin ameliorates miR-1-induced injury in H9c2 cells under oxidative stress via Akt activation. Mol Cell Biochem 2012; 369:167-74. [DOI: 10.1007/s11010-012-1379-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/20/2012] [Indexed: 01/04/2023]
|
7454
|
Li Z, Song C, Ouyang H, Lai L, Payne KJ, Dovat S. Cell cycle-specific function of Ikaros in human leukemia. Pediatr Blood Cancer 2012; 59:69-76. [PMID: 22106042 PMCID: PMC3292658 DOI: 10.1002/pbc.23406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/28/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND The loss of Ikaros is associated with the development of B and T cell leukemia. Data on Ikaros function, including its role as a tumor suppressor and a regulator of cell cycle progression, come almost exclusively from murine studies; little is known of the mechanisms that regulate human Ikaros function. Our studies are the first to examine the function and regulation of human Ikaros isoforms during the cell cycle in human ALL. PROCEDURES Electromobility shift assay (EMSA), confocal microscopy, and phosphopeptide mapping were used to study Ikaros function during different stages of the cell cycle. RESULTS The DNA-binding activity of human Ikaros complexes undergoes dynamic changes as the cell cycle progresses. In S phase, Ikaros DNA-binding affinity for regulatory regions of its target genes decreases, while its binding to pericentromeric heterochromatin is preserved and correlates with Ikaros pericentromeric localization. These S phase-specific changes in Ikaros function are controlled by phosphorylation via the CK2 kinase pathway. During cell cycle progression, the subcellular pericentromeric localization of the largest human Ikaros isoforms is different from that in mouse cells, suggesting unique functions for human Ikaros. CONCLUSIONS Our results demonstrate that the function of Ikaros is cell cycle-specific and controlled by CK2-mediated phosphorylation during S phase of the cell cycle in human T-cell and B-cell ALL. The differences we observe in murine and human Ikaros function highlight the importance of using human cells in studies of ALL. These data identify the CK2 pathway as a target for therapies in ALL.
Collapse
Affiliation(s)
- Zhanjun Li
- Pennsylvania State University College of Medicine, Hershey, PA,Jilin Province Animal Embryo Engineering Key Laboratory, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Chunhua Song
- Pennsylvania State University College of Medicine, Hershey, PA
| | - Hongsheng Ouyang
- Jilin Province Animal Embryo Engineering Key Laboratory, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Liangxue Lai
- Jilin Province Animal Embryo Engineering Key Laboratory, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | | | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
7455
|
Vugmeyster Y, Harrold J, Xu X. Absorption, distribution, metabolism, and excretion (ADME) studies of biotherapeutics for autoimmune and inflammatory conditions. AAPS JOURNAL 2012; 14:714-27. [PMID: 22798020 DOI: 10.1208/s12248-012-9385-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/13/2012] [Indexed: 01/09/2023]
Abstract
Biotherapeutics are becoming an increasingly common drug class used to treat autoimmune and other inflammatory conditions. Optimization of absorption, distribution, metabolism, and excretion (ADME) profiles of biotherapeutics is crucial for clinical, as well as commercial, success of these drugs. This review focuses on the common questions and challenges in ADME optimization of biotherapeutics for inflammatory conditions. For these immunomodulatory and/or immunosuppressive biotherapeutics, special consideration should be given to the assessment of the interdependency of ADME profiles, pharmacokinetic/pharmacodynamic (PK/PD) relationships, and immunogenicity profiles across various preclinical species and humans, including the interdependencies both in biology and in assay readouts. The context of usage, such as dosing regimens, extent of disease, concomitant medications, and drug product characteristics may have a direct or indirect (via modulation of immunogenicity) impact on ADME profiles of biotherapeutics. Along these lines, emerging topics include assessments of preexisting reactivity to a biotherapeutic agent, impact of immunogenicity on tissue exposure, and analysis of penetration to normal versus inflamed tissues. Because of the above complexities and interdependences, it is essential to interpret PK, PD, and anti-drug antibody results in an integrated manner. In addition, because of the competitive landscape in autoimmune and inflammatory markets, many pioneering ADME-centric protein engineering and subsequent in vivo testing (such as optimization of novel modalities to extend serum and tissue exposures and to improve bioavailability) are being conducted with biotherapeutics in this therapeutic area. However, the ultimate challenge is demonstration of the clinical relevance (or lack thereof) of modified ADME and immunogenicity profiles.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., One Burtt Road, Andover, Massachusetts, USA.
| | | | | |
Collapse
|
7456
|
Thabayneh KM, Jazzar MM. Radioactivity levels in plant samples in Tulkarem district, Palestine and its impact on human health. RADIATION PROTECTION DOSIMETRY 2012; 153:467-474. [PMID: 22798274 DOI: 10.1093/rpd/ncs122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The activity concentrations of naturally occurring radioactive materials such as (226)Ra, (238)U, (232)Th, (40)K and (137)Cs were measured for 44 plant samples collected from different locations in the northwestern region of the West Bank, Palestine, using high-resolution gamma ray spectroscopy. The activity concentrations of radionuclides in the investigated plant samples ranged from 7.5 to 157.6 Bq kg(-1) for (226)Ra, 7.5 to 66.1 Bq kg(-1) for (238)U, 1.8 to 48.5 Bq kg(-1) for (232)Th, 14.3 to 1622 Bq kg(-1) for (40)K and <0.1 to 4.7 Bq kg(-1) for (137)Cs. The average values of these activities were 48.3, 26.5, 10.1, 288.0 and 2.2 Bq kg(-1), for (226)Ra, (238)U, (232)Th, (40)K and (137)Cs, respectively. The study presents the total gamma radiation dose rate assessed from natural radionuclides,(137)Cs and cosmic radiation, the dose rate of each radionuclide and the effective dose for all the samples. The radiological health implication to the population that may result from these doses is found to be low, except in few cases. The measurements have been taken as representing a baseline database of values of these radionuclides in the plants in the area.
Collapse
Affiliation(s)
- Kaleel M Thabayneh
- Faculty of Science and Technology, Hebron University, PO Box 40, Hebron, Palestine.
| | | |
Collapse
|
7457
|
Braeuer RR, Shoshan E, Kamiya T, Bar-Eli M. The sweet and bitter sides of galectins in melanoma progression. Pigment Cell Melanoma Res 2012; 25:592-601. [DOI: 10.1111/j.1755-148x.2012.01026.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7458
|
Borowsky AD, Bandhuvula P, Kumar A, Yoshinaga Y, Nefedov M, Fong LG, Zhang M, Baridon B, Dillard L, de Jong P, Young SG, West DB, Saba JD. Sphingosine-1-phosphate lyase expression in embryonic and adult murine tissues. J Lipid Res 2012; 53:1920-31. [PMID: 22781001 DOI: 10.1194/jlr.m028084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in immunity, inflammation, angiogenesis, and cancer. S1P lyase (SPL) is the essential enzyme responsible for S1P degradation. SPL augments apoptosis and is down-regulated in cancer. SPL generates a S1P chemical gradient that promotes lymphocyte trafficking and as such is being targeted to treat autoimmune diseases. Despite growing interest in SPL as a disease marker, antioncogene, and pharmacological target, no comprehensive characterization of SPL expression in mammalian tissues has been reported. We investigated SPL expression in developing and adult mouse tissues by generating and characterizing a β-galactosidase-SPL reporter mouse combined with immunohistochemistry, immunoblotting, and enzyme assays. SPL was expressed in thymic and splenic stromal cells, splenocytes, Peyer's Patches, colonic lymphoid aggregates, circulating T and B lymphocytes, granulocytes, and monocytes, with lowest expression in thymocytes. SPL was highly expressed within the CNS, including arachnoid lining cells, spinal cord, choroid plexus, trigeminal nerve ganglion, and specific neurons of the olfactory bulb, cerebral cortex, midbrain, hindbrain, and cerebellum. Expression was detected in brown adipose tissue, female gonads, adrenal cortex, bladder epithelium, Harderian and preputial glands, and hair follicles. This unique expression pattern suggests SPL has many undiscovered physiological functions apart from its role in immunity.
