751
|
Saadeldin IM, Kim SJ, Choi YB, Lee BC. Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication. Cell Reprogram 2014; 16:223-34. [PMID: 24773308 DOI: 10.1089/cell.2014.0003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is well known that embryos cultured in a group can create a microenvironment through secretion of autocrine and paracrine factors that can support and improve the embryos' development when compared to the embryos cultured individually. In this study, we used a co-culture system for paracrine communication between different kinds of embryos. The results showed that co-culture of porcine parthenogenetic (PA) embryos significantly improved the in vitro development of cloned (nuclear transfer, NT) embryos. To reveal the possible mechanism of communication between the two groups, we isolated exosomes/microvesicles (EXs/MVs) from the PA embryos conditioned medium (PA-CM) through differential centrifugation and identified them through transmission electron microscope and immunoflourescence against exosomal/membrane marker CD9. Furthermore, these EXs/MVs were found to contain mRNA of pluripotency genes (Oct4, Sox2, Klf4, c-Myc, and Nanog), and the PKH67-labeled EXs/MVs could be internalized by the NT embryos. The current study demonstrates that cloned embryos' developmental competence can be improved through co-culturing with PA embryos and revealed, for the first time, that in vitro-produced embryos can secrete EXs/MVs as a possible communication tool within their microenvironment. Moreover, it provides a new paradigm for embryo-to-embryo communication in vitro.
Collapse
Affiliation(s)
- Islam M Saadeldin
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University , Seoul, 151-742, Republic of Korea
| | | | | | | |
Collapse
|
752
|
De Bonis ML, Ortega S, Blasco MA. SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem Cell Reports 2014; 2:690-706. [PMID: 24936455 PMCID: PMC4050480 DOI: 10.1016/j.stemcr.2014.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
The NAD-dependent deacetylase SIRT1 is involved in chromatin silencing and genome stability. Elevated SIRT1 levels in embryonic stem cells also suggest a role for SIRT1 in pluripotency. Murine SIRT1 attenuates telomere attrition in vivo and is recruited at telomeres in induced pluripotent stem cells (iPSCs). Because telomere elongation is an iPSC hallmark, we set out to study the role of SIRT1 in pluripotency in the setting of murine embryonic fibroblasts reprogramming into iPSCs. We find that SIRT1 is required for efficient postreprogramming telomere elongation, and that this effect is mediated by a c-MYC-dependent regulation of the mTert gene. We further demonstrate that SIRT1-deficient iPSCs accumulate chromosomal aberrations and show a derepression of telomeric heterochromatin. Finally, SIRT1-deficient iPSCs form larger teratomas that are poorly differentiated, highlighting a role for SIRT1 in exit from pluripotency. In summary, this work demonstrates a role for SIRT1 in the maintenance of pluripotency and modulation of differentiation.
Collapse
Affiliation(s)
- Maria Luigia De Bonis
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
753
|
Liu CX, Zhang RL, Gao J, Li T, Ren Z, Zhou CQ, Wen AM. Derivation of human embryonic stem cell lines without any exogenous growth factors. Mol Reprod Dev 2014; 81:470-9. [PMID: 24554631 DOI: 10.1002/mrd.22312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/11/2014] [Indexed: 01/16/2023]
Abstract
Human embryonic stem cell (hESC) lines are traditionally derived through immunosurgery. Their maintenance in culture requires the presence of mouse embryonic fibroblasts (MEFs) as feeder cells and media supplemented with basic fibroblast growth factor (bFGF) or other growth factors-both of which might introduce animal-derived culture components. The drawbacks associated with immunosurgery, MEF co-culture, and the cost of growth factors necessitate the exploration of a xeno-free method to maintain the self-renewal capacity of hESCs. Here, we describe an isolation method for the human inner cell mass (ICM), which was then cultured in the absence of exogenous growth factors and in the presence of human foreskin fibroblasts (HFFs) as feeder cells. Three hESC lines were obtained from poor-quality embryos by this near-xeno-free protocol. After culturing for more than 10 months, the hESCs retained normal morphology, expressed all expected cell surface markers, could differentiate to embryoid bodies upon culture in vitro, and formed teratomas in vivo. Furthermore, secretion of bFGF by HFFs was observed. In conclusion, this is the first study to describe an inexpensive, xeno-free culture system for the isolation and maintenance of hESCs that does not require bFGF supplementation.
Collapse
Affiliation(s)
- Cai Xia Liu
- Reproductive Medicine Center, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
754
|
Enninga EAL, Holtan SG, Creedon DJ, Dronca RS, Nevala WK, Ognjanovic S, Markovic SN. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc 2014; 89:520-35. [PMID: 24684874 PMCID: PMC4286150 DOI: 10.1016/j.mayocp.2014.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
Similarities between the pathologic progression of cancer and the physiologic process of placentation (eg, proliferation, invasion, and local/systemic tolerance) have been recognized for many years. Sex hormones such as human chorionic gonadotropin, estrogens, progesterone, and others contribute to induction of immunologic tolerance at the beginning of gestation. Sex hormones have been shown to play contributory roles in the growth of cancers such as breast cancer, prostrate cancer, endometrial cancer, and ovarian cancer, but their involvement as putative mediators of the immunologic escape of cancer is still being elucidated. Herein, we compare the emerging mechanism by which sex hormones modulate systemic immunity in pregnancy and their potentially similar role in cancer. To do this, we conducted a PubMed search using combinations of the following keywords: "immune regulation," "sex hormones," "pregnancy," "melanoma," and "cancer." We did not limit our search to specific publication dates. Mimicking the maternal immune response to pregnancy, especially in late gestation, might aid in design of better therapies to reconstitute endogenous antitumor immunity and improve survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN; Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
755
|
Singh B, Coffey RJ. From wavy hair to naked proteins: the role of transforming growth factor alpha in health and disease. Semin Cell Dev Biol 2014; 28:12-21. [PMID: 24631356 DOI: 10.1016/j.semcdb.2014.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Since its discovery in 1978 and cloning in 1984, transforming growth factor-alpha (TGF-α, TGFA) has been one of the most extensively studied EGF receptor (EGFR) ligands. In this review, we provide a historical perspective on TGFA-related studies, highlighting what we consider important advances related to its function in normal and disease states.
Collapse
Affiliation(s)
- Bhuminder Singh
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Robert J Coffey
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veteran Affairs Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
756
|
Horne AW, Brown JK, Nio-Kobayashi J, Abidin HBZ, Adin ZEHA, Boswell L, Burgess S, Lee KF, Duncan WC. The association between smoking and ectopic pregnancy: why nicotine is BAD for your fallopian tube. PLoS One 2014; 9:e89400. [PMID: 24586750 PMCID: PMC3930728 DOI: 10.1371/journal.pone.0089400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
Epidemiological studies have shown that cigarette smoking is a major risk factor for tubal ectopic pregnancy but the reason for this remains unclear. Here, we set out to determine the effect of smoking on Fallopian tube gene expression. An oviductal epithelial cell line (OE-E6/E7) and explants of human Fallopian tubes from non-pregnant women (n = 6) were exposed to physiologically relevant concentrations of cotinine, the principle metabolite of nicotine, and changes in gene expression analyzed using the Illumina Human HT-12 array. Cotinine sensitive genes identified through this process were then localized and quantified in Fallopian tube biopsies from non-pregnant smokers (n = 10) and non-smokers (n = 11) using immunohistochemistry and TaqMan RT-PCR. The principle cotinine induced change in gene expression detected by the array analysis in both explants and the cell line was significant down regulation (P<0.05) of the pro-apoptotic gene BAD. We therefore assessed the effect of smoking on cell turnover in retrospectively collected human samples. Consistent with the array data, smoking was associated with decreased levels of BAD transcript (P<0.01) and increased levels of BCL2 transcript (P<0.05) in Fallopian tube biopsies. BAD and BCL2 specific immunolabelling was localized to Fallopian tube epithelium. Although no other significant differences in levels of apoptosis or cell cycle associated proteins were observed, smoking was associated with significant changes in the morphology of the Fallopian tube epithelium (P<0.05). These results suggest that smoking may alter tubal epithelial cell turnover and is associated with structural, as well as functional, changes that may contribute to the development of ectopic pregnancy.
