751
|
Coso OA, Teramoto H, Simonds WF, Gutkind JS. Signaling from G protein-coupled receptors to c-Jun kinase involves beta gamma subunits of heterotrimeric G proteins acting on a Ras and Rac1-dependent pathway. J Biol Chem 1996; 271:3963-6. [PMID: 8626724 DOI: 10.1074/jbc.271.8.3963] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Stimulation of a variety of cell surface receptors enhances the enzymatic activity of mitogen-activated protein kinases (MAPKs). MAPKs have been classified in three subfamilies: extracellular signal-regulated kinases (ERKs), stress-activated protein kinases or c-Jun NH2-terminal kinases (SAPKs/JNKs), and p38 kinase. Whereas the pathway linking cell surface receptors to ERKs has been partially elucidated, the mechanism of activation of JNKs is still poorly understood. Recently, we have shown that stimulation of G protein-coupled receptors can effectively induce JNK in NIH 3T3 cells (Coso, O. A., Chiariello, M., Kalinec, G., Kyriakis, J. M., Woodgett, J., and Gutkind, J. S. (1995) J. Biol. Chem. 270, 5620-5624). In the present study, we have used the transient expression in COS-7 cells of m1 and m2 muscarinic receptors (mAChRs) as a model system to study the signaling pathway linking G protein-coupled receptors to JNK. We show that stimulation of either muscarinic receptor subtype leads to JNK activation; however, this effect was not mimicked by expression of activated forms of alphas, alphai2, alphaq, or alpha13 G protein alpha subunits. In contrast, overexpression of Gbetagamma subunits potently induced JNK activity. Furthermore, we show that signaling from m1 and m2 mAChRs to JNK involves betagamma subunits of heterotrimeric G proteins, acting on a Ras and Rac1-dependent pathway.
Collapse
Affiliation(s)
- O A Coso
- Molecular Signaling Unit, Laboratory of Cell Development and Oncology, NIDR NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
752
|
Muda M, Boschert U, Dickinson R, Martinou JC, Martinou I, Camps M, Schlegel W, Arkinstall S. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J Biol Chem 1996; 271:4319-26. [PMID: 8626780 DOI: 10.1074/jbc.271.8.4319] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
MKP-1 (also known as CL100, 3CH134, Erp, and hVH-1) exemplifies a class of dual-specificity phosphatase able to reverse the activation of mitogen-activated protein (MAP) kinase family members by dephosphorylating critical tyrosine and threonine residues. We now report the cloning of MKP-3, a novel protein phosphatase that also suppresses MAP kinase activation state. The deduced amino acid sequence of MKP-3 is 36% identical to MKP-1 and contains the characteristic extended active-site sequence motif VXVHCXXGXSRSXTXXXAYLM (where X is any amino acid) as well as two N-terminal CH2 domains displaying homology to the cell cycle regulator Cdc25 phosphatase. When expressed in COS-7 cells, MKP-3 blocks both the phosphorylation and enzymatic activation of ERK2 by mitogens. Northern analysis reveals a single mRNA species of 2.7 kilobases with an expression pattern distinct from other dual-specificity phosphatases. MKP-3 is expressed in lung, heart, brain, and kidney, but not significantly in skeletal muscle or testis. In situ hybridization studies of MKP-3 in brain reveal enrichment within the CA1, CA3, and CA4 layers of the hippocampus. Metrazole-stimulated seizure activity triggers rapid (<1 h) but transient up-regulation of MKP-3 mRNA in the cortex, piriform cortex, and some amygdala nuclei. Metrazole stimulated similar regional up-regulation of MKP-1, although this was additionally induced within the thalamus. MKP-3 mRNA also undergoes powerful induction in PC12 cells after 3 h of nerve growth factor treatment. This response appears specific insofar as epidermal growth factor and dibutyryl cyclic AMP fail to induce significant MKP-3 expression. Subcellular localization of epitope-tagged MKP-3 in sympathetic neurons reveals expression in the cytosol with exclusion from the nucleus. Together, these observations indicate that MKP-3 is a novel dual-specificity phosphatase that displays a distinct tissue distribution, subcellular localization, and regulated expression, suggesting a unique function in controlling MAP kinase family members. Identification of a second partial cDNA clone (MKP-X) encoding the C-terminal 280 amino acids of an additional phosphatase that is 76% identical to MKP-3 suggests the existence of a distinct structurally homologous subfamily of MAP kinase phosphatases.
