751
|
Bulman SE, Coleman CM, Murphy JM, Medcalf N, Ryan AE, Barry F. Pullulan: a new cytoadhesive for cell-mediated cartilage repair. Stem Cell Res Ther 2015; 6:34. [PMID: 25889571 PMCID: PMC4414433 DOI: 10.1186/s13287-015-0011-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction Local delivery of mesenchymal stem cells (MSCs) to the acutely injured or osteoarthritic joint retards cartilage destruction. However, in the absence of assistive materials the efficiency of engraftment of MSCs to either intact or fibrillated cartilage is low and localization is further reduced by natural movement of the joint surfaces. It is hypothesised that enhanced engraftment of the delivered MSCs at the cartilage surface will increase their reparative effect and that the application of a bioadhesive to the degraded cartilage surface will provide improved cell retention. Pullulan is a structurally flexible, non-immunogenic exopolysaccharide with wet-stick adhesive properties and has previously been used for drug delivery via the wet surfaces of the buccal cavity. In this study, the adhesive character of pullulan was exploited to enhance MSC retention on the damaged cartilage surface. Methods MSCs labeled with PKH26 were applied to pullulan-coated osteoarthritic cartilage explants to measure cell retention. Cytocompatability was assessed by measuring the effects of prolonged exposure to the bioadhesive on MSC viability and proliferation. The surface phenotype of the cells was assessed by flow cytometry and their multipotent nature by measuring osteogenic, adipogenic and chrondrogenic differentiation. Experiments were also carried out to determine expression of the C-type lectin Dectin-2 receptor. Results MSCs maintained a stable phenotype following exposure to pullulan in terms of metabolic activity, proliferation, differentiation and surface antigen expression. An increase in osteogenic activity and Dectin-2 receptor expression was seen in MSCs treated with pullulan. Markedly enhanced retention of MSCs was observed in explant culture of osteoarthritic cartilage. Conclusions Pullulan is a biocompatible and effective cytoadhesive material for tissue engraftment of MSCs. Prolonged exposure to pullulan has no negative impact on the phenotype, viability and differentiation potential of the cells. Pullulan dramatically improves the retention of MSCs at the fibrillated surface of osteoarthritic articular cartilage. Pullulan causes an upregulation in expression of the Dectin-2 C-type lectin transmembrane complex.
Collapse
Affiliation(s)
- Sarah E Bulman
- Regenerative Medicine Institute, National University of Ireland Galway, Biosciences, Dangan, Galway, Ireland. .,Smith & Nephew, York Science Park, Heslington, York, YO10 5DF, UK.
| | - Cynthia M Coleman
- Regenerative Medicine Institute, National University of Ireland Galway, Biosciences, Dangan, Galway, Ireland.
| | - J Mary Murphy
- Regenerative Medicine Institute, National University of Ireland Galway, Biosciences, Dangan, Galway, Ireland.
| | - Nicholas Medcalf
- School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.
| | - Aideen E Ryan
- Regenerative Medicine Institute, National University of Ireland Galway, Biosciences, Dangan, Galway, Ireland.
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland Galway, Biosciences, Dangan, Galway, Ireland.
| |
Collapse
|
752
|
Yaochite JNU, Caliari-Oliveira C, de Souza LEB, Neto LS, Palma PVB, Covas DT, Malmegrim KCR, Voltarelli JC, Donadi EA. Therapeutic efficacy and biodistribution of allogeneic mesenchymal stem cells delivered by intrasplenic and intrapancreatic routes in streptozotocin-induced diabetic mice. Stem Cell Res Ther 2015; 6:31. [PMID: 25884215 PMCID: PMC4432770 DOI: 10.1186/s13287-015-0017-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction Mesenchymal stromal/stem cells (MSCs) are multipotent cells that have the ability to express and secrete a wide range of immunomodulatory molecules, cytokines, growth factors and antiapoptotic proteins. MSCs modulate both innate and adaptive immune responses making them potential candidates for the treatment of patients with type 1 diabetes mellitus (T1D). However, one problem frequently associated with the systemic MSCs administration is the entrapment of the cells mainly in the lungs. In this sense, trying to avoid the lung barrier, the purpose of this study was to evaluate the long-term therapeutic efficacy and biodistribution of allogeneic adipose tissue-derived MSCs (ADMSCs) injected via two different delivery routes (intrasplenic/I.Sp and intrapancreatic/I.Pc) in a murine model of diabetes induced by streptozotocin (STZ). Methods Experimental diabetes was induced in C57BL/6 male mice by multiple low-doses of STZ. MSCs were isolated from adipose tissue (ADMSCs) of Balb/c mice. A single dose of 1x106 ADMSCs was microinjected into the spleen or into the pancreas of diabetic mice. Control group received injection of PBS by I.Sp or I.Pc delivery routes. Glycemia, peripheral glucose response, insulin-producing β cell mass, regulatory T cell population, cytokine profile and cell biodistribution were evaluated after ADMSCs/PBS administration. Results ADMSCs injected by both delivery routes were able to decrease blood glucose levels and improve glucose tolerance in diabetic mice. ADMSCs injected by I.Sp route reverted hyperglycemia in 70% of diabetic treated mice, stimulating insulin production by pancreatic β cells. Using the I.Pc delivery route, 42% of ADMSCs-treated mice responded to the therapy. Regulatory T cell population remained unchanged after ADMSCs administration but pancreatic TGF-β levels were increased in ADMSCs/I.Sp-treated mice. ADMSCs administrated by I.Sp route were retained in the spleen and in the liver and ADMSCs injected by I.Pc route remained in the pancreas. However, ADMSCs injected by these delivery routes remained only few days in the recipients. Conclusion Considering the potential role of MSCs in the treatment of several disorders, this study reports alternative delivery routes that circumvent cell entrapment into the lungs promoting beneficial therapeutic responses in ADMSCs-treated diabetic mice. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0017-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Navarro Ueda Yaochite
- Department of Biochemistry and Immunology, Basic and Applied Immunology Program, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil. .,Tenente Catão Roxo 2501, Monte Alegre 14051-140, Ribeirão Preto, São Paulo, Brazil.
| | - Carolina Caliari-Oliveira
- Department of Biochemistry and Immunology, Basic and Applied Immunology Program, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Eduardo Botelho de Souza
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Lourenço Sbragia Neto
- Department of Surgery and Anatomy, Pediatric Surgery Division, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Patrícia Vianna Bonini Palma
- Regional Blood Center of Ribeirão Preto, University of São Paulo, Tenente Catão Roxo 2501, Monte Alegre 14051-140, Ribeirão Preto, São Paulo, Brazil.
| | - Dimas Tadeu Covas
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Kelen Cristina Ribeiro Malmegrim
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Monte Alegre 14040-903, Ribeirão Preto, São Paulo, Brazil.
| | | | - Eduardo Antônio Donadi
- Department of Biochemistry and Immunology, Basic and Applied Immunology Program, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
753
|
Díez JM, Bauman E, Gajardo R, Jorquera JI. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Res Ther 2015; 6:28. [PMID: 25889980 PMCID: PMC4396121 DOI: 10.1186/s13287-015-0016-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/12/2014] [Accepted: 02/23/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. METHODS SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. RESULTS SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. CONCLUSIONS The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.
Collapse
Affiliation(s)
- José M Díez
- Cell Culture and Virology Laboratory, Research & Development Biologics Industrial Group. Grifols, Carrer Llevant, 11, 08150 Parets del Vallès, Barcelona, Spain.
| | - Ewa Bauman
- Cell Culture and Virology Laboratory, Research & Development Biologics Industrial Group. Grifols, Carrer Llevant, 11, 08150 Parets del Vallès, Barcelona, Spain.
| | - Rodrigo Gajardo
- Cell Culture and Virology Laboratory, Research & Development Biologics Industrial Group. Grifols, Carrer Llevant, 11, 08150 Parets del Vallès, Barcelona, Spain.
| | - Juan I Jorquera
- Cell Culture and Virology Laboratory, Research & Development Biologics Industrial Group. Grifols, Carrer Llevant, 11, 08150 Parets del Vallès, Barcelona, Spain.
| |
Collapse
|
754
|
Somoza RA, Acevedo CA, Albornoz F, Luz-Crawford P, Carrión F, Young ME, Weinstein-Oppenheimer C. TGFβ3 secretion by three-dimensional cultures of human dental apical papilla mesenchymal stem cells. J Tissue Eng Regen Med 2015; 11:1045-1056. [PMID: 25690385 DOI: 10.1002/term.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 10/02/2014] [Accepted: 01/07/2015] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells (MSCs) can be isolated from dental tissues, such as pulp and periodontal ligament; the dental apical papilla (DAP) is a less-studied MSC source. These dental-derived MSCs are of great interest because of their potential as an accessible source for cell-based therapies and tissue-engineering (TE) approaches. Much of the interest regarding MSCs relies on the trophic-mediated repair and regenerative effects observed when they are implanted. TGFβ3 is a key growth factor involved in tissue regeneration and scarless tissue repair. We hypothesized that human DAP-derived MSCs (hSCAPs) can produce and secrete TGFβ3 in response to micro-environmental cues. For this, we encapsulated hSCAPs in different types of matrix and evaluated TGFβ3 secretion. We found that dynamic changes of cell-matrix interactions and mechanical stress that cells sense during the transition from a monolayer culture (two-dimensional, 2D) towards a three-dimensional (3D) culture condition, rather than the different chemical composition of the scaffolds, may trigger the TGFβ3 secretion, while monolayer cultures showed almost 10-fold less secretion of TGFβ3. The study of these interactions is provided as a cornerstone in designing future strategies in TE and cell therapy that are more efficient and effective for repair/regeneration of damaged tissues. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rodrigo A Somoza
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernando Albornoz
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | - Flavio Carrión
- Laboratorio de Inmunología, Universidad de los Andes, Santiago, Chile
| | - Manuel E Young
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | |
Collapse
|
755
|
Chen S, Zhao G, Miao H, Tang R, Song Y, Hu Y, Wang Z, Hou Y. MicroRNA-494 inhibits the growth and angiogenesis-regulating potential of mesenchymal stem cells. FEBS Lett 2015; 589:710-7. [DOI: 10.1016/j.febslet.2015.01.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 11/26/2022]
|
756
|
Abstract
Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000-6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems--microcarrier/microcarrier-clump cultures using stirred-tank reactors--for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes.