Collapse
Affiliation(s)
- Andrew W. Horne
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Jeremy K. Brown
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Junko Nio-Kobayashi
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hazirah B. Z. Abidin
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zety E. H. A. Adin
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lyndsey Boswell
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stewart Burgess
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - W. Colin Duncan
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
757
|
Shan B, Li W, Yang SY, Li ZR. Estrogen up-regulates MMP2/9 expression in endometrial epithelial cell via VEGF-ERK1/2 pathway. ASIAN PAC J TROP MED 2014; 6:826-30. [PMID: 23870474 DOI: 10.1016/s1995-7645(13)60146-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/15/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To study the effect of estrogen on anovulatory dysfunctional uterine bleeding (ADUB). METHODS Primary endometrial epithelial cells of Hainan Lizu female was cultured and hydrolytic activity of gelatinase was determined by gelatin zymography analysis. Cellular mRNA and protein synthesis was blocked respectively to determine whether the increased expression of MMP-2/9 was induced by estrogen. The expression of VEGF was blocked by siRNA. After treatment with various factors, MMP-9, VEGF, total Erk and phosphorylated Erk expression in primary uterine epithelial cells was detected by Western blotting analysis. Cell MMP-2/9mRNA levels was measured by real-time RT-PCR. RESULTS The activity and expression of MMP2/9 was increased in the endometrium of patients with ADUB. Estrogen could up-regulate the expression of VEGF and activate Erk 1/2-Elk1 signal path. After interference by siRNA, ERK1/2 pathway was blocked in cells, and the expression of MMP-2/9 was down-regulated. ERK1/2 specific blocker U0126 blocked ERK phosphorylation, and it could down-regulate the expression of MMP-2/9. CONCLUSIONS The results showed that the estrogen can increase the expression of VEGF, and thus activate ERK1/2 pathway to induce MMP-2/9 expression.
Collapse
Affiliation(s)
- Bao Shan
- Department of Gynaecology and Obstetrics of Hainan People's Hospital, Hai Kou 570311, China
| | | | | | | |
Collapse
|
758
|
Leung CON, Deng W, Ye TM, Ngan HYS, Tsao SW, Cheung ANY, Pang RTK, Yeung WSB. miR-135a leads to cervical cancer cell transformation through regulation of β-catenin via a SIAH1-dependent ubiquitin proteosomal pathway. Carcinogenesis 2014; 35:1931-40. [PMID: 24503442 DOI: 10.1093/carcin/bgu032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human papillomaviruses (HPVs) is the principal etiological agent of cervical cancer (CC). However, exposure to the high-risk type HPV alone is insufficient for tumor formation, and additional factors are required for the HPV-infected cells to become tumorigenic. Dysregulated microRNAs (miRNAs) expression is frequently observed in cancer but their roles in the formation of CC have not been fully revealed. In this study, we compared the expression of miR-135a in laser capture microdissected cervical specimens and confirmed overexpression of the miRNA in malignant cervical squamous cell carcinoma compared with precancerous lesions. Transient force-expression of miR-135a induced growth in low-density culture, anchorage-independent growth, proliferation and invasion of a HPV-16 E6/E7-immortalized cervical epithelial cell line, NC104-E6/E7. The observed effects were due to the inhibitory action of miR-135a on its direct target seven in absentia homolog 1 (SIAH1) leading to upregulation of β-catenin/T cell factor signaling. miR-135a force-expression enhanced the growth of HeLa- and NC104-E6/E7-derived tumor in vivo. The effect of miR-135a could be partially nullified by SIAH1 force-expression. More importantly, the expression of SIAH1 and β-catenin correlated with that of miR-135a in precancerous and cancerous lesions of cervical biopsies. By comparing the tumorigenic activities of miR-135a in E6/E7 positive/negative cell lines and in NC104-E6/E7 with or without E6/E7 knockdown, we demonstrated that HPV E6/E7 proteins are prerequisite for miR-135a as an oncomiR. Taken together, miR-135a/SIAH1/β-catenin signaling is important in the transformation and progression of cervical carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ronald T K Pang
- Department of Obstetrics and Gynaecology, Centre for Reproduction, Development and Growth, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, Centre for Reproduction, Development and Growth, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| |
Collapse
|
759
|
Seror J, Amand G, Guibourdenche J, Ceccaldi PF, Luton D. Anti-TPO antibodies diffusion through the placental barrier during pregnancy. PLoS One 2014; 9:e84647. [PMID: 24497920 PMCID: PMC3908862 DOI: 10.1371/journal.pone.0084647] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hashimoto's thyroiditis is the principal aetiology of hypothyroidism with presence of anti-thyroperoxidase antibodies (anti-TPO). The association between anti-TPO and foeto-placental complications has been observed in previous studies. To go further in the understanding, the current study compares the level of anti-TPO in maternal blood and in the cord blood of her fetus at the moment of childbirth to demonstrate the passage of anti-TPO through the placenta barrier. METHODS AND FINDINGS This study was realised in a maternity ward located in the Northern district of Paris, France from 2006 to 2007. Women with normal pregnancy were included in a first study and only women with no abnormal thyroid dosage at baseline and tested positive with anti-TPO were prospectively enrolled. Maternal blood samples were collected in the third trimester and at the arrival to the ward when patients came to deliver. After delivery, cord blood sample was collected. Pearson's correlation coefficient was computed. 5941 patients delivered in the ward during the study, 33 pregnant women were included. We found a correlation between the anti-TPO levels in maternal and in the cord blood of their fetus with a correlation coefficient of 0.98 and a p-value<0.001. CONCLUSIONS This is the first demonstration of the free passage through the placental barrier of anti-TPO from the mother to the fetus at the moment of childbirth. These findings can be extrapolated all along pregnancy and open the door to a direct action of the anti-TPO on fetus and to a possible action on the fetal thyroid.
Collapse
Affiliation(s)
- Jérémy Seror
- Paris Diderot, Université Paris VII, Paris, France
- Department of Gynecology and Obstetrics, Beaujon-Bichat Hospital, AP-HP, Clichy, France
- * E-mail:
| | - Gaëlle Amand
- Paris Diderot, Université Paris VII, Paris, France
- Department of Gynecology and Obstetrics, Beaujon-Bichat Hospital, AP-HP, Clichy, France
| | - Jean Guibourdenche
- Department of Hormonal and Metabolic Biology, Cochin Hospital, AP-HP, Paris, France
| | - Pierre-François Ceccaldi
- Paris Diderot, Université Paris VII, Paris, France
- Department of Gynecology and Obstetrics, Beaujon-Bichat Hospital, AP-HP, Clichy, France
| | - Dominique Luton
- Paris Diderot, Université Paris VII, Paris, France
- Department of Gynecology and Obstetrics, Beaujon-Bichat Hospital, AP-HP, Clichy, France
| |
Collapse
|
760
|
Al Darwich A, Perreau C, Tsikis G, Coudert E, Touzé JL, Briant E, Beckers JF, Mermillod P, Guignot F. Effect of different culture systems on adipocyte differentiation-related protein (ADRP) in bovine embryos. Anim Reprod Sci 2014; 145:105-13. [PMID: 24560670 DOI: 10.1016/j.anireprosci.2014.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 02/04/2023]
Abstract
Bovine embryos cultured in serum-containing media abnormally accumulate lipid droplets, compared to their in vivo counterparts. The objective of this study was to investigate the effect of different culture systems on the mRNA expression and on the quantification and localisation of adipocyte differentiation-related protein (ADRP), a protein associated with lipid accumulation in bovine blastocysts. Two experiments were independently performed for ADRP mRNA expression analysis. In experiment A, blastocysts were produced in modified synthetic oviduct fluid (mSOF)+10% foetal calf serum (FCS), in coculture (bovine oviduct epithelial cells, Boec) and in ewe oviducts, whereas in experiment B, they were produced in mSOF+10μM docosahexaenoic acid (DHA) and in vivo. Control groups were also performed. ADRP mRNA expression was downregulated in the Boec, ewe oviduct and in vivo groups compared to the 10% FCS or DHA groups, respectively. Moreover, the expression of this protein was downregulated in the Boec group compared to the control group (P<0.05). A third experiment (experiment C) was performed to quantify and localise ADRP protein. Boec, in vivo and control groups were tested. After immunofluorescence staining followed by confocal microscopy analysis, embryonic ADRP was clearly localised around lipid droplets, indicating that ADRP is also a lipid droplet coat protein in bovine embryos. In conclusion, our results demonstrate that bovine embryos at the blastocyst stage expressed ADRP mRNA and protein, and that the embryonic culture system modified this expression.
Collapse
Affiliation(s)
- A Al Darwich
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - C Perreau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - G Tsikis
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - E Coudert
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - J L Touzé
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - E Briant
- INRA, UEPAO, F-37380 Nouzilly, France
| | - J F Beckers
- Université de Liège, Faculté de Médecine Vétérinaire, Physiologie de la Reproduction, B4000 Liège, Belgium
| | - P Mermillod
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - F Guignot
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
761
|
Kobayashi M, Wada M, Hori T, Kawakami E. Superoxide dismutase activity in the oviductal and uterine fluid of the bitch and the effects of the enzyme on viability, motility and hyperactivation of canine sperm in vitro. J Vet Med Sci 2014; 76:741-3. [PMID: 24430658 PMCID: PMC4073345 DOI: 10.1292/jvms.13-0545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Superoxide dismutase (SOD) activity in flushings from oviducts and uterine
horns of 8 anestrous, 5 estrous and 7 diestrous bitches was measured. SOD activity in
oviductal fluid in estrous bitches was significantly higher than that in anestrous and
diestrous bitches (P<0.01). SOD activity in uterine fluid of diestrous
bitches was, however, significantly higher than that in anestrous and estrous bitches
(P<0.01). Additionally, sperm collected from normal dogs were
incubated in MEM and in MEM containing SOD (SOD-MEM) for 24 hr. The percentages of sperm
with viability, motility and hyperactivation in SOD-MEM were higher than those in MEM. SOD
produced in oviduct and uterus may be able to maintain or improve sperm quality and
fertility in the dog.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | | | | | | |
Collapse
|
762
|
Cheong AWY, Pang RTK, Liu WM, Kottawatta KSA, Lee KF, Yeung WSB. MicroRNA Let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos. Hum Reprod 2014; 29:750-62. [PMID: 24419497 DOI: 10.1093/humrep/det462] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does Let-7a have a functional role in modulating dicer expression to activate dormant mouse blastocysts for implantation? SUMMARY ANSWER Let-7a post-transcriptionally regulates dicer expression altering microRNA expression to affect the implantation competency of the activated blastocysts. WHAT IS KNOWN ALREADY The Let-7a microRNA is up-regulated during blastocyst dormancy and its forced-expression suppresses embryo implantation in vitro and in vivo. Dicer is a Let-7 target, which processes pre-microRNA to mature microRNA. STUDY DESIGN, SIZE, DURATION The effects on the expression of Let-7a and dicer in dormant blastocysts during the first 12 h after estradiol-induced activation, and the relationship between Let-7a and dicer in preimplantation embryos were determined. The effects on the microRNA expression and embryo implantation in vivo in dicer-knockdown mouse 5-8 cell embryos and dormant blastocysts at 1 h post estradiol activation were also studied. PARTICIPANTS/MATERIALS, SETTING, METHODS ICR female mice at 6 weeks of age were ovariectomized on Day 4 of pregnancy to generate the delayed implantation model. Mouse 5-8 cell embryos and/or dormant blastocysts at 1 h after estradiol injection were electroporated with dicer siRNA and Let-7a precursor or Let-7a inhibitor. At 48 h post electroporation, the Let-7a expression, dicer transcripts and proteins in the embryos were determined using qPCR and immunostaining/western blotting, respectively. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE Estradiol injection down-regulated Let-7a and up-regulated dicer in the dormant blastocysts during the first 12 h post-activation. Dicer knockdown at 1 h post-activation of blastocysts suppressed EGFR expression, attenuated EGF binding and compromised implantation of the transferred embryos. Let-7a transcriptionally regulated dicer by binding to the 3'-UTR of dicer in trophoblast cells. Dicer knockdown in blastocysts suppressed mature Let-7a expression and compromised implantation. LIMITATIONS, REASONS FOR CAUTION Gain- and loss-of-function approaches were used by analyzing transient expressions of transfected microRNA modulators or genes. The consequence of the Let-7a-dicer interaction on pregnancy remains to be determined. The study used the mouse as a model and the applicability of the observed phenomena in humans warrants further investigation. WIDER IMPLICATIONS OF THE FINDINGS Our results indicate that the Let-7a-dicer interaction leads to differential microRNA expression in dormant blastocysts after estradiol activation. Because the expression pattern of Let-7a in human blastocysts is similar to that in mouse blastocysts, our observation that the Let-7a-dicer interaction has a role in regulating the implantation potential of the mouse blastocysts could be applicable to humans. STUDY FUNDING/COMPETING INTEREST(S) This project is supported partly by a research grant from the Research Grant Council to W.S.B.Y. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Ana W Y Cheong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
763
|
Moradi S, Asgari S, Baharvand H. Concise Review: Harmonies Played by MicroRNAs in Cell Fate Reprogramming. Stem Cells 2014; 32:3-15. [DOI: 10.1002/stem.1576] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Sharif Moradi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; Tehran Iran
- Department of Developmental Biology; University of Science and Culture; ACECR Tehran Iran
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences; The University of Queensland; St Lucia Queensland Australia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; Tehran Iran
- Department of Developmental Biology; University of Science and Culture; ACECR Tehran Iran
| |
Collapse
|
764
|
Trigal B, Díez C, Muñoz M, Caamaño JN, Goyache F, Correia-Alvarez E, Corrales FJ, Mora MI, Carrocera S, Martin D, Gómez E. Elements of functional genital asymmetry in the cow. Reprod Fertil Dev 2014; 26:493-501. [PMID: 24709319 DOI: 10.1071/rd13056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/11/2013] [Indexed: 11/23/2022] Open
Abstract
Asymmetry in the cow affects ovarian function and pregnancy. In this work we studied ovarian and uterine asymmetry. Synchronised animals, in which in vitro-produced embryos (n=30-60) had been transferred on Day 5 to the uterine horn ipsilateral to the corpus luteum (CL), were flushed on Day 8. Ovulatory follicle diameter, oestrus response and total protein flushed did not differ between sides. However, a corpus luteum in the right ovary led to plasma progesterone concentrations that were higher than when it was present in the left ovary. Fewer embryos were recovered from the left than the right horn. Among 60 uterine proteins identified by difference gel electrophoresis, relative abundance of nine (acyl-CoA dehydrogenase, very long chain; twinfilin, actin-binding protein, homologue 1; enolase 1; pyruvate kinase isozymes M1/M2 (rabbit); complement factor B Bb fragment ; albumin; fibrinogen gamma-B chain; and ezrin differed (P<0.05) between horns. Glucose concentration was higher, and fructose concentration lower, in the left horn. In a subsequent field trial, pregnancy rates after embryo transfer did not differ between horns (51.0±3.6, right vs 53.2±4.7, left). However, Day 7 blood progesterone concentrations differed (P=0.018) between pregnant and open animals in the left (15.9±1.7 vs 8.3±1.2) but not in the right horn (12.4±1.3 vs 12.4±1.2). Progesterone effects were independent of CL quality (P=0.55). Bilateral genital tract asymmetry in the cow affects progesterone, proteins and hexoses without altering pregnancy rates.
Collapse
Affiliation(s)
- B Trigal
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - C Díez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - M Muñoz
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - J N Caamaño
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - F Goyache
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Correia-Alvarez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - F J Corrales
- Centro de Investigación Médica Aplicada (CIMA), Avda Pío XII 55, 31008 Pamplona, Navarra, Spain
| | - M I Mora
- Centro de Investigación Médica Aplicada (CIMA), Avda Pío XII 55, 31008 Pamplona, Navarra, Spain
| | - S Carrocera
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - D Martin
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Gómez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
765
|
Abstract
An increasing body of evidence suggests that immune-mediated processes affect female reproductive success at multiple levels. Crosstalk between endocrine and immune systems regulates a large number of biological processes that affect target tissues, and this crosstalk involves gene expression, cytokine and/or lymphokine release and hormone action. In addition, endocrine-immune interactions have a major role in the implantation process of the fetal (paternally derived) semi-allograft, which requires a reprogramming process of the maternal immune system from rejection to temporary tolerance for the length of gestation. Usually, the female immune system is supportive of all of these processes and, therefore, facilitates reproductive success. Abnormalities of the female immune system, including autoimmunity, potentially interfere at multiple levels. The relevance of the immune system to female infertility is increasingly recognized by investigators, but clinically is often not adequately considered and is, therefore, underestimated. This Review summarizes the effect of individual autoimmune endocrine diseases on female fertility, and points towards selected developments expected in the near future.
Collapse
Affiliation(s)
- Aritro Sen
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| | - Vitaly A Kushnir
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| | - David H Barad
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| | - Norbert Gleicher
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| |
Collapse
|
766
|
Bose CK, Basu N. HPV in the upper female genital tract: the hidden connection of tubal dysplasia and type II epithelial ovarian cancer? Future Virol 2013. [DOI: 10.2217/fvl.13.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Chinmoy K Bose
- Medical Faculty, Burdwan University, Burdwan 713101, India
- Gynaecological Oncology Section, Netaji Subhash Chandra Bose Cancer Research Institute, 16A Park Lane, Park Street, Kolkata 700016, India
| | - Nirban Basu
- Medical College, 88 College Street, Kolkata, India
| |
Collapse
|
767
|
The tumor suppressor p53 fine-tunes reactive oxygen species levels and neurogenesis via PI3 kinase signaling. J Neurosci 2013; 33:14318-30. [PMID: 24005285 DOI: 10.1523/jneurosci.1056-13.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mounting evidence points to a role for endogenous reactive oxygen species (ROS) in cell signaling, including in the control of cell proliferation, differentiation, and fate. However, the function of ROS and their molecular regulation in embryonic mouse neural progenitor cells (eNPCs) has not yet been clarified. Here, we describe that physiological ROS are required for appropriate timing of neurogenesis in the developing telencephalon in vivo and in cultured NPCs, and that the tumor suppressor p53 plays a key role in the regulation of ROS-dependent neurogenesis. p53 loss of function leads to elevated ROS and early neurogenesis, while restoration of p53 and antioxidant treatment partially reverse the phenotype associated with premature neurogenesis. Furthermore, we describe that the expression of a number of neurogenic and oxidative stress genes relies on p53 and that both p53 and ROS-dependent induction of neurogenesis depend on PI3 kinase/phospho-Akt signaling. Our results suggest that p53 fine-tunes endogenous ROS levels to ensure the appropriate timing of neurogenesis in eNPCs. This may also have implications for the generation of tumors of neurodevelopmental origin.
Collapse
|
768
|
Abstract
Post-translational modifications (PTMs) are known to be essential mechanisms used by eukaryotic cells to diversify their protein functions and dynamically coordinate their signaling networks. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), are capable of self-renewal and differentiation into a variety of functional somatic cells; these cells hold a great promise for the advancement of biomedical research and clinical therapy. The mechanisms underlying cellular pluripotency in human cells have been extensively explored in the past decade. In addition to the vast amount of knowledge obtained from the genetic and transcriptional research in hPSCs, there is a rapidly growing interest in the stem cell biology field to examine pluripotency at the protein and PTM level. This review addresses recent progress toward understanding the role of PTMs (glycosylation, phosphorylation, acetylation and methylation) in the regulation of cellular pluripotency.
Collapse
|
769
|
Krishnan T, Winship A, Sonderegger S, Menkhorst E, Horne AW, Brown J, Zhang JG, Nicola NA, Tong S, Dimitriadis E. The role of leukemia inhibitory factor in tubal ectopic pregnancy. Placenta 2013; 34:1014-9. [PMID: 24074901 DOI: 10.1016/j.placenta.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Ectopic pregnancy is unique to humans and a leading cause of maternal morbidity and mortality. The etiology remains unknown however factors regulating embryo implantation likely contribute. Leukemia inhibitory factor (LIF) has roles in extravillous trophoblast adhesion and invasion and is present in ectopic implantation sites. We hypothesised that LIF facilitates blastocyst adhesion/invasion in the Fallopian tube, contributing to ectopic pregnancy. METHODS We immunolocalised LIF receptor (R) in tubal ectopic pregnancy (N = 5). We used an oviduct cell line (OE-E6/E7) to model Fallopian tube epithelial cells and a trophoblast spheroid co-culture model (HTR-8/SVneo cell line formed spheroids) to model blastocyst attachment to the Fallopian tube. We examined LIF signaling pathways in OE-E6/E7 cells by Western blot. The effect of LIF and LIF inhibition (using a novel LIF inhibitor, PEGLA) on first-trimester placental outgrowth was determined. RESULTS LIFR localised to villous and extravillous trophoblast and Fallopian tube epithelium in ectopic pregnancy. LIF activated STAT3 but not the ERK pathway in OE-E6/E7 cells. LIF stimulated HTR-8/SVneo spheroid adhesion to OE-E6/E7 cells which was significantly reduced after PEGLA treatment. LIF promoted placental explants outgrowth, while co-treatment with PEGLA blocked outgrowth. DISCUSSION Our data suggests LIF facilitates the development of ectopic pregnancy by stimulating blastocyst adhesion and trophoblast outgrowth from placental explants. Ectopic pregnancy is usually diagnosed after 6 weeks of pregnancy, therefore PEGLA may be useful in targeting trophoblast growth/invasion. CONCLUSION LIF may contribute to the development of ectopic pregnancies and that pharmacologically targeting LIF-mediated trophoblast outgrowth may be useful as a treatment for ectopic pregnancy.
Collapse
Affiliation(s)
- T Krishnan
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia; Faculty of Medicine, Nursing & Health Sciences, Wellington Road, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
770
|
Nagy A. Secondary cell reprogramming systems: as years go by. Curr Opin Genet Dev 2013; 23:534-9. [DOI: 10.1016/j.gde.2013.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 02/09/2023]
|
771
|
Lançon A, Michaille JJ, Latruffe N. Effects of dietary phytophenols on the expression of microRNAs involved in mammalian cell homeostasis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3155-3164. [PMID: 23674481 DOI: 10.1002/jsfa.6228] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Besides synthesizing nutritive substances (proteins, fats and carbohydrates) for energy and growth, plants produce numerous non-energetic so-called secondary metabolites (mainly polyphenols) that allow them to protect themselves against infections and other types of hostile environments. Interestingly, these polyphenols often provide cells with valuable bioactive properties for the maintenance of their functions and homeostasis (signaling, gene regulation, protection against acquired or infectious diseases, etc.) both in humans and animals. Namely, from a nutritional point of view, and based on epidemiological data, it is now well accepted that the regular consumption of green vegetables, fruits and fibers has protective effects against the onset of cancer as well as of inflammatory, neurodegenerative, metabolic and cardiovascular diseases, and consequently increases the overall longevity. In particular, grapevine plants produce large amounts of a wide variety of polyphenols. The most prominent of those-resveratrol-has been shown to impair or delay cardiovascular alterations, cancer, inflammation, aging, etc. Until recently, the molecular bases of the pleiotropic effects of resveratrol remained largely unclear despite numerous studies on a variety of signaling pathways and the transcriptional networks that they control. However, it has been recently proposed that the protective properties of resveratrol may arise from its modulation of small non-coding regulatory RNAs, namely microRNAs. The aim of this review is to present up-to-date data on the control of microRNA expression by dietary phytophenols in different types of human cells, and their impact on cell differentiation, cancer development and the regulation of the inflammatory response.
Collapse
Affiliation(s)
- Allan Lançon
- Laboratory of Biochemistry of Peroxisomes, Inflammation and Lipid Metabolism (UB-INSERM, IFR # 100), University of Burgundy, F-21000, Dijon, France
| | | | | |
Collapse
|
772
|
Staszkiewicz J, Power RA, Harkins LL, Barnes CW, Strickler KL, Rim JS, Bondioli KR, Eilersten KJ. Silencing histone deacetylase-specific isoforms enhances expression of pluripotency genes in bovine fibroblasts. Cell Reprogram 2013; 15:397-404. [PMID: 24020699 DOI: 10.1089/cell.2013.0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) catalyze deacetylation of histones that results in altered transcriptional activity. Inhibitors of HDACs have been shown to induce transcriptional changes that contribute positively to reprogramming somatic cells either by nuclear transfer or inducing a pluripotent state. However, the exact molecular mechanisms whereby HDAC inhibitors function and the specificity of the HDAC isoforms in cell reprogramming are not yet fully understood. Herein, we report the ability of individual isoform-specific HDACs to modulate endogenous expression of pluripotency-associated genes in bovine somatic cells. This in vitro study showed that a transient selective depletion of HDACs resulted in elevated mRNA levels of Oct-4, Sox2, and Nanog. In particular, we found that inhibition of specific HDAC isoforms using small interfering (si) RNA significantly increased expression of Nanog, a key factor required for totipotency induced by somatic cell nuclear transfer and for maintaining pluripotency in embryonic and induced pluripotent stem cells. Our study suggests that this gene might be the most susceptible to HDAC activity inhibition. Moreover, a regulatory role of the class III HDAC, SIRT3, on an Oct4-Sox2-Nanog transcriptional network was revealed. We observed the upregulation of pluripotency-related genes by depletion of SIRT3. SIRT3 is localized to mitochondria and is associated with energy metabolism processes, suggesting metabolic changes may be linked to reprogramming in bovine fibroblasts. In conclusion, we show that targeting selective HDACs can potentially be useful to enhance reprogramming and that sirtuins may play a pivotal role in somatic cell reprogramming by upregulating an Oct4-Sox2-Nanog transcriptional network. Dedifferentiating donor somatic cells by upregulating developmentally important genes through specific knockdown of epigenetic targets, in particular HDACs, may provide a path to improving livestock cloning and the in vitro production of pluripotent cells.
Collapse
|
773
|
Tinneberg HR, Gasbarrini A. Infertility today: the management of female medical causes. Int J Gynaecol Obstet 2013; 123 Suppl 2:S25-30. [PMID: 24140222 DOI: 10.1016/j.ijgo.2013.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It has to be suspected that some environmentally hazardous substances have genotoxic properties, revealing their reproductive toxicity at a later stage only. Cancer, including childhood cancer, is more common than usually expected. Undesirable side effects of surgery, chemotherapy, and/or radiation can be premature ovarian failure or even premature menopause. In cases of autoimmune disease, autoantibodies can directly affect maturation of oocytes in the follicle, fertilization, and implantation. Spontaneous abortions are more common in patients with autoimmune disease. Thrombophilia is known to display a higher rate of spontaneous abortions as well as pre-eclampsia and intrauterine growth retardation. Infections are a common threat to pregnancy. Metabolic syndrome is increasingly frequent in western countries and often associated with hyperandrogenemia and polycystic disease. Women with inflammatory bowel disease such as Crohn disease or ulcerative colitis usually have no problems conceiving. In conclusion, even though infertility is a multifactorial disease, various medical and non-medical conditions can be attributed to it.
Collapse
|
774
|
Cordova A, Perreau C, Schmaltz-Panneau B, Locatelli Y, Ponsart C, Mermillod P. [Use of an in vitro model in bovine to evidence a functional and molecular dialogue between preimplantation embryo and oviduct epithelial cells]. ACTA ACUST UNITED AC 2013; 41:537-9. [PMID: 23958329 DOI: 10.1016/j.gyobfe.2013.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/09/2013] [Indexed: 11/30/2022]
Abstract
Beyond being a pipe between ovary and uterus, the oviduct is an active player in different aspects of early reproductive processes, in particular in the transport of embryos to the site of implantation and the regulation of its early development. Different studies evidenced a communication between oviduct and early embryo at the molecular and functional levels. Since the study of these interactions is difficult in vivo, different in vitro systems have been developed to mimic the maternal milieu during early development. These systems allowed to confirm the action of the cells on the quality of early development (blastocyst rate and viability). In turn, the embryos are producing signals that are able to modify and adapt the activity of maternal cells.
Collapse
Affiliation(s)
- A Cordova
- UMR7247, physiologie de la reproduction et des comportements, Institut national de recherche agronomique (INRA), 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
775
|
Greve TS, Judson RL, Blelloch R. microRNA control of mouse and human pluripotent stem cell behavior. Annu Rev Cell Dev Biol 2013; 29:213-239. [PMID: 23875649 DOI: 10.1146/annurev-cellbio-101512-122343] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, significant progress has been made in understanding both microRNA function and cellular pluripotency. Here we review the intersection of these two exciting fields. While microRNAs are not required for the establishment and maintenance of pluripotency in early development and cell culture, respectively, they are critically important in the regulation of the cell cycle structure of pluripotent stem cells as well as the silencing of the pluripotency program upon differentiation. Pluripotent cells, both in vivo and in vitro, dominantly express a single family of microRNAs, which can promote the reprogramming of a somatic cell back to a pluripotent state. Here, we review the known mechanisms by which these and other microRNAs regulate the different aspects of the pluripotent stem cell program in both mouse and human.
Collapse
Affiliation(s)
- Tobias S Greve
- Department of Urology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, Program in Biomedical Sciences, University of California, San Francisco, California, 94143
| | - Robert L Judson
- Department of Urology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, Program in Biomedical Sciences, University of California, San Francisco, California, 94143
| | - Robert Blelloch
- Department of Urology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, Program in Biomedical Sciences, University of California, San Francisco, California, 94143
| |
Collapse
|
776
|
Aiken CE, Tarry-Adkins JL, Ozanne SE. Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract. FASEB J 2013; 27:3959-65. [PMID: 23792302 DOI: 10.1096/fj.13-234484] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Early life exposure to adverse environments can lead to a variety of metabolic and cardiovascular diseases in offspring. We hypothesize that female reproductive function may also be affected, with subsequent implications for fertility. We used an established maternal low-protein model where animals are born small but undergo rapid postnatal catch-up growth by suckling a control-fed dam (recuperated offspring). Markers of oxidative stress and cellular aging in reproductive tract tissues were assessed at 3 and 6 mo of age. Recuperated offspring had lower birth weight than controls (P<0.01) but caught up during lactation. 4-Hydroxynonenal (4HNE; an indicator of oxidative stress) was increased in recuperated animals compared with controls in both ovaries and oviducts at 6 mo. At 3 and 6 mo, ovaries and oviducts of recuperated offspring had increased mitochondrial (mt)DNA copy number (P<0.01). By contrast, germ-line cells showed no difference in mtDNA copy number, suggesting they were protected from suboptimal maternal nutrition. Oviduct and somatic ovarian telomere length declined more rapidly with age in recuperated animals. This accelerated cellular aging was associated with a declined ovarian reserve in developmentally programmed animals. These findings have significant clinical implications in light of worldwide trends to delayed childbearing.
Collapse
Affiliation(s)
- Catherine E Aiken
- 1University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Rd., Cambridge, CB2 OQQ, UK.
| | | | | |
Collapse
|
777
|
Padberg I, Janßen S, Meyer TF. Chlamydia trachomatis inhibits telomeric DNA damage signaling via transient hTERT upregulation. Int J Med Microbiol 2013; 303:463-74. [PMID: 23830072 DOI: 10.1016/j.ijmm.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 05/27/2013] [Accepted: 06/02/2013] [Indexed: 01/30/2023] Open
Abstract
Epidemiological data exist to support a positive association between Chlamydia trachomatis (Ctr) infection and gynecological cancers; however, putative cellular mechanisms for this association are lacking. Here, we identified Ctr-induced perturbations to host cell phenotypes in vitro that persisted after clearance of infection and could directly contribute to host cell transformation. In particular, human telomerase catalytic subunit (hTERT) mRNA expression and catalytic subunit activity were increased in acute infected late passage IMR90E1A cells. hTERT upregulation was accompanied by recruitment of ceramide, a known regulator of hTERT, to the chlamydial inclusion and was abrogated following doxycycline-mediated infection clearance. In cells cleared of Ctr infection, average telomere length was slightly increased and immunofluorescence staining of the DNA damage marker γH2A.X was reduced after clearance of infection compared with cells that had not been infected. Reduced p53 binding to the promoter of the cell cycle checkpoint regulator p21 was also detected in cells cleared of infection and p21 levels were reduced; moreover, this cell population exhibited increased resistance to etoposide-induced DNA damage. Thus, Ctr infection altered cell aging and survival pathways, which persisted after infection clearance. Cells that survive infection are likely to exhibit altered physiology, as evidenced by an increased resistance to DNA damage-induced apoptosis, which may support cellular transformation.
Collapse
Affiliation(s)
- Inken Padberg
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | | | | |
Collapse
|
778
|
Genetic and pharmacologic inhibition of complement impairs endothelial cell function and ablates ovarian cancer neovascularization. Neoplasia 2013; 14:994-1004. [PMID: 23226093 DOI: 10.1593/neo.121262] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 12/16/2022] Open
Abstract
Complement activation plays a critical role in controlling inflammatory responses. To assess the role of complement during ovarian cancer progression, we crossed two strains of mice with genetic complement deficiencies with transgenic mice that develop epithelial ovarian cancer (TgMISIIR-TAg). TgMISIIR-TAg mice fully or partially deficient for complement factor 3 (C3) (Tg(+)C3(KO) and Tg(+)C3(HET), respectively) or fully deficient for complement factor C5a receptor (C5aR) (Tg(+)C5aR(KO)) develop either no ovarian tumors or tumors that were small and poorly vascularized compared to wild-type littermates (Tg(+)C3(WT), Tg(+)C5aR(WT)). The percentage of tumor infiltrating immune cells in Tg(+)C3(HET) tumors compared to Tg(+)C3(WT) controls was either similar (macrophages, B cells, myeloid-derived suppressor cells), elevated (effector T cells), or decreased (regulatory T cells). Regardless of these ratios, cytokine production by immune cells taken from Tg(+)C3(HET) tumors was reduced on stimulation compared to Tg(+)C3(WT) controls. Interestingly, CD31(+) endothelial cell (EC) function in angiogenesis was significantly impaired in both C3(KO) and C5aR(KO) mice. Further, using the C5aR antagonist PMX53, tube formation of ECs was shown to be C5a-dependent, possibly through interactions with the VEGF(165) but not VEGF(121) isoform. Finally, the mouse VEGF(164) transcript was underexpressed in C3(KO) livers compare to C3(WT) livers. Thus, we conclude that complement inhibition blocks tumor outgrowth by altering EC function and VEGF(165) expression.
Collapse
|
779
|
Management of thyroid peroxidase antibody euthyroid women in pregnancy: comparison of the american thyroid association and the endocrine society guidelines. J Thyroid Res 2013; 2013:542692. [PMID: 23738229 PMCID: PMC3666229 DOI: 10.1155/2013/542692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/27/2013] [Indexed: 01/27/2023] Open
Abstract
The presence of thyroid autoantibodies is relatively high in women of childbearing age. There is evidence that positive thyroperoxidase antibody even in euthyroid women may increase the risk of spontaneous and recurrent pregnancy loss and preterm delivery. However, the evidence is not enough to justify recommendation on the screening of pregnant women for thyroid autoantibodies or LT4 supplementation for reducing maternal or fetal complications. In this paper we reviewed the related evidence and compared the new guidelines of the American Thyroid Association and Endocrine Society with respect to the screening and management of positive thyroperoxidase antibody in euthyroid pregnant women. As there was no major contradiction or disagreement between the two guidelines, either one of two guidelines may be used by clinicians for the appropriate management of thyroid autoimmunity during pregnancy.
Collapse
|
780
|
Chen K, Hsu LT, Wu CY, Chang SY, Huang HT, Chen W. CBARA1 plays a role in stemness and proliferation of human embryonic stem cells. PLoS One 2013; 8:e63653. [PMID: 23667653 PMCID: PMC3648555 DOI: 10.1371/journal.pone.0063653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/04/2013] [Indexed: 12/04/2022] Open
Abstract
Human embryonic stem cells (hESCs) are capable of unlimited self-renewal and can generate almost all of the cells in the body. Although some pluripotency factors have been identified, much remains unclear regarding the molecules and mechanisms that regulate hESC self-renewal and pluripotency. In this study, we identified a mitochondrial gene, CBARA1, that is expressed in undifferentiated hESCs and that is down-regulated rapidly after cellular differentiation. To study its role in hESCs, endogenous CBARA1 expression was knocked down using shRNA. CBARA1 knockdown in hESCs resulted in down-regulation of Oct4 and Nanog expression, attenuated cell growth, and G0/G1 phase cell cycle arrest; however, knockdown did not noticeably affect apoptosis. Taken together, these results suggest that CBARA1 is a marker for undifferentiated hESCs that plays a role in maintaining stemness, cell cycle progression, and proliferation.
Collapse
Affiliation(s)
- Kevin Chen
- Department of Tissue Regeneration Product Technology, Faculty of Biomedical Technology and Device Research, Industrial Technology Research Institute, Hsinchu, Taiwan.
| | | | | | | | | | | |
Collapse
|
781
|
Sharma A, Diecke S, Zhang WY, Lan F, He C, Mordwinkin NM, Chua KF, Wu JC. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem 2013; 288:18439-47. [PMID: 23653361 DOI: 10.1074/jbc.m112.405928] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6, or SIRT6, has recently been identified as a critical regulator of transcription, genome stability, telomere integrity, DNA repair, and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging, we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects, but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6, little is known about the molecular mechanism of its regulation. We show, for the first, time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop, which has implications for the modulation of SIRT6 expression in reprogramming of aging cells.
Collapse
Affiliation(s)
- Amit Sharma
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
782
|
Boufettal H, Feige JJ, Benharouga M, Aboussaouira T, Nadifi S, Mahdaoui S, Samouh N, Alfaidy N. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases]. ACTA ACUST UNITED AC 2013; 61:178-83. [PMID: 23647696 DOI: 10.1016/j.patbio.2013.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 02/15/2013] [Indexed: 10/26/2022]
Abstract
Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter.
Collapse
Affiliation(s)
- H Boufettal
- 29, lotissement Abdelmoumen, résidence Al Mokhtar, 20340 Casablanca, Maroc; Centre d'études doctorales, formation doctorale en génétique et biologie moléculaire, faculté de médecine et de pharmacie, université Aïn Chok, Casablanca, Maroc; Service de gynécologie-obstétrique « C », faculté de médecine et de pharmacie, université Aïn Chok, CHU Ibn Rochd, Casablanca, Maroc.
| | | | | | | | | | | | | | | |
Collapse
|
783
|
Nie F, Wang J, Su D, Shi Y, Chen J, Wang H, Qin W, Shi L. Abnormal activation of complement C3 in the spinal dorsal horn is closely associated with progression of neuropathic pain. Int J Mol Med 2013; 31:1333-42. [PMID: 23588254 DOI: 10.3892/ijmm.2013.1344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/20/2013] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the role of complement activation in the pathogenesis of neuropathic pain (NPP) induced by peripheral nerve injury. We modified a classical chronic constriction injury (CCI) model (mCCI), and verified its reliability in rats. Furthermore, reverse transcription-PCR and immunohistochemistry were conducted to investigate complement activation in the spinal dorsal horn and the effect of a complement inhibitor, cobra venom factor (CVF), on the behavior of the mCCI model rats. We found that rats in the mCCI group presented a better general condition, without signs of autophagy of the toes. Moreover, mCCI induced a significant increase (+40%) in the expression of component 3 (C3) mRNA in the spinal dorsal horn, which was associated with hyperalgesia. Correlation analysis showed a negative correlation between the mechanical pain threshold and the expression of C3 in the spinal cord. Administration of CVF reduced the occurrence of hyperalgesia in mCCI rats and nearly reversed the hyperalgesia. In addition, the mCCI rats exhibited significantly less spinal superoxide dismutase activity and significantly greater levels of maleic dialdehyde compared to the sham-operated rats. Transmission electron micrographs revealed mitochondrial swelling, cell membrane damage, and cristae fragmentation in the neurons of the spinal dorsal horn 14 days after mCCI. Mitochondrial swelling was attenuated in mCCI rats receiving CVF. The findings demonstrated that abnormal complement activation occurred in the dorsal horn of the spinal cord in rats with NPP, and C3 in the spinal dorsal horn could play an important role in the cascade reaction of complements that are involved in the development of hyperalgesia.
Collapse
Affiliation(s)
- Fachuan Nie
- Department of Pain Care and Nonvascular Intervention, Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
784
|
Serrano L, Vazquez BN, Tischfield J. Chromatin structure, pluripotency and differentiation. Exp Biol Med (Maywood) 2013; 238:259-70. [PMID: 23598971 DOI: 10.1177/1535370213480718] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The state of cell differentiation in adult tissues was once thought to be permanent and irreversible. Since Dolly's cloning and, more recently, the generation of induced pluripotent stem cells (iPSCs) from differentiated cells, the traditional paradigm of cell identity has been reexamined. Much effort has been directed toward understanding how cellular identity is achieved and maintained, and studies are ongoing to investigate how cellular identity can be changed. Cell-specific transcription patterns can be altered by modulating the expression of a few transcription factors, which are known as master regulators of cell fate. Epigenetics also plays a major role in cell type specification because the differentiation process is accompanied by major chromatin remodeling. Moreover, whole-genome analyses reveal that nuclear architecture, as defined by the establishment of chromatin domains, regulates gene interactions in a cell-type-specific manner. In this paper, we review the current knowledge of chromatin states that are relevant to both pluripotency and gene expression during differentiation. Information about the epigenetic regulation of gene expression in iPSCs or naïve embryonic stem cells, compared with their differentiated derivatives, will be important as a practical consideration in the long-term maintenance of pluripotent cell cultures for therapeutic purposes.
Collapse
Affiliation(s)
- Lourdes Serrano
- Human Genetics Institute of New Jersey, Rutgers, The
State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Berta N Vazquez
- Human Genetics Institute of New Jersey, Rutgers, The
State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jay Tischfield
- Human Genetics Institute of New Jersey, Rutgers, The
State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
785
|
Kovac JR, Lipshultz LI. Interaction between oviductal epithelial cells and spermatozoa underlies a systems biology approach to treating infertility. Fertil Steril 2013; 99:1207-8. [PMID: 23375203 DOI: 10.1016/j.fertnstert.2012.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022]
Affiliation(s)
- Jason R Kovac
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
786
|
Huang VW, Zhao W, Lee CL, Lee CYL, Lam KKW, Ko JKY, Yeung WSB, Ho PC, Chiu PCN. Cell membrane proteins from oviductal epithelial cell line protect human spermatozoa from oxidative damage. Fertil Steril 2013; 99:1444-1452.e3. [PMID: 23312221 DOI: 10.1016/j.fertnstert.2012.11.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/10/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the potential protective action in vitro of oviductal epithelial cell membrane proteins against oxidative damage in human spermatozoa. DESIGN Prospective in vitro study. SETTING University research laboratory and infertility clinic. PATIENT(S) Semen from men attending the infertility clinic at the Queen Mary Hospital with normal semen parameters (World Health Organization, 2010). INTERVENTION(S) We studied the effect of oviductal epithelial cell membrane proteins on the sperm functions and endogenous antioxidant enzyme activities. MAIN OUTCOME MEASURE(S) Sperm motility, lipid peroxidation, DNA fragmentation, intracellular reactive oxygen species (ROS) level, superoxide dismutase, and glutathione peroxidase activities. RESULT(S) Oviductal epithelial cell membrane proteins bind to the human spermatozoa and protect them from ROS-induced damages in terms of sperm motility, membrane integrity, DNA integrity, and intracellular ROS level. Spermatozoa-oviduct epithelial cell interaction also enhances the antioxidant defenses in spermatozoa. CONCLUSION(S) Our results demonstrated the protective effects of spermatozoon-oviductal epithelial cell interaction against oxidative stress in human spermatozoa. The results enhance our understanding of the protective mechanism of oviduct on sperm functions.
Collapse
Affiliation(s)
- Venus W Huang
- Department of Obstetrics and Gynecology, University of Hong Kong, Queen Mary Hospital, Hong Kong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
787
|
Xu Z, Jiang J, Xu C, Wang Y, Sun L, Guo X, Liu H. MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells. PLoS One 2013; 8:e53146. [PMID: 23301034 PMCID: PMC3536801 DOI: 10.1371/journal.pone.0053146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/23/2012] [Indexed: 12/03/2022] Open
Abstract
As a novel epigenetic mechanism, histone H3 methylation at R17 and R26, which is mainly catalyzed by coactivator-associated protein arginine methyltransferase 1 (CARM1), has been reported to modulate the transcription of key pluripotency factors and to regulate pluripotency in mouse embryos and mouse embryonic stem cells (mESCs) in previous studies. However, the role of CARM1 in human embryonic stem cells (hESCs) and the regulatory mechanism that controls CARM1 expression during ESCs differentiation are presently unknown. Here, we demonstrate that CARM1 plays an active role in the resistance to differentiation in hESCs by regulating pluripotency genes in response to BMP4. In a functional screen, we identified the miR-181 family as a regulator of CARM1 that is induced during ESC differentiation and show that endogenous miR-181c represses the expression of CARM1. Depletion of CARM1 or enforced expression of miR-181c inhibits the expression of pluripotency genes and induces differentiation independent of BMP4, whereas overexpression of CARM1 or miR-181c inhibitor elevates Nanog and impedes differentiation. Furthermore, expression of CARM1 rescue constructs inhibits the effect of miR-181c overexpression in promoting differentiation. Taken together, our findings demonstrate the importance of a miR-181c-CARM1 pathway in regulating the differentiation of hESCs.
Collapse
Affiliation(s)
- Zhenyu Xu
- Research Center of Developmental Biology, Second Military Medical University, Shanghai, China
| | - Junfeng Jiang
- Research Center of Developmental Biology, Second Military Medical University, Shanghai, China
| | - Chen Xu
- Research Center of Developmental Biology, Second Military Medical University, Shanghai, China
| | - Yue Wang
- Research Center of Developmental Biology, Second Military Medical University, Shanghai, China
- * E-mail: (HL); (YW)
| | - Lei Sun
- Research Center of Developmental Biology, Second Military Medical University, Shanghai, China
| | - Xiaocan Guo
- Research Center of Developmental Biology, Second Military Medical University, Shanghai, China
| | - Houqi Liu
- Research Center of Developmental Biology, Second Military Medical University, Shanghai, China
- * E-mail: (HL); (YW)
| |
Collapse
|
788
|
Abstract
Since the early twentieth century, inheritance was seen as the inheritance of genes. Concurrent with the acceptance of the genetic theory of inheritance was the rejection of the idea that the cytoplasm of the oocyte could also play a role in inheritance and a corresponding devaluation of embryology as a discipline critical for understanding human development. Development, and variation in development, came to be viewed solely as matters of genetic inheritance and genetic variation. We now know that inheritance is a matter of both genetic and cytoplasmic inheritance. A growing awareness of the centrality of the cytoplasm in explaining both human development and phenotypic variation has been promoted by two contemporaneous developments: the continuing elaboration of the molecular mechanisms of epigenetics and the global rise of artificial reproductive technologies. I review recent developments in the ongoing elaboration of the role of the cytoplasm in human inheritance and development.
Collapse
Affiliation(s)
- Evan Charney
- Sanford School of Public Policy, Duke University, Durham, NC, USA.
| |
Collapse
|
789
|
Abstract
The endometrium has a complex and dynamic blood and lymphatic vasculature which undergoes regular cycles of growth and breakdown. While we now have a detailed picture of the endometrial blood vasculature, our understanding of the lymphatic vasculature in the endometrium is limited. Recent studies have illustrated that the endometrium contains a population of lymphatic vessels with restricted distribution in the functional layer relative to the basal layer. The mechanisms responsible for this restricted distribution and the consequences for endometrial function are not known. This review will summarise our current understanding of endometrial lymphatics, including the mechanisms regulating their growth and function. The potential contribution of lymphatic vessels and lymphangiogenic growth factors to various endometrial disorders will be discussed.
Collapse
Affiliation(s)
- Jane E Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC, Australia.
| | | |
Collapse
|
790
|
Ye TM, Pang RT, Leung CO, Liu W, Yeung WS. Development and characterization of an endometrial tissue culture model for study of early implantation events. Fertil Steril 2012; 98:1581-9. [DOI: 10.1016/j.fertnstert.2012.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 11/29/2022]
|
791
|
Brouillet S, Hoffmann P, Feige JJ, Alfaidy N. EG-VEGF: a key endocrine factor in placental development. Trends Endocrinol Metab 2012; 23:501-508. [PMID: 22709436 DOI: 10.1016/j.tem.2012.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF), also named prokineticin 1, is the canonical member of the prokineticin family. Numerous reports suggest a direct involvement of this peptide in normal and pathological reproductive processes. Recent advances propose EG-VEGF as a key endocrine factor that controls many aspects of placental development and suggest its involvement in the development of preeclampsia (PE), the most threatening pathology of human pregnancy. This review describes the finely tuned action and regulation of EG-VEGF throughout human pregnancy, argues for its clinical relevance as a potential diagnostic marker of the onset of PE, and discusses future research directions for therapeutic targeting of EG-VEGF.
Collapse
Affiliation(s)
- Sophie Brouillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1036, Grenoble, France
| | | | | | | |
Collapse
|
792
|
Yoo SW, Bolbot T, Koulova A, Sneeringer R, Humm K, Dagon Y, Usheva A. Complement factors are secreted in human follicular fluid by granulosa cells and are possible oocyte maturation factors. J Obstet Gynaecol Res 2012; 39:522-7. [PMID: 22925265 DOI: 10.1111/j.1447-0756.2012.01985.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS In this study, we identify components of the complement system present in human follicular fluid that affect oocyte development and maturation. MATERIAL AND METHODS Using bottom-up liquid chromatography/mass spectrometry/mass spectrometry, we identified complement factors as consistently present in human follicular fluid from 15 different subjects. RESULTS According to our gene-chip data, these complement factors are actively produced by granulosa cells. CONCLUSIONS By applying the computational Ingenuity Pathway Analysis software and database we have identified complement pathways that play a role in oocyte maturation and follicular development.
Collapse
Affiliation(s)
- Sang Wook Yoo
- Departments of Medicine, Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
793
|
Cebrian-Serrano A, Salvador I, García-Roselló E, Pericuesta E, Pérez-Cerezales S, Gutierrez-Adán A, Coy P, Silvestre MA. Effect of the Bovine Oviductal Fluid onIn VitroFertilization, Development and Gene Expression ofIn Vitro-Produced Bovine Blastocysts. Reprod Domest Anim 2012; 48:331-8. [DOI: 10.1111/j.1439-0531.2012.02157.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
794
|
WEN CW, NING DG, LIU RJ, ZHANG YW. A Novel Target for Starving Tumor Therapy: Endocrine-gland-derived Vascular Endothelial Growth Factor*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
795
|
Gao MZ, Zhao XM, Lin Y, Sun ZG, Zhang HQ. Effects of EG-VEGF, VEGF and TGF-β1 on pregnancy outcome in patients undergoing IVF-ET treatment. J Assist Reprod Genet 2012; 29:1091-6. [PMID: 22847371 DOI: 10.1007/s10815-012-9833-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/13/2012] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To investigate the correlation of endocrine gland-derived vascular endothelial growth factor (EG-VEGF), vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGF-β1) with the corresponding reproductive outcome in patients who received in vitro fertilization-embryo transfer (IVF-ET). METHODS Sixty-seven women undergoing IVF-ET at a university tertiary hospital were recruited for a prospective study. Concentrations of EG-VEGF, VEGF and TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA) in follicular fluid (FF) collected during oocyte retrieval (OR) and in serum collected 2 days after OR. RESULTS In FF, concentrations of both EG-VEGF and VEGF were negatively correlated with peak E2 and the number of MII oocytes retrieved, and positively correlated with each other. In serum, concentrations of all the three growth factors were positively correlated with the rate of good quality embryo, and with one another. Patients in the pregnancy group had lower peak E2 concentrations and higher serum EG-VEGF concentrations than those in the non-pregnancy group, but such tendency was not observed in the case of VEGF and TGF-β1. CONCLUSIONS Both concentrations of EG-VEGF and VEGF in FF were negatively correlated with ovarian response and oocyte maturation. Concentrations of all the three growth factors in serum were positively correlated with embryo quality, but only serum concentrations of EG-VEGF were associated with the pregnancy outcome.
Collapse
Affiliation(s)
- Min-zhi Gao
- Shanghai Medical College of Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
796
|
Takahashi M. Oxidative stress and redox regulation on in vitro development of mammalian embryos. J Reprod Dev 2012; 58:1-9. [PMID: 22450278 DOI: 10.1262/jrd.11-138n] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many factors affect development of mammalian preimplantation embryos in vitro. It is well known that in vitro development of bovine embryos is highly affected by culture condition including energy source, growth factors, pH or gas environment. Many efforts have been made towards the suitable environments which can successfully support embryo development in vitro. For a rapid growth and differentiation, embryo requires energy by utilizing ATP, NADPH with oxygen molecules. These energy substrates are produced from the electron transport chain in the mitochondria. In addition to energy production, reactive oxygen species (ROS) are also generated as by-product of such energy production system. ROS production is sensitively controlled by the balance of oxidizing and reducing status and affected by several antioxidant enzymes such as superoxide dismutase (SOD), Catalase, glutathione peroxidase (GPx) or low molecular weight thiols such as glutathione (GSH). Imbalance of oxidation and reduction causes production of excess ROS, which causes the developmental arrest, physical DNA damage, apoptosis induction or lipid peroxidation. Environmental oxygen condition during embryo culture also highly affects embryo development as well as intracellular redox balance. Several studies have revealed that regulation of intra- and extra- cellular reducing environment by reducing excess ROS by using antioxidants, reducing oxygen concentration are effective for improving embryo development. Also, recent studies have demonstrated the difference in gene expression affected by oxidative stress. This review briefly summarizes the effects of ROS and the role of redox balance on preimplantation embryos for improving the efficiency of in vitro production of mammalian embryos.
Collapse
Affiliation(s)
- Masashi Takahashi
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto 861-1192, Japan.
| |
Collapse
|
797
|
Xie H, Sun X, Piao Y, Jegga AG, Handwerger S, Ko MSH, Dey SK. Silencing or amplification of endocannabinoid signaling in blastocysts via CB1 compromises trophoblast cell migration. J Biol Chem 2012; 287:32288-97. [PMID: 22833670 DOI: 10.1074/jbc.m112.381145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endocannabinoid signaling plays key roles in multiple female reproductive events. Previous studies have shown an interesting phenomenon, that mice with either silenced or elevated endocannabinoid signaling via Cnr1 encoding CB(1) show similar defects in several pregnancy events, including preimplantation embryo development. To unravel the downstream signaling of this phenomenon, microarray studies were performed using RNAs collected from WT, Cnr1(-/-), and Faah(-/-) mouse blastocysts on day 4 of pregnancy. The results indicate that about 100 genes show unidirectional changes under either silenced or elevated anandamide signaling via CB(1). Functional enrichment analysis of the microarray data predicted that multiple biological functions and pathways are affected under aberrant endocannabinoid signaling. Among them, genes enriched in cell migration are suppressed in Cnr1(-/-) or Faah(-/-) blastocysts. Cell migration assays validated the prediction of functional enrichment analysis that cell mobility and spreading of either Cnr1(-/-) or Faah(-/-) trophoblast stem cells are compromised. Either silenced or elevated endocannabinoid signaling via CB(1) causes similar changes in downstream targets in preimplantation embryos and trophoblast stem cells. This study provides evidence that a tightly regulated endocannabinoid signaling is critical to normal preimplantation embryo development and migration of trophoblast stem cells.
Collapse
Affiliation(s)
- Huirong Xie
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
798
|
Jefferson WN, Padilla-Banks E, Phelps JY, Cantor AM, Williams CJ. Neonatal phytoestrogen exposure alters oviduct mucosal immune response to pregnancy and affects preimplantation embryo development in the mouse. Biol Reprod 2012; 87:10, 1-10. [PMID: 22553218 DOI: 10.1095/biolreprod.112.099846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of neonatal mice with the phytoestrogen genistein (50 mg/kg/day) results in complete female infertility caused in part by preimplantation embryo loss in the oviduct between Days 2 and 3 of pregnancy. We previously demonstrated that oviducts of genistein-treated mice are "posteriorized" as compared to control mouse oviducts because they express numerous genes normally restricted to posterior regions of the female reproductive tract (FRT), the cervix and vagina. We report here that neonatal genistein treatment resulted in substantial changes in oviduct expression of genes important for the FRT mucosal immune response, including immunoglobulins, antimicrobials, and chemokines. Some of the altered immune response genes were chronically altered beginning at the time of neonatal genistein treatment, indicating that these alterations were a result of the posteriorization phenotype. Other alterations in oviduct gene expression were observed only in early pregnancy, immediately after the FRT was exposed to inflammatory or antigenic stimuli from ovulation and mating. The oviduct changes affected development of the surviving embryos by increasing the rate of cleavage and decreasing the trophectoderm-to-inner cell mass cell ratio at the blastocyst stage. We conclude that both altered immune responses to pregnancy and deficits in oviduct support for preimplantation embryo development in the neonatal genistein model are likely to contribute to infertility phenotype.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
799
|
Yang X, Tao S, Orlando R, Brockhausen I, Kan FWK. Structures and biosynthesis of the N- and O-glycans of recombinant human oviduct-specific glycoprotein expressed in human embryonic kidney cells. Carbohydr Res 2012; 358:47-55. [PMID: 22817996 DOI: 10.1016/j.carres.2012.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Oviduct-specific glycoprotein (OVGP1) is a major mucin-like glycoprotein synthesized and secreted exclusively by non-ciliated secretory cells of mammalian oviduct. In vitro functional studies showed that OVGP1 plays important roles during fertilization and early embryo development. We have recently produced recombinant human oviduct-specific glycoprotein (rhOVGP1) in human embryonic kidney 293 (HEK293) cells. The present study was undertaken to characterize the structures and determine the biosynthetic pathways of the N- and O-glycans of rhOVGP1. Treatment of the stable rhOVGP1-expressing HEK293 cells with either GalNAcα-Bn to block O-glycan extension, tunicamycin to block N-glycosylation, or neuraminidase increased the electrophoretic mobility of rhOVGP1. A detailed analysis of O- and N-linked glycans of rhOVGP1 by mass spectrometry showed a broad range of many simple and complex glycan structures. In order to identify the enzymes involved in the glycosylation of rhOVGP1, we assayed glycosyltransferase activities involved in the assembly of O- and N-glycans in HEK293 cells, and compared these to those from the immortalized human oviductal cells (OE-E6/E7). Our results demonstrate that HEK293 and OE-E6/E7 cells exhibit a similar spectrum of glycosyltransferase activities that can synthesize elongated and sialylated O-glycans with core 1 and 2 structures, as well as complex multiantennary N-glycans. It is anticipated that the knowledge gained from the present study will facilitate future studies of the role of the glycans of human OVGP1 in fertilization and early embryo development.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
800
|
Qu XW, Jilling T, Neerhof MG, Luo K, Hirsch E, Thaete LG. Unilateral uterine ischemia/reperfusion-induced bilateral fetal loss and fetal growth restriction in a murine model require intact complement component 5. J Reprod Immunol 2012; 95:27-35. [PMID: 22688254 DOI: 10.1016/j.jri.2012.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
The role of complement in ischemia/reperfusion-induced fetal growth restriction and fetal loss is unknown. C5-deficient or wild type timed-pregnant mice were subjected to unilateral uterine ischemia/reperfusion on gestation day 13, either by (1) partial flow restriction by right ovarian artery clamping for 30 min, or (2) total flow restriction by clamping both ovarian and uterine arteries for 5 min. Ischemia/reperfusion-challenged pregnancy outcomes were compared to sham-operated controls 5 days later. Ischemia/reperfusion-treated wild type mice exhibited significantly increased bilateral fetal loss, which was greater in total flow restriction than in partial flow restriction, and decreased fetal weights, which were the same in total flow restriction and partial flow restriction for the surviving fetuses. Placental weights were unchanged by treatments. Ischemia/reperfusion increased uterine, but not placental, myeloperoxidase activity, which correlated with fetal loss. In contrast, C5-deficient mice were protected from both fetal growth restriction and fetal loss, and exhibited no increase in myeloperoxidase activity. These results demonstrate that unilateral uterine ischemia/reperfusion results in bilateral fetal loss and fetal growth restriction, mediated by a systemic mechanism. In the current model, this pathological process is completely dependent on intact complement component 5.
Collapse
Affiliation(s)
- Xiao-Wu Qu
- Department of Obstetrics & Gynecology, NorthShore University HealthSystem Research Institute, Evanston, IL 60201, USA
| | | | | | | | | | | |
Collapse
|