Collapse
Affiliation(s)
- Alexander D Borowsky
- Center for Comparative Medicine, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7459
|
Parys JB, Decuypere JP, Bultynck G. Role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy. Cell Commun Signal 2012; 10:17. [PMID: 22770472 PMCID: PMC3413604 DOI: 10.1186/1478-811x-10-17] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an important cell-biological process responsible for the disposal of long-lived proteins, protein aggregates, defective organelles and intracellular pathogens. It is activated in response to cellular stress and plays a role in development, cell differentiation, and ageing. Moreover, it has been shown to be involved in different pathologies, including cancer and neurodegenerative diseases. It is a long standing issue whether and how the Ca2+ ion is involved in its regulation. The role of the inositol 1,4,5-trisphosphate receptor, the main intracellular Ca2+-release channel, in apoptosis is well recognized, but its role in autophagy only recently emerged and is therefore much less well understood. Positive as well as negative effects on autophagy have been reported for both the inositol 1,4,5-trisphosphate receptor and Ca2+. This review will critically present the evidence for a role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy and will demonstrate that depending on the cellular conditions it can either suppress or promote autophagy. Suppression occurs through Ca2+ signals directed to the mitochondria, fueling ATP production and decreasing AMP-activated kinase activity. In contrast, Ca2+-induced autophagy can be mediated by several pathways including calmodulin-dependent kinase kinase β, calmodulin-dependent kinase I, protein kinase C θ, and/or extracellular signal-regulated kinase.
Collapse
Affiliation(s)
- Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000, Leuven, Belgium
| | - Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000, Leuven, Belgium
| |
Collapse
|
7460
|
Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One 2012; 7:e40462. [PMID: 22802963 PMCID: PMC3389026 DOI: 10.1371/journal.pone.0040462] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/18/2012] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer is a very common cancer among males. Traditional treatments for prostate cancer have limited efficacy; therefore, new therapeutic strategies and/or new adjuvant drugs must be explored. Red yeast rice (RYR) is a traditional food spice made in Asia by fermenting white rice with Monascus purpureus Went yeast. Accumulating evidence indicates that RYR has antitumor activity. In this study, PC-3 cells (human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with monascuspiloin (MP, a yellow pigment isolated from Monascus pilosus M93-fermented rice) and to determine the underlying mechanisms of these effects in vitro and in vivo. We found that IR combined with MP showed increased therapeutic efficacy when compared with either treatment alone in PC-3 cells. In addition, the combined treatment enhanced DNA damage and endoplasmic reticulum (ER) stress. The combined treatment induced primarily autophagy in PC-3 cells, and the cell death that was induced by the combined treatment was chiefly the result of inhibition of the Akt/mTOR signaling pathways. In an in vivo study, the combination treatment showed greater anti-tumor growth effects. These novel findings suggest that the combined treatment could be a potential therapeutic strategy for prostate cancer.
Collapse
|
7461
|
Menon V, Rao M. A low-molecular-mass aspartic protease inhibitor from a novel Penicillium sp.: implications in combating fungal infections. Microbiology (Reading) 2012; 158:1897-1907. [DOI: 10.1099/mic.0.058511-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Vishnu Menon
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | - Mala Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
7462
|
|
7463
|
Suh JH, Choi E, Cha MJ, Song BW, Ham O, Lee SY, Yoon C, Lee CY, Park JH, Lee SH, Hwang KC. Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3β protein expression. Biochem Biophys Res Commun 2012; 423:404-410. [PMID: 22664106 DOI: 10.1016/j.bbrc.2012.05.138] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/25/2012] [Indexed: 11/28/2022]
Abstract
Myocardial ischemia is the major cause of morbidity and mortality due to cardiovascular diseases. This disease is a severe stress condition that causes extensive biochemical changes which trigger cardiac cell death. Stress conditions such as deprivation of glucose and oxygen activate the endoplasmic reticulum in the cytoplasm of cells, including cardiomyocytes, to generate and propagate apoptotic signals in response to these conditions. microRNAs (miRNAs) are a class of small non-coding RNAs that mediate posttranscriptional gene silencing. The miRNAs play important roles in regulating cardiac physiological and pathological events such as hypertrophy, apoptosis, and heart failure. However, the roles of miRNAs in reactive oxygen species (ROS)-mediated injury on cardiomyocytes are uncertain. In this study, we identified at the apoptotic concentration of H(2)O(2), miR-26a expression was increased. To determine the potential roles of miR-26a in H(2)O(2)-mediated cardiac apoptosis, miR-26a expression was regulated by a miR-26a or an anti-miR-26a. Overexpression of miR-26a increased apoptosis as determined by upregulation of Annexin V/PI positive cell population, caspase-3 activity and expression of pro-apoptotic signal molecules, whereas inhibition of miR-26a reduced apoptosis. We identified GSK3B as a direct downstream target of miR-26a. Furthermore, miR-26a attenuated viability and increased caspase-3 activity in normal cardiomyocytes. This study demonstrates that miR-26a promotes ROS-induced apoptosis in cardiomyocytes. Thus, miR-26a affects ROS-mediated gene regulation and cellular injury response.