Collapse
|
757
|
Coatti GC, Beccari MS, Olávio TR, Mitne-Neto M, Okamoto OK, Zatz M. Stem cells for amyotrophic lateral sclerosis modeling and therapy: Myth or fact? Cytometry A 2015; 87:197-211. [DOI: 10.1002/cyto.a.22630] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/28/2014] [Indexed: 02/06/2023]
Affiliation(s)
- G. C. Coatti
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| | - M. S. Beccari
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| | - T. R. Olávio
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| | - M. Mitne-Neto
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
- Fleury Group (Research and Development Department); São Paulo Brazil
| | - O. K. Okamoto
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| | - M. Zatz
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| |
Collapse
|
758
|
Abstract
Adult mesenchymal stem cells (MSCs) were previously described as multipotent cells that could differentiate into bone, cartilage, muscle, and other mesenchymal tissues. New information suggests that MSCs can be found in every tissue of the body because they function as perivascular cells--pericytes--found outside all blood vessels. When these vessels break or are inflamed, pericytes are detached and form MSCs, which are activated by their local microenvironment of injury. Such MSCs function to secrete powerful immune-modulatory and regenerative agents; more than 450 clinical trials are now ongoing, covering a huge spectrum of clinical conditions. How such activated MSCs affect menstrual cycle, menopause, or osteotrophic cancers has only recently been studied. This article outlines these issues and challenges the scientific and medical community to use this newfound knowledge to uncover new clinical logics and medial solutions for women.
Collapse
Affiliation(s)
- Arnold I Caplan
- From the Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
759
|
Hamilton DC, Shih HH, Schubert RA, Michie SA, Staats PN, Kaplan DL, Fontaine MJ. A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo. J Tissue Eng Regen Med 2015; 11:887-895. [PMID: 25619945 DOI: 10.1002/term.1990] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 12/15/2022]
Abstract
The success of pancreatic islet (PI) transplantation is challenged by PI functional damage during the peritransplantation period. A silk-based encapsulation platform including mesenchymal stromal cells (MSCs) was evaluated for islet cell delivery in vivo. Islet equivalents (IEQs) were transplanted into the epididymal fat pads of mice with streptozotocin-induced diabetes. Three PI combinations were tested: (A) co-encapsulated in silk with MSCs; (b) encapsulated in silk alone; or (c) pelleted. Blood glucose levels were monitored and intraperitoneal glucose tolerance test (IPGTT) was performed upon return to euglycaemia. Grafts were removed for histology and cytokine content analysis. Mice with PI grafts in silk showed a prompt return to euglycaemia. IPGTT was significantly improved with PI in silk with MSCs, compared to PI in silk alone or pelleted. Both Th1 and Th2 cytokines were increased in PI grafts in silk, but Th1 cytokines were decreased significantly with PI and MSC co-encapsulation. Histological analysis showed osteogenesis and chondrogenesis in the silk grafts containing MSCs. Future studies will evaluate MSC stability and function in vivo and improve silk biocompatibility for applications in islet transplantation. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diana C Hamilton
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Hank H Shih
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Richard A Schubert
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Sara A Michie
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Paul N Staats
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David L Kaplan
- Department of Bioengineering, Tufts University, Medford, MA, USA
| | - Magali J Fontaine
- Department of Pathology, Stanford University School of Medicine, CA, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
760
|
Zhou SB, Chiang CA, Liu K, Li QF. Intravenous transplantation of bone marrow mesenchymal stem cells could effectively promote vascularization and skin regeneration in mechanically stretched skin. Br J Dermatol 2015; 172:1278-85. [PMID: 25041452 DOI: 10.1111/bjd.13251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Skin expansion is a procedure that stimulates and promotes skin regeneration by applying continuous mechanical stretching. However, the outcome of treatment is limited by the skin's instinctive regeneration capacity. OBJECTIVES To evaluate the impact of intravenous transplantation of bone marrow mesenchymal stem cells (MSCs) on expanded skin regeneration. METHODS MSCs from luciferase-Tg Lewis rats were transplanted into a rat tissue expansion model and tracked in vivo by luminescence imaging. At the end of 21 days of skin expansion, the expanded skin was harvested and skin regeneration was evaluated by inflation volume, skin area and thickness. Counting of capillaries and vascular endothelial cell growth factor (VEGF) expression analysis were conducted to assess the impact of MSCs on expanded skin vascularization. RESULTS Samples of the skin expansion model from the MSC group were observed to have a significantly higher inflation volume and greater expanded skin area than those from the control group at the end of 21 days' follow-up. In vivo tracing results showed that MSCs were recruited by mechanical stretch and migrated to expanded skin. Migrated MSCs promoted skin vascularization by secreting VEGF and differentiating into CD31+ endothelial cells. Skin sections from the MSC group had a significant advantage in thickness and proliferating cell count, indicating that MSCs effectively enhanced expanded skin regeneration. CONCLUSIONS Intravenous transplantation of MSCs could effectively promote expanded skin regeneration. Transplanted MSCs could be recruited by mechanical stretch and subsequent migration to expanded skin. Engrafted MSCs could contribute to vascularization and cell proliferation.
Collapse
Affiliation(s)
- S B Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - C A Chiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - K Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Q F Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai, 200011, China
| |
Collapse
|
761
|
Cui X, Chen L, Xue T, Yu J, Liu J, Ji Y, Cheng L. Human umbilical cord and dental pulp-derived mesenchymal stem cells: biological characteristics and potential roles in vitro and in vivo. Mol Med Rep 2015; 11:3269-78. [PMID: 25591506 PMCID: PMC4368085 DOI: 10.3892/mmr.2015.3198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have a wide application in cell-based therapies and tissue engineering. In the present study, the differentiation, survivin (SVV)-modified effects and molecular basis of human umbilical cord-derived MSCs (HUMSCs) and dental pulp-derived stem cells (DPSCs) were investigated. The HUMSCs were found to differentiate into adipocytes more readily than the DPSCs and the HUMSCs and DPSCs were each able to differentiate into osteoblasts and chondroblasts. Following modification of the MSCs by SVV, the secretion of SVV in the modified HUMSCs was significantly higher compared with that in the modified DPSCs. In vivo, survival of the SVV-modified DPSCs was observed at 4 and 14 days after intrastriatal transplantation, as was the expression of SVV and differentiation into astrocytes. The gene expression profiles of the control and modified HUMSCs and DPSCs were compared using RNA sequencing and an association was observed between gene expression and variability in cell line function. These findings provide novel information regarding the differences between HUMSCs and DPSCs and insight into optimal cell sources for therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ting Xue
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jing Yu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jie Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yazhong Ji
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
762
|
Mert T, Kurt AH, Arslan M, Çelik A, Tugtag B, Akkurt A. Anti-inflammatory and Anti-nociceptive Actions of Systemically or Locally Treated Adipose-Derived Mesenchymal Stem Cells in Experimental Inflammatory Model. Inflammation 2015; 38:1302-10. [DOI: 10.1007/s10753-014-0101-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
763
|
Herencia C, Almadén Y, Martínez-Moreno JM, Espejo I, Herrera C, Pérez-Sánchez C, Guerrero F, Ciria R, Briceño FJ, Ferrín G, de la Mata M, Muñoz-Castañeda JR. Human mesenchymal stromal cell lysates as a novel strategy to recover liver function. Regen Med 2015; 10:25-38. [PMID: 25562350 DOI: 10.2217/rme.14.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM It is unknown if the beneficial effects of mesenchymal stromal cells (MSC) transplantation into the liver are dependent on their anchorage and differentiation into hepatocytes or rather the result of the release of stem cell intracellular content with hepatoprotector properties. MATERIALS & METHODS The effects of intact MSC transplantation were compared with the infusion of MSC lysates in an experimental rat model of acute liver failure. RESULTS A more powerful hepatoprotective and antiapoptotic effect was obtained after infusion of MSC lysates than intact MSC. Changes in IL-6 levels and miRNAs might explain the beneficial effects of MSC lysates. CONCLUSION Infusion of MSC lysates show a better hepatoprotective effect than the transplantation of intact MSC.
Collapse
Affiliation(s)
- Carmen Herencia
- Maimónides Institute for Biomedical Research (IMIBIC)/Reina Sofia University Hospital/University of Córdoba, Avda Menendez-Pidal s/n, CP. 14004, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
764
|
Eaton EB, Varney TR. Mesenchymal stem cell therapy for acute radiation syndrome: innovative medical approaches in military medicine. Mil Med Res 2015; 2:2. [PMID: 25722881 PMCID: PMC4340678 DOI: 10.1186/s40779-014-0027-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/20/2014] [Indexed: 01/03/2023] Open
Abstract
After a radiological or nuclear event, acute radiation syndrome (ARS) will present complex medical challenges that could involve the treatment of hundreds to thousands of patients. Current medical doctrine is based on limited clinical data and remains inadequate. Efforts to develop medical innovations that address ARS complications are unlikely to be generated by industry because of market uncertainties specific to this type of injury. A prospective strategy could be the integration of cellular therapy to meet the medical demands of ARS. The most clinically advanced cellular therapy to date is the administration of mesenchymal stem cells (MSCs). Results of currently published investigations describing MSC safety and efficacy in a variety of injury and disease models demonstrate the unique qualities of this reparative cell population in adapting to the specific requirements of the damaged tissue in which the cells integrate. This report puts forward a rationale for the further evaluation of MSC therapy to address the current unmet medical needs of ARS. We propose that the exploration of this novel therapy for the treatment of the multivariate complications of ARS could be of invaluable benefit to military medicine.
Collapse
Affiliation(s)
- Erik B Eaton
- United States Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, Maryland, 21010 US
| | - Timothy R Varney
- United States Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, Maryland, 21010 US
| |
Collapse
|
765
|
Caruso M, Parolini O. Multipotent Mesenchymal Stromal Cell-Based Therapies: Regeneration Versus Repair. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
766
|
Mesenchymal Stem Cells and Biomaterials Systems – Perspectives for Skeletal Muscle Tissue Repair and Regeneration. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proeng.2015.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
767
|
Abstract
Many technologies that underpin tissue engineering as a research field were developed with the aim of producing functional human cartilage in vitro. Much of our practical experience with three-dimensional cultures, tissue bioreactors, scaffold materials, stem cells, and differentiation protocols was gained using cartilage as a model system. Despite these advances, however, generation of engineered cartilage matrix with the composition, structure, and mechanical properties of mature articular cartilage has not yet been achieved. Currently, the major obstacles to synthesis of clinically useful cartilage constructs are our inability to control differentiation to the extent needed, and the failure of engineered and host tissues to integrate after construct implantation. The aim of this chapter is to distil from the large available body of literature the seminal approaches and experimental techniques developed for cartilage tissue engineering and to identify those specific areas requiring further research effort.
Collapse
Affiliation(s)
- Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, 218, Hawthorn, Melbourne, VIC, 3122, Australia.
| |
Collapse
|
768
|
Marfia G, Navone SE, Di Vito C, Ughi N, Tabano S, Miozzo M, Tremolada C, Bolla G, Crotti C, Ingegnoli F, Rampini P, Riboni L, Gualtierotti R, Campanella R. Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds. Organogenesis 2015; 11:183-206. [PMID: 26652928 PMCID: PMC4879897 DOI: 10.1080/15476278.2015.1126018] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/16/2022] Open
Abstract
Wound healing is a complex physiological process including overlapping phases (hemostatic/inflammatory, proliferating and remodeling phases). Every alteration in this mechanism might lead to pathological conditions of different medical relevance. Treatments for chronic non-healing wounds are expensive because reiterative treatments are needed. Regenerative medicine and in particular mesenchymal stem cells approach is emerging as new potential clinical application in wound healing. In the past decades, advance in the understanding of molecular mechanisms underlying wound healing process has led to extensive topical administration of growth factors as part of wound care. Currently, no definitive treatment is available and the research on optimal wound care depends upon the efficacy and cost-benefit of emerging therapies. Here we provide an overview on the novel approaches through stem cell therapy to improve cutaneous wound healing, with a focus on diabetic wounds and Systemic Sclerosis-associated ulcers, which are particularly challenging. Current and future treatment approaches are discussed with an emphasis on recent advances.
Collapse
Affiliation(s)
- Giovanni Marfia
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico; University of Milan; Neurosurgery Unit; Laboratory of Experimental Neurosurgery and Cell Therapy; Milan, Italy
| | - Stefania Elena Navone
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico; University of Milan; Neurosurgery Unit; Laboratory of Experimental Neurosurgery and Cell Therapy; Milan, Italy
| | - Clara Di Vito
- University of Milan; Department of Medical Biotechnology and Translational Medicine; LITA-Segrate; Milan, Italy
| | - Nicola Ughi
- Division of Rheumatology; Istituto Gaetano Pini; Milan Italy; Department of Clinical Science & Community Health; University of Milan; Milan, Italy
| | - Silvia Tabano
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; University of Milan; Division of Pathology; Milan, Italy
| | - Monica Miozzo
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; University of Milan; Division of Pathology; Milan, Italy
| | | | - Gianni Bolla
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; University of Milan; Milan, Italy
| | - Chiara Crotti
- Division of Rheumatology; Istituto Gaetano Pini; Milan Italy; Department of Clinical Science & Community Health; University of Milan; Milan, Italy
| | - Francesca Ingegnoli
- Division of Rheumatology; Istituto Gaetano Pini; Milan Italy; Department of Clinical Science & Community Health; University of Milan; Milan, Italy
| | - Paolo Rampini
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico; University of Milan; Neurosurgery Unit; Laboratory of Experimental Neurosurgery and Cell Therapy; Milan, Italy
| | - Laura Riboni
- University of Milan; Department of Medical Biotechnology and Translational Medicine; LITA-Segrate; Milan, Italy
| | - Roberta Gualtierotti
- Division of Rheumatology; Istituto Gaetano Pini; Milan Italy; Department of Clinical Science & Community Health; University of Milan; Milan, Italy
| | - Rolando Campanella
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico; University of Milan; Neurosurgery Unit; Laboratory of Experimental Neurosurgery and Cell Therapy; Milan, Italy
| |
Collapse
|
769
|
MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs. Proc Natl Acad Sci U S A 2014; 112:530-5. [PMID: 25548183 DOI: 10.1073/pnas.1423008112] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) have many potential therapeutic applications including therapies for cancers and tissue damages caused by cancers or radical cancer treatments. However, tissue-derived MSCs such as bone marrow MSCs (BM-MSCs) may promote cancer progression and have considerable donor variations and limited expandability. These issues hinder the potential applications of MSCs, especially those in cancer patients. To circumvent these issues, we derived MSCs from transgene-free human induced pluripotent stem cells (iPSCs) efficiently with a modified protocol that eliminated the need of flow cytometric sorting. Our iPSC-derived MSCs were readily expandable, but still underwent senescence after prolonged culture and did not form teratomas. These iPSC-derived MSCs homed to cancers with efficiencies similar to BM-MSCs but were much less prone than BM-MSCs to promote the epithelial-mesenchymal transition, invasion, stemness, and growth of cancer cells. The observations were probably explained by the much lower expression of receptors for interleukin-1 and TGFβ, downstream protumor factors, and hyaluronan and its cofactor TSG6, which all contribute to the protumor effects of BM-MSCs. The data suggest that iPSC-derived MSCs prepared with the modified protocol are a safer and better alternative to BM-MSCs for therapeutic applications in cancer patients. The protocol is scalable and can be used to prepare the large number of cells required for "off-the-shelf" therapies and bioengineering applications.
Collapse
|
770
|
Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int 2014; 2014:194318. [PMID: 25548573 PMCID: PMC4274908 DOI: 10.1155/2014/194318] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease most commonly occurring in the ageing population. It is a slow progressive condition resulting in the destruction of hyaline cartilage followed by pain and reduced activity. Conventional treatments have little effects on the progression of the condition often leaving surgery as the last option. In the last 10 years tissue engineering utilising mesenchymal stem cells has been emerging as an alternative method for treating OA. Mesenchymal stem cells (MSCs) are multipotent progenitor cells found in various tissues, most commonly bone marrow and adipose tissue. MSCs are capable of differentiating into osteocytes, adipocytes, and chondrocytes. Autologous MSCs can be easily harvested and applied in treatment, but allogenic cells can also be employed. The early uses of MSCs focused on the implantations of cell rich matrixes during open surgeries, resulting in the formation of hyaline-like durable cartilage. More recently, the focus has completely shifted towards direct intra-articular injections where a great number of cells are suspended and injected into affected joints. In this review the history and early uses of MSCs in cartilage regeneration are reviewed and different approaches in current trends are explained and evaluated.
Collapse
|
771
|
Cell therapy for chemically induced ovarian failure in mice. Stem Cells Int 2014; 2014:720753. [PMID: 25548574 PMCID: PMC4274854 DOI: 10.1155/2014/720753] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 12/21/2022] Open
Abstract
Cell therapy has been linked to an unexplained return of ovarian function and fertility in some cancer survivors. Studies modeling this in mice have shown that cells transplantation generates donor-derived oocytes in chemotherapy-treated recipients. This study was conducted to further clarify the impact of cell transplantation from different sources on female reproductive function after chemotherapy using a preclinical mouse model. Methods. Female mice were administered 7.5 mg/kg cisplatin followed by cell transplantation (one week later) using GFP+ female cell donors. For cell tracking, adipose derived stem cell GFP+ (ADSC), female germline stem cell GFP+/MVH+ (FGSC), or ovary cell suspension GFP+ mice were transplanted into cisplatin-treated wild-type recipients. After 7 or 14 days animals were killed and histological analysis, IHQ for GFP cells, and ELISA for estradiol were performed. Results. Histological examinations showed that ADSC, ovary cell suspension, and FGSC transplant increase the number of follicles with apparent normal structure in the cells recipient group euthanized on day 7. Cell tracking showed GFP+ samples 7 days after transplant. Conclusion. These data suggest that intraovarian injection of ADSCs and FGSC into mice with chemotherapy-induced ovarian failure diminished the damage caused by cisplatin.
Collapse
|
772
|
Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014; 6:552-570. [PMID: 25426252 PMCID: PMC4178255 DOI: 10.4252/wjsc.v6.i5.552] [Citation(s) in RCA: 465] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/20/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
According to the minimal criteria of the International Society of Cellular Therapy, mesenchymal stem cells (MSCs) are a population of undifferentiated cells defined by their ability to adhere to plastic surfaces when cultured under standard conditions, express a certain panel of phenotypic markers and can differentiate into osteogenic, chondrogenic and adipogenic lineages when cultured in specific inducing media. In parallel with their major role as undifferentiated cell reserves, MSCs have immunomodulatory functions which are exerted by direct cell-to-cell contacts, secretion of cytokines and/or by a combination of both mechanisms. There are no convincing data about a principal difference in the profile of cytokines secreted by MSCs isolated from different tissue sources, although some papers report some quantitative but not qualitative differences in cytokine secretion. The present review focuses on the basic cytokines secreted by MSCs as described in the literature by which the MSCs exert immunodulatory effects. It should be pointed out that MSCs themselves are objects of cytokine regulation. Hypothetical mechanisms by which the MSCs exert their immunoregulatory effects are also discussed in this review. These mechanisms may either influence the target immune cells directly or indirectly by affecting the activities of predominantly dendritic cells. Chemokines are also discussed as participants in this process by recruiting cells of the immune systems and thus making them targets of immunosuppression. This review aims to present and discuss the published data and the personal experience of the authors regarding cytokines secreted by MSCs and their effects on the cells of the immune system.
Collapse
|
773
|
Collins JJP, Thébaud B. Lung mesenchymal stromal cells in development and disease: to serve and protect? Antioxid Redox Signal 2014; 21:1849-62. [PMID: 24350665 DOI: 10.1089/ars.2013.5781] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Bronchopulmonary dysplasia (BPD) is a disease of the developing lung that afflicts extreme preterm infants in the neonatal intensive care unit. Follow-up studies into adulthood show that BPD is not merely a problem of the neonatal period, as it also may predispose to early-onset emphysema and poor lung function in later life. RECENT ADVANCES The increasing promise of bone marrow- or umbilical cord-derived mesenchymal stromal cells (MSCs) to repair neonatal and adult lung diseases may for the first time offer the chance to make substantial strides in improving the outcome of extreme premature infants at risk of developing BPD. As more knowledge has been obtained on MSCs over the past decades, it has become clear that each organ has its own reservoir of endogenous MSCs, including the lung. CRITICAL ISSUES We have only barely scratched the surface on what resident lung MSCs exactly are and what their role and function in lung development may be. Moreover, what happens to these putative repair cells in BPD when alveolar development goes awry and why do their counterparts from the bone marrow and umbilical cord succeed in restoring normal alveolar development when they themselves do not? FUTURE DIRECTIONS Much work remains to be carried out to validate lung MSCs, but with the high potential of MSC-based treatment for BPD and other lung diseases, a thorough understanding of the endogenous lung MSC will be pivotal to get to the bottom of these diseases.
Collapse
Affiliation(s)
- Jennifer J P Collins
- 1 Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa , Ottawa, Canada
| | | |
Collapse
|
774
|
Seebach E, Freischmidt H, Holschbach J, Fellenberg J, Richter W. Mesenchymal stroma cells trigger early attraction of M1 macrophages and endothelial cells into fibrin hydrogels, stimulating long bone healing without long-term engraftment. Acta Biomater 2014; 10:4730-4741. [PMID: 25058402 DOI: 10.1016/j.actbio.2014.07.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Implantation of mesenchymal stroma cells (MSCs) is an attractive approach to stimulate closure of large bone defects but an optimal carrier has yet to be defined. MSCs may display trophic and/or immunomodulatory features or stimulate bone healing by their osteogenic activity. The aim of this study was to unravel whether fibrin hydrogel supports early actions of implanted MSCs, such as host cell recruitment, immunomodulation and tissue regeneration, in long bone defects. Female rats received cell-free fibrin or male MSCs embedded in a fibrin carrier into plate-stabilized femoral bone defects. Removed callus was analyzed for host cell invasion (day 6), local cytokine expression (days 3 and 6) and persistence of male MSCs (days 3, 6, 14 and 28). Fibrin-MSC composites triggered fast attraction of host cells into the hydrogel while cell-free fibrin implants were not invaded. A migration front dominated by M1 macrophages and endothelial progenitor cells formed while M2 macrophages remained sparse. Only MSC-seeded fibrin hydrogel stimulated early tissue maturation and primitive vessel formation at day 6 in line with significantly higher VEGF mRNA levels recorded at day 3. Local TNF-α, IL-1β and IL-10 expression indicated a balanced immune cell activity independent of MSC implantation. Implanted MSCs persisted until day 14 but not day 28. Our results demonstrate that fibrin hydrogel is an attractive carrier for MSC implantation into long bone defects, supporting host cell attraction and pro-angiogenic activity. By this angiogenesis, implant integration and tissue maturation was stimulated in long bone healing independent of long-term engraftment of implanted MSCs.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Holger Freischmidt
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Jeannine Holschbach
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Jörg Fellenberg
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
775
|
Albersen M, Berkers J, Dekoninck P, Deprest J, Lue TF, Hedlund P, Lin CS, Bivalacqua TJ, Van Poppel H, De Ridder D, Van der Aa F. Expression of a Distinct Set of Chemokine Receptors in Adipose Tissue-Derived Stem Cells is Responsible for In Vitro Migration Toward Chemokines Appearing in the Major Pelvic Ganglion Following Cavernous Nerve Injury. Sex Med 2014; 1:3-15. [PMID: 25356281 PMCID: PMC4184711 DOI: 10.1002/sm2.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Adipose tissue-derived stem cells (ADSCs) herald tremendous promise for clinical application in a wide range of injuries and diseases. Several preclinical reports demonstrate their efficacy in the treatment of cavernous nerve (CN) injury-induced erectile dysfunction in rats. It was recently illustrated that these effects were established as a result of ADSC migration to the major pelvic ganglion (MPG) where these cells induced neuroregeneration in loco. AIMS The study aims to identify chemotactic factors in the MPG following injury and to match upregulated chemokines to their respective receptors in human ADSC on the genomic, structural, and functional levels. METHODS Quantitative real-time polymerase chain reaction, fluorescence-activated cell sorting (FACS), intracellular FACS, immunofluorescence microscopy, migration assays, and calcium imaging were used in this study. MAIN OUTCOME MEASURES The main outcomes are chemokine expression in the MPG following CN injury, and the functional and structural presence of chemokine receptors in ADSC. RESULTS CCR4, CX3CR1, and XCR1 are functionally and structurally present in human ADSC, and are activated by the chemokines CCL2, CX3CL1, and XCL1 respectively, which are upregulated in the MPG following CN injury. CXCR4 and its ligand CXCL12 (SDF1) are likely no major homing factors for ADSC. Expression of chemokine receptor mRNA in ADSC did not necessarily translate into receptor presence at the cell surface and/or functional activation of these receptors. Most of the expressed chemokine receptors were detected in the intracellular compartment of these cells. CONCLUSIONS We identified the ligand/chemokine receptor pairs CCL2/CCR4, CX3CL1/CX3CR1, and XCL1/XCR1 as potentially responsible for ADSC homing toward the MPG following CN injury. The intracellular localization of various chemokine receptors likely indicates redirecting of chemokine receptors to the cell surface under specific cellular conditions. Furthermore, modification of expression of these receptors at the genomic level may potentially lead to improved migration toward injury sites and thus enhancement of treatment efficacy. Albersen M, Berkers J, Dekoninck P, Deprest J, Lue TF, Hedlund P, Lin C-S, Bivalacqua TJ, Van Poppel H, De Ridder D, and Van der Aa F. Expression of a distinct set of chemokine receptors in adipose tissue-derived stem cells is responsible for in vitro migration toward chemokines appearing in the major pelvic ganglion following cavernous nerve injury. Sex Med 2013;1:3-15.
Collapse
Affiliation(s)
- Maarten Albersen
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium ; Laboratory of Experimental Gynecology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Joost Berkers
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Philip Dekoninck
- Laboratory of Experimental Gynecology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Jan Deprest
- Laboratory of Experimental Gynecology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, University of California San Francisco, CA, USA
| | - Petter Hedlund
- Department of Urology, Urological Research Institute, Vita-Salute San Raffaele University Milan, Italy
| | - Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, University of California San Francisco, CA, USA
| | - Trinity J Bivalacqua
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions Baltimore, MD, USA
| | - Hendrik Van Poppel
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| | - Frank Van der Aa
- Laboratory of Experimental Urology, Department of Development and Regeneration, University of Leuven Leuven, Belgium
| |
Collapse
|
776
|
Gerace D, Martiniello-Wilks R, O'Brien BA, Simpson AM. The use of β-cell transcription factors in engineering artificial β cells from non-pancreatic tissue. Gene Ther 2014; 22:1-8. [DOI: 10.1038/gt.2014.93] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 01/03/2023]
|
777
|
Kim SH, Bang SH, Kang SY, Park KD, Eom JH, Oh IU, Yoo SH, Kim CW, Baek SY. Human amniotic membrane-derived stromal cells (hAMSC) interact depending on breast cancer cell type through secreted molecules. Tissue Cell 2014; 47:10-6. [PMID: 25441616 DOI: 10.1016/j.tice.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/06/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022]
Abstract
Human amniotic membrane-derived stromal cells (hAMSC) are candidates for cell-based therapies. We examined the characteristics of hAMSC including the interaction between hAMSC and breast cancer cells, MCF-7, and MDA-MB-231. Human amniotic membrane-derived stromal cells showed typical MSC properties, including fibroblast-like morphology, surface antigen expression, and mesodermal differentiation. To investigate cell-cell interaction via secreted molecules, we cultured breast cancer cells in hAMSC-conditioned medium (hAMSC-CM) and analyzed their proliferation, migration, and secretome profiles. MCF-7 and MDA-MB-231 cells exposed to hAMSC-CM showed increased proliferation and migration. However, in hAMSC-CM, MCF-7 cells proliferated significantly faster than MDA-MB-231 cells. When cultured in hAMSC-CM, MCF-7 cells migrated faster than MDA-MB-231 cells. Two cell types showed different profiles of secreted factors. MCF-7 cells expressed much amounts of IL-8, GRO, and MCP-1 in hAMSC-CM. Human amniotic membrane-derived stromal cells interact with breast cancer cells through secreted molecules. Factors secreted by hAMSCs promote the proliferation and migration of MCF-7 breast cancer cells. For much safe cell-based therapies using hAMSC, it is necessary to study carefully about interaction between hAMSC and cancer cells.
Collapse
Affiliation(s)
- Sun-Hee Kim
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chuncheongbuk-do 363-700, Republic of Korea; Laboratory of Biopharmaceutical Process, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| | - So Hee Bang
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chuncheongbuk-do 363-700, Republic of Korea
| | - So Yeong Kang
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chuncheongbuk-do 363-700, Republic of Korea
| | - Ki Dae Park
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chuncheongbuk-do 363-700, Republic of Korea
| | - Jun Ho Eom
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chuncheongbuk-do 363-700, Republic of Korea
| | - Il Ung Oh
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chuncheongbuk-do 363-700, Republic of Korea
| | - Si Hyung Yoo
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chuncheongbuk-do 363-700, Republic of Korea
| | - Chan-Wha Kim
- Laboratory of Biopharmaceutical Process, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Sun Young Baek
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chuncheongbuk-do 363-700, Republic of Korea
| |
Collapse
|
778
|
Peltzer J, Montespan F, Thepenier C, Boutin L, Uzan G, Rouas-Freiss N, Lataillade JJ. Heterogeneous functions of perinatal mesenchymal stromal cells require a preselection before their banking for clinical use. Stem Cells Dev 2014; 24:329-44. [PMID: 25203666 DOI: 10.1089/scd.2014.0327] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Perinatal sources of mesenchymal stromal cells (MSCs) have raised growing interest because they are readily and widely available with minimal ethical/legal issues and can easily be stored for allogeneic settings. In addition, perinatal tissues are known to be important in mediating the fetomaternal tolerance of pregnancy, which confer upon perinatal-MSCs (P-MSCs) a particular interest in immunomodulation. It has been recently shown that it is possible to deeply modify the secreted factor profiles of MSCs with different cytokine stimuli such as interferon gamma or tumor necrosis factor alpha to license MSCs for a better immunosuppresive potential. Therefore, we aimed to compare adult bone marrow-MSCs with MSCs from perinatal tissues (cord blood, umbilical cord, amnion, and chorion) on their in vitro immunological and stromacytic efficiencies under different priming conditions. Our results showed that P-MSCs had a potential to modulate the in vitro immune response and be useful for hematopoietic progenitor cell ex vivo expansion. However, we showed contrasted effects of cytokine priming embedded in an important between-donor variability. In conclusion, our study highlights the importance to elaborate predicitive in vitro tests to screen between-donor variability of perinatal tissues for banking allogeneic standardized MSCs.
Collapse
Affiliation(s)
- Juliette Peltzer
- 1 Unité de Thérapie Cellulaire et Réparation Tissulaire, Centre de Transfusion Sanguine des Armées "Jean Julliard", Institut de Recherche Biomédicale des Armées, Clamart , France
| | | | | | | | | | | | | |
Collapse
|
779
|
Bellini MZ, Caliari-Oliveira C, Mizukami A, Swiech K, Covas DT, Donadi EA, Oliva-Neto P, Moraes ÂM. Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. J Biomater Appl 2014; 29:1155-66. [DOI: 10.1177/0885328214553959] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive.
Collapse
Affiliation(s)
- Márcia Z Bellini
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Integrated Adamantinenses Colleges (FAI), Adamantina, SP, Brazil
| | | | - Amanda Mizukami
- School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Kamilla Swiech
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Dimas T Covas
- School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro Oliva-Neto
- School of Sciences and Languages of Assis, São Paulo State University (UNESP), Assis, SP, Brazil
| | - Ângela M Moraes
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
780
|
Liu J, Wang L, Liu W, Li Q, Jin Z, Jin Y. Dental follicle cells rescue the regenerative capacity of periodontal ligament stem cells in an inflammatory microenvironment. PLoS One 2014; 9:e108752. [PMID: 25275580 PMCID: PMC4183515 DOI: 10.1371/journal.pone.0108752] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Aims Periodontal ligament stem cells (PDLSCs) are one of the best candidates for periodontal regeneration. Their function could be impaired in periodontitis microenvironment. Dental follicle cells (DFCs), serving as precursor cells and mesenchymal stem cells, have intimate connection with PDLSCs. However, it is still unknown whether DFCs could provide a favorable microenvironment to improve the proliferation and differentiation capacity of PDLSCs from healthy subjects (HPDLSCs) and patients diagnosed with periodontitis (PPDLSCs). Methods HPDLSCs, PPDLSCs and DFCs were harvested and identified using microscopic and flow cytometric analysis. Then, the coculture systems of DFCs/HPDLSCs and DFCs/PPDLSCs were established with 0.4 µm transwell, in which all the detection indexs were obtained from HPDLSCs and PPDLSCs. The expression of stemness-associated genes was detected by real-time PCR, and the proliferation ability was assessed using colony formation and cell cycle assays. The osteogenic differentiation capacity was evaluated by real-time PCR, western blot, ALP activity, Alizarin Red S staining and calcium level analysis, while the adipogenic differentiation capacity was determined by real-time PCR and Oil Red O staining. The cell sheet formation in vitro was observed by HE staining and SEM, and the implantation effect in vivo was evaluated using HE staining and Masson’s trichrome staining. Results PPDLSCs had a greater proliferation capability but lower osteogenic and adipogenic potential than HPDLSCs. DFCs enhanced the proliferation and osteogenic/adipogenic differentiation of HPDLSCs and PPDLSCs to different degrees. Moreover, coculture with DFCs increased cell layers and extracellular matrix of HPDLSCs/PPDLSCs cell sheets in vitro and improved periodontal regeneration by HPDLSCs/PPDLSCs in vivo. Conclusions Our data suggest that the function of PPDLSCs could be damaged in the periodontitis microenvironment. DFCs appear to enhance the self-renewal and multi-differentiation capacity of both HPDLSCs and PPDLSCs, which indicates that DFCs could provide a beneficial microenvironment for periodontal regeneration using PDLSCs.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liying Wang
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qiang Li
- State Key Laboratory of Military Stomatology, Department of General Dentistry & Emergency, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (ZJ); (YJ)
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (ZJ); (YJ)
| |
Collapse
|
781
|
Bashir J, Sherman A, Lee H, Kaplan L, Hare JM. Mesenchymal stem cell therapies in the treatment of musculoskeletal diseases. PM R 2014; 6:61-9. [PMID: 24439148 DOI: 10.1016/j.pmrj.2013.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
The application of regenerative strategies to musculoskeletal ailments offers extraordinary promise to transform management of the conditions of numerous patients. The use of cell-based therapies and adjunct strategies is under active investigation for injuries and illnesses affecting bones, joints, tendons, and skeletal muscle. Of particular interest to the field is the mesenchymal stem cell, an adult stem cell found in bone marrow and adipose tissue. This cell type can be expanded ex vivo, has allogeneic application, and has the capacity for engraftment and differentiation into mesodermal lineages. Also of major interest in the field is the use of platelet-rich plasma, a strategy to concentrate endogenous cytokines and growth factors with reparative potential. Here we review the biological basis, clinical studies, safety, and current state of mesenchymal stem cell and platelet-rich plasma therapies in the treatment of musculoskeletal disease.
Collapse
Affiliation(s)
- Jamil Bashir
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL(∗)
| | - Andrew Sherman
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL(†)
| | - Henry Lee
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL(‡)
| | - Lee Kaplan
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL(§)
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136(¶).
| |
Collapse
|
782
|
Betzer O, Shwartz A, Motiei M, Kazimirsky G, Gispan I, Damti E, Brodie C, Yadid G, Popovtzer R. Nanoparticle-based CT imaging technique for longitudinal and quantitative stem cell tracking within the brain: application in neuropsychiatric disorders. ACS NANO 2014; 8:9274-9285. [PMID: 25133802 DOI: 10.1021/nn503131h] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A critical problem in the development and implementation of stem cell-based therapy is the lack of reliable, noninvasive means to image and trace the cells post-transplantation and evaluate their biodistribution, final fate, and functionality. In this study, we developed a gold nanoparticle-based CT imaging technique for longitudinal mesenchymal stem cell (MSC) tracking within the brain. We applied this technique for noninvasive monitoring of MSCs transplanted in a rat model for depression. Our research reveals that cell therapy is a potential approach for treating neuropsychiatric disorders. Our results, which demonstrate that cell migration could be detected as early as 24 h and up to one month post-transplantation, revealed that MSCs specifically navigated and homed to distinct depression-related brain regions. We further developed a noninvasive quantitative CT ruler, which can be used to determine the number of cells residing in a specific brain region, without tissue destruction or animal scarification. This technique may have a transformative effect on cellular therapy, both for basic research and clinical applications.
Collapse
Affiliation(s)
- Oshra Betzer
- Gonda Brain Research Center, Bar-Ilan University , Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
783
|
Glowacki AJ, Gottardi R, Yoshizawa S, Cavalla F, Garlet GP, Sfeir C, Little SR. Strategies to direct the enrichment, expansion, and recruitment of regulatory cells for the treatment of disease. Ann Biomed Eng 2014; 43:593-602. [PMID: 25245220 DOI: 10.1007/s10439-014-1125-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/12/2014] [Indexed: 01/21/2023]
Abstract
Disease and injury perturb the balance of processes associated with inflammation and tissue remodeling, resulting in positive feedback loops, exacerbation of disease and compromised tissue repair. Conversely, under homeostatic healthy conditions, these processes are tightly regulated through the expansion and/or recruitment of specific cell populations, promoting a balanced steady-state. Better understanding of these regulatory processes and recent advances in biomaterials and biotechnology have prompted strategies to utilize cells for the treatment and prevention of disease through regulation of inflammation and promotion of tissue repair. Herein, we describe how cells that regulate these processes can be increased in prevalence at a site of disease or injury. We review several relevant cell therapy approaches as well as new strategies for directing endogenous regulatory cells capable of promoting environmental homeostasis and even the establishment of a pro-regenerative micro-environment. Collectively, these examples may provide a blueprint for next-generation "medicine" that spurs the body's own cells to action and replaces conventional drugs.
Collapse
Affiliation(s)
- Andrew J Glowacki
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
784
|
Dental pulp stem cells' secretome enhances pulp repair processes and compensates TEGDMA-induced cytotoxicity. Dent Mater 2014; 30:e405-18. [PMID: 25241918 DOI: 10.1016/j.dental.2014.08.377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/04/2014] [Accepted: 08/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Aim of this study was to investigate the effects of dental pulp stem cells' (DPSCs) secretome, expressed through their culture conditioned medium (CM), on biological endpoints related to pulp repair and on TEGDMA-induced cytotoxicity. METHODS DPSCs cultures were established and characterized for stem cell markers with flow cytometry. CM was collected from DPSCs under serum deprivation conditions (SDC) and normal serum conditions (NSC) at various time-points. CM effects on DPSCs viability, migration and mineralization potential were evaluated by MTT assay, transwell insert and in vitro scratch assay and Alizarin Red staining/quantification respectively. TEGDMA (0.25-2.0mM) cytotoxicity regarding the same biological endpoints was tested in the presence/absence of CM. TGF-β1 and FGF-2 secretion in CM was measured by ELISA. RESULTS CM collected under SDC (4d) was able to increase cell viability by 20-25% and to reduce TEGDMA cytotoxicity by 20% (p<0.05). CM positive effects were not obvious when collected under NSC. Transwell assay showed significant increase (26%, p<0.05) of DPSCs' migration after CM exposure, whereas both migration assays could not support a migration rate improvement in TEGDMA-treated cultures exposed to CM compared to TEGDMA alone. CM significantly (p<0.01) increased DPSCs mineralization potential and completely counteracted TEGDMA cytotoxicity on this process. ELISA analysis showed a time-dependent increase of TGF-β1 and a TEGDMA concentration-dependent increase of both TGF-β1 and FGF-2 in CM. SIGNIFICANCE These findings suggest that DPSCs secretome increases their viability, migration and mineralization potential and counteracts TEGDMA-induced cytotoxicy, revealing a novel mechanism of DPSCs autocrine signaling on pulp repair processes.
Collapse
|
785
|
Schäfer S, Berger JV, Deumens R, Goursaud S, Hanisch UK, Hermans E. Influence of intrathecal delivery of bone marrow-derived mesenchymal stem cells on spinal inflammation and pain hypersensitivity in a rat model of peripheral nerve injury. J Neuroinflammation 2014; 11:157. [PMID: 25212534 PMCID: PMC4172959 DOI: 10.1186/s12974-014-0157-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022] Open
Abstract
Background Multipotent mesenchymal stem (stromal) cells (MSCs) have been credited with immunomodulative properties, supporting beneficial outcomes when transplanted into a variety of disease models involving inflammation. Potential mechanisms include the secretion of paracrine factors and the establishment of a neurotrophic microenvironment. To test the hypothesis that MSCs release soluble mediators that can attenuate local inflammation, we here analysed the influence of MSCs on the activation of microglia cells, as well as on inflammatory parameters and pain behaviour in a surgical rat model of neuropathic pain. Methods We focussed on an experimental model of partial sciatic nerve ligation (PSNL), characterised by a rapid and persistent inflammation in the dorsal lumbar spinal cord where sensory inputs from the sciatic nerve are processed. Via indwelling intrathecal catheters, MSCs were repetitively grafted into the intrathecal lumbar space. Animals were evaluated for mechanical and thermal hypersensitivity over a period of 21 days after PSNL. Afterwards, spinal cords were processed for immunohistochemical analysis of the microglial marker ionized calcium-binding adapter molecule 1 (Iba1) and quantification of inflammatory markers in ipsilateral dorsal horns. We hypothesised that injections on postsurgical days 2 to 4 would interfere with microglial activation, leading to a reduced production of pro-inflammatory cytokines and amelioration of pain behaviour. Results PSNL-induced mechanical allodynia or heat hyperalgesia were not influenced by MSC transplantation, and spinal cord inflammatory processes remained largely unaffected. Indeed, the early microglial response to PSNL characterised by increased Iba1 expression in the lumbar dorsal horn was not significantly altered and cytokine levels in the spinal cord at 21 days after surgery were similar to those found in vehicle-injected animals. Grafted MSCs were detected close to the pia mater, but were absent within the spinal cord parenchyma. Conclusions We conclude that intrathecal administration is not an appropriate route to deliver cells for treatment of acute spinal cord inflammation as it leads to entrapment of grafted cells within the pia mater. We propose that the early inflammatory response triggered by PSNL in the lumbar spinal cord failed to effectively recruit MSCs or was insufficient to disturb the tissue integrity so as to allow MSCs to penetrate the spinal cord parenchyma.
Collapse
|
786
|
Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One 2014; 9:e107001. [PMID: 25198551 PMCID: PMC4157844 DOI: 10.1371/journal.pone.0107001] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/08/2014] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has proved to be a promising strategy in cell therapy and regenerative medicine. Although their mechanism of action is not completely clear, it has been suggested that their therapeutic activity may be mediated by a paracrine effect. The main goal of this study was to evaluate by radiographic, morphometric and histological analysis the ability of mesenchymal stem cells derived from human adipose tissue (Ad-MSC) and their conditioned medium (CM), to repair surgical bone lesions using an in vivo model (rabbit mandibles). The results demonstrated that both, Ad-MSC and CM, induce bone regeneration in surgically created lesions in rabbit's jaws, suggesting that Ad-MSC improve the process of bone regeneration mainly by releasing paracrine factors. The evidence of the paracrine effect of MSC on bone regeneration has a major impact on regenerative medicine, and the use of their CM can address some issues and difficulties related to cell transplants. In particular, CM can be easily stored and transported, and is easier to handle by medical personnel during clinical procedures.
Collapse
|
787
|
Srijaya TC, Ramasamy TS, Kasim NHA. Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J Transl Med 2014; 12:243. [PMID: 25182194 PMCID: PMC4163166 DOI: 10.1186/s12967-014-0243-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
The inadequacy of existing therapeutic tools together with the paucity of organ donors have always led medical researchers to innovate the current treatment methods or to discover new ways to cure disease. Emergence of cell-based therapies has provided a new framework through which it has given the human world a new hope. Though relatively a new concept, the pace of advancement clearly reveals the significant role that stem cells will ultimately play in the near future. However, there are numerous uncertainties that are prevailing against the present setting of clinical trials related to stem cells: like the best route of cell administration, appropriate dosage, duration and several other applications. A better knowledge of these factors can substantially improve the effectiveness of disease cure or organ repair using this latest therapeutic tool. From a certain perspective, it could be argued that by considering certain proven clinical concepts and experience from synthetic drug system, we could improve the overall efficacy of cell-based therapies. In the past, studies on synthetic drug therapies and their clinical trials have shown that all the aforementioned factors have critical ascendancy over its therapeutic outcomes. Therefore, based on the knowledge gained from synthetic drug delivery systems, we hypothesize that by employing many of the clinical approaches from synthetic drug therapies to this new regenerative therapeutic tool, the efficacy of stem cell-based therapies can also be improved.
Collapse
Affiliation(s)
| | - Thamil Selvee Ramasamy
- />Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- />Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
788
|
Wei FY, Leung KS, Li G, Qin J, Chow SKH, Huang S, Sun MH, Qin L, Cheung WH. Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing. PLoS One 2014; 9:e106722. [PMID: 25181476 PMCID: PMC4152330 DOI: 10.1371/journal.pone.0106722] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/02/2014] [Indexed: 01/01/2023] Open
Abstract
Low intensity pulsed ultrasound (LIPUS) has been proven effective in promoting fracture healing but the underlying mechanisms are not fully depicted. We examined the effect of LIPUS on the recruitment of mesenchymal stem cells (MSCs) and the pivotal role of stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) pathway in response to LIPUS stimulation, which are essential factors in bone fracture healing. For in vitro study, isolated rat MSCs were divided into control or LIPUS group. LIPUS treatment was given 20 minutes/day at 37 °C for 3 days. Control group received sham LIPUS treatment. After treatment, intracellular CXCR4 mRNA, SDF-1 mRNA and secreted SDF-1 protein levels were quantified, and MSCs migration was evaluated with or without blocking SDF-1/CXCR4 pathway by AMD3100. For in vivo study, fractured 8-week-old young rats received intracardiac administration of MSCs were assigned to LIPUS treatment, LIPUS+AMD3100 treatment or vehicle control group. The migration of transplanted MSC to the fracture site was investigated by ex vivo fluorescent imaging. SDF-1 protein levels at fracture site and in serum were examined. Fracture healing parameters, including callus morphology, micro-architecture of the callus and biomechanical properties of the healing bone were investigated. The in vitro results showed that LIPUS upregulated SDF-1 and CXCR4 expressions in MSCs, and elevated SDF-1 protein level in the conditioned medium. MSCs migration was promoted by LIPUS and partially inhibited by AMD3100. In vivo study demonstrated that LIPUS promoted MSCs migration to the fracture site, which was associated with an increase of local and serum SDF-1 level, the changes in callus formation, and the improvement of callus microarchitecture and mechanical properties; whereas the blockade of SDF-1/CXCR4 signaling attenuated the LIPUS effects on the fractured bones. These results suggested SDF-1 mediated MSCs migration might be one of the crucial mechanisms through which LIPUS exerted influence on fracture healing.
Collapse
Affiliation(s)
- Fang-Yuan Wei
- Department of Orthopaedics and Traumatology, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kwok-Sui Leung
- Department of Orthopaedics and Traumatology, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Translational Medicine Research & Development Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jianghui Qin
- Department of Orthopaedics and Traumatology, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Shuo Huang
- Department of Orthopaedics and Traumatology, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ming-Hui Sun
- Department of Orthopaedics and Traumatology, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Translational Medicine Research & Development Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Translational Medicine Research & Development Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
789
|
Pereira CL, Gonçalves RM, Peroglio M, Pattappa G, D'Este M, Eglin D, Barbosa MA, Alini M, Grad S. The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials 2014; 35:8144-53. [DOI: 10.1016/j.biomaterials.2014.06.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/06/2014] [Indexed: 12/15/2022]
|
790
|
Pankajakshan D, Agrawal DK. Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890954 DOI: 10.19104/jbtr.2014.107] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cell therapy show great optimism in the treatment of several diseases. MSCs are attractive candidates for cell therapy because of easy isolation, high expansion potential giving unlimited pool of transplantable cells, low immunogenicity, amenability to ex vivo genetic modification, and multipotency. The stem cells orchestrate the repair process by various mechanisms such as transdifferentiation, cell fusion, microvesicles or exosomes and most importantly by secreting paracrine factors. The MSCs release several angiogenic, mitogenic, anti-apoptotic, anti-inflammatory and anti-oxidative factors that play fundamental role in regulating tissue repair in various vascular and cardiac diseases. The therapeutic release of these factors by the cells can be enhanced by several strategies like genetic modification, physiological and pharmacological preconditioning, improved cell culture and selection methods, and biomaterial based approaches. The current review describes the impact of paracrine factors released by MSCs on vascular repair and regeneration in myocardial infarction, restenosis and peripheral artery disease, and the various strategies adopted to enhance the release of these paracrine factors to enhance organ function.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
791
|
The expression of pluripotency genes and neuronal markers after neurodifferentiation in fibroblasts co-cultured with human umbilical cord blood mononuclear cells. In Vitro Cell Dev Biol Anim 2014; 51:26-35. [DOI: 10.1007/s11626-014-9804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
|
792
|
Aali E, Mirzamohammadi S, Ghaznavi H, Madjd Z, Larijani B, Rayegan S, Sharifi AM. A comparative study of mesenchymal stem cell transplantation with its paracrine effect on control of hyperglycemia in type 1 diabetic rats. J Diabetes Metab Disord 2014; 13:76. [PMID: 25688339 PMCID: PMC4329572 DOI: 10.1186/2251-6581-13-76] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022]
Abstract
Background Many studies suggested mesenchymal stem cells (MSCs) transplantation as a new approach to control hyperglycemia in type 1 diabetes mellitus through differentiation mechanism. In contrary others believed that therapeutic properties of MSCs is depends on paracrine mechanisms even if they were not engrafted. This study aimed to compare these two approaches in control of hyperglycemia in STZ-induced diabetic rats. Methods Animals were divided into five groups: normal; diabetic control; diabetic received MSCs; diabetic received supernatant of MSCs; diabetic received co-administration of MSCs with supernatant. Blood glucose, insulin levels and body weight of animals were monitored during experiment. Immunohistochemical and immunofluorescence analysis were performed to monitor functionality and migration of labeled-MSCs to pancreas. Results First administration of MSCs within the first 3 weeks could not reduce blood glucose, but second administration significantly reduced blood glucose after week four compared to diabetic controls. Daily injection of supernatant could not reduce blood glucose as efficient as MSCs. Interestingly; Co-administration of MSCs with supernatant significantly reduced blood glucose more than other treated groups. Insulin levels and body weight were significantly increased in MSCs + supernatant-treated animals compared to other groups. Immunohistological analysis showed an increase in number and size of islets per section respectively in supernatant, MSCs and MSCs + supernatant-treated groups. Conclusion Present study exhibited that repeated-injection of MSCs reduced blood glucose and increased serum insulin levels in recipient rats. Injection of supernatant could not reverse hyperglycemia as efficient as MSCs. Interestingly; co-administration of MSCs with supernatant could reverse hyperglycemia more than either group alone.
Collapse
Affiliation(s)
- Ehsan Aali
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Mirzamohammadi
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center and Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrine and Metabolism Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Rayegan
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali M Sharifi
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran ; Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran ; Endocrine and Metabolism Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
793
|
Abstract
An important hallmark of many adult stem cell niches is their proximity to the vasculature in vivo, a feature common to neural stem cells (NSCs), mesenchymal stem cells (MSCs) from bone marrow, adipose, and other tissues, hematopoietic stem cells (HSCs), and many tumor stem cells. This review summarizes key studies supporting the vasculature's instructive role in adult stem cell niches, and the putative underlying molecular mechanisms by which blood vessels in these niches exert control over progenitor cell fates. The importance of the perivascular niche for pathology, notably tumor metastasis and dormancy, is also highlighted. Finally, the implications of the perivascular regulation of stem and progenitor cells on biomaterial design and the impact on future research directions are discussed.
Collapse
Affiliation(s)
- Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
794
|
Hung HS, Chang CH, Chang CJ, Tang CM, Kao WC, Lin SZ, Hsieh HH, Chu MY, Sun WS, Hsu SH. In vitro study of a novel nanogold-collagen composite to enhance the mesenchymal stem cell behavior for vascular regeneration. PLoS One 2014; 9:e104019. [PMID: 25093502 PMCID: PMC4122411 DOI: 10.1371/journal.pone.0104019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/04/2014] [Indexed: 12/29/2022] Open
Abstract
Novel nanocomposites based on type I collagen (Col) containing a small amount (17.4, 43.5, and 174 ppm) of gold nanoparticles (AuNPs, approximately 5 nm) were prepared in this study. The pure Col and Col-AuNP composites (Col-Au) were characterized by the UV-Vis spectroscopy (UV-Vis), surface-enhanced raman spectroscopy (SERS) and atomic force microscopy (AFM). The interaction between Col and AuNPs was confirmed by infrared (IR) spectra. The effect of AuNPs on the biocompatibility of Col, evaluated by the proliferation and reactive oxygen species (ROS) production of mesenchymal stem cells (MSCs) as well as the activation of monocytes and platelets, was investigated. Results showed that Col-Au had better biocompatibility than Col. Upon stimulation by vascular endothelial growth factor (VEGF) and stromal derived factor-1α (SDF-1α), MSCs expressed the highest levels of αvβ3 integrin/CXCR4, focal adhesion kinase (FAK), matrix metalloproteinase-2 (MMP-2), and Akt/endothelial nitric oxide synthase (eNOS) proteins when grown on the Col-Au (43.5 ppm) nanocomposite. Taken together, Col-Au nanocomposites may promote the proliferation and migration of MSCs and stimulate the endothelial cell differentiation. These results suggest that Col-Au may be used to construct tissue engineering scaffolds for vascular regeneration.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Chih-Hsuan Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
| | - Chen-Jung Chang
- Central Taiwan University of Science and Technology, Department of Medical Imaging and Radiological Science, Taichung, Taiwan, R.O.C.
| | - Cheng-Ming Tang
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| | - Wei-Chien Kao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, R.O.C.
- China Medical University Beigang Hospital, Yunlin, Taiwan, R.O.C.
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, R.O.C
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.
| | - Mei-Yun Chu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
| | - Wei-Shen Sun
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.
- Rehabilitation Engineering Research Center, National Taiwan University, Taipei, Taiwan, R.O.C.
- * E-mail:
| |
Collapse
|
795
|
Liu Y, Zhang R, Yan K, Chen F, Huang W, Lv B, Sun C, Xu L, Li F, Jiang X. Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflammation 2014; 11:135. [PMID: 25088370 PMCID: PMC4128538 DOI: 10.1186/1742-2094-11-135] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
Microglia are the primary immunocompetent cells in brain tissue and microglia-mediated inflammation is associated with the pathogenesis of various neuronal disorders. Recently, many studies have shown that mesenchymal stem cells (MSCs) display a remarkable ability to modulate inflammatory and immune responses through the release of a variety of bioactive molecules, thereby protecting the central nervous system. Previously, we reported that MSCs have the ability to modulate inflammatory responses in a traumatic brain injury model and that the potential mechanisms may be partially attributed to upregulated TNF-α stimulated gene/protein 6 (TSG-6) expression. However, whether TSG-6 exerts an anti-inflammatory effect by affecting microglia is not fully understood. In this study, we investigated the anti-inflammatory effects of MSCs and TSG-6 in an in vitro lipopolysaccharide (LPS)-induced BV2 microglial activation model. We found that MSCs and TSG-6 significantly inhibited the expression of pro-inflammatory mediators in activated microglia. However, MSC effects on microglia were attenuated when TSG-6 expression was silenced. In addition, we found that the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) pathways in LPS-stimulated BV2 microglial cells was significantly inhibited by TSG-6. Furthermore, we found that the presence of CD44 in BV2 microglial cells was essential for MSC- and TSG-6-mediated inhibition of pro-inflammatory gene expression and of NF-κB and MAPK activation in BV2 microglial cells. The results of this study suggest that MSCs can modulate microglia activation through TSG-6 and that TSG-6 attenuates the inflammatory cascade in activated microglia. Our study indicates that novel mechanisms are responsible for the immunomodulatory effect of MSCs on microglia and that MSCs, as well as TSG-6, might be promising therapeutic agents for the treatment of neurotraumatic injuries or neuroinflammatory diseases associated with microglial activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaodan Jiang
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253# Gongye Road, Guangzhou 510282, China.
| |
Collapse
|
796
|
Hupfeld J, Gorr IH, Schwald C, Beaucamp N, Wiechmann K, Kuentzer K, Huss R, Rieger B, Neubauer M, Wegmeyer H. Modulation of mesenchymal stromal cell characteristics by microcarrier culture in bioreactors. Biotechnol Bioeng 2014; 111:2290-302. [PMID: 24890974 DOI: 10.1002/bit.25281] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cell therapy. Their therapeutic use requires extensive expansion to obtain a sufficiently high number of cells for clinical applications. State-of-the-art expansion systems, that is, primarily culture flask-based systems, are limited regarding scale-up, automation, and reproducibility. To overcome this bottleneck, microcarrier (MC)-based expansion processes have been developed. For the first time, MSCs from the perinatal sources umbilical cord (UC) and amniotic membrane (AM) were expanded on MCs. This study focuses on the comparison of flask- and Cytodex 1 MC-expanded MSCs by evaluating the influence of the expansion process on biological MSC characteristics. Furthermore, we tested the hypothesis to obtain more homogeneous MSC preparations by expanding cells on MCs in controlled large-scale bioreactors. MSCs were extensively characterized determining morphology, cell growth, surface marker expression, and functional properties such as differentiation capacity, secretion of paracrine factors, and gene expression. Based on their gene expression profile MSCs from different donors and sources clearly clustered in distinct groups solely depending on the expansion process-MC or flask culture. MC- and flask-expanded MSCs significantly differed from each other regarding surface markers and both paracrine factors and gene expression profiles. Furthermore, based on gene expression analysis, MC cultivation of MSCs in controlled bioreactor systems resulted in less heterogeneity between cells from different donors. In conclusion, MC-based MSC expansion in controlled bioreactors has the potential to reliably produce MSCs with altered characteristics and functions as compared to flask-expanded MSCs. These findings may be useful for the generation of MSCs with tailored properties for clinical applications.
Collapse
Affiliation(s)
- Julia Hupfeld
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
797
|
Sutton MT, Bonfield TL. Stem cells: innovations in clinical applications. Stem Cells Int 2014; 2014:516278. [PMID: 25120571 PMCID: PMC4121181 DOI: 10.1155/2014/516278] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/08/2013] [Accepted: 01/13/2014] [Indexed: 01/08/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) as clinical therapeutics is a relatively new avenue of study for treatment of a variety of diseases. The therapeutic impact of the MSCs is based upon their multiplicities of function and interaction with host tissues. MSCs can be anti-inflammatory, antifibrotic, antimicrobial, and regenerative, all which may improve outcomes in scenarios of damaged tissues and inflammation. Although most studies focus on utilizing MSCs to direct clinical efficacy, it is the ability to orchestrate host response in surrounding tissue that is especially unique and versatile. This orchestration of host response can be applied to a variety of clinical scenarios not only through cell-cell interactions but also through production of bioactive secreted factors. These bioactive factors include small proteins, chemokines, cytokines, and other cellular regulators. These factors have the capacity to induce angiogenesis or blood vessel development, be chemotactic, and induce cellular recruitment. MSCs also have the capacity to differentiate with the implicated environment to regenerate tissue or accommodate host tissue in a cell specific manner. The differentiation cannot only be done in vivo but also can be optimized in vitro prior to in vivo administration, potentiating the versatility of the MSCs and opening avenues for corrective therapy and cell delivery of genes. The differentiation process depends on the environment with which the MSCs are put and results in active communication between the newly administered cells host tissue. Since these properties have been identified, there are a variety of clinical trials and studies being conducted on MSCs ability to treat human disease. This review outlines the potential use of MSCs, the types of tissue, and the innovative applications of MSCs for the treatment of diseases.
Collapse
Affiliation(s)
- Morgan T. Sutton
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-4948, USA
- Hathaway Brown School, 19600 North Park Boulevard, Shaker Heights, OH 44122, USA
| | - Tracey L. Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-4948, USA
| |
Collapse
|
798
|
Busser H, De Bruyn C, Urbain F, Najar M, Pieters K, Raicevic G, Meuleman N, Bron D, Lagneaux L. Isolation of adipose-derived stromal cells without enzymatic treatment: expansion, phenotypical, and functional characterization. Stem Cells Dev 2014; 23:2390-400. [PMID: 24805167 DOI: 10.1089/scd.2014.0071] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cell therapy is a potential method for the treatment of numerous diseases. The most frequent cellular source is bone-marrow-derived mesenchymal stromal cells (BM-MSCs). Human adipose-derived stromal cells (ADSCs) share similar properties with BM-MSCs as they support hematopoiesis, modulate ongoing immune responses, and differentiate into cells of mesodermal origin. On the other hand, ADSCs have higher frequency in situ, higher availability, and very few ethical issues compared with BM-MSCs, giving them an advantage over BM-MSCs for clinical use. Most of the methods used to isolate ADSCs contain a collagenase digestion step, but the type of collagenase and time of sample digestion vary among studies and these differences could have an impact on the cell properties and thus in result comparison. To overcome this obstacle, we propose a new method to isolate ADSCs from lipoaspirate without collagenase digestion step. We compared ADSCs obtained with our method versus classical protocol using collagenase digestion. Cells obtained with our method are equivalent but they have a better long-term hematopoietic support than those obtained with classical method. Moreover, our method has an advantage over the classical one as it is easier, safer, faster, less expensive, and more consistent with good manufacturing practices to obtain large number of ADSCs ex vivo.
Collapse
Affiliation(s)
- Hélène Busser
- 1 Laboratory of Clinical Cell Therapy, Jules Bordet Institut, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
799
|
An Experimental Investigation of the Effect of Mechanical and Biochemical Stimuli on Cell Migration Within a Decellularized Vascular Construct. Ann Biomed Eng 2014; 42:2029-38. [DOI: 10.1007/s10439-014-1063-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/26/2014] [Indexed: 01/07/2023]
|
800
|
Choi YC, Choi JS, Woo CH, Cho YW. Stem cell delivery systems inspired by tissue-specific niches. J Control Release 2014; 193:42-50. [PMID: 24979211 DOI: 10.1016/j.jconrel.2014.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022]
Abstract
Since stem cells have the capacity to differentiate into a variety of cell types, stem cell delivery systems (SCDSs) can be effective therapeutic strategies for a multitude of diseases and disorders. For stem cell-based therapy, stem cells are introduced directly (or peripherally) into a target tissue via different delivery systems. Despite initial promising results obtained from preclinical studies, a number of technical hurdles must be overcome for ultimate clinical utility of stem cells. A key aspect of SCDSs is how to create local environments, called stem cell niches, for improvement of survival and engraftment as well as the fate of transplanted stem cells. The stem cell niches encompassing a wide range of biochemical, biophysical, and biomechanical cues play a guidance role to modulate stem cell behaviors such as adhesion, proliferation, and differentiation. Recent studies have tried to decipher the complex interplay between stem cells and niches, and thereafter to engineer SCDS, mimicking dynamic stem cell niches encompassing a wide range of biochemical, biophysical, and biomechanical cues. Here, we discuss the biological role of stem cell niches and highlight recent progress in SCDS to mimic stem cell niches, particularly focusing on important biomaterial properties for modulating stem cell fate.
Collapse
Affiliation(s)
- Young Chan Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Chang Hee Woo
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea.
| |
Collapse
|