751
|
Gonzalez A, del Castillo-Vaquero A, Miro-Moran A, Tapia JA, Salido GM. Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res 2011; 50:250-260. [PMID: 21118301 DOI: 10.1111/j.1600-079x.2010.00834.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin reduces proliferation in many different cancer cell lines. Thus, melatonin is considered a promising antitumor agent, promoting apoptosis in tumor cells while preserving viability of normal cells. Herein, we examined the effects of melatonin on the pancreatic AR42J tumor cell line. We have analyzed cytosolic-free Ca(2+) concentration ([Ca(2+) ](c) ), mitochondrial-free Ca(2+) concentration ([Ca(2+) ](m) ), mitochondrial membrane potential (Ψm), mitochondrial flavin adenine dinucleotide (FAD) oxidative state, cellular viability and caspase-3 activity. Our results show that melatonin induced transient changes in [Ca(2+) ](c) and [Ca(2+) ](m) . Melatonin also induced depolarization of Ψm and led to a reduction in the level of oxidized FAD. In addition, melatonin reduced AR42J cell viability. Finally, we found a Ca(2+) -dependent caspase-3 activation in response to melatonin. Collectively, these data support the likelihood that melatonin reduces viability of tumor AR42J cells via its action on mitochondrial activity and caspase-3 activation.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, Caceres, Spain.
| | | | | | | | | |
Collapse
|
752
|
Orabi AI, Shah AU, Muili K, Luo Y, Mahmood SM, Ahmad A, Reed A, Husain SZ. Ethanol enhances carbachol-induced protease activation and accelerates Ca2+ waves in isolated rat pancreatic acini. J Biol Chem 2011; 286:14090-7. [PMID: 21372126 DOI: 10.1074/jbc.m110.196832] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alcohol abuse is a leading cause of pancreatitis, accounting for 30% of acute cases and 70-90% of chronic cases, yet the mechanisms leading to alcohol-associated pancreatic injury are unclear. An early and critical feature of pancreatitis is the aberrant signaling of Ca(2+) within the pancreatic acinar cell. An important conductor of this Ca(2+) is the basolaterally localized, intracellular Ca(2+) channel ryanodine receptor (RYR). In this study, we examined the effect of ethanol on mediating both pathologic intra-acinar protease activation, a precursor to pancreatitis, as well as RYR Ca(2+) signals. We hypothesized that ethanol sensitizes the acinar cell to protease activation by modulating RYR Ca(2+). Acinar cells were freshly isolated from rat, pretreated with ethanol, and stimulated with the muscarinic agonist carbachol (1 μM). Ethanol caused a doubling in the carbachol-induced activation of the proteases trypsin and chymotrypsin (p < 0.02). The RYR inhibitor dantrolene abrogated the enhancement of trypsin and chymotrypsin activity by ethanol (p < 0.005 for both proteases). Further, ethanol accelerated the speed of the apical to basolateral Ca(2+) wave from 9 to 18 μm/s (p < 0.0005; n = 18-22 cells/group); an increase in Ca(2+) wave speed was also observed with a change from physiologic concentrations of carbachol (1 μM) to a supraphysiologic concentration (1 mM) that leads to protease activation. Dantrolene abrogated the ethanol-induced acceleration of wave speed (p < 0.05; n = 10-16 cells/group). Our results suggest that the enhancement of pathologic protease activation by ethanol is dependent on the RYR and that a novel mechanism for this enhancement may involve RYR-mediated acceleration of Ca(2+) waves.
Collapse
Affiliation(s)
- Abrahim I Orabi
- Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
753
|
Giusti MF, Sato MA, Cardoso LM, Braga VA, Colombari E. Central antioxidant therapy inhibits parasympathetic baroreflex control in conscious rats. Neurosci Lett 2011; 489:115-8. [DOI: 10.1016/j.neulet.2010.11.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 02/07/2023]
|
754
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
755
|
Reddy VD, Padmavathi P, Kavitha G, Gopi S, Varadacharyulu N. Emblica officinalis Ameliorates Alcohol-Induced Brain Mitochondrial Dysfunction in Rats. J Med Food 2011; 14:62-8. [DOI: 10.1089/jmf.2010.1122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | - Pannuru Padmavathi
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, India
| | - Godugu Kavitha
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, India
| | - Sriram Gopi
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
756
|
Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB. Pro-Oxidant Effect of Melatonin in Tumour Leucocytes: Relation with its Cytotoxic and Pro-Apoptotic Effects. Basic Clin Pharmacol Toxicol 2010; 108:14-20. [DOI: 10.1111/j.1742-7843.2010.00619.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
757
|
Abstract
Alcoholic pancreatitis is a major complication of alcohol abuse. The risk of developing pancreatitis increases with increasing doses of alcohol, suggesting that alcohol exerts dose-related toxic effects on the pancreas. However, it is also clear that only a minority of alcoholics develop the disease, indicating that an additional trigger may be required to initiate clinically evident pancreatic injury. It is now well established that alcohol is metabolized by the pancreas via both oxidative and non-oxidative metabolites. Alcohol and its metabolites produce changes in the acinar cells, which may promote premature intracellular digestive enzyme activation thereby predisposing the gland to autodigestive injury. Pancreatic stellate cells (PSCs) are activated directly by alcohol and its metabolites and also by cytokines and growth factors released during alcohol-induced pancreatic necroinflammation. Activated PSCs are the key cells responsible for producing the fibrosis of alcoholic chronic pancreatitis. Efforts to identify clinically relevant factors that may explain the susceptibility of some alcoholics to pancreatitis have been underway for several years. An unequivocal, functionally characterized, association is yet to be identified in clinical studies, although in the experimental setting, endotoxin has been shown to trigger overt pancreatic injury and to promote disease progression in alcohol-fed animals. Thus, while the molecular effects of alcohol on the pancreas have been increasingly clarified in recent years, identification of predisposing or triggering factors remains a challenge.
Collapse
Affiliation(s)
- Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Liverpool Hospital and School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
758
|
Martín-Montañez E, Acevedo MJ, López-Téllez JF, Duncan RS, Mateos AG, Pavía J, Koulen P, Khan ZU. Regulator of G-protein signaling 14 protein modulates Ca²+ influx through Cav1 channels. Neuroreport 2010; 21:1034-9. [PMID: 20842066 PMCID: PMC3181207 DOI: 10.1097/wnr.0b013e32833f7b7b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Calcium flux through L-type voltage-activated calcium (Cav1) channels is crucial for regulating brain functions including memory formation and behavior. Alterations in Ca²+ homeostasis have been linked to many cognitive disorders, and understanding the regulation of this process is crucial for their remedy. Therefore, here, we have evaluated the effect of a multifunctional protein known to be involved in memory functions called regulator of G-protein signaling 14 (RGS-14) on Cav1 channel activity in neuronal cell lines NG108-15 and SH-SY5Y. RGS-14 protein produced significant reduction in Ca²+ influx in both cell lines and this effect was dependent on nifedipine-sensitive Cav1 channels. Thus, our results provide evidence supporting the idea that RGS-14 may facilitate the cognitive processing by modulating Cav1 channel-mediated intracellular Ca²+ transients.
Collapse
Affiliation(s)
- Elisa Martín-Montañez
- Laboratory of Neurobiology at CIMES, University of Malaga, Malaga, Spain
- Department of Pharmacology at Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Maria José Acevedo
- Laboratory of Neurobiology at CIMES, University of Malaga, Malaga, Spain
| | - Juan Félix López-Téllez
- Laboratory of Neurobiology at CIMES, University of Malaga, Malaga, Spain
- Department of Medicine at Faculty of Medicine, University of Malaga, Malaga, Spain
- CIBERNED, Institute of Health Carlos III, Madrid, Spain
| | - R. Scott Duncan
- Departments of Ophthalmology and Basic Medical Science, University of Missouri-Kansas City, Kansas City, Missouri, U.S.A
- Vision Research Center, University of Missouri-Kansas City, Kansas City, Missouri, U.S.A
| | - Antonio González Mateos
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, Caceres, Spain
| | - José Pavía
- Department of Pharmacology at Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Peter Koulen
- Departments of Ophthalmology and Basic Medical Science, University of Missouri-Kansas City, Kansas City, Missouri, U.S.A
- Vision Research Center, University of Missouri-Kansas City, Kansas City, Missouri, U.S.A
| | - Zafar U. Khan
- Laboratory of Neurobiology at CIMES, University of Malaga, Malaga, Spain
- Department of Medicine at Faculty of Medicine, University of Malaga, Malaga, Spain
- CIBERNED, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
759
|
Cheng R, Shao MY, Yang H, Cheng L, Wang FM, Zhou XD, Hu T. The effect of lysophosphatidic acid and Rho-associated kinase patterning on adhesion of dental pulp cells. Int Endod J 2010; 44:2-8. [PMID: 21073482 DOI: 10.1111/j.1365-2591.2010.01773.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To investigate the effects of lysophosphatidic acid (LPA) and the Rho/Rho-associated kinase (ROCK) pathway on adhesion of dental pulp cells (DPCs). METHODOLOGY Human DPCs were cultured ex vivo. After treatment of LPA and Y-27632, a specific ROCK inhibitor, changes in focal contacts (FCs) were examined by immunofluorescent staining. Activation of FCs proteins was examined by measuring tyrosine 397 phosphorylation of focal adhesion kinase (FAK) and paxillin using immunoblotting. The data were analysed by Student's t-test. RESULTS The immunofluorescent staining indicated LPA stimulation induced larger focal adhesion in the cell periphery, compared with the control. Inhibition of ROCK by Y-27632 decreased the formation of FCs markedly, even in the LPA-stimulated cells. LPA also increased the level of tyrosine phosphorylation of paxillin at 30min (P<0.05) and FAK at 5 and 30min (P<0.05). Furthermore, p-paxillin levels declined immediately after Y-27632 treatment and remained low at 5, 30, 60min. Y-27632 also suppressed the effects of LPA on p-paxillin and p-FAK at 5 and 30min (P<0.05). CONCLUSION LPA activated Rho and then subsequently activated ROCK, suggesting that LPA influences the FCs of DPCs by modulating tyrosine phosphorylation of FAK and paxillin via the Rho/ROCK pathway.