Collapse
Affiliation(s)
- Jong Hui Suh
- Department of Thoracic and Cardiovascular Surgery, The Catholic University of Korea, Incheon St. Mary's Hospital, Dongsuro, Bupyeong-gu, 150-713 Incheon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7464
|
S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:167-75. [PMID: 22750505 DOI: 10.1016/j.bbalip.2012.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 01/12/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid whose actions are essential for many physiological processes including angiogenesis, lymphocyte trafficking and development. In addition, S1P serves as a muscle trophic factor that enables efficient muscle regeneration. This is due in part to S1P's ability to activate quiescent muscle stem cells called satellite cells (SCs) that are needed for muscle repair. However, the molecular mechanism by which S1P activates SCs has not been well understood. Further, strategies for harnessing S1P signaling to recruit SCs for therapeutic benefit have been lacking. S1P is irreversibly catabolized by S1P lyase (SPL), a highly conserved enzyme that catalyzes the cleavage of S1P at carbon bond C(2-3), resulting in formation of hexadecenal and ethanolamine-phosphate. SPL enhances apoptosis through substrate- and product-dependent events, thereby regulating cellular responses to chemotherapy, radiation and ischemia. SPL is undetectable in resting murine skeletal muscle. However, we recently found that SPL is dynamically upregulated in skeletal muscle after injury. SPL upregulation occurred in the context of a tightly orchestrated genetic program that resulted in a transient S1P signal in response to muscle injury. S1P activated quiescent SCs via a sphingosine-1-phosphate receptor 2 (S1P2)/signal transducer and activator of transcription 3 (STAT3)-dependent pathway, thereby facilitating skeletal muscle regeneration. Mdx mice, which serve as a model for muscular dystrophy (MD), exhibited skeletal muscle SPL upregulation and S1P deficiency. Pharmacological SPL inhibition raised skeletal muscle S1P levels, enhanced SC recruitment and improved mdx skeletal muscle regeneration. These findings reveal how S1P can activate SCs and indicate that SPL suppression may provide a therapeutic strategy for myopathies. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
7465
|
Benke D, Zeilhofer HU. Divorce of obligatory partners in pain: disruption of GABA(B) receptor heterodimers in neuralgia. EMBO J 2012; 31:3234-6. [PMID: 22735189 DOI: 10.1038/emboj.2012.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
7466
|
Defferrari C, Campora S, D'Amico M, Piccardo A, Biscaldi E, Rosselli D, Pasa A, Puntoni M, Gozza A, Gennari A, Zanardi S, Lionetto R, Bandelloni M, DeCensi A. A case series of low dose bevacizumab and chemotherapy in heavily pretreated patients with epithelial ovarian cancer. J Ovarian Res 2012; 5:17. [PMID: 22732001 PMCID: PMC3408333 DOI: 10.1186/1757-2215-5-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The addition of bevacizumab to standard chemotherapy prolongs progression free survival in the first line treatment of epithelial ovarian cancer (EOC), but its cost/effectiveness is debated. We assessed the safety and activity of a lower dose of bevacizumab in pretreated advanced stage EOC. METHODS We treated 15 patients, mostly with platinum resistant EOC, who had received a median of four prior cytotoxic regimens, with bevacizumab 5-7.5 mg/kg q21 days in combination with either carboplatin (n = 8), oral cyclofosfamide (n = 5) or weekly paclitaxel (n = 2). Bevacizumab was administered until disease progression. Tumor response was assessed by CA125 and fusion 18 F-FDG PET/contrast enhanced CT. RESULTS The median number of bevacizumab cycles was 21 (range 3-59). The median baseline CA125 was 272 U/ml and decreased to 15.2 U/ml at nadir. Tumor response was 4 complete response (CR) (26.7%) and 7 partial response (PR) (46.7%) by chemotherapy (CT), with an overall response rate of 73.4% (95% CI, 51.0 - 95.8) according to Response Evaluation Criteria In Solid Tumors (RECIST), and 6 CR (40%) and 4 PR (26.7%) by PET, for an overall metabolic response rate of 67% (95%CI, 42.8 - 90.6) according to PET Response Criteria in Solid Tumors (PERCIST). Median progression free survival (PFS) was 21 months and median overall survival (OS) was 24 months. Grade 3 adverse events related to bevacizumab were hypertension (n = 2), proteinuria (n = 1) and epistaxis (n = 5). Treatment was delayed in five patients for nasal bleeding or uncontrolled hypertension. CONCLUSIONS Low-dose bevacizumab and chemotherapy was well tolerated and active in a heavily pretreated population of advanced EOC. Further studies should assess the activity of low dose bevacizumab in EOC.
Collapse
Affiliation(s)
- Carlotta Defferrari
- Unit of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Sara Campora
- Unit of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Mauro D'Amico
- Unit of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | | | | | | | - Ambra Pasa
- Unit of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Matteo Puntoni
- Scientific Direction, E.O. Ospedali Galliera, Genoa, Italy
| | - Alberto Gozza
- Unit of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Alessandra Gennari
- Unit of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Silvia Zanardi
- Unit of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Rita Lionetto
- Health Direction, E.O. Ospedali Galliera, Genoa, Italy
| | | | - Andrea DeCensi
- Unit of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| |
Collapse
|
7467
|
Vugmeyster Y, Entrican CA, Joyce AP, Lawrence-Henderson RF, Leary BA, Mahoney CS, Patel HK, Raso SW, Olland SH, Hegen M, Xu X. Pharmacokinetic, biodistribution, and biophysical profiles of TNF nanobodies conjugated to linear or branched poly(ethylene glycol). Bioconjug Chem 2012; 23:1452-62. [PMID: 22731748 DOI: 10.1021/bc300066a] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Covalent attachment of poly(ethylene glycol) (PEG) to therapeutic proteins has been used to prolong in vivo exposure of therapeutic proteins. We have examined pharmacokinetic, biodistribution, and biophysical profiles of three different tumor necrosis factor alpha (TNF) Nanobody-40 kDa PEG conjugates: linear 1 × 40 KDa, branched 2 × 20 kDa, and 4 × 10 kDa conjugates. In accord with earlier reports, the superior PK profile was observed for the branched versus linear PEG conjugates, while all three conjugates had similar potency in a cell-based assay. Our results also indicate that (i) a superior PK profile of branched versus linear PEGs is likely to hold across species, (ii) for a given PEG size, the extent of PEG branching affects the PK profile, and (iii) tissue penetration may differ between linear and branched PEG conjugates in a tissue-specific manner. Biophysical analysis (R(g)/R(h) ratio) demonstrated that among the three protein-PEG conjugates the linear PEG conjugate had the most extended time-average conformation and the most exposed surface charges. We hypothesized that these biophysical characteristics of the linear PEG conjugate accounts for relatively less optimal masking of sites involved in elimination of the PEGylated Nanobodies (e.g., intracellular uptake and proteolysis), leading to lower in vivo exposure compared to the branched PEG conjugates. However, additional studies are needed to test this hypothesis.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Andover, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7468
|
Karliner JS. Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:203-12. [PMID: 22735359 DOI: 10.1016/j.bbalip.2012.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/14/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
Activation of sphingosine kinase/sphingosine 1-phosphate (SK/S1P)-mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. S1P is released in both ischemic pre- and post-conditioning. Application of exogenous S1P to cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion exerts prosurvival effects. Synthetic congeners of S1P such as FTY720 mimic these responses. Gene targeted mice null for the SK1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic pre- or postconditioning. Measurements of cardiac SK activity and S1P parallel these observations. Experiments in SK2 knockout mice have revealed that this isoform is necessary for survival in the heart. High density lipoprotein (HDL) is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been inhibited implicate the S1P cargo of HDL in cardioprotection. Inhibition of S1P lyase, an endogenous enzyme that degrades S1P, also leads to cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
7469
|
Sidrim JJC, Perdigão-Neto LV, Cordeiro RA, Brilhante RSN, Leite JJG, Teixeira CEC, Monteiro AJ, Freitas RMF, Ribeiro JF, Mesquita JRL, Gonçalves MVF, Rocha MFG. Viral protease inhibitors affect the production of virulence factors in Cryptococcus neoformans. Can J Microbiol 2012; 58:932-6. [PMID: 22716223 DOI: 10.1139/w2012-075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of the protease inhibitors saquinavir, darunavir, ritonavir, and indinavir on growth inhibition, protease and phospholipase activities, as well as capsule thickness of Cryptococcus neoformans were investigated. Viral protease inhibitors did not reduce fungal growth when tested in concentrations ranging from 0.001 to 1.000 mg/L. A tendency toward increasing phospholipase activity was observed with the highest tested drug concentration in a strain-specific pattern. However, these drugs reduced protease activity as well as capsule production. Our results confirm a previous finding that antiretroviral drugs affect the production of important virulence factors of C. neoformans.
Collapse
Affiliation(s)
- J J C Sidrim
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Campus do Porangabussu, Fortaleza-CE, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7470
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
7471
|
Lin CP, Choi YJ, Hicks GG, He L. The emerging functions of the p53-miRNA network in stem cell biology. Cell Cycle 2012; 11:2063-72. [PMID: 22580472 DOI: 10.4161/cc.20207] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The p53 pathway plays an essential role in tumor suppression, regulating multiple cellular processes coordinately to maintain genome integrity in both somatic cells and stem cells. Despite decades of research dedicated to p53 function in differentiated somatic cells, we are just starting to understand the complexity of the p53 pathway in the biology of pluripotent stem cells and tissue stem cells. Recent studies have demonstrated that p53 suppresses proliferation, promotes differentiation of embryonic stem (ES) cells and constitutes an important barrier to somatic reprogramming. In addition, emerging evidence reveals the role of the p53 network in the self-renewal, proliferation and genomic integrity of adult stem cells. Interestingly, non-coding RNAs, and microRNAs in particular, are integral components of the p53 network, regulating multiple p53-controlled biological processes to modulate the self-renewal and differentiation potential of a variety of stem cells. Thus, elucidation of the p53-miRNA axis in stem cell biology may generate profound insights into the mechanistic overlap between malignant transformation and stem cell biology.
Collapse
Affiliation(s)
- Chao-Po Lin
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, CA, USA
| | | | | | | |
Collapse
|
7472
|
Liang G, He H, Li Y, Yu D. A new strategy for construction of artificial miRNA vectors in Arabidopsis. PLANTA 2012; 235:1421-1429. [PMID: 22350768 DOI: 10.1007/s00425-012-1610-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
MicroRNAs are a class of small RNAs that specifically suppress their target genes by transcript cleavage or/and translation repression. Natural miRNA precursors have been used for the backbones of artificial miRNA precursors, which can give rise to expected artificial miRNAs with which to repress specific target genes. Artificial miRNA technology is a powerful tool to silence genes of interest. However, it is costly and time-consuming to construct artificial miRNA precursors by the use of an overlapping PCR method. We describe a new strategy to construct artificial miRNAs. A miRNA gene consists of three components (upstream, stem-loop, and downstream regions). Upstream and downstream regions of a natural miRNA transcript were amplified in conjunction with the introduction of two suitable restriction sites in the amplicons, which were inserted into a plasmid to form a median vector. Production of an artificial miRNA vector was easily achieved by insertion of an artificial stem-loop into the median vector. The artificial miRNAs produced by this method efficiently repressed their target genes in Arabidopsis. In addition, two artificial miRNA constructs were expressed as one polycistron driven by the CaMV 35S promoter and their targets were suppressed simultaneously in Arabidopsis. Thus, artificial miRNAs are a powerful tool with which to analyze rapidly the functions of not only a single gene or multiple homologous genes, but also multiple non-homologous genes.
Collapse
Affiliation(s)
- Gang Liang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | | | | | | |
Collapse
|
7473
|
Thomas S, Sharma N, Golden EB, Cho H, Agarwal P, Gaffney KJ, Petasis NA, Chen TC, Hofman FM, Louie SG, Schönthal AH. Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors. Cancer Lett 2012; 325:63-71. [PMID: 22664238 DOI: 10.1016/j.canlet.2012.05.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 12/18/2022]
Abstract
The cellular processes of autophagy and endoplasmic reticulum stress (ERS) appear to be interconnected, and it has been proposed that autophagy may serve to reduce ERS via removal of terminally misfolded and aggregated proteins. Conversely, there are indications that blockage of autophagy may increase ERS. Based on earlier work demonstrating that pharmacologically aggravated ERS can result in tumor cell killing, we investigated whether blockage of autophagy would enhance this effect in a therapeutically useful manner. We therefore combined chloroquine (CQ), a pharmacological inhibitor of autophagy, with other drugs known to act as ERS aggravators (ERSA), namely nelfinavir (an HIV protease inhibitor) and celecoxib (a cyclooxygenase-2 inhibitor) or its non-coxib analog 2,5-dimethyl-celecoxib (DMC), and investigated combination drug effects in a variety of breast cancer cell lines. We found that the addition of CQ resulted in synergistic enhancement of tumor cell killing by ERSA compounds, particularly in triple-negative breast cancer (TNBC) cells. This combination effect could also be confirmed in an in vivo model, where CQ boosted low-dose ERSA effects, resulting in rapid deterioration of xenografted tumors in mice. Altogether, our results indicate that combinations of an autophagy inhibitor with pharmacological ERSA (i.e. compounds that lead to ER stress aggravation) should be further explored for potential therapy of otherwise difficult-to-treat TNBC.
Collapse
Affiliation(s)
- Simmy Thomas
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7474
|
Onozawa M, Aplan PD. Illegitimate V(D)J recombination involving nonantigen receptor loci in lymphoid malignancy. Genes Chromosomes Cancer 2012; 51:525-35. [PMID: 22334400 PMCID: PMC3323722 DOI: 10.1002/gcc.21942] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 11/09/2022] Open
Abstract
V(D)J recombination of antigen receptor loci (IGH, IGK, IGL, TCRA, TCRB, TCRG, and TCRD) is an essential mechanism that confers enormous diversity to the mammalian immune system. However, there are now at least six examples of intrachromosomal interstitial deletions caused by aberrant V(D)J recombination between nonantigen receptor loci; five of out these six are associated with lymphoid malignancy. The SIL-SCL fusion and deletions of CDKN2A, IKZF1, Notch1, and Bcl11b are all associated with lymphoid malignancy. These interstitial deletions seem to be species specific, as the deletions seen in mice are not seen in humans; the converse is true as well. Nucleotide sequence analysis of these rearrangements reveals the hallmarks of V(D)J recombination, including site specificity near cryptic heptamer signal sequences, exonucleolytic "nibbling" at the junction site, and nontemplated "N"-region nucleotide insertion at the junction site. Two of these interstitial deletions (murine Notch1 and Bcl11b deletions) have been detected, at low frequency, in tissues from healthy mice with no evidence of malignancy, similar to the finding of chromosomal translocations in the peripheral blood or tonsils of healthy individuals. The contention that these are mediated via V(D)J recombination is strengthened by in vivo assays using extrachromosomal substrates, and chromatin immunoprecipitation-sequence analysis which shows Rag2 binding at the sites of rearrangement. Although the efficiency of these "illegitimate" recombination events is several orders of magnitude less than that at bona fide antigen receptor loci, the consequence of such deletions, namely activation of proto-oncogenes or deletion of tumor suppressor genes, is devastating, and a major cause for lymphoid malignancy.
Collapse
Affiliation(s)
- Masahiro Onozawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD
| |
Collapse
|
7475
|
Abstract
PURPOSE OF REVIEW HDL and their main apolipoprotein (apo) constituent apoA-I are antiatherogenic. This has been predominantly attributed to the ability of apoA-I/HDL to efflux cholesterol from macrophages within atherosclerotic plaques. It is now emerging that a number of the protective properties of HDL may be due to their effects on the endothelium. RECENT FINDINGS In addition to their well characterized anti-inflammatory and antioxidant effects, apoA-I and HDL regulate several other key biological pathways known to preserve endothelial function and promote vascular repair. The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, and the scavenger receptor B type 1 mediate multiple intracellular signaling pathways as well as the efflux of cholesterol and/or oxysterols in response to apoA-I/HDL. Although cholesterol efflux triggers a host of signaling events in endothelial cells, there is evidence that some of the beneficial actions of HDL may occur independently of efflux. SUMMARY Current data suggest that in endothelial cells ABCA1 and ABCG1 mediate the activation of intracellular signaling pathways primarily through the efflux of cholesterol and oxysterols to apoA-I/HDL. Interaction between HDL and scavenger receptor B type 1 initiates the greatest number of known signaling pathways and there is evidence that some of these are activated independent of efflux.
Collapse
Affiliation(s)
- Hamish C Prosser
- Translational Research Group, Heart Research Institute Department of Cardiology, Royal Prince Alfred Hospital Department of Medicine, University of Sydney, Sydney, New South Wales, Australia Immunobiology Unit, Heart Research Institute
| | | | | |
Collapse
|
7476
|
Shiryaev A, Kostenko S, Dumitriu G, Moens U. Septin 8 is an interaction partner and in vitro substrate of MK5. World J Biol Chem 2012; 3:98-109. [PMID: 22649572 PMCID: PMC3362842 DOI: 10.4331/wjbc.v3.i5.98] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/09/2012] [Accepted: 03/16/2012] [Indexed: 02/05/2023] Open
Abstract
AIM: To identify novel substrates for the mitogen-activated protein kinase-activated protein kinase 5 (MK5).
METHODS: Yeast two-hybrid screening with MK5 as bait was used to identify novel possible interaction partners. The binding of putative partner was further examined by glutathione S-transferase (GST) pull-down, co-immunoprecipitation and fluorescence resonance energy transfer (FRET) analysis. In vitro kinase and peptide array assays were used to map MK5 phosphoacceptor sites on the new partner. Confocal microscopy was performed to study the subcellular localization of MK5 and its partners.
RESULTS: Septin 8 was identified as a novel interaction partner for MK5 by yeast two-hybrid screening. This interaction was confirmed by GST pull-down, co-immunoprecipitation and FRET analysis. Septin 5, which can form a complex with septin 8, did not interact with MK5. Serine residues 242 and 271 on septin 8 were identified as in vitro MK5 phosphorylation sites. MK5 and septin 8 co-localized in the perinuclear area and in cell protrusions. Moreover, both proteins co-localized with vesicle marker synaptophysin.
CONCLUSION: Septin 8 is a bona fide interaction partner and in vitro substrate for MK5. This interaction may be implicated in vesicle trafficking.
Collapse
Affiliation(s)
- Alexey Shiryaev
- Alexey Shiryaev, Sergiy Kostenko, Gianina Dumitriu, Ugo Moens, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
7477
|
Shigetomi H, Higashiura Y, Kajihara H, Kobayashi H. Targeted molecular therapies for ovarian cancer: an update and future perspectives (Review). Oncol Rep 2012; 28:395-408. [PMID: 22641286 DOI: 10.3892/or.2012.1833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/03/2012] [Indexed: 11/06/2022] Open
Abstract
Identification of the potential gene expression profiles of epithelial ovarian cancer and the arrival of newly targeted therapies have advanced the strategies used for treatment of this disease. This review focuses on the design of ongoing and planned clinical trials and offers a synopsis of the English-language literature for preclinical and clinical targeted therapies for epithelial ovarian cancer. Among many targeted agents, a promising, novel class of targeted drugs for special patient populations expected to improve the effectiveness of current therapy include inhibitors of angiogenesis, poly (ADP ribose) polymerase (PARP) and DNA repair mechanisms. Inhibition of PARP or homologous recombination (HR) repair mediated by Chk1 (checkpoint kinase 1) would selectively sensitize p53 mutation, BRCAness phenotype (serous type ovarian cancer) or HNF (hepatocyte nuclear factor)-1β-overexpressing tumor cells (clear cell type ovarian cancer) to chemotherapeutic agents. The therapeutic response is likely to be limited to a targeted patient, but not to the broad population. This review discusses some of the key current developments and existing challenges.
Collapse
Affiliation(s)
- Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | | | | | | |
Collapse
|
7478
|
Griff ER, Kleene NK, Kleene SJ. A selective PMCA inhibitor does not prolong the electroolfactogram in mouse. PLoS One 2012; 7:e37148. [PMID: 22615924 PMCID: PMC3352878 DOI: 10.1371/journal.pone.0037148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/13/2012] [Indexed: 12/04/2022] Open
Abstract
Background Within the cilia of vertebrate olfactory receptor neurons, Ca2+ accumulates during odor transduction. Termination of the odor response requires removal of this Ca2+, and prior evidence suggests that both Na+/Ca2+ exchange and plasma membrane Ca2+-ATPase (PMCA) contribute to this removal. Principal Findings In intact mouse olfactory epithelium, we measured the time course of termination of the odor-induced field potential. Replacement of mucosal Na+ with Li+, which reduces the ability of Na+/Ca2+ exchange to expel Ca2+, prolonged the termination as expected. However, treating the epithelium with the specific PMCA inhibitor caloxin 1b1 caused no significant increase in the time course of response termination. Conclusions Under these experimental conditions, PMCA does not contribute detectably to the termination of the odor response.
Collapse
Affiliation(s)
- Edwin R. Griff
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Nancy K. Kleene
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Steven J. Kleene
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7479
|
Anwar A, Li M, Frid MG, Kumar B, Gerasimovskaya EV, Riddle SR, McKeon BA, Thukaram R, Meyrick BO, Fini MA, Stenmark KR. Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1-L11. [PMID: 22582113 DOI: 10.1152/ajplung.00050.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased cell proliferation and migration, of several cell types are key components of vascular remodeling observed in pulmonary hypertension (PH). Our previous data demonstrate that adventitial fibroblasts isolated from pulmonary arteries of chronically hypoxic hypertensive calves (termed PH-Fibs) exhibit a "constitutively activated" phenotype characterized by high proliferative and migratory potential. Osteopontin (OPN) has been shown to promote several cellular activities including growth and migration in cancer cells. We thus tested the hypothesis that elevated OPN expression confers the "activated" highly proproliferative and promigratory/invasive phenotype of PH-Fibs. Our results demonstrate that, both in vivo and ex vivo, PH-Fibs exhibited increased expression of OPN, as well as its cognate receptors, α(V)β(3) and CD44, compared with control fibroblasts (CO-Fibs). Augmented OPN expression in PH-Fibs corresponded to their high proliferative, migratory, and invasive properties and constitutive activation of ERK1/2 and AKT signaling. OPN silencing via small interfering RNA or sequestering OPN production by specific antibodies led to decreased proliferation, migration, invasion, and attenuated ERK1/2, AKT phosphorylation in PH-Fibs. Furthermore, increasing OPN levels in CO-Fibs via recombinant OPN resulted in significant increases in their proliferative, migratory, and invasive capabilities to the levels resembling those of PH-Fibs. Thus our data suggest OPN as an essential contributor to the activated (highly proliferative, migratory, and proinvasive) phenotype of pulmonary adventitial fibroblasts in hypoxic PH.
Collapse
Affiliation(s)
- Adil Anwar
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7480
|
Lee JP, Cha HJ, Lee KS, Lee KK, Son JH, Kim KN, Lee DK, An S. Phytosphingosine-1-phosphate represses the hydrogen peroxide-induced activation of c-Jun N-terminal kinase in human dermal fibroblasts through the phosphatidylinositol 3-kinase/Akt pathway. Arch Dermatol Res 2012; 304:673-8. [PMID: 22566145 DOI: 10.1007/s00403-012-1241-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
Dermal fibroblasts are differentiated mesenchymal cells that regulate the extracellular matrix through the production of dermis components. Dermal fibroblasts can be damaged by reactive oxygen species induced by ultraviolet rays and chemicals. In addition to its effects on the dermis, oxidative stress poses a major threat to organisms and is believed to play an essential role in many disease processes. In this study, we show that human dermal fibroblasts (HDFs) express sphingosine-1-phosphate (S1P) receptors S1P(1), S1P(2), and S1P(3). In addition, cell viability of HDFs is increased by phytosphingosine-1-phosphate (PhS1P) via regulation of the Jun N-terminal kinase (JNK)/Akt pathway. Interestingly, regulation of the JNK/Akt pathway by PhS1P attenuated H(2)O(2)-induced cell growth arrest. Together, our data indicate that PhS1P attenuates H(2)O(2)-induced growth arrest through regulation of the signal molecules Akt and JNK, and suggest that PhS1P may have value as an anti-aging material in cosmetics and medicine.
Collapse
Affiliation(s)
- Jeong Pyo Lee
- Coreana Cosmetics Co., Ltd., Seonggeo-eup, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
7481
|
Singh RK, Gonzalez M, Kabbaj MHM, Gunjan A. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae. PLoS One 2012; 7:e36295. [PMID: 22570702 PMCID: PMC3343073 DOI: 10.1371/journal.pone.0036295] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/29/2012] [Indexed: 02/02/2023] Open
Abstract
Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus) domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene) finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs) YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases) respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3 ubiquitin ligases to ensure excess histone degradation and thus contribute to the maintenance of genomic stability.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (RKS); (AG)
| | - Melanie Gonzalez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Marie-Helene Miquel Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Akash Gunjan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (RKS); (AG)
| |
Collapse
|
7482
|
Lu Y, Zhang XH, Cederbaum AI. Ethanol induction of CYP2A5: role of CYP2E1-ROS-Nrf2 pathway. Toxicol Sci 2012; 128:427-38. [PMID: 22552773 DOI: 10.1093/toxsci/kfs164] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic ethanol consumption was previously shown to induce CYP2A5 in mice, and this induction of CYP2A5 by ethanol was CYP2E1 dependent. In this study, the mechanisms of CYP2E1-dependent ethanol induction of CYP2A5 were investigated. CYP2E1 was induced by chronic ethanol consumption to the same degree in wild-type (WT) mice and CYP2A5 knockout (Cyp2a5 (-/-)) mice, suggesting that unlike the CYP2E1-dependent ethanol induction of CYP2A5, ethanol induction of CYP2E1 is not CYP2A5 dependent. Microsomal ethanol oxidation was about 25% lower in Cyp2a5 (-/-) mice compared with that in WT mice, suggesting that CYP2A5 can oxidize ethanol although to a lesser extent than CYP2E1 does. CYP2A5 was induced by short-term ethanol consumption in human CYP2E1 transgenic knockin (Cyp2e1 (-/-) KI) mice but not in CYP2E1 knockout (Cyp2e1 (-/-)) mice. The redox-sensitive transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) was also induced by acute ethanol in Cyp2e1 (-/-) KI mice but not in Cyp2e1 (-/-) mice. Ethanol induction of CYP2A5 in Nrf2 knockout (Nrf2 (-/-)) mice was lower compared with that in WT mice, whereas CYP2E1 induction by ethanol was comparable in WT and Nrf2 (-/-) mice. Antioxidants (N-acetyl-cysteine and vitamin C), which blocked oxidative stress induced by chronic ethanol in WT mice and acute ethanol in Cyp2e1 (-/-) KI mice, also blunted the induction of CYP2A5 and Nrf2 by ethanol but not the induction of CYP2E1 by ethanol. These results suggest that oxidative stress induced by ethanol via induction of CYP2E1 upregulates Nrf2 activity, which in turn regulates ethanol induction of CYP2A5. Results obtained from primary hepatocytes, mice gavaged with binge ethanol or fed chronic ethanol, show that Nrf2-regulated ethanol induction of CYP2A5 protects against ethanol-induced steatosis.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine New York, New York 10029, USA.
| | | | | |
Collapse
|
7483
|
Abstract
In vitro studies of vascular physiology have traditionally relied on cultures of endothelial cells, smooth muscle cells, and pericytes grown on centimeter-scale plates, filters, and flow chambers. The introduction of microfluidic tools has revolutionized the study of vascular physiology by allowing researchers to create physiologically relevant culture models, at the same time greatly reducing the consumption of expensive reagents. By taking advantage of the small dimensions and laminar flow inherent in microfluidic systems, recent studies have created in vitro models that reproduce many features of the in vivo vascular microenvironment with fine spatial and temporal resolution. In this review, we highlight the advantages of microfluidics in four areas: the investigation of hemodynamics on a capillary length scale, the modulation of fluid streams over vascular cells, angiogenesis induced by the exposure of vascular cells to well-defined gradients in growth factors or pressure, and the growth of microvascular networks in biomaterials. Such unique capabilities at the microscale are rapidly advancing the understanding of microcirculatory dynamics, shear responses, and angiogenesis in health and disease as well as the ability to create in vivo-like blood vessels in vitro.
Collapse
Affiliation(s)
- Keith H K Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
7484
|
Abstract
The mammalian heart loses its regenerative capacity during early postnatal stages; consequently, individuals surviving myocardial infarction are at risk of heart failure due to excessive fibrosis and maladaptive remodeling. There is an urgent need, therefore, to develop novel therapies for myocardial and coronary vascular regeneration. The epicardium-derived cells present a tractable resident progenitor source with the potential to stimulate neovasculogenesis and contribute de novo cardiomyocytes. The ability to revive ordinarily dormant epicardium-derived cells lies in the identification of key stimulatory factors, such as Tβ4, and elucidation of the molecular cues used in the embryo to orchestrate cardiovascular development. myocardial infarction injury signaling reactivates the adult epicardium; understanding the timing and magnitude of these signals will enlighten strategies for myocardial repair.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, UCL-Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | | |
Collapse
|
7485
|
Ocker M, Höpfner M. Apoptosis-modulating drugs for improved cancer therapy. Eur Surg Res 2012; 48:111-120. [PMID: 22538523 DOI: 10.1159/000336875] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/16/2022]
Abstract
Resistance to cell death induction has been recognized as a hallmark of cancer. Increasing understanding of the underlying molecular events regulating different cell death mechanisms like apoptosis, endoplasmic reticulum stress, autophagy, necroptosis and others has opened new possibilities for targeted interference with these pathways. While conventional chemotherapeutic agents usually inhibit cell cycle progression, DNA replication or mitosis execution, novel agents like small molecule kinase inhibitors also target survival-related kinases and signaling pathways and contribute to overcome resistance to chemotherapy and apoptosis. Additionally, antibodies targeting cellular death receptors have been described to specifically target tumor cells only. This review briefly highlights the pathways involved in (apoptotic) cell death and summarizes the current state of development of specific modulators of cell death and how they can help to improve the tolerability of chemotherapy regimens and increase survival rates in patients with advanced cancer diseases.
Collapse
Affiliation(s)
- M Ocker
- Institute for Surgical Research, Philipps University Marburg, Marburg, Germany.
| | | |
Collapse
|
7486
|
Yunta M, Nieto-Díaz M, Esteban FJ, Caballero-López M, Navarro-Ruíz R, Reigada D, Pita-Thomas DW, del Águila Á, Muñoz-Galdeano T, Maza RM. MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One 2012; 7:e34534. [PMID: 22511948 PMCID: PMC3325277 DOI: 10.1371/journal.pone.0034534] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/01/2012] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury. The microarray data reveal the induction of a specific microRNA expression pattern following moderate contusive SCI that is characterized by a marked increase in the number of down-regulated microRNAs, especially at 7 days after injury. MicroRNA downregulation is paralleled by mRNA upregulation, strongly suggesting that microRNAs regulate transcriptional changes following injury. Bioinformatic analyses indicate that changes in microRNA expression affect key processes in SCI physiopathology, including inflammation and apoptosis. MicroRNA expression changes appear to be influenced by an invasion of immune cells at the injury area and, more importantly, by changes in microRNA expression specific to spinal cord cells. Comparisons with previous data suggest that although microRNA expression patterns in the spinal cord are broadly similar among vertebrates, the results of studies assessing SCI are much less congruent and may depend on injury severity. The results of the present study demonstrate that moderate spinal cord injury induces an extended microRNA downregulation paralleled by an increase in mRNA expression that affects key processes in the pathophysiology of this injury.
Collapse
Affiliation(s)
- Mónica Yunta
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Francisco J. Esteban
- System Biology Unit, Experimental Biology Department, Faculty of Experimental and Health Sciences, Universidad de Jaén, Jaén, Spain
| | - Marcos Caballero-López
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rosa Navarro-Ruíz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - David Reigada
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - D. Wolfgang Pita-Thomas
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, United States of America
| | - Ángela del Águila
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
- * E-mail:
| |
Collapse
|
7487
|
Chakraborty G, Saito M, Shah R, Mao RF, Vadasz C, Saito M. Ethanol triggers sphingosine 1-phosphate elevation along with neuroapoptosis in the developing mouse brain. J Neurochem 2012; 121:806-17. [PMID: 22393932 DOI: 10.1111/j.1471-4159.2012.07723.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our previous studies have indicated that de novo ceramide synthesis plays a critical role in ethanol-induced apoptotic neurodegeneration in the 7-day-old mouse brain. In this study, we examined whether the formation of sphingosine 1-phosphate (S1P), a ceramide metabolite, is associated with this apoptotic pathway. Analyses of basal levels of S1P-related compounds indicated that S1P, sphingosine, sphingosine kinase 2, and S1P receptor 1 increased significantly during postnatal brain development. In the 7-day-old mouse brain, sphingosine kinase 2 was localized mainly in neurons. Subcellular fractionation studies of the brain homogenates showed that sphingosine kinase 2 was enriched in the plasma membrane and the synaptic membrane/synaptic vesicle fractions, but not in the nuclear and mitochondrial/lysosomal fractions. Ethanol exposure in 7-day-old mice induced sphingosine kinase 2 activation and increased the brain level of S1P transiently 2-4 h after exposure, followed by caspase 3 activation that peaked around 8 h after exposure. Treatment with dimethylsphingosine, an inhibitor of sphingosine kinases, attenuated the ethanol-induced caspase 3 activation and the subsequent neurodegeneration. These results indicate that ethanol activates sphingosine kinase 2, leading to a transient increase in S1P, which may be involved in neuroapoptotic action of ethanol in the developing brain.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | | | | | | | | | | |
Collapse
|
7488
|
Gahr S, Wissniowski T, Zopf S, Strobel D, Pustowka A, Ocker M. Combination of the deacetylase inhibitor panobinostat and the multi-kinase inhibitor sorafenib for the treatment of metastatic hepatocellular carcinoma - review of the underlying molecular mechanisms and first case report. J Cancer 2012; 3:158-165. [PMID: 22514558 PMCID: PMC3328781 DOI: 10.7150/jca.4211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 12/11/2022] Open
Abstract
Advanced hepatocellular carcinoma still represents an unmet medical need that has only a limited overall survival despite the introduction of the multi-kinase inhibitor sorafenib. Recently, inhibitors of histone and other protein deacetylases have been established as novel therapeutic approaches to cancer diseases. We here review the molecular rationale for combining these two novel targeted therapies and report a patient with metastasized hepatocellular carcinoma who showed a partial remission of primary and metastatic lesions for five months after a combination therapy with sorafenib and the orally available pan-deacetylase inhibitor panobinostat.
Collapse
Affiliation(s)
- Susanne Gahr
- 1. Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
- 2. Klinikum Nuremberg Nord, Department of Pneumology, Nuremberg, Germany
| | - Till Wissniowski
- 1. Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
- 3. Division of Gastroenterology, University Hospital Marburg, Marburg, Germany
| | - Steffen Zopf
- 1. Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Deike Strobel
- 1. Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | | | - Matthias Ocker
- 1. Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
- 5. Institute for Surgical Research, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
7489
|
Rüschoff JH, Brandenburger T, Strehler EE, Filoteo AG, Heinmöller E, Aumüller G, Wilhelm B. Plasma Membrane Calcium ATPase Expression in Human Colon Multistep Carcinogenesis. Cancer Invest 2012; 30:251-7. [DOI: 10.3109/07357907.2012.657817] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jan H. Rüschoff
- Department of Anatomy and Cell Biology, Philipps-University,
Marburg, Germany,1
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Düsseldorf,
Düsseldorf, Germany,2
| | - Emanuel E. Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine,
Rochester, USA,3
| | - Adelaida G. Filoteo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine,
Rochester, USA,3
| | | | - Gerhard Aumüller
- Department of Anatomy and Cell Biology, Philipps-University,
Marburg, Germany,1
| | - Beate Wilhelm
- Department of Anatomy and Cell Biology, Philipps-University,
Marburg, Germany,1
| |
Collapse
|
7490
|
Di Garbo A, Alloisio S, Nobile M. P2X7 receptor-mediated calcium dynamics in HEK293 cells: experimental characterization and modelling approach. Phys Biol 2012; 9:026001. [PMID: 22473129 DOI: 10.1088/1478-3975/9/2/026001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The P2X7 receptor (P2X7R) induces ionotropic Ca²⁺ signalling in different cell types. It plays an important role in the immune response and in the nervous system. Here, the mechanisms underlying intracellular Ca²⁺ variations evoked by 3'-O-(4-benzoyl)benzoyl-ATP (BzATP), a potent agonist of the P2X7R, in transfected HEK293 cells, are investigated both experimentally and theoretically. We propose a minimal model of P2X7R that is capable of reproducing, qualitatively and quantitatively, the experimental data. This approach was also adopted for the P2X7R variant, which lacks the entire C-terminus tail (trP2X7R). Then we introduce a biophysical model describing the Ca²⁺ dynamics in HEK293. Our model gives an account of the ionotropic Ca²⁺ influx evoked by BzATP on the basis of the kinetics model of P2X7R. To explain the complex Ca²⁺ responses evoked by BzATP, the model predicted that an impairment in Ca²⁺ extrusion flux through the plasma membrane is a key factor for Ca²⁺ homeostasis in HEK293 cells.
Collapse
Affiliation(s)
- A Di Garbo
- CNR-Institute of Biophysics, via G Moruzzi 1, 56124 Pisa, Italy.
| | | | | |
Collapse
|
7491
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|
7492
|
Choleris E, Clipperton-Allen AE, Phan A, Valsecchi P, Kavaliers M. Estrogenic involvement in social learning, social recognition and pathogen avoidance. Front Neuroendocrinol 2012; 33:140-59. [PMID: 22369749 DOI: 10.1016/j.yfrne.2012.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/25/2022]
Abstract
Sociality comes with specific cognitive skills that allow the proper processing of information about others (social recognition), as well as of information originating from others (social learning). Because sociality and social interactions can also facilitate the spread of infection among individuals the ability to recognize and avoid pathogen threat is also essential. We review here various studies primarily from the rodent literature supporting estrogenic involvement in the regulation of social recognition, social learning (socially acquired food preferences and mate choice copying) and the recognition and avoidance of infected and potentially infected individuals. We consider both genomic and rapid estrogenic effects involving estrogen receptors α and β, and G-protein coupled estrogen receptor 1, along with their interactions with neuropeptide systems in the processing of social stimuli and the regulation and expression of these various socially relevant behaviors.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | | | |
Collapse
|
7493
|
Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments. Ageing Res Rev 2012; 11:297-319. [PMID: 22322094 DOI: 10.1016/j.arr.2012.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
In ageing, alterations in inflammatory/immune response and antioxidant capacity lead to increased susceptibility to diseases and loss of mobility and agility. Various essential micronutrients in the diet are involved in age-altered biological functions. Micronutrients (zinc, copper, iron) play a pivotal role either in maintaining and reinforcing the immune and antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for a correct inflammatory/immune response. By the other side, the genetic inter-individual variability may affect the absorption and uptake of the micronutrients (nutrigenetic approach) with subsequent altered effects on inflammatory/immune response and antioxidant activity. Therefore, the individual micronutrient-gene interactions are fundamental to achieve healthy ageing. In this review, we report and discuss the role of micronutrients (Zn, Cu, Fe)-gene interactions in relation to the inflammatory status and the possibility of a supplement in the event of a micronutrient deficiency or chelation in presence of micronutrient overload in relation to specific polymorphisms of inflammatory proteins or proteins related of the delivery of the micronutriemts to various organs and tissues. In this last context, we report the protein-metal speciation analysis in order to have, coupled with micronutrient-gene interactions, a more complete picture of the individual need in micronutrient supplementation or chelation to achieve healthy ageing and longevity.
Collapse
|
7494
|
Abstract
Members of the Rab or ARF/Sar branches of the Ras GTPase superfamily regulate almost every step of intracellular membrane traffic. A rapidly growing body of evidence indicates that these GTPases do not act as lone agents but are networked to one another through a variety of mechanisms to coordinate the individual events of one stage of transport and to link together the different stages of an entire transport pathway. These mechanisms include guanine nucleotide exchange factor (GEF) cascades, GTPase-activating protein (GAP) cascades, effectors that bind to multiple GTPases, and positive-feedback loops generated by exchange factor-effector interactions. Together these mechanisms can lead to an ordered series of transitions from one GTPase to the next. As each GTPase recruits a unique set of effectors, these transitions help to define changes in the functionality of the membrane compartments with which they are associated.
Collapse
Affiliation(s)
- Emi Mizuno-Yamasaki
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan.
| | | | | |
Collapse
|
7495
|
Cadet J, Douki T, Ravanat JL, Wagner JR. Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12566-012-0029-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7496
|
Huang SW, Lien JC, Kuo SC, Huang TF. Antiangiogenic mechanisms of PJ-8, a novel inhibitor of vascular endothelial growth factor receptor signaling. Carcinogenesis 2012; 33:1022-30. [DOI: 10.1093/carcin/bgs127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
7497
|
Deflorio C, Palma E, Conti L, Roseti C, Manteca A, Giacomelli E, Catalano M, Limatola C, Inghilleri M, Grassi F. Riluzole blocks human muscle acetylcholine receptors. J Physiol 2012; 590:2519-28. [PMID: 22431338 DOI: 10.1113/jphysiol.2012.230201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Riluzole, the only drug available against amyotrophic lateral sclerosis (ALS), has recently been shown to block muscle ACh receptors (AChRs), raising concerns about possible negative side-effects on neuromuscular transmission in treated patients. In this work we studied riluzole's impact on the function of muscle AChRs in vitro and on neuromuscular transmission in ALS patients, using electrophysiological techniques. Human recombinant AChRs composed of α(1)β(1)δ subunits plus the γ or ε subunit (γ- or ε-AChR) were expressed in HEK cells or Xenopus oocytes. In both preparations, riluzole at 0.5 μm, a clinically relevant concentration, reversibly reduced the amplitude and accelerated the decay of ACh-evoked current if applied before coapplication with ACh. The action on γ-AChRs was more potent and faster than on ε-AChRs. In HEK outside-out patches, riluzole-induced block of macroscopic ACh-evoked current gradually developed during the initial milliseconds of ACh presence. Single channel recordings in HEK cells and in human myotubes from ALS patients showed that riluzole prolongs channel closed time, but has no effect on channel conductance and open duration. Finally, compound muscle action potentials (CMAPs) evoked by nerve stimulation in ALS patients remained unaltered after a 1 week suspension of riluzole treatment. These data indicate that riluzole, while apparently safe with regard to synaptic transmission, may affect the function of AChRs expressed in denervated muscle fibres of ALS patients, with biological consequences that remain to be investigated.
Collapse
Affiliation(s)
- Cristina Deflorio
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7498
|
The diversification of the LIM superclass at the base of the metazoa increased subcellular complexity and promoted multicellular specialization. PLoS One 2012; 7:e33261. [PMID: 22438907 PMCID: PMC3305314 DOI: 10.1371/journal.pone.0033261] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/07/2012] [Indexed: 01/15/2023] Open
Abstract
Background Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass. Results We have identified and characterized all known LIM domain-containing proteins in six metazoans and three non-metazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineage-specific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study. Conclusion Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity.
Collapse
|
7499
|
Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, Uemura A, Kiyonari H, Abe T, Fukamizu A, Hirashima M, Sawa H, Aoki J, Ishii M, Mochizuki N. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 2012; 122:1416-26. [PMID: 22406534 DOI: 10.1172/jci60746] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/30/2012] [Indexed: 12/11/2022] Open
Abstract
The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7500
|
Jeitner TM, Battaile K, Cooper AJL. γ-Glutamylamines and neurodegenerative diseases. Amino Acids 2012; 44:129-42. [PMID: 22407484 DOI: 10.1007/s00726-011-1209-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/22/2011] [Indexed: 12/12/2022]
Abstract
Transglutaminases catalyze the formation of γ-glutamylamines utilizing glutamyl residues and amine-bearing compounds such as lysyl residues and polyamines. These γ-glutamylamines can be released from proteins by proteases in an intact form. The free γ-glutamylamines can be catabolized to 5-oxo-L-proline and the free amine by γ-glutamylamine cyclotransferase. Free γ-glutamylamines, however, accumulate in the CSF and affected areas of Huntington Disease brain. This observation suggests transglutaminase-derived γ-glutamylamines may play a more significant role in neurodegeneration than previously thought. The following monograph reviews the metabolism of γ-glutamylamines and examines the possibility that these species contribute to neurodegeneration.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Neurosciences, Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, USA.
| | | | | |
Collapse
|