Collapse
Affiliation(s)
- M Muda
- Glaxo Institute for Molecular Biology, CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
753
|
Mourey RJ, Vega QC, Campbell JS, Wenderoth MP, Hauschka SD, Krebs EG, Dixon JE. A novel cytoplasmic dual specificity protein tyrosine phosphatase implicated in muscle and neuronal differentiation. J Biol Chem 1996; 271:3795-802. [PMID: 8631996 DOI: 10.1074/jbc.271.7.3795] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dual specificity protein tyrosine phosphatases (dsPTPs) are a subfamily of protein tyrosine phosphatases implicated in the regulation of mitogen-activated protein kinase (MAPK). In addition to hydrolyzing phosphotyrosine, dsPTPs can hydrolyze phosphoserine/threonine-containing substrates and have been shown to dephosphorylate activated MAPK. We have identified a novel dsPTP, rVH6, from rat hippocampus. rVH6 contains the conserved dsPTP active site sequence, VXVHCX2GX2RSX5AY(L/I)M, and exhibits phosphatase activity against activated MAPK. In PC12 cells, rVH6 mRNA is induced during nerve growth factor-mediated differentiation but not during insulin or epidermal growth factor mitogenic stimulation. In MM14 muscle cells, rVH6 mRNA is highly expressed in proliferating cells and declines rapidly during differentiation. rVH6 expression correlates with the inability of fibroblast growth factor to stimulate MAPK activity in proliferating but not in differentiating MM14 cells. rVH6 protein localizes to the cytoplasm and is the first dsPTP to be localized outside the nucleus. This novel subcellular localization may expose rVH6 to potential substrates that differ from nuclear dsPTPs substrates.
Collapse
Affiliation(s)
- R J Mourey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | | | | | | | |
Collapse
|
754
|
Han J, Lee JD, Jiang Y, Li Z, Feng L, Ulevitch RJ. Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J Biol Chem 1996; 271:2886-91. [PMID: 8621675 DOI: 10.1074/jbc.271.6.2886] [Citation(s) in RCA: 426] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases require dual phosphorylation on threonine and tyrosine residues in order to gain enzymatic activity. This activation is carried out by a family of enzymes known as MAP kinase kinases (MKKs or MEKs). It appears that there are at least four subgroups in this family; MEK1/MEK2 subgroup that activates ERK1/ERK2, MEK5 that activates ERK5/BMK1, MKK3 that activates p38, and MKK4 that activates p38 and Jun kinase. Here we describe the characteristics of a new MKK termed MKK6. The clones we isolated encode two splice isoforms of human MKK6 comprised of 278 and 334 amino acids, respectively, and one murine MKK6 with 237 amino acids. Sequence information derived from cDNA cloning indicated that MKK6 is most closely related to MKK3. The functional data revealed from co-transfection assays suggests that MKK6, like MKK3, selectively phosphorylates p38. Unlike the previously described MKKs (or MEKs), MKK6 exists in a variety of alternatively spliced isoforms with distinct patterns of tissue expression. This suggests novel mechanisms regulating activation and/or function of various forms of MKK6.
Collapse
Affiliation(s)
- J Han
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
755
|
Heasley LE, Storey B, Fanger GR, Butterfield L, Zamarripa J, Blumberg D, Maue RA. GTPase-deficient G alpha 16 and G alpha q induce PC12 cell differentiation and persistent activation of cJun NH2-terminal kinases. Mol Cell Biol 1996; 16:648-56. [PMID: 8552093 PMCID: PMC231044 DOI: 10.1128/mcb.16.2.648] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Persistent stimulation of specific protein kinase pathways has been proposed as a key feature of receptor tyrosine kinases and intracellular oncoproteins that signal neuronal differentiation of rat pheochromocytoma (PC12) cells. Among the protein serine/threonine kinases identified to date, the p42/44 mitogen-activated protein (MAP) kinases have been highlighted for their potential role in signalling PC12 cell differentiation. We report here that retrovirus-mediated expression of GTPase-deficient, constitutively active forms of the heterotrimeric Gq family members, G alpha qQ209L and G alpha 16Q212L, in PC12 cells induces neuronal differentiation as indicated by neurite outgrowth and the increased expression of voltage-dependent sodium channels. Differentiation was not observed after cellular expression of GTPase-deficient forms of alpha i2 or alpha 0, indicating selectivity for the Gq family of G proteins. As predicted, overexpression of alpha qQ209L and alpha 16Q212L constitutively elevated basal phospholipase C activity approximately 10-fold in PC12 cells. Significantly, little or no p42/44 MAP kinase activity was detected in PC12 cells differentiated with alpha 16Q212L or alpha qQ209L, although these proteins were strongly activated following expression of constitutively active cRaf-1. Rather, a persistent threefold activation of the cJun NH2-terminal kinases (JNKs) was observed in PC12 cells expressing alpha qQ209L and alpha 16Q212L. This level of JNK activation was similar to that achieved with nerve growth factor, a strong inducer of PC12 cell differentiation. Supportive of a role for JNK activation in PC12 cell differentiation, retrovirus-mediated overexpression of cJun, a JNK target, in PC12 cells induced neurite outgrowth. The results define a p42/44 MAP kinase-independent mechanism for differentiation of PC12 cells and suggest that persistent activation of the JNK members of the proline-directed protein kinase family by GTPase-deficient G alpha q and G alpha 16 subunits is sufficient to induce differentiation of PC12 cells.