Collapse
Affiliation(s)
- R Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
760
|
Hwang SM, Koo NY, Jin M, Davies AJ, Chun GS, Choi SY, Kim JS, Park K. Intracellular acidification is associated with changes in free cytosolic calcium and inhibition of action potentials in rat trigeminal ganglion. J Biol Chem 2010; 286:1719-29. [PMID: 21068392 DOI: 10.1074/jbc.m109.090951] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of intracellular acidification and subsequent pH recovery in sensory neurons has not been well characterized. We have studied the mechanisms underlying Ca(2+)-induced acidification and subsequent recovery of intracellular pH (pH(i)) in rat trigeminal ganglion neurons and report their effects on neuronal excitability. Glutamate (500 μM) and capsaicin (1 μM) increased intracellular Ca(2+) concentration ([Ca(2+)](i)) with a following decrease in pH(i). The recovery of [Ca(2+)](i) to the prestimulus level was inhibited by LaCl(3) (1 mM) and o-vanadate (10 mM), a plasma membrane Ca(2+)/ATPase (PMCA) inhibitor. Removal of extracellular Ca(2+) also completely inhibited the acidification induced by capsaicin. TRPV1 was expressed only in small and medium sized trigeminal ganglion neurons. mRNAs for Na(+)/H(+) exchanger type 1 (NHE1), pancreatic Na(+)-HCO(3)(-) cotransporter type 1 (pNBC1), NBC3, NBC4, and PMCA types 1-3 were detected by RT-PCR. pH(i) recovery was significantly inhibited by pretreatment with NHE1 or pNBC1 siRNA. We found that the frequency of action potentials (APs) was dependent on pH(i). Application of the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (5 μM) or the pNBC1 inhibitor 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid (500 μM) delayed pH(i) recovery and decreased AP frequency. Simultaneous application of 5'-(N-ethyl-N-isopropyl) amiloride and 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid almost completely inhibited APs. In summary, our results demonstrate that the rise in [Ca(2+)](i) in sensory neurons by glutamate and capsaicin causes intracellular acidification by activation of PMCA type 3, that the pH(i) recovery from acidification is mediated by membrane transporters NHE1 and pNBC1 specifically, and that the activity of these transporters has direct consequences for neuronal excitability.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Yeongeondong 28, Chongnoku, Seoul 110-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
761
|
Chan YC, Leung PS. Co-operative effects of angiotensin II and caerulein in NFκB activation in pancreatic acinar cells in vitro. ACTA ACUST UNITED AC 2010; 166:128-34. [PMID: 20959124 DOI: 10.1016/j.regpep.2010.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/04/2010] [Accepted: 10/13/2010] [Indexed: 01/10/2023]
Abstract
Angiotensin II is a vasoactive peptide that controls blood pressure and homeostasis. Emerging evidence shows that locally generated angiotensin II plays a crucial role in normal physiology, as well as pathophysiological conditions such as pancreatitis. We recently reported that angiotensin II activates pancreatic NFκB in obstructive pancreatitis. However, the specific cell type responsible for this activation remains unclear. In this study, we investigated whether pancreatic acinar cells respond to angiotensin II. These cells are the most abundant pancreatic cells and the most vulnerable to pancreatitis. Pancreatic acinar AR42J cells were used as an in vitro model of pancreatic inflammation. Our results demonstrated that treatment with caerulein, a cholecystokinin receptor agonist, induced hypersecretion and NFκB activation, as demonstrated by elevated amylase secretion and degradation of inhibitor of NFκB (IκBβ). Angiotensin II, either alone or in combination with caerulein, augmented IκBβ degradation. Pre-treatment with losartan, an antagonist of the angiotensin type I (AT₁) receptor, abolished NFκB activation by angiotensin II and caerulein in a dose-dependent manner. Treatment with PD123319, a blocker of the angiotensin type II (AT₂) receptor, enhanced the activation of NFκB by angiotensin II and caerulein. Preliminary data further demonstrated that angiotensin II could extend caerulein-induced ERK1/2 activation in acinar cells. These results indicated that inflammation triggered by hyperstimulation of pancreatic acinar cells is enhanced by angiotensin II, via the AT₁ receptor. In contrast, stimulation of the AT₂ receptor protects against caerulein-induced NFκB activation. The differential roles of the AT₁ and AT₂ receptors might be useful in developing potential therapies for pancreatic inflammation.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | | |
Collapse
|
762
|
Galan C, Jardín I, Dionisio N, Salido G, Rosado JA. Role of oxidant scavengers in the prevention of Ca²+ homeostasis disorders. Molecules 2010; 15:7167-87. [PMID: 20953160 PMCID: PMC6259185 DOI: 10.3390/molecules15107167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/09/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
A number of disorders, such as Alzheimer disease and diabetes mellitus, have in common the alteration of the redox balance, resulting in an increase in reactive oxygen species (ROS) generation that might lead to the development of apoptosis and cell death. It has long been known that ROS can significantly alter Ca²+ mobilization, an intracellular signal that is involved in the regulation of a wide variety of cellular functions. Cells have a limited capability to counteract the effects of oxidative stress, but evidence has been provided supporting the beneficial effects of exogenous ROS scavengers. Here, we review the effects of oxidative stress on intracellular Ca²+ homeostasis and the role of antioxidants in the prevention and treatment of disorders associated to abnormal Ca²+ mobilization induced by ROS.
Collapse
Affiliation(s)
| | | | | | | | - Juan A. Rosado
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34 927257139; Fax: +34 927257110
| |
Collapse
|
763
|
Rivera-Barreno R, del Castillo-Vaquero A, Salido GM, Gonzalez A. Effect of cinnamtannin B-1 on cholecystokinin-8-evoked responses in mouse pancreatic acinar cells. Clin Exp Pharmacol Physiol 2010; 37:980-988. [PMID: 20626416 DOI: 10.1111/j.1440-1681.2010.05424.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Cinnamtannin B-1 is a naturally occurring A-type proanthocyanidin that belongs to a class of polyphenols widely distributed throughout the plant kingdom and exhibiting anti-oxidant properties. 2. In the present study, we examined the effects of cinnamtannin B-1 on cholecystokinin octapeptide (CCK-8)-evoked Ca(2+) mobilization, reactive oxygen species (ROS) production and amylase secretion in the exocrine pancreas. 3. Stimulation of cells with 1 nmol/L CCK-8 led to a transient increase in the cytosolic free calcium concentration ([Ca(2+) ](c) ), followed by a decrease towards a value close to the prestimulation level. In the presence of 10 μmol/L cinnamtannin B-1, stimulation of cells with CCK-8 resulted in a smaller [Ca(2+) ](c) peak response, a faster rate of decay of [Ca(2+) ](c) and lower values for the steady state of [Ca(2+) ](c) , compared with the effect of CCK-8 alone. Cinnamtannin B-1 decreased Ca(2+) influx after depletion of intracellular stores by either CCK-8 or thapsigargin (1 μmol/L). Conversely, CCK-8 increased the fluorescence of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester (CM-H(2) DCFDA), reflecting an increase in oxidation. Cinnamtannin B-1 reduced CCK-8-induced oxidation of CM-H(2) DCFDA. Cholecystokinin-8 had a biphasic effect on amylase secretion, producing maximum at a concentration of 0.1 nmol/L and reducing secretion at higher concentrations. Pre-incubation of cells with 10 μmol/L cinnamtannin B-1 significantly attenuated the inhibition of enzyme secretion in response to high concentrations of CCK-8 (i.e. >10(-10) mol/L). Finally, the anti-oxidant protected acinar cells against CCK-8-induced cell death. 4. The beneficial effects of cinnamtannin B-1 appear to be mediated by a reduction in intracellular Ca(2+) overload, ROS production and intracellular accumulation of digestive enzymes, which is a common pathological precursor that mediates pancreatitis.
Collapse
Affiliation(s)
- Ramon Rivera-Barreno
- Department of Medical Sciences, Institute of Biomedical Sciences, Autonomous University of Juarez, Ciudad Juarez, México
| | | | | | | |
Collapse
|
764
|
del Castillo-Vaquero A, Salido GM, Gonzalez A. Melatonin induces calcium release from CCK-8- and thapsigargin-sensitive cytosolic stores in pancreatic AR42J cells. J Pineal Res 2010; 49:256-263. [PMID: 20626590 DOI: 10.1111/j.1600-079x.2010.00790.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melatonin is produced following circadian rhythm with high levels being released at night and has been implicated in the regulation of physiological processes in major tissues, including the pancreas. The aim of our study was to examine the effects of melatonin on intracellular free Ca(2+) concentration ([Ca(2+) ](c)) in AR42J pancreatic cells. Our results show that stimulation of cells with 1 nm cholecystokinin (CCK)-8 led to a transient increase in [Ca(2+) ](c) followed by a decrease towards a value close to the prestimulation level. Melatonin (at the concentrations 1, 10, 100 μm and 1 mm) induced changes in [Ca(2+) ](c) that consisted of single or short lasting spikes in the form of oscillations or slow transient increases followed by a slow reduction towards a value close to the resting level. Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nm CCK-8 or 1 μm thapsigargin (Tps) blocked Ca(2+) responses evoked by melatonin in the majority of cells. Conversely, prior stimulation of cells with 1 mm melatonin in the absence of extracellular Ca(2+) inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or Tps. In summary, our results show that melatonin releases Ca(2+) from intracellular stores and can therefore modulate the responses of the pancreas to CCK-8. The source for Ca(2+) mobilization most probably is the endoplasmic reticulum. These data raise the possibility that melatonin also involves Ca(2+) signalling, in addition to other intracellular messengers, to modulate cellular function.
Collapse
|
765
|
Acute ethanol exposure disrupts actin cytoskeleton and generates reactive oxygen species in c6 cells. Toxicol In Vitro 2010; 25:28-36. [PMID: 20837132 DOI: 10.1016/j.tiv.2010.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/02/2010] [Accepted: 09/07/2010] [Indexed: 02/02/2023]
Abstract
Central nervous system dysfunctions are among the most significant effects of exposure to ethanol and the glial cells that play an important role in maintaining neuronal function, are extremely involved with these effects. The actin cytoskeleton plays a crucial role in a wide variety of cellular functions, especially when there is some injury. Therefore the aim of the present study was to analyze the short-term effects of ethanol (50, 100 and 200 mM) on the cytoskeleton of C6 glioma cells. Here we report that acute ethanol exposure profoundly disrupts the actin cytoskeleton in C6 cells decreasing stress fiber formation and downregulating RhoA and vinculin immunocontent. In contrast, microtubule and GFAP networks were not altered. We further demonstrate that anti-oxidants prevent ethanol-induced actin alterations, suggesting that the actions of ethanol on the actin cytoskeleton are related with generation of reactive oxygen species (ROS) in these cells. Our results show that ethanol at concentrations described to be toxic to the central nervous system was able to target the cytoskeleton of C6 cells and this effect could be related with increased ROS generation. Therefore, we propose that the dynamic restructuring of the cytoskeleton of glial cells might contribute to the response to the injury provoked by binge-like ethanol exposure in brain.
Collapse
|
766
|
Zhdanov AV, Dmitriev RI, Papkovsky DB. Bafilomycin A1 activates respiration of neuronal cells via uncoupling associated with flickering depolarization of mitochondria. Cell Mol Life Sci 2010; 68:903-17. [PMID: 20820851 PMCID: PMC3037485 DOI: 10.1007/s00018-010-0502-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 07/08/2010] [Accepted: 08/06/2010] [Indexed: 10/27/2022]
Abstract
Bafilomycin A1 (Baf) induces an elevation of cytosolic Ca(2+) and acidification in neuronal cells via inhibition of the V-ATPase. Also, Baf uncouples mitochondria in differentiated PC12 ((d)PC12), (d)SH-SY5Y cells and cerebellar granule neurons, and markedly elevates their respiration. This respiratory response in (d)PC12 is accompanied by morphological changes in the mitochondria and decreases the mitochondrial pH, Ca(2+) and ΔΨm. The response to Baf is regulated by cytosolic Ca(2+) fluxes from the endoplasmic reticulum. Inhibition of permeability transition pore opening increases the depolarizing effect of Baf on the ΔΨm. Baf induces stochastic flickering of the ΔΨm with a period of 20 ± 10 s. Under conditions of suppressed ATP production by glycolysis, oxidative phosphorylation impaired by Baf does not provide cells with sufficient ATP levels. Cells treated with Baf become more susceptible to excitation with KCl. Such mitochondrial uncoupling may play a role in a number of (patho)physiological conditions induced by Baf.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Republic of Ireland.
| | | | | |
Collapse
|
767
|
Abstract
PURPOSE OF REVIEW This review focuses on studies from the past year that highlight molecular and cellular mechanisms of pancreatic injury arising from acute and chronic pancreatitis. RECENT FINDINGS Factors that induce or ameliorate injury as well as cellular pathways involved have been examined. Causative or sensitizing factors include refluxed bile acids, hypercalcemia, ethanol, hypertriglyceridemia, and acidosis. In addition, the diabetes drug exendin-4 has been associated with pancreatitis, whereas other drugs may reduce pancreatic injury. The intracellular events that influence disease severity are better understood. Cathepsin-L promotes injury through an antiapoptotic effect, rather than by trypsinogen activation. In addition, specific trypsinogen mutations lead to trypsinogen misfolding, endoplasmic reticulum stress, and injury. Endogenous trypsin inhibitors and upregulation of proteins including Bcl-2, fibroblast growth factor 21, and activated protein C can reduce injury. Immune cells, however, have been shown to increase injury via an antiapoptotic effect. SUMMARY The current findings are critical to understanding how causative factors initiate downstream cellular events resulting in pancreatic injury. Such knowledge will aid in the development of targeted treatments for pancreatitis. This review will first discuss factors influencing pancreatic injury, and then conclude with studies detailing the cellular mechanisms involved.
Collapse
Affiliation(s)
- Edwin C. Thrower
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, USA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven
- Department of Cell Biology, Yale University School of Medicine, New Haven
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, USA
| | - Sohail Z. Husain
- Department of Pediatrics, Yale University School of Medicine, New Haven
| |
Collapse
|
768
|
Vaarmann A, Gandhi S, Abramov AY. Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 2010; 285:25018-23. [PMID: 20547771 PMCID: PMC2915737 DOI: 10.1074/jbc.m110.111450] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/07/2010] [Indexed: 12/22/2022] Open
Abstract
Dopamine is a neurotransmitter that plays a major role in a variety of brain functions, as well as in disorders such as Parkinson disease and schizophrenia. In cultured astrocytes, we have found that dopamine induces sporadic cytoplasmic calcium ([Ca(2+)](c)) signals. Importantly, we show that the dopamine-induced calcium signaling is receptor-independent in midbrain, cortical, and hippocampal astrocytes. We demonstrate that the calcium signal is initiated by the metabolism of dopamine by monoamine oxidase, which produces reactive oxygen species and induces lipid peroxidation. This stimulates the activation of phospholipase C and subsequent release of calcium from the endoplasmic reticulum via the inositol 1,4,5-trisphosphate receptor mechanism. These findings have major implications on the function of astrocytes that are exposed to dopamine and may contribute to understanding the physiological role of dopamine.
Collapse
Affiliation(s)
- Annika Vaarmann
- From the Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Sonia Gandhi
- From the Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Andrey Y. Abramov
- From the Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
769
|
Simmen T, Lynes EM, Gesson K, Thomas G. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:1465-73. [PMID: 20430008 PMCID: PMC2885528 DOI: 10.1016/j.bbamem.2010.04.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 12/18/2022]
Abstract
The production of secretory proteins at the ER (endoplasmic reticulum) depends on a ready supply of energy and metabolites as well as the close monitoring of the chemical conditions that favor oxidative protein folding. ER oxidoreductases and chaperones fold nascent proteins into their export-competent three-dimensional structure. Interference with these protein folding enzymes leads to the accumulation of unfolded proteins within the ER lumen, causing an acute organellar stress that triggers the UPR (unfolded protein response). The UPR increases the transcription of ER chaperones commensurate with the load of newly synthesized proteins and can protect the cell from ER stress. Persistant stress, however, can force the UPR to commit cells to undergo apoptotic cell death, which requires the emptying of ER calcium stores. Conversely, a continuous ebb and flow of calcium occurs between the ER and mitochondria during resting conditions on a domain of the ER that forms close contacts with mitochondria, the MAM (mitochondria-associated membrane). On the MAM, ER folding chaperones such as calnexin and calreticulin and oxidoreductases such as ERp44, ERp57 and Ero1alpha regulate calcium flux from the ER through reversible, calcium and redox-dependent interactions with IP3Rs (inositol 1,4,5-trisphophate receptors) and with SERCAs (sarcoplasmic/endoplasmic reticulum calcium ATPases). During apoptosis progression and depending on the identity of the ER chaperone and oxidoreductase, these interactions increase or decrease, suggesting that the extent of MAM targeting of ER chaperones and oxidoreductases could shift the readout of ER-mitochondria calcium exchange from housekeeping to apoptotic. However, little is known about the cytosolic factors that mediate the on/off interactions between ER chaperones and oxidoreductases with ER calcium channels and pumps. One candidate regulator is the multi-functional molecule PACS-2 (phosphofurin acidic cluster sorting protein-2). Recent studies suggest that PACS-2 mediates localization of a mobile pool of calnexin to the MAM in addition to regulating homeostatic ER calcium signaling as well as MAM integrity. Together, these findings suggest that cytosolic, membrane and lumenal proteins combine to form a two-way switch that determines the rate of protein secretion by providing ions and metabolites and that appears to participate in the pro-apoptotic ER-mitochondria calcium transfer.
Collapse
Affiliation(s)
- Thomas Simmen
- Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
770
|
Joshi RP, Hu Q. Analysis of cell membrane permeabilization mechanics and pore shape due to ultrashort electrical pulsing. Med Biol Eng Comput 2010; 48:837-44. [PMID: 20635223 DOI: 10.1007/s11517-010-0659-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 06/26/2010] [Indexed: 10/19/2022]
Abstract
Cell membrane permeabilization mechanics and the resulting shape of nanopores in response to electrical pulsing are probed based on a continuum approach. This has implications for electropermeabilization and cell membrane transport. It is argued that small pores resulting from high-intensity (approximately 100 kV/cm), nanosecond pulsing would have an initial asymmetric shape. This would lead to asymmetric membrane current-voltage characteristics, at least at early times. The role of the cytoskeleton is ignored here, but can be expected to additionally contribute to such asymmetries. Furthermore, we show that the pore shape and membrane conduction would be dynamic, and evolve toward a symmetric characteristic over time. This duration has been shown to be in the micro-second range.
Collapse
Affiliation(s)
- Ravindra P Joshi
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA.
| | | |
Collapse
|
771
|
Marzocco S, Popolo A, Bianco G, Pinto A, Autore G. Pro-apoptotic effect of methylguanidine on hydrogen peroxide-treated rat glioma cell line. Neurochem Int 2010; 57:518-24. [PMID: 20599452 DOI: 10.1016/j.neuint.2010.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/25/2010] [Accepted: 06/28/2010] [Indexed: 01/07/2023]
Abstract
Guanidino compounds, as methylguanidine (MG), may play an important role in the etiology of neurological complications which occur in uremic syndrome. Dementia is a neurological complication more common in uremic patients than in general population and several types of dementia are associated to astroglial apoptosis. Here we report the effect of MG on oxidative stress-induced apoptosis in rat glioma cell line (C6) in vitro. The oxidative stress was induced by hydrogen peroxide (H(2)O(2); 1 mM) and the cellular and molecular parameters were observed after 18 h. Uremic conditions were simulated by pre-incubation of C6 cells with MG (0.1-10 mM) 1h before H(2)O(2)-induced oxidative stress. MG alone did not affect cell viability, but it significantly increased cell death induced by H(2)O(2), as assessed by MTT assay. This effect could be related to the MG capability to enhance H(2)O(2) pro-apoptotic effect on C6 cells. The fluorescent dye FURA 2-AM test showed a significant raise in [Ca(2+)](i) in MG and H(2)O(2) co-treated C6 cells, mainly for depolarizing mitochondrial membrane potential. Furthermore, MG in a concentration-dependent manner, significantly increased H(2)O(2)-induced Bax expression, activation of caspase-3 and PARP in C6 cells. This study firstly reports that the uremic catabolyte MG could contribute to neurodegeneration associated to uremia enhancing the pro-apoptotic effect of H(2)O(2) and through an alteration in mitochondrial calcium homeostasis in glial cells.
Collapse
Affiliation(s)
- Stefania Marzocco
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Salerno, Fisciano (SA), Italy.
| | | | | | | | | |
Collapse
|
772
|
Barreto SG, Saccone GTP. Alcohol-induced acute pancreatitis: the 'critical mass' concept. Med Hypotheses 2010; 75:73-76. [PMID: 20181433 DOI: 10.1016/j.mehy.2010.01.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 01/14/2023]
Abstract
The association of alcohol consumption and acute pancreatitis (AP) has been well documented. Extensive research in the field of alcohol-induced AP has allowed scientists to understand the different aspects by which ethanol may alter pancreatic cellular function. However, despite the recognition and understanding of these proposed mechanisms, the basic question that remains unanswered is that although alcohol is consumed the world over, why is it that only some people develop AP? Epidemiologic data indicates a higher frequency of alcohol-induced AP in geographical locations where surrogate/home-brewed alcoholic beverages are freely available. These surrogate/home-brewed alcoholic beverages contain in addition to ethanol, higher alcohols (e.g. propanol and butanol) and other by-products/contaminants (e.g. acids, aldehydes and esters), the potential of which to induce pancreatic damage has been incompletely studied. Mutations in genes that metabolise alcohol as well as those that protect the acinar cells and the extra-acinar milieu from prematurely activated digestive enzymes (e.g. genetic mutations in SPINK1 or PRSS1 genes) have also been noted in these geographical locations. Based on the available epidemiologic, clinical and basic research data available at the present time, we propose a unifying hypothesis presenting for the first time the 'critical mass' concept. We hypothesise that it is the achievement of a 'critical mass' of damaged acinar cells that is required to trigger off the inflammatory cascade leading to a clinically recognised attack of AP. The consequence of a critical mass of damaged acinar cells is the generation of sufficient mediators to result in clinical AP. While the consumption of alcohol does damage acinar cells, the number of damaged acinar cells does not necessarily reach the 'critical mass' with every binge. Co-factors such a high fat or protein meals are required to sensitize the acinar cells by raising the metabolic state to a high level which compromises the viability of the cells. In addition, the existence of genetic mutations and / or the consumption of surrogate alcoholic beverages, by facilitating acinar cell damage, directly or indirectly, potentially hasten the achievement of the 'critical mass', leading to an attack of AP.
Collapse
Affiliation(s)
- Savio G Barreto
- Department of General and Digestive Surgery, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia.
| | | |
Collapse
|
773
|
Galan C, Woodard GE, Dionisio N, Salido GM, Rosado JA. Lipid rafts modulate the activation but not the maintenance of store-operated Ca(2+) entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1083-93. [PMID: 20600358 DOI: 10.1016/j.bbamcr.2010.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/02/2010] [Accepted: 06/11/2010] [Indexed: 11/15/2022]
Abstract
Different studies have reported that proteins involved in Ca(2+) entry are localized in discrete plasma membrane domains known as lipid rafts, which have been suggested to support store-operated Ca(2+) entry by facilitating STIM1 clustering in endoplasmic reticulum-plasma membrane junctions as well as the interaction of STIM1 with TRPC1. Here we report that treatment of HEK293 cells with thapsigargin (TG) results in the activation of Ca(2+) entry with two components, an early, La(3+)-sensitive, component and a late component that shows both La(3+)-sensitive and -insensitive constituents. Preincubation with methyl-beta-cyclodextrin (MbetaCD) prevented TG-induced activation of Ca(2+) entry but, in contrast, enhanced this process after its activation. Addition of MbetaCD after store depletion did not modify the La(3+)-sensitive store-operated divalent cation entry but increased La(3+)-insensitive non-capacitative Ca(2+) entry. Cell stimulation with TG results in a transient increase in Orai1 co-immunoprecipitation with STIM1, TRPC1 and TRPC6. TG-induced association of these proteins was significantly attenuated by preincubation for 30 min with MbetaCD, without altering surface expression of Orai1 or TRPCs. In contrast, the association of Orai1 with STIM1 or TRPC1 was unaffected when MbetaCD was added after store depletion with TG. Addition of MbetaCD to TG-treated cells promoted dissociation between Orai1 and TRPC6, as well as non-capacitative Ca(2+) entry. TRPC6 expression silencing indicates that MbetaCD-enhanced non-capacitative Ca(2+) entry was mediated by TRPC6. In conclusion, lipid raft domains are necessary for the activation but not the maintenance of SOCE probably due to the support of the formation of Ca(2+) signalling complexes involving Orai1, TRPCs and STIM1.
Collapse
Affiliation(s)
- Carmen Galan
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10071 Caceres, Spain
| | | | | | | | | |
Collapse
|
774
|
Arany I, Faisal A, Clark JS, Vera T, Baliga R, Nagamine Y. p66SHC-mediated mitochondrial dysfunction in renal proximal tubule cells during oxidative injury. Am J Physiol Renal Physiol 2010; 298:F1214-21. [DOI: 10.1152/ajprenal.00639.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial dysfunction is involved in pathopysiology of ischemia-reperfusion-induced acute kidney injury (AKI). The p66shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction, which might play a role in AKI-induced renal tubular injury. Oxidative stress-mediated Serine36 phosphorylation of p66shc facilitates its transportation to the mitochondria where it oxidizes cytochrome c and generates excessive amount of reactive oxygen species (ROS). The consequence is mitochondrial depolarization and injury. Earlier we determined that p66shc plays an essential role in injury of cultured mouse renal proximal tubule cells during oxidative stress. Here, we studied the role of p66shc in ROS generation and consequent mitochondrial dysfunction during oxidative injury in renal proximal tubule cells. We employed p66shc knockdown renal proximal tubule cells and cells that overexpress wild-type, Serine phosphorylation (S36A), or cytochrome c-binding (W134F) mutants of p66shc. Inhibition of the mitochondrial electron transport chain or the mitochondrial permeability transition revealed that hydrogen peroxide-induced injury is mitochondrial ROS and consequent mitochondrial depolarization dependent. We also found that through Ser36 phosphorylation and mitochondria/cytochrome c binding, p66shc mediates those effects. We propose a similar mechanism in vivo as we demonstrated mitochondrial binding of p66shc as well as its association with cytochrome c in the postischemic kidneys of mice. Thus, manipulating p66shc might offer a new therapeutic modality to ameliorate renal ischemic injury.
Collapse
Affiliation(s)
- Istvan Arany
- Department of Pediatrics, Division of Pediatric Nephrology,
| | - Amir Faisal
- Target Discovery and Apoptosis Lab CRUK Centre for Cancer Therapeutics, Institute of Cancer Research, Belmont, Sutton, Surrey, United Kingdom; and
| | - Jeb S. Clark
- Department of Pediatrics, Division of Pediatric Nephrology,
| | - Trinity Vera
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Yoshikuni Nagamine
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
775
|
Del Castillo-Vaquero A, Salido GM, González A. Increased calcium influx in the presence of ethanol in mouse pancreatic acinar cells. Int J Exp Pathol 2010; 91:114-124. [PMID: 20002836 PMCID: PMC2965897 DOI: 10.1111/j.1365-2613.2009.00691.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/15/2009] [Indexed: 12/15/2022] Open
Abstract
The effects of alcohol on Ca(2+) signalling remains poorly understood. Here we have investigated the effects of acute ethanol exposure on Ca(2+) influx in mouse pancreatic acinar cells. Cells were loaded with fura-2 and the changes in fluorescence were monitored by spectrofluorimetry and imaging analysis. Stimulation of cells with 20 pM cholecystokinin evoked an oscillatory pattern in [Ca(2+)](c), both in the presence and in the absence of extracellular Ca(2+). Stimulation of cells with cholecystokinin in the presence of 50 mM ethanol led to a transformation of physiological oscillations into a single transient increase in [Ca(2+)](c). This effect was observed when Ca(2+) was present in the extracellular medium, and did not appear in its absence. Addition of 1 mM CaCl(2) to the extracellular medium, following release of Ca(2+) from intracellular stores by stimulation of cells with 1 nM cholecystokinin or 1 microM thapsigargin in the absence of extracellular Ca(2+), was followed by an increase in [Ca(2+)](c). Ca(2+) influx was increased in the presence of 50 mM ethanol. The anti-oxidant cinnamtannin B-1 (10 microM) or inhibition of alcohol dehydrogenase by 4-MP (1 mM), significantly reduced Ca(2+) influx evoked by cholecystokinin in the presence of ethanol. In summary, intoxicating concentrations of ethanol may lead to over stimulation of pancreatic acinar cells by cholecystokinin. This might be partially explained by the generation of reactive oxygen species and an increased Ca(2+) entry in the presence of ethanol. Potentially ethanol might lead to Ca(2+) overload, which is a common pathological precursor that is implicated in pancreatitis.
Collapse
|
776
|
Calcium induces expression of cytoplasmic gelsolin in SH-SY5Y and HEK-293 cells. Neurochem Res 2010; 35:1075-82. [PMID: 20339915 DOI: 10.1007/s11064-010-0157-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2010] [Indexed: 12/28/2022]
Abstract
Gelsolin plays an important role in the regulation of amyloid beta-protein fibrillogenesis. We report here that calcium ionophore A23187 induces the expression of cytoplasmic gelsolin (c-gelsolin), and that protein kinase C (PKC) is involved in the up-regulation of c-gelsolin. In the presence of calcium, both SH-SY5Y and HEK-293 cells upon treatment with A23187 showed an increase in c-gelsolin expression in a concentration-dependent manner. Calcium-mediated up-regulation of c-gelsolin was inhibited by cycloheximide (a general inhibitor of protein synthesis). When cells were pretreated with staurosporine (an inhibitor of a variety of protein kinases including PKC), the up-regulation of c-gelsolin induced by A23187 was inhibited. Calphostin C, an inhibitor of PKC, blocked the up-regulation of c-gelsolin induced by A23187, while inhibitors of mitogen-activated protein kinases had no effect on c-gelsolin expression. In addition, phorbol-12-myristate-13-acetate, an activator of PKC, up-regulated c-gelsolin expression. These results suggest that calcium mediates up-regulation of c-gelsolin in a PKC-dependent manner.
Collapse
|
777
|
Devi SL, Anuradha CV. Oxidative and nitrosative stress in experimental rat liver fibrosis: Protective effect of taurine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:104-110. [PMID: 21787590 DOI: 10.1016/j.etap.2009.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/30/2009] [Accepted: 11/18/2009] [Indexed: 05/31/2023]
Abstract
Taurine (TAU) has protective effects on experimental liver fibrosis. The present study investigates whether benefits of TAU are mediated through attenuation of oxidative and nitrosative stresses. Liver fibrosis was induced in male Wistar rats by simultaneous administration of iron (0.5%, w/w) and ethanol (6g/kg/day) for 60 days consecutively. Significant increases in thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, protein carbonyl content and loss of non-protein, protein and total thiols were observed in the liver of iron plus alcohol-fed rats. Nitrosative stress was marked by increased levels of S-nitrosothiols and decreased nitrite content. Accumulation of nitrated and oxidatively modified proteins in liver was further evidenced by immunohistochemical localization with specific antibodies for 4-hydroxynonenol (4-HNE), 3-nitrotyrosine (3-NT) and dinitrophenol (DNP). Decrease in mitochondrial ion-transport enzymes and disturbances in calcium and iron levels were also observed in these rats. TAU administration (2% (w/v) in drinking water) significantly reduced the levels of lipid hydroperoxides, TBARS, protein carbonyl with concomitant elevation in thiol levels. The presence of 4-HNE, 3-NT and DNP-protein adducts was minimal. TAU also improved mitochondrial enzyme activities and regulated iron and calcium levels. These results show that the restorative effect of taurine in fibrosis involves amelioration of protein and lipid damage by decreasing oxidative and nitrosative stresses.
Collapse
Affiliation(s)
- Shanmugam Lakshmi Devi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608002, Chidambaram, Tamil Nadu, India
| | | |
Collapse
|
778
|
Espino J, Bejarano I, Paredes SD, González D, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB. Melatonin counteracts alterations in oxidative metabolism and cell viability induced by intracellular calcium overload in human leucocytes: changes with age. Basic Clin Pharmacol Toxicol 2010; 107:590-7. [PMID: 20210792 DOI: 10.1111/j.1742-7843.2010.00546.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ageing is associated with an increased production of free radicals and alterations in the mechanisms of adaptation to oxidative stress. In fact, the free radical theory of ageing proposes that deleterious actions of free radicals are responsible for the functional deterioration associated with ageing. Moreover, a close relationship exists between calcium homeostasis and oxidative stress. The current work was aimed at proving that intracellular calcium overload induced by N-formyl-methionyl-leucyl-phenylalanine (FMLP) and/or thapsigargin leads to oxidative stress. We additionally examined the effect of melatonin on the levels of reactive oxygen species (ROS) and cell viability in human leucocytes collected from young (20-30-year-old) and elderly (65-75-year-old) individuals under both basal and oxidative stress-induced conditions. Treatments with 10 nM FMLP and/or 1 microM thapsigargin induced a transient increase in cytosolic free-calcium concentration ([Ca(2 + )](c)) in human leucocytes due to calcium release from internal stores, and led in turn to oxidative stress, as assessed by intracellular ROS measurement. Non-treated leucocytes from aged individuals exhibited higher ROS levels and lower rates of cell survival when compared to leucocytes from young individuals. Similar results were obtained in FMLP and/or thapsigargin-treated leucocytes from elderly individuals when compared to those from the young individuals. Melatonin treatment significantly reduced both hydrogen peroxide (H(2)O(2)) and superoxide anion levels, likely due to its free-radical scavenging properties, and enhanced leucocyte viability in both age groups. Therefore, melatonin may be a useful tool for the treatment of disease states and processes where an excessive production of oxidative damage occurs.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
779
|
Durante P, Romero F, Pérez M, Chávez M, Parra G. Effect of uric acid on nephrotoxicity induced by mercuric chloride in rats. Toxicol Ind Health 2010; 26:163-74. [PMID: 20176775 DOI: 10.1177/0748233710362377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidative stress is an important mechanism in mercury poisoning. We studied the effect of uric acid, a natural and potent reactive oxygen species and peroxynitrite scavenger, in HgCl( 2)-induced nephrotoxicity. Rats were injected with a unique dose of HgCl(2) (2.5 mg/kg body weight, subcutaneously) and then vehicle (for 3 days, twice daily) or HgCl(2) (unique dose) and intraperitoneal uric acid suspension (250 mg/kg body weight, twice daily, for 3 days), and then killed at 24, 48 and 72 hours after HgCl(2) administration (n = 5 for each group). At the end of the experimental study, kidneys and blood samples were taken. Tissues were prepared and examined under light microscopy. Uric acid significantly prevented the increase in plasma levels of creatinine and blood urea nitrogen (BUN); it helped maintain systemic nitrate/nitrite concentration and total antioxidant capacity. Uric acid attenuated the increase of renal lipid peroxidation and it markedly diminished nitrotyrosine signal and histopathological changes as early as 24 hours after HgCl(2) administration. Uric acid did not prevent a decrease in beta-actin signal caused by mercuric chloride, but it promoted a faster recovery when compared to the HgCl(2) alone group. Our results indicate that UA could play a beneficial role against HgCl(2) toxicity by preventing systemic and renal oxidative stress and tissue damage.
Collapse
Affiliation(s)
- Paula Durante
- Centro de Investigaciones Biomédicas, IVIC-Zulia, Maracaibo, Venezuela.
| | | | | | | | | |
Collapse
|
780
|
García M, Calvo JJ. Cardiocirculatory pathophysiological mechanisms in severe acute pancreatitis. World J Gastrointest Pharmacol Ther 2010; 1:9-14. [PMID: 21577289 PMCID: PMC3091142 DOI: 10.4292/wjgpt.v1.i1.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/25/2009] [Accepted: 01/01/2010] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a common and potentially lethal acute inflammatory process. Although the majority of patients have a mild episode of AP, 10%-20% develop a severe acute pancreatitis (SAP) and suffer systemic inflammatory response syndrome (SIRS) and/or pancreatic necrosis. The main aim of this article is to review the set of events, first localized in the pancreas, that lead to pancreatic inflammation and to the spread to other organs contributing to multiorganic shock. The early pathogenic mechanisms in SAP are not completely understood but both premature activation of enzymes inside the pancreas, related to an impaired cytosolic Ca2+ homeostasis, as well as release of pancreatic enzymes into the bloodstream are considered important events in the onset of pancreatitis disease. Moreover, afferent fibers within the pancreas release neurotransmitters in response to tissue damage. The vasodilator effects of these neurotransmitters and the activation of pro-inflammatory substances play a crucial role in amplifying the inflammatory response, which leads to systemic manifestation of AP. Damage extension to other organs leads to SIRS, which is usually associated with cardiocirculatory physiology impairment and a hypotensive state. Hypotension is a risk factor for death and is associated with a significant hyporesponsiveness to vasoconstrictors. This indicates that stabilization of the patient, once this pathological situation has been established, would be a very difficult task. Therefore, it seems particularly necessary to understand the pathological mechanisms involved in the first phases of AP to avoid damage beyond the pancreas. Moreover, efforts must also be directed to identify those patients who are at risk of developing SAP.
Collapse
Affiliation(s)
- Mónica García
- Mónica García, José Julián Calvo, Department of Physiology and Pharmacology, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
781
|
Tapia JA, Salido GM, González A. Ethanol consumption as inductor of pancreatitis. World J Gastrointest Pharmacol Ther 2010; 1:3-8. [PMID: 21577288 PMCID: PMC3091140 DOI: 10.4292/wjgpt.v1.i1.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/11/2010] [Accepted: 01/18/2010] [Indexed: 02/06/2023] Open
Abstract
Alcohol abuse is a major cause of pancreatitis, a condition that can manifest as both acute necroinflammation and chronic damage (acinar atrophy and fibrosis). Pancreatic acinar cells can metabolize ethanol via the oxidative pathway, which generates acetaldehyde and involves the enzymes alcohol dehydrogenase and possibly cytochrome P4502E1. Additionally, ethanol can be metabolized via a nonoxidative pathway involving fatty acid ethyl ester synthases. Metabolism of ethanol by acinar and other pancreatic cells and the consequent generation of toxic metabolites, are postulated to play an important role in the development of alcohol-related acute and chronic pancreatic injury. This current work will review some recent advances in the knowledge about ethanol actions on the exocrine pancreas and its relationship to inflammatory disease and cancer.
Collapse
Affiliation(s)
- José A Tapia
- José A Tapia, Ginés M Salido, Antonio González, PhD, Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, Avenida Universidad s/n, Cáceres E-10071, Spain
| | | | | |
Collapse
|
782
|
Ramudo L, Manso MA. N-acetylcysteine in acute pancreatitis. World J Gastrointest Pharmacol Ther 2010; 1:21-6. [PMID: 21577291 PMCID: PMC3091141 DOI: 10.4292/wjgpt.v1.i1.21] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/13/2010] [Accepted: 01/20/2010] [Indexed: 02/06/2023] Open
Abstract
Premature trypsinogen activation and production of oxygen free radicals (OFR) are early pathogenic events which occur within acinar cells and trigger acute pancreatitis (AP). OFR exert their harmful effects on various cell components causing lipid peroxidation, disturbances in calcium homeostasis and DNA damage, which lead to increased cell injury and eventually cell death. This review presents the most recent data concerning the effects of N-Acetylcysteine (NAC), in the treatment of AP. NAC is an antioxidant capable of restoring the levels of Glutathione, the most important cellular antioxidant. Studies show the beneficial effects of NAC treatment in preventing OFR production and therefore attenuating oxidative damage. Additionally, NAC treatment has been shown to prevent the increase in cytosolic Ca2+ concentration and reduce the accumulation of enzymes in acinar cells during AP. The prevention, by NAC, of these pathological events occurring within acinar would contribute to reducing the severity of AP. NAC is also capable of reducing the activation of transcription factors especially sensitive to the cellular redox state, such as Nuclear factor-κB, signal transducer and activator of transcription-3 and mitogen-activated protein kinase. This leads to a down-regulation of cytokines, adhesion molecules and chemokine expression in various cell types during AP. These findings point to NAC as a powerful therapeutic treatment, attenuating oxidative-stress-induced cell injury and other pathological events at early stages of AP, and potentially contributing to reducion in the severity of disease.
Collapse
Affiliation(s)
- Laura Ramudo
- Laura Ramudo, Manuel A Manso, Department of Physiology and Pharmacology, University of Salamanca, Salamanca 37007, Spain
| | | |
Collapse
|
783
|
Baliño P, Pastor R, Aragon CMG. Participation of L-type calcium channels in ethanol-induced behavioral stimulation and motor incoordination: effects of diltiazem and verapamil. Behav Brain Res 2010; 209:196-204. [PMID: 20122967 DOI: 10.1016/j.bbr.2010.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/19/2010] [Accepted: 01/24/2010] [Indexed: 10/19/2022]
Abstract
Calcium flux through voltage gate calcium channels (VGCC) is involved in many neuronal processes such as membrane depolarization, gene expression, hormone secretion, and neurotransmitter release. Several studies have shown that either acute or chronic exposure to ethanol modifies calcium influx through high voltage activated channels. Of special relevance is the L-type VGCC. Pharmacological manipulation of L-type calcium channels affects ethanol intake, ethanol discrimination and manifestations of withdrawal syndrome. The present study investigates the role of L-type channels on the psychomotor effects (stimulation and sedation/ataxia) of ethanol by testing the effects of different L-type calcium channel blockers (CCB) on such behaviors. Mice were pretreated intraperitoneally with the CCB, diltiazem (0-40 mg/kg) or verapamil (0-30 mg/kg) 30 min before ethanol (0-3.5 g/kg). Locomotion was measured in an open field chamber for 20 min immediately after ethanol. The two CCB tested prevented locomotor stimulation, but not locomotor suppression produced by ethanol. Doses of the two CCB which reduced ethanol stimulation, did not alter spontaneous locomotion. The ataxic effects of ethanol (1.25 g/kg), measured with an accelerating rotarod task, were not affected by diltiazem (20mg/kg) or verapamil (15 mg/kg). In addition, our results indicated that ethanol is more sensitive to the antagonism of L-type calcium channels than other drugs with stimulant properties; doses of the two CCB that reduced ethanol stimulation did not reduce the psychomotor effects of amphetamine, caffeine or cocaine. In conclusion, these data provide further evidence of the important involvement of L-type calcium channels in the behavioral effects produced by ethanol.
Collapse
Affiliation(s)
- Pablo Baliño
- Area de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | | | | |
Collapse
|
784
|
Srivastava A, Shivanandappa T. Stereospecificity in the cytotoxic action of hexachlorocyclohexane isomers. Chem Biol Interact 2010; 183:34-9. [PMID: 19818741 DOI: 10.1016/j.cbi.2009.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/30/2009] [Accepted: 09/30/2009] [Indexed: 11/30/2022]
Abstract
Hexachlorocyclohexane (HCH) is a highly recalcitrant organochlorine insecticide known for its chronic toxicity. In spite of many isolated studies a clear mechanism of cytotoxic action of HCH and the structure-toxicity relationship of its isomers is not well understood. We have investigated the toxicity of HCH isomers and its mechanism in Ehrlich Ascites tumor (EAT) cells. Our studies show differential cytotoxicity of HCH isomers (alpha, beta, gamma, and delta), delta isomer being most toxic and beta the least. HCH-induced cell death was associated with induction of reactive oxygen species (ROS) formation, lipid peroxidation (LPO), and depletion of glutathione (GSH). The increase in oxidative stress was linked with increased NAD(P)H oxidase activity. HCH inhibited Na(+),K(+)-ATPase, which could be involved in raising the intracellular calcium and increased Ca(2+),Mg(2+)-ATPase activity. HCH lead to apoptotic as well as necrotic cell death as it was marked by increased caspase-3 activity and lactate dehydrogenase (LDH) leakage, respectively. Based on the results it is concluded that the HCH isomers inflict differential cytotoxicity which was highest by delta and lowest by beta. Further, this study demonstrates for the first time a clear link between Na(+),K(+)-ATPase, i[Ca(2+)] level, and oxidative stress in HCH-induced cytotoxicity.
Collapse
Affiliation(s)
- Anup Srivastava
- Department of Pathology, Center for Free Radical Biology, 901, 19th St. S., Rm #347, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
785
|
Intermediate filaments take the heat as stress proteins. Trends Cell Biol 2010; 20:79-91. [PMID: 20045331 DOI: 10.1016/j.tcb.2009.11.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/18/2022]
Abstract
Intermediate filament (IF) proteins and heat shock proteins (HSPs) are large multimember families that share several features, including protein abundance, significant upregulation in response to a variety of stresses, cytoprotective functions, and the phenocopying of several human diseases after IF protein or HSP mutation. We are now coming to understand that these common elements point to IFs as important cellular stress proteins with some roles akin to those already well-characterized for HSPs. Unique functional roles for IFs include protection from mechanical stress, whereas HSPs are characteristically involved in protein folding and as chaperones. Shared IF and HSP cytoprotective roles include inhibition of apoptosis, organelle homeostasis, and scaffolding. In this report, we review data that corroborate the view that IFs function as highly specialized cytoskeletal stress proteins that promote cellular organization and homeostasis.
Collapse
|
786
|
Yang H, Cui GB, Jiao XY, Wang J, Ju G, You SW. Thymosin-beta4 attenuates ethanol-induced neurotoxicity in cultured cerebral cortical astrocytes by inhibiting apoptosis. Cell Mol Neurobiol 2010; 30:149-60. [PMID: 19688260 PMCID: PMC11498471 DOI: 10.1007/s10571-009-9439-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 07/27/2009] [Indexed: 12/26/2022]
Abstract
Thymosin-beta4 (Tbeta4) is a major actin monomer-binding peptide in mammalian tissues and plays a crucial role in the nervous system in synaptogenesis, neuronal survival and migration, axonal growth, and plastic changes of dendritic spines. However, it is unknown whether Tbeta4 is also involved in challenges with external stress such as ethanol-induced neurotoxicity. In the present study, we investigated the effects of Tbeta4 on ethanol-induced neurotoxicity in cultured cerebral cortical astrocytes and the underlying mechanisms. Primarily cultured astrocytes were treated with 1 microg/ml Tbeta4 2 h prior to administration of 100 mM ethanol for 0.5, 1, 3 and 6 days, respectively. The results showed that ethanol caused neurotoxicity in cultured astrocytes, as shown by declined cell viability, distinct astroglial apoptosis and increased intracellular peroxidation. Tbeta4 markedly promoted cell viability, ameliorated the injury of intracellular glial fibrillary acidic protein-immunopositive cytoskeletal structures, reduced the percentage of apoptotic astrocyte and cellular DNA fragmentation, suppressed caspase-3 activity and upregulated Bcl-2 expression, inhibited the accumulation of reactive oxygen species and production of malondialdehyde in ethanol-treated astrocytes in a time-dependent manner. These data indicated that Tbeta4 attenuates ethanol-induced neurotoxicity in cultured cortical astrocytes through inhibition of apoptosis signaling, and one of the mechanisms underlying the capacity of Tbeta4 to suppress apoptosis may in part be due to its effect of anti-peroxidation.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurosciences, The Fourth Military Medical University, 710032 Xi’an, China
| | - Guang-Bin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 710038 Xi’an, China
| | - Xi-Ying Jiao
- Institute of Neurosciences, The Fourth Military Medical University, 710032 Xi’an, China
| | - Jian Wang
- Institute of Neurosciences, The Fourth Military Medical University, 710032 Xi’an, China
| | - Gong Ju
- Institute of Neurosciences, The Fourth Military Medical University, 710032 Xi’an, China
| | - Si-Wei You
- Institute of Neurosciences, The Fourth Military Medical University, 710032 Xi’an, China
| |
Collapse
|
787
|
Pozzan T, Rudolf R. Measurements of mitochondrial calcium in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1317-23. [PMID: 19100709 DOI: 10.1016/j.bbabio.2008.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/21/2022]
Abstract
Mitochondria play a pivotal role in intracellular Ca(2+) signalling by taking up and releasing the ion upon specific conditions. In order to do so, mitochondria depend on a number of factors, such as the mitochondrial membrane potential and spatio-temporal constraints. Whereas most of the basic principles underlying mitochondrial Ca(2+) handling have been successfully deciphered over the last 50 years using assays based on in vitro preparations of mitochondria or cultured cells, we have only just started to understand the actual physiological relevance of these processes in the whole animal. Recent advancements in imaging and genetically encoded sensor technologies have allowed us to visualise mitochondrial Ca(2+) transients in live mice. These studies used either two-photon microscopy or bioluminescence imaging of cameleon or aequorin-GFP Ca(2+) sensors, respectively. Both methods revealed a consistent picture of Ca(2+) uptake into mitochondria under physiological conditions even during very short-lasting elevations of cytosolic Ca(2+) levels. The big future challenge is to understand the functional impact of such Ca(2+) signals on the physiology of the observed tissue as well as of the whole organism. To that end, the development of multiparametric in vivo approaches will be mandatory.
Collapse
Affiliation(s)
- Tullio Pozzan
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padua, Viale Giuseppe Colombo 3, Padua 35121, Italy
| | | |
Collapse
|
788
|
Fernández-Sánchez M, del Castillo-Vaquero A, Salido GM, González A. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells. BMC Cell Biol 2009; 10:77. [PMID: 19878551 PMCID: PMC2777139 DOI: 10.1186/1471-2121-10-77] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/30/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. RESULTS Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 microM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. CONCLUSION ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.
Collapse
Affiliation(s)
- Marcela Fernández-Sánchez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain
| | | | - Ginés M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Antonio González
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain
| |
Collapse
|
789
|
Nazıroğlu M, Cihangir Uğuz A, Koçak A, Bal R. Acetaminophen at Different Doses Protects Brain Microsomal Ca2+-ATPase and the Antioxidant Redox System in Rats. J Membr Biol 2009; 231:57-64. [DOI: 10.1007/s00232-009-9203-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 09/14/2009] [Indexed: 11/24/2022]
|
790
|
Imachi H, Murao K, Kontani K, Yokomise H, Miyai Y, Yamamoto Y, Kushida Y, Haba R, Ishida T. Ectopic mediastinal parathyroid adenoma: a cause of acute pancreatitis. Endocrine 2009; 36:194-7. [PMID: 19598003 DOI: 10.1007/s12020-009-9223-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/15/2009] [Accepted: 06/05/2009] [Indexed: 01/08/2023]
Abstract
A 38-year-old male was admitted to our hospital with epigastric pain, and he was confirmed to have acute exudative pancreatitis. After the episode of acute pancreatitis subsided, laboratory investigation revealed increased serum calcium (12.0 mg/dl), decreased serum phosphorus (2.7 mg/dl), and increased serum parathyroid hormone (intact) levels (131 pg/ml). A computed tomography (CT) scan of the neck did not reveal any mass lesions in the parathyroid gland. However, (99m)Tc sestamibi scintigraphy revealed that there was one functioning parathyroid gland in the upper mediastinum. Combined (99m)Tc sestamibi scintigraphy and CT scan confirmed the diagnosis of primary hyperparathyroidism in the mediastinum. Microscopic examination revealed the presence of a parathyroid adenoma (1.3 x 0.4 cm(2)) adjacent to the atrophic parathyroid gland in right thymus gland. We report the case of a patient diagnosed with primary hyperparathyroidism due to an ectopic mediastinal parathyroid adenoma. An ectopic mediastinal parathyroid adenoma may manifest as an episode of acute pancreatitis. Preoperative investigation to determine the exact location of an adenoma should include two types of imaging studies, preferably (99m)Tc sestamibi scintigraphy and CT of the neck and chest.
Collapse
Affiliation(s)
- Hitomi Imachi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, 761-0793, Kagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
791
|
|
792
|
Park KS, Lim JW, Kim H. Inhibitory mechanism of omega-3 fatty acids in pancreatic inflammation and apoptosis. Ann N Y Acad Sci 2009; 1171:421-7. [PMID: 19723085 DOI: 10.1111/j.1749-6632.2009.04887.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress is regarded as a major pathogenic factor in acute pancreatitis. Inflammation and apoptosis linked to oxidative stress has been implicated in cerulein-induced pancreatitis as an experimental model of acute pancreatitis. Recently, we found that reactive oxygen species mediate inflammatory cytokine expression and apoptosis of pancreatic acinar cells stimulated with cerulein. Omega-3 fatty acids show antioxidant action in various cells and tissues. In the present study, we investigated whether omega-3 fatty acids inhibit cytokine expression in cerulein-stimulated pancreatic acinar cells and whether omega-3 fatty acids suppress apoptotic cell death in pancreatic acinar cells exposed to hydrogen peroxide. We found that omega-3 fatty acids, such as docosahexaenoic acid (DHA) and alpha-linolenic acid (ALA), suppressed the expression of inflammatory cytokines (IL-1beta, IL-6) and inhibited the activation of transcription factor activator protein-1 in cerulein-stimulated pancreatic acinar cells. DHA and ALA inhibited DNA fragmentation, inhibited the decrease in cell viability, and inhibited the expression of apoptotic genes (p53, Bax, apoptosis-inducing factor) induced by hydrogen peroxide in pancreatic acinar cells. In conclusion, omega-3 fatty acids may be beneficial for preventing oxidative stress-induced pancreatic inflammation and apoptosis by inhibiting inflammatory cytokine and apoptotic gene expression of pancreatic acinar cells.
Collapse
Affiliation(s)
- Kyung Suk Park
- Department of Food and Nutrition, Brain Korea 21 Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
793
|
Morganti RP, Marcondes S, Baldasso PA, Marangoni S, De Nucci G, Antunes E. Inhibitory effects of staphylococcal enterotoxin type B on human platelet adhesion in vitro. Platelets 2009; 19:432-9. [PMID: 18925511 DOI: 10.1080/09537100802236035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Septic shock was formerly recognized as a consequence of Gram-negative bacteraemia, but at present the incidence of Gram-positive sepsis seems to be more relevant, contributing for more than 50% of cases. Staphylococcal aureus can induce toxic shock in humans through the production of potent toxins termed Staphylococcal enterotoxins, from which Staphylococcal enterotoxin type B (SEB) is one of most studied. Platelets are reported to participate in pathogenesis of severe sepsis, but the exact role of platelets in this event is poorly investigated, particularly that caused by Gram-positive bacteria. Therefore, we have used the model of platelet adhesion to fibrinogen-coated plates to investigate the actions of SEB on human platelets. Ninety-six-well microtiter plates were coated with human fibrinogen (50 microg/mL), and human washed platelet suspension (6 x 10(6) platelets) was added to each well. Adherent platelets were quantified through measurement of acid phosphatase activity. Staphylococcal enterotoxin B (0.0001-30 microg/mL, incubated for 5 to 60 min) time- and dose-dependently inhibited platelet adhesion. This response was modified neither by the protein synthesis inhibitor puromycin (0.01 and 0.1 mM) nor by the superoxide scavengers superoxide dismutase (SOD, 100 units/mL) and polyethylene glycol-SOD (30 U/mL). The peroxide hydrogen (H(2)O(2)) scavenger catalase polyethylene glycol (1000 U/mL) significantly attenuated the platelet adhesion inhibition by SEB. The cAMP and cGMP levels were not changed by SEB (0.0001-30 microg/mL, 60 min). Our findings suggest that H(2)O(2) at least partly contributes to the inhibitory responses of human platelet adhesion by SEB.
Collapse
Affiliation(s)
- Rafael P Morganti
- Department of Pharmacology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
794
|
McElroy SP, Drummond RM, Gurney AM. Regulation of store-operated Ca2+ entry in pulmonary artery smooth muscle cells. Cell Calcium 2009; 46:99-106. [DOI: 10.1016/j.ceca.2009.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 05/05/2009] [Accepted: 05/31/2009] [Indexed: 11/25/2022]
|
795
|
Weber H, Hühns S, Lüthen F, Jonas L. Calpain-mediated breakdown of cytoskeletal proteins contributes to cholecystokinin-induced damage of rat pancreatic acini. Int J Exp Pathol 2009; 90:387-99. [PMID: 19659897 PMCID: PMC2741149 DOI: 10.1111/j.1365-2613.2009.00638.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/30/2008] [Indexed: 12/01/2022] Open
Abstract
The cytosolic cysteine protease calpain is implicated in a multitude of cellular functions but also plays a role in cell damage. Our previous results suggest that an activation of calpain accompanied by a decrease in its endogenous inhibitor calpastatin may contribute to pancreatic damage during cerulein-induced acute pancreatitis. The present study aimed at the time course of secretagogue-induced calpain activation and cellular substrates of the protease. Isolated rat pancreatic acini were incubated with a supramaximal concentration of cholecystokinin (0.1 microM CCK) for 30 min in the presence or absence of the calpain inhibitor Z-Val-Phe methyl ester (100 microM ZVP). The activation of calpain and the expression of calpastatin and the actin cytoskeleton-associated proteins alphaII-spectrin, E-cadherin and vinculin were studied by immunoblotting. The cell damage was assessed by lactate dehydrogenase release and ultrastructural analysis including fluorescence-labelled actin filaments. Immediately after administration, CCK led to activation of both calpain isoforms, mu- and m-calpain. The protease activation was accompanied by a decrease in the E-cadherin level and formation of calpain-specific breakdown products of alphaII-spectrin. A calpain-specific cleavage product of vinculin appeared concomitantly with changes in the actin filament organization. No effect of CCK on calpastatin was found. Inhibition of calpain by ZVP reduced CCK-induced damage of the actin-associated proteins and the cellular ultrastructure including the actin cytoskeleton. The results suggest that CCK-induced acinar cell damage requires activation of calpain and that the actin cytoskeleton belongs to the cellular targets of the protease.
Collapse
Affiliation(s)
- Heike Weber
- Institute of Clinical Chemistry and Laboratory Medicine, University of Rostock, D-18057 Rostock, Germany.
| | | | | | | |
Collapse
|
796
|
Caspase-3 and -9 are activated in human myeloid HL-60 cells by calcium signal. Mol Cell Biochem 2009; 333:151-7. [PMID: 19626422 DOI: 10.1007/s11010-009-0215-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
This study is aimed to determine the role of calcium signaling evoked by the calcium-mobilizing agonist uridine-5'-triphosphate (UTP) and by the specific inhibitor of the endoplasmic reticulum calcium reuptake thapsigargin on caspase activation in human leukemia cell line HL-60. We have analyzed cytosolic free calcium concentration ([Ca(2+)](c)) determination, mitochondrial membrane potential and caspase-3 and -9 activity by fluorimetric methods, using the fluorescent ratiometric calcium indicator Fura-2, the dye JC-1, and specific fluorogenic substrate, respectively. Our results indicated that treatment of HL-60 cells with 10 microM UTP or 1 microM thapsigargin induced a transient increase in [Ca(2+)](c) due to calcium release from internal stores. The stimulatory effect of UTP and thapsigargin on calcium signal was followed by a mitochondrial membrane depolarization. Our results also indicated that UTP and thapsigargin were able to increase the caspase-3 and -9 activities. The effect of UTP and thapsigargin on caspase activation was time dependent, reaching a maximal caspase activity after 60 min of stimulation. Loading of cells with 10 microM dimethyl BAPTA, an intracellular calcium chelator, for 30 min significantly reduced both UTP- or thapsigargin-induced mitochondrial depolarization and caspase activation. Similar results were obtained when the cells were pretreated with 10 microM Ru360 for 30 min, a specific blocker of calcium uptake into mitochondria. The findings suggest that UTP- and thapsigargin-induced caspase-3 and -9 activation and mitochondrial membrane depolarization is dependent on rises in [Ca(2+)](c) in human myeloid HL-60 cells.
Collapse
|
797
|
Wang BJ, Liang HY, Cui ZJ. Duck pancreatic acinar cell as a unique model for independent cholinergic stimulation-secretion coupling. Cell Mol Neurobiol 2009; 29:747-756. [PMID: 19370412 PMCID: PMC11506158 DOI: 10.1007/s10571-009-9400-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 03/26/2009] [Indexed: 02/07/2023]
Abstract
This paper investigated the role of acetylcholine (ACh) in physiological regulation of amylase secretion in avian exocrine pancreas. In the isolated duck pancreatic acini, ACh dose dependently stimulated amylase secretion, with a maximal effective concentration at 10 muM. The cAMP-mobilizing compounds forskolin, vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 had no effect on the dose-response curve. ACh dose dependently induced increases in cytosolic Ca(2+) concentration ([Ca(2+)]( c )), with increasing concentrations transforming oscillations into plateau increases. Forskolin (10 muM), PACAP-38 (1 nM), PACAP-27 (1 nM), or VIP (10 nM) alone did not stimulate [Ca(2+)]( c ) increase; neither did they modulate ACh-induced oscillations, nor made ACh low concentration effective. These data indicate that ACh-stimulated zymogen secretion in duck pancreatic acinar cells is not subject to modulation from the cAMP signaling pathway; whereas it has been widely reported in the rodents that ACh-stimulated exocrine pancreatic secretion is significantly enhanced by cAMP-mobilizing agents. This makes the duck exocrine pancreas unique in that cholinergic stimulus-secretion coupling is not subject to cAMP regulation.
Collapse
Affiliation(s)
- Bi Jue Wang
- Institute of Cell Biology, Beijing Normal University, 100875 Beijing, China
| | - Hui Yuan Liang
- Institute of Cell Biology, Beijing Normal University, 100875 Beijing, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
798
|
Gerloff A, Singer MV, Feick P. Beer but not wine, hard liquors, or pure ethanol stimulates amylase secretion of rat pancreatic acinar cells in vitro. Alcohol Clin Exp Res 2009; 33:1545-54. [PMID: 19485972 DOI: 10.1111/j.1530-0277.2009.00983.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In contrast to pure ethanol, the effect of alcoholic beverages on the exocrine pancreas is greatly unknown. Besides ethanol, alcoholic beverages contain numerous nonalcoholic constituents which might have pathophysiological effects on the pancreas. The aim of the present study was to investigate whether some commonly used alcoholic beverages and pure ethanol influence the main function of rat pancreatic acinar cells, i.e., enzyme output in vitro. METHODS Rat pancreatic AR4-2J cells were differentiated by dexamethasone treatment for 72 hours and freshly isolated pancreatic acini were prepared from Sprague-Dawley rats using collagenase digestion. After incubation of cells in the absence or presence of 1 to 10% (v/v) beer (containing 4.7% v/v ethanol), 10% (v/v) wine (containing 10.5 to 12.5% v/v ethanol), 10% (v/v) hard liquor (such as whisky, rum, and gin), or of the corresponding ethanol concentrations (4.03 to 80.6 mM) for 60 minutes, protein secretion was measured using amylase activity assay. RESULTS Incubation of AR4-2J cells with beer caused a dose-dependent stimulation of basal amylase secretion that was significant at doses of beer above 0.5% (v/v). Stimulation with 10% (v/v) beer induced 92.7 +/- 25.2% of maximal amylase release in response to the most effective cholecystokinin (CCK) concentration (100 nM). In contrast, ethanol (up to 80.6 mM) did neither stimulate nor inhibit basal amylase release. Lactate dehydrogenase measurement after treatment of AR4-2J cells with beer for 24 hours indicated that the increase of amylase release was not due to cell membrane damage. Wine and hard liquor had no effect on basal amylase secretion neither diluted to the ethanol concentration of beer nor undiluted. In freshly isolated rat pancreatic acinar cells beer dose-dependently stimulated amylase secretion in a similar manner as in AR4-2J cells. CONCLUSIONS Our data demonstrate that beer dose-dependently increases amylase output. Since neither ethanol nor the other alcoholic beverages tested caused stimulation of amylase release, our findings indicate that nonalcoholic constituents specific for beer are responsible for this increase. These as yet unknown compounds have to be identified and considered in further studies of ethanol-induced pathological and functional changes of the pancreas.
Collapse
Affiliation(s)
- Andreas Gerloff
- Department of Medicine II (Gastroenterology, Hepatology and Infectious Diseases), University Hospital of Heidelberg at Mannheim, Mannheim, Germany
| | | | | |
Collapse
|
799
|
H(2)O(2)-mediated modulation of cytosolic signaling and organelle function in rat hippocampus. Pflugers Arch 2009; 458:937-52. [PMID: 19430810 PMCID: PMC2719740 DOI: 10.1007/s00424-009-0672-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) released from (dys-)functioning mitochondria contribute to normal and pathophysiological cellular signaling by modulating cytosolic redox state and redox-sensitive proteins. To identify putative redox targets involved in such signaling, we exposed hippocampal neurons to hydrogen peroxide (H2O2). Redox-sensitive dyes indicated that externally applied H2O2 may oxidize intracellular targets in cell cultures and acute tissue slices. In cultured neurons, H2O2 (EC50 118 µM) induced an intracellular Ca2+ rise which could still be evoked upon Ca2+ withdrawal and mitochondrial uncoupling. It was, however, antagonized by thapsigargin, dantrolene, 2-aminoethoxydiphenyl borate, and high levels of ryanodine, which identifies the endoplasmic reticulum (ER) as the intracellular Ca2+ store involved. Intracellular accumulation of endogenously generated H2O2—provoked by inhibiting glutathione peroxidase—also released Ca2+ from the ER, as did extracellular generation of superoxide. Phospholipase C (PLC)-mediated metabotropic signaling was depressed in the presence of H2O2, but cytosolic cyclic adenosine-5′-monophosphate (cAMP) levels were not affected. H2O2 (0.2–5 mM) moderately depolarized mitochondria, halted their intracellular trafficking in a Ca2+- and cAMP-independent manner, and directly oxidized cellular nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). In part, the mitochondrial depolarization reflects uptake of Ca2+ previously released from the ER. We conclude that H2O2 releases Ca2+ from the ER via both ryanodine and inositol trisphosphate receptors. Mitochondrial function is not markedly impaired even by millimolar concentrations of H2O2. Such modulation of Ca2+ signaling and organelle interaction by ROS affects the efficacy of PLC-mediated metabotropic signaling and may contribute to the adjustment of neuronal function to redox conditions and metabolic supply.
Collapse
|
800
|
Dionisio N, Garcia-Mediavilla MV, Sanchez-Campos S, Majano PL, Benedicto I, Rosado JA, Salido GM, Gonzalez-Gallego J. Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol 2009; 50:872-82. [PMID: 19303156 DOI: 10.1016/j.jhep.2008.12.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 11/18/2008] [Accepted: 12/09/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS The hepatitis C virus (HCV) structural core and non-structural NS5A proteins induce in liver cells a series of intracellular events, including elevation of reactive oxygen and nitrogen species (ROS/RNS). Since oxidative stress is associated to altered intracellular Ca(2+) homeostasis, we aimed to investigate the effect of these proteins on Ca(2+) mobilization in human hepatocyte-derived transfected cells, and the protective effect of quercetin treatment. METHODS Ca(2+) mobilization and actin reorganization were determined by spectrofluorimetry. Production of ROS/RNS was determined by flow cytometry. RESULTS Cells transfected with NS5A and core proteins showed enhanced ROS/RNS production and resting cytosolic Ca(2+) concentration, and reduced Ca(2+) concentration into the stores. Phenylephrine-evoked Ca(2+) release, Ca(2+) entry and extrusion by the plasma membrane Ca(2+)-ATPase were significantly reduced in transfected cells. Similar effects were observed in cytokine-activated cells. Phenylephrine-evoked actin reorganization was reduced in the presence of core and NS5A proteins. These effects were significantly prevented by quercetin. Altered Ca(2+) mobilization and increased calpain activation were observed in replicon-containing cells. CONCLUSIONS NS5A and core proteins induce oxidative stress-mediated Ca(2+) homeostasis alterations in human hepatocyte-derived cells, which might underlie the effects of both proteins in the pathogenesis of liver disorders associated to HCV infection.
Collapse
Affiliation(s)
- Natalia Dionisio
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain
| | | | | | | | | | | | | | | |
Collapse
|