Collapse
Affiliation(s)
- L E Heasley
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
756
|
Xu Q, Liu Y, Gorospe M, Udelsman R, Holbrook NJ. Acute hypertension activates mitogen-activated protein kinases in arterial wall. J Clin Invest 1996; 97:508-14. [PMID: 8567974 PMCID: PMC507044 DOI: 10.1172/jci118442] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases are rapidly activated in cells stimulated with various extracellular signals by dual phosphorylation of tyrosine and threonine residues. They are thought to play a pivotal role in transmitting transmembrane signals required for cell growth and differentiation. Herein we provide evidence that two distinct classes of MAP kinases, the extracellular signal-regulated kinases (ERK) and the c-Jun NH2-terminal kinases (JNK), are transiently activated in rat arteries (aorta, carotid and femoral arteries) in response to an acute elevation in blood pressure induced by either restraint or administration of hypertensive agents (i.e., phenylephrine and angiotensin II). Kinase activation is followed by an increase in c-fos and c-jun gene expression and enhanced activating protein 1 (AP-1) DNA-binding activity. Activation of ERK and JNK could contribute to smooth muscle cell hypertrophy/hyperplasia during arterial remodeling due to frequent and/or persistent elevations in blood pressure.
Collapse
Affiliation(s)
- Q Xu
- Section on Gene Expression and Aging, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
757
|
Kato T, Okazaki K, Murakami H, Stettler S, Fantes PA, Okayama H. Stress signal, mediated by a Hog1-like MAP kinase, controls sexual development in fission yeast. FEBS Lett 1996; 378:207-12. [PMID: 8557102 DOI: 10.1016/0014-5793(95)01442-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We identified the phh1+ gene that encodes a MAP kinase as the effector of Wis1 MAP kinase kinase in fission yeast, which is highly homologous with HOG1 of S. cerevisiae. Heterothalic phh1 dsiruptant is phenotypically indistinguishable from wis1 deletion mutant, both displaying the same extent of partial sterility and enhanced sensitivity to a variety of stress. In phh1 disruptant, nitrogen starvation-induced expression of ste11+, a key controller of sexual differentiation, is markedly diminished. Ectopic expression of ste11+ effectively restores fertility, but not stress resistance, to the phh1 disruptant. These data show that stress signal, mediated by a MAP kinase, is required for efficient start of sexual differentiation.
Collapse
Affiliation(s)
- T Kato
- Okayama Cell Switching Project, ERATO, JRDC, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
758
|
Kuriyama M, Harada N, Kuroda S, Yamamoto T, Nakafuku M, Iwamatsu A, Yamamoto D, Prasad R, Croce C, Canaani E, Kaibuchi K. Identification of AF-6 and canoe as putative targets for Ras. J Biol Chem 1996; 271:607-10. [PMID: 8557659 DOI: 10.1074/jbc.271.2.607] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ras (Ha-Ras, Ki-Ras, N-Ras) is implicated in the regulation of various cell functions such as gene expression and cell proliferation downstream from specific extracellular signals. Here, we partially purified a Ras-interacting protein with molecular mass of about 180 kDa (p180) from bovine brain membrane extract by glutathione S-transferase (GST)-Ha-Ras affinity column chromatography. This protein bound to the GTP gamma S (guanosine 5'-(3-O-thio)triphosphate, a nonhydrolyzable GTP analog).GST-Ha-Ras affinity column but not to those containing GDP.GST-Ha-Ras or GTP gamma S.GST-Ha-Ras with a mutation in the effector domain (Ha-RasA38). The amino acid sequences of the peptides derived from p180 were almost identical to those of human AF-6 that is identified as the fusion partner of the ALL-1 protein. The ALL-1/AF-6 chimeric protein is the critical product of the t (6:11) abnormality associated with some human leukemia. AF-6 has a GLGF/Dlg homology repeat (DHR) motif and shows a high degree of sequence similarity with Drosophila Canoe, which is assumed to function downstream from Notch in a common developmental pathway. The recombinant N-terminal domain of AF-6 and Canoe specifically interacted with GTP gamma S.GST-Ha-Ras. The known Ras target c-Raf-1 inhibited the interaction of AF-6 with GTP gamma S.GST-Ha-Ras. These results indicate that AF-6 and Canoe are putative targets for Ras.
Collapse
Affiliation(s)
- M Kuriyama
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
759
|
Bokemeyer D, Sorokin A, Yan M, Ahn NG, Templeton DJ, Dunn MJ. Induction of mitogen-activated protein kinase phosphatase 1 by the stress-activated protein kinase signaling pathway but not by extracellular signal-regulated kinase in fibroblasts. J Biol Chem 1996; 271:639-42. [PMID: 8557667 DOI: 10.1074/jbc.271.2.639] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intracellular mechanisms involved in the activation of extracellular signal-regulated kinase (ERK) are relatively well understood. However, the intracellular signaling pathways which regulate the termination of ERK activity remain to be elucidated. Mitogen-activated protein kinase phosphatase 1 (MKP-1) has been shown to dephosphorylate and inactivate ERK in vitro and in vivo. In the present study, we show in NIH3T3 fibroblasts that activation of the stress-activated protein kinase (SAPK) pathway by either specific extracellular stress stimuli or via induction of MEKK, an upstream kinase of SAPK, results in MKP-1 gene expression. In contrast, selective stimulation of the ERK pathway by 12-O-tetradecanoylphorbol-13-acetate or following expression of constitutively active MEK, the upstream dual specificity kinase of ERK did not induce the transcription of MKP-1. Hence, these findings demonstrate the existence of cross-talk between the ERK and SAPK signaling cascades since activation of SAPK induced the expression of MKP-1 that can inactivate ERK. This mechanism may modulate the cellular response to stimuli which employ the SAPK signal transduction pathway.
Collapse
Affiliation(s)
- D Bokemeyer
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
760
|
Chapter 29. The MAP Kinase Family: New “MAPs” for Signal Transduction Pathways and Novel Targets for Drug Discovery. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1996. [DOI: 10.1016/s0065-7743(08)60468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
761
|
Abstract
The transcription factors that bind the c-fos promoter element SRE are targeted by multiple, independent signalling cascades; the identities of these signalling pathways and their modes of activation are being elucidated.
Collapse
Affiliation(s)
- M A Cahill
- Institute for Molecular Biology, Hannover Medical School, Germany
| | | | | |
Collapse
|
762
|
Liu Y, Guyton KZ, Gorospe M, Xu Q, Lee JC, Holbrook NJ. Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic Biol Med 1996; 21:771-81. [PMID: 8902523 DOI: 10.1016/0891-5849(96)00176-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exposure of cells to either proliferative or stressful stimuli elicits a complex response involving one or more distinct phosphorylation cascades culminating in the activation of multiple members of the mitogen-activated protein kinase (MAPK) family, including extracellular signal regulated kinase (ERK), stress-activated c-Jun N-terminal kinase (JNK/SAPK), and p38/RK/CSBP protein kinase. While the pathways transducing mitogenic stimuli to these kinases are relatively well established, the early signalling events leading to their activation in response to stress are poorly understood. In the present study, we examined ERK, JNK/SAPK, and p38 activation in cells treated with the sulfhydryl-reactive agent sodium arsenite. Arsenite treatment potently activated both JNK/SAPK and p38, but only moderately activated ERK. Activation of all three kinases was prevented by the free radical scavenger N-Acetyl-L-cysteine, suggesting that an oxidative signal initiates the responses. Suramin, a growth factor receptor poison, significantly inhibited ERK activation by arsenite, but had little effect on either JNK/SAPK or p38 activity. In contrast, suramin inhibited the activation of all three kinases by short wavelength ultraviolet light (UVC) irradiation. In addition, comparative studies with wild-type PC12 cells and PC12 cells expressing a dominant negative Ras mutant allele indicated that arsenite activates ERK primarily through a Ras-dependent pathway(s), while activation of both JNK/SAPK and p38 occurs through a mechanism relatively independent of Ras. These results suggest that JNK/SAPK and p38 may share common upstream regulators distinct from those involved in ERK activation.
Collapse
Affiliation(s)
- Y Liu
- Gene Expression and Aging Section, National Institute on Aging, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
763
|
Holbrook NJ, Liu Y, Fornace AJ. Signaling events controlling the molecular response to genotoxic stress. EXS 1996; 77:273-88. [PMID: 8856980 DOI: 10.1007/978-3-0348-9088-5_18] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recently, much progress has been made in defining the signal transduction pathways mediating the cellular response to genotoxic stress. Multiple pathways involving several distinct MAP kinases (ERK, JNK/SAPK, and p38/HOG1) as well as the tumor suppressor protein p53 contribute to the response; the various pathways being differentially activated by particular genotoxic agents. Although both DNA damage and extranuclear events are important in initiating the response, recent evidence suggests the response is controlled primarily through events occurring at the plasma membrane, overlapping significantly with those important in initiating mitogenic responses. Attenuation of the responses appears to be largely controlled through feedback mechanisms involving gene products produced during the activation process.
Collapse
Affiliation(s)
- N J Holbrook
- Gene Expression and Aging Section, National Institute on Aging, Baltimore, MD 21244, USA
| | | | | |
Collapse
|
764
|
Sutherland RM, Ausserer WA, Murphy BJ, Laderoute RR. Tumor hypoxia and heterogeneity: Challenges and opportunities for the future. Semin Radiat Oncol 1996. [DOI: 10.1016/s1053-4296(96)80036-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
765
|
Chatterjee S, Shi WY, Wilson P, Mazumdar A. Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39163-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
766
|
Chatani Y, Tanimura S, Miyoshi N, Hattori A, Sato M, Kohno M. Cell type-specific modulation of cell growth by transforming growth factor beta 1 does not correlate with mitogen-activated protein kinase activation. J Biol Chem 1995; 270:30686-92. [PMID: 8530507 DOI: 10.1074/jbc.270.51.30686] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transforming growth factor beta 1 (TGF-beta 1) is a multifunctional cytokine that positively or negatively regulates the proliferation of various types of cells. In this study we have examined whether or not the activation of the mitogen-activated protein (MAP) kinases is involved in the transduction of cell growth modulation signals of TGF-beta 1, as MAP kinase activity is known to be closely associated with cell cycle progression. Although TGF-beta 1 stimulated the growth of quiescent Balb 3T3 and Swiss 3T3 cells, it failed to detectably stimulate the tyrosine phosphorylation and activation of the 41- and 43-kDa MAP kinases at any time point up to the reinitiation of DNA replication. TGF-beta 1 also failed to stimulate the expression of the c-fos gene. Furthermore, TGF-beta 1 synergistically enhanced the mitogenic action of epidermal growth factor (EGF) without affecting EGF-induced MAP kinase activation in these fibroblasts, and it inhibited the EGF-stimulated proliferation of mouse keratinocytes (PAM212) without inhibiting EGF-induced MAP kinase activation. Thus, the ability of TGF-beta 1 to modulate cell proliferation is apparently not associated with the activation of MAP kinases. In this respect, TGF-beta 1 is clearly distinct from the majority, if not all, of peptide growth factors, such as platelet-derived growth factor and EGF, whose ability to modulate cell proliferation is closely associated with the activation of MAP kinases. These results also suggest that the activation of MAP kinases is not an absolute requirement for growth factor-stimulated mitogenesis.
Collapse
Affiliation(s)
- Y Chatani
- Department of Biology, Gifu Pharmaceutical University, Japan
| | | | | | | | | | | |
Collapse
|
767
|
Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM. KSR, a novel protein kinase required for RAS signal transduction. Cell 1995; 83:879-88. [PMID: 8521512 DOI: 10.1016/0092-8674(95)90204-x] [Citation(s) in RCA: 307] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have identified and characterized two genes in Drosophila whose products are required for activated RAS to signal with normal efficiency, but do not appear to effect signaling by activated RAF. One encodes the beta subunit of type I geranylgeranyl transferase, a prenylation enzyme essential for targeting RAS to the plasma membrane. The other encodes a protein kinase that we have named kinase suppressor of ras (ksr). By genetic criteria, we show that KSR functions in multiple receptor tyrosine kinase pathways. We have isolated mammalian homologs of KSR that, together with the Drosophila gene, define a novel class of kinases. Our results suggest that KSR is a general and evolutionarily conserved component of the RAS signaling pathway that acts between RAS and RAF.
Collapse
Affiliation(s)
- M Therrien
- Howard Hughes Medical Institute, University of California, Berkeley 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
768
|
Bogoyevitch MA, Ketterman AJ, Sugden PH. Cellular stresses differentially activate c-Jun N-terminal protein kinases and extracellular signal-regulated protein kinases in cultured ventricular myocytes. J Biol Chem 1995; 270:29710-7. [PMID: 8530360 DOI: 10.1074/jbc.270.50.29710] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Anisomycin or osmotic stress induced by sorbitol activated c-Jun N-terminal protein kinases (JNKs) in ventricular myocytes cultured from neonatal rat hearts. After 15-30 min, JNK was activated by 10-20-fold. Activation by anisomycin was transient, but that by sorbitol was sustained for at least 4 h. In-gel JNK assays confirmed activation of two renaturable JNKs of 46 and 55 kDa (JNK-46 and JNK-55, respectively). An antibody against human JNK1 immunoprecipitated JNK-46 activity. Endothelin-1, an activator of extracellular signal-regulated protein kinases (ERKs), also transiently activated JNKs by 2-5-fold after 30 min. Phorbol 12-myristate 13-acetate did not activate the JNKs although it activated ERK1 and ERK2, which phosphorylated the c-Jun transactivation domain in vitro. ATP depletion and repletion achieved by incubation in cyanide+deoxyglucose and its subsequent removal from the medium activated the ERKs but failed to activate the JNKs. Sorbitol (but not anisomycin) also stimulated the ERKs. Sorbitol-stimulated JNK activity could be resolved into three peaks by fast protein liquid chromatography on a Mono Q column. The two major peaks contained JNK-46 or JNK-55. These results demonstrate that cellular stresses differentially activate the JNKs and ERKs and that there may be "cross-talk" between these MAPK pathways.
Collapse
Affiliation(s)
- M A Bogoyevitch
- National Heart and Lung Institute, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | |
Collapse
|
769
|
Urich M, el Shemerly MY, Besser D, Nagamine Y, Ballmer-Hofer K. Activation and nuclear translocation of mitogen-activated protein kinases by polyomavirus middle-T or serum depend on phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:29286-92. [PMID: 7493960 DOI: 10.1074/jbc.270.49.29286] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Several cellular signal transduction pathways activated by middle-T in polyomavirus-transformed cells are required for viral oncogenicity. Here we focus on the role of phosphatidylinositol 3-kinase (PI 3-kinase) and Ras and address the question how these signaling molecules cooperate during cell cycle activation. Ras activation is mediated through association with SHC.GRB2.SOS and leads to increased activity of several members of the mitogen-activated protein (MAP) kinase family, while activation of PI 3-kinase results in the generation of D3-phosphorylated phosphatidylinositides whose downstream targets remain elusive. PI 3-kinase activation might also ensue as a direct consequence of Ras activation. Oncogenicity of middle-T requires stimulation of both Ras- and PI 3-kinase-dependent pathways. Mutants of middle-T incapable to bind either SHC.GRB2.SOS or PI 3-kinase are not oncogenic. Sustained activation and nuclear localization of one of the MAP kinases, ERK1, was observed in wild type but not in mutant middle-T-expressing cells. Wortmannin, an inhibitor of PI 3-kinase, prevented MAP kinase activation and nuclear localization in middle-T-transformed cells. PI 3-kinase activity was also required for activation of the MAP kinase pathway in normal serum-stimulated cells, generalizing the concept that signaling through MAP kinases requires not only Ras-but also PI 3-kinase-mediated signals.
Collapse
Affiliation(s)
- M Urich
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | |
Collapse
|
770
|
Ling L, Kung HJ. Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase. Mol Cell Biol 1995; 15:6582-92. [PMID: 8524223 PMCID: PMC230911 DOI: 10.1128/mcb.15.12.6582] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nyk/Mer is a recently identified receptor tyrosine kinase with neural cell adhesion molecule-like structure (two immunoglobulin G-like domains and two fibronectin III-like domains) in its extracellular region and belongs to the Ufo/Axl family of receptors. The ligand for Nyk/Mer is presently unknown, as are the signal transduction pathways mediated by this receptor. We constructed and expressed a chimeric receptor (Fms-Nyk) composed of the extracellular domain of the human colony-stimulating factor 1 receptor (Fms) and the transmembrane and cytoplasmic domains of human Nyk/Mer in NIH 3T3 fibroblasts in order to investigate the mitogenic signaling and biochemical properties of Nyk/Mer. Colony-stimulating factor 1 stimulation of the Fms-Nyk chimeric receptor in transfected NIH 3T3 fibroblasts leads to a transformed phenotype and generates a proliferative response in the absence of other growth factors. We show that phospholipase C gamma, phosphatidylinositol 3-kinase/p70 S6 kinase, Shc, Grb2, Raf-1, and mitogen-activated protein kinase are downstream components of the Nyk/Mer signal transduction pathways. In addition, Nyk/Mer weakly activates p90rsk, while stress-activated protein kinase, Ras GTPase-activating protein (GAP), and GAP-associated p62 and p190 proteins are not activated or tyrosine phosphorylated by Nyk/Mer. An analysis comparing the Nyk/Mer signal cascade with that of the epidermal growth factor receptor indicates substrate preferences by these two receptors. Our results provide a detailed description of the Nyk/Mer signaling pathways. Given the structural similarity between the Ufo/Axl family receptors, some of the information may also be applied to other members of this receptor tyrosine kinase family.
Collapse
Affiliation(s)
- L Ling
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
771
|
Carletti R, Tacconi S, Bettini E, Ferraguti F. Stress activated protein kinases, a novel family of mitogen-activated protein kinases, are heterogeneously expressed in the adult rat brain and differentially distributed from extracellular-signal-regulated protein kinases. Neuroscience 1995; 69:1103-10. [PMID: 8848099 DOI: 10.1016/0306-4522(95)00284-p] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitogen-activated protein kinases are important mediators of signal transduction from the cell surface to the nucleus and their activation has been implicated in a wide array of physiological processes. The extracellular-signal-regulated kinases are the archetypal and best studied members of the mitogen activated protein kinases. Recently, additional subgroups of mitogen activated protein kinases have been identified which exhibit distinct regulatory elements, substrate specificity and respond to diverse extracellular stimuli. Among these newly identified protein kinases are the rat stress-activated protein kinases. Despite a rapidly expanding literature on the biochemical properties of stress-activated protein kinases no anatomical data are yet available. In the present study, we have investigated the regional distribution of messenger RNA transcripts for stress-activated protein kinases in the adult rat central nervous system and compared this distribution to that observed for extracellular-signal-regulated kinases. Intense labelling for stress-activated protein kinases could be detected in discrete brain areas with high levels in hippocampus, neocortex and some nuclei of the brain stem. The apparent hybridization signal appeared to be selectively neuronal. Stress-activated protein kinases and extracellular-signal-regulated kinases hybridization patterns appeared generally dissimilar although a certain degree of co-expression in some brain areas, such as the hippocampal formation, could be observed. These results reveal an extreme complexity in the mitogen-activated protein kinase signalling pathway and suggest the existence of parallel mitogen-activated protein kinase cascades that can be activated independently or in some cases simultaneously, by extracellular stimuli.
Collapse
Affiliation(s)
- R Carletti
- Department of Pharmacology, Glaxo Research Laboratories, Verona, Italy
| | | | | | | |
Collapse
|
772
|
Gillespie-Brown J, Fuller SJ, Bogoyevitch MA, Cowley S, Sugden PH. The mitogen-activated protein kinase kinase MEK1 stimulates a pattern of gene expression typical of the hypertrophic phenotype in rat ventricular cardiomyocytes. J Biol Chem 1995; 270:28092-6. [PMID: 7499296 DOI: 10.1074/jbc.270.47.28092] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adult mammalian ventricular cardiomyocytes are terminally differentiated cells that enlarge adaptively by hypertrophy. In this situation, genes normally expressed in the fetal ventricular cardiomyocyte (e.g. atrial natriuretic factor (ANF), beta-myosin heavy chain (beta-MHC), and skeletal muscle (SkM) alpha-actin) are re-expressed, and there is transient expression of immediate early genes (e.g. c-fos). Using appropriate reporter plasmids, we studied the effects of transfection of the constitutively active or dominant negative mitogen-activated protein kinase kinase MEK1 on ANF, beta-MHC, and SkM alpha-actin promoter activities in cultured ventricular cardiomyocytes. ANF expression was stimulated (maximally 75-fold) by the hypertrophic agonist phenylephrine in a dose-dependent manner (EC50, 10 microM), and this stimulation was inhibited by dominant negative MEK1. Cotransfection of dominant negative MEK1 with a dominant negative mitogen-activated protein kinase (extracellular signal-regulated protein kinase (ERK2)) increased this inhibition. Transfection with constitutively active MEK1 constructs doubled ANF promoter activity. The additional cotransfection of wild-type ERK2 stimulated ANF promoter activity by about 5-fold. Expression of beta-MHC and SkM alpha-actin was also stimulated. Promoter activity regulated by activator protein-1 or c-fos serum response element consensus sequences was also increased. We conclude that the MEK1/ERK2 cascade may play a role in regulating gene expression during hypertrophy.
Collapse
Affiliation(s)
- J Gillespie-Brown
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | | | | | |
Collapse
|
773
|
Polverino A, Frost J, Yang P, Hutchison M, Neiman AM, Cobb MH, Marcus S. Activation of mitogen-activated protein kinase cascades by p21-activated protein kinases in cell-free extracts of Xenopus oocytes. J Biol Chem 1995; 270:26067-70. [PMID: 7592806 DOI: 10.1074/jbc.270.44.26067] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the evolutionarily distant yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, genetic evidence suggests that activation of pheromone-induced mitogen-activated protein kinase (MAPK) cascades involves the function of the p21cdc42/racl-activated protein kinases (PAKs) Ste20 and Shk1, respectively. In this report, we show that purified Ste20 and Shk1 were each capable of inducing p42MAPK activation in cell-free extracts of Xenopus laevis oocytes, while a mammalian Ste20/Shk1-related protein kinase, p65pak (Pak1), did not induce activation of p42MAPK. In contrast to p42MAPK, activation of JNK/SAPK in Xenopus oocyte extracts was induced by both the yeast Ste20 and Shk1 kinases, as well as by mammalian Pak1. Our results demonstrate that MAPK cascades that are responsive to PAKs are conserved in higher eukaryotes and suggest that distinct PAKs may regulate distinct MAPK modules.
Collapse
Affiliation(s)
- A Polverino
- Department of Protein Structure, Amgen Inc., Thousand Oaks, California 91320-1789, USA
| | | | | | | | | | | | | |
Collapse
|
774
|
Cano E, Hazzalin CA, Kardalinou E, Buckle RS, Mahadevan LC. Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction. J Cell Sci 1995; 108 ( Pt 11):3599-609. [PMID: 8586671 DOI: 10.1242/jcs.108.11.3599] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of EGF, TPA, UV radiation, okadaic acid and anisomycin on ERK and JNK/SAPK MAP kinase cascades have been compared with their ability to elicit histone H3/HMG-14 phosphorylation and induce c-fos and c-jun in C3H 10T1/2 cells. EGF and UV radiation activate both ERKs and JNK/SAPKs but to markedly different extents; EGF activates ERKs more strongly than JNK/SAPKs, whereas UV radiation activates JNK/SAPKs much more strongly than ERKs. Anisomycin and okadaic acid activate JNK/SAPKs but not ERKs, and conversely, TPA activates ERKs but not JNK/SAPKs. Nevertheless, all these agents elicit phosphorylation of ribosomal and pre-ribosomal S6, histone H3 and HMG-14, and the induction of c-fos and c-jun, showing that neither cascade is absolutely essential for these responses. We then analysed the relationship between ERKs, JNK/SAPKs and the transcription factors Elk-1 and c-Jun, implicated in controlling c-fos and c-jun, respectively. JNK/SAPKs bind to GST-cJun1-79, and ERKs, particularly ERK-2, to GST-Elk1(307–428); there is no cross-specificity of binding. Further, GST-Elk1(307–428) binds preferentially to active rather than inactive ERK-2. In vitro, JNK/SAPKs phosphorylate both GST-cJun1-79 and GST-Elk1(307–428), whereas ERKs phosphorylate GST-Elk1(307–428) but not GST-cJun1-79. Thus, neither ERKs nor JNK/SAPKs are absolutely essential for nuclear signalling and c-fos and c-jun induction. The data suggest either that activation of a single MAP kinase subtype is sufficient to elicit a complete nuclear response, or that other uncharacterised routes exist.
Collapse
Affiliation(s)
- E Cano
- Nuclear Signalling Laboratory, Randall Institute, King's College London, UK
| | | | | | | | | |
Collapse
|
775
|
Zohn IE, Yu H, Li X, Cox AD, Earp HS. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase. Mol Cell Biol 1995; 15:6160-8. [PMID: 7565768 PMCID: PMC230867 DOI: 10.1128/mcb.15.11.6160] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In GN4 rat liver epithelial cells, angiotensin II (Ang II) and other agonists which activate phospholipase C stimulate tyrosine kinase activity in a calcium-dependent, protein kinase C (PKC)-independent manner. Since Ang II also produces a proliferative response in these cells, we investigated downstream signaling elements traditionally linked to growth control by tyrosine kinases. First, Ang II, like epidermal growth factor (EGF), stimulated AP-1 binding activity in a PKC-independent manner. Because increases in AP-1 can reflect induction of c-Jun and c-Fos, we examined the activity of the mitogen-activated protein (MAP) kinase family members Erk-1 and -2 and the c-Jun N-terminal kinase (JNK), which are known to influence c-Jun and c-Fos transcription. Ang II stimulated MAP kinase (MAPK) activity but only approximately 50% as effectively as EGF; again, these effects were independent of PKC. Ang II also produced a 50- to 200-fold activation of JNK in a PKC-independent manner. Unlike its smaller effect on MAPK, Ang II was approximately four- to sixfold more potent in activating JNK than EGF was. Although others had reported a lack of calcium ionophore-stimulated JNK activity in lymphocytes and several other cell lines, we examined the role of calcium in GN4 cells. The following results suggest that JNK activation in rat liver epithelial cells is at least partially Ca(2+) dependent: (i) norepinephrine and vasopressin hormones that increase inositol 1,4,5-triphosphate stimulated JNK; (ii) both thapsigargin, a compound that produces an intracellular Ca(2+) signal, and Ca(2+) ionophores stimulated a dramatic increase in JNK activity (up to 200-fold); (iii) extracellular Ca(2+) chelation with ethylene glycol tetraacetic acid (EGTA) inhibited JNK activation by ionophore and intracellular chelation with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl-ester (BAPTA-AM) partially inhibited JNK activation by Ang II or thapsigargin; and (iv) JNK activation by Ang II was inhibited by pretreatment of cells with thapsigargin and EGTA, a procedure which depletes intracellular Ca(2+) stores. JNK activation following Ang II stimulation did not involve calmodulin; either W-7 nor calmidizolium, in concentrations sufficient to inhibit Ca(2+)/calmodulin-dependent kinase II, blocked JNK activation by Ang II. In contrast, genistein, in concentrations sufficient to inhibit Ca(2+)-dependent tyrosine phosphorylation, prevented Ang II and thapsigargin-induced JNK activation. In summary, in GN4 rat liver epithelial cells, Ang II stimulates JNK via a novel Ca(2+)-dependent pathway. The inhibition by genistein suggest that Ca(2+)-dependent tyrosine phosphorylation may modulate the JNK pathway in a cell type-specific manner, particularly in cells with a readily detectable Ca(2+)-regulated tyrosine kinase.
Collapse
Affiliation(s)
- I E Zohn
- Department of Pharmacology, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
776
|
Roman G, Ecker JR. Genetic analysis of a seedling stress response to ethylene in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 1995; 350:75-81. [PMID: 8577853 DOI: 10.1098/rstb.1995.0140] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A genetic framework has been devised for the action of genes within the ethylene-response pathway. This working model is based on the epistatic interactions among a variety of ethylene response mutations. Most of the mutations that have been described act in a linear pathway. Genes controlling cell elongation in response to ethylene must, at some level, act to affect the architecture of the cytoskeleton. Genes that act late in the pathway, in mutant form, may lead to highly specific phenotypes such as the increased sensitivity to taxol in the ein6 mutant. Analysis of these downstream components may provide critical insights into the nature of ethylene's effect on the cell elongation machinery.
Collapse
Affiliation(s)
- G Roman
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA
| | | |
Collapse
|
777
|
Ma D, Cook JG, Thorner J. Phosphorylation and localization of Kss1, a MAP kinase of the Saccharomyces cerevisiae pheromone response pathway. Mol Biol Cell 1995; 6:889-909. [PMID: 7579701 PMCID: PMC301247 DOI: 10.1091/mbc.6.7.889] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Kss1 protein kinase, and the homologous Fus3 kinase, are required for pheromone signal transduction in Saccharomyces cerevisiae. In MATa haploids exposed to alpha-factor, Kss1 was rapidly phosphorylated on both Thr183 and Tyr185, and both sites were required for Kss1 function in vivo. De novo protein synthesis was required for sustained pheromone-induced phosphorylation of Kss1. Catalytically inactive Kss1 mutants displayed alpha-factor-induced phosphorylation on both residues, even in kss1 delta cells; hence, autophosphorylation is not obligatory for these modifications. In kss1 delta fus3 delta double mutants, Kss1 phosphorylation was elevated even in the absence of pheromone; thus, cross-phosphorylation by Fus3 is not responsible for Kss1 activation. In contrast, pheromone-induced Kss1 phosphorylation was eliminated in mutants deficient in two other protein kinases, Ste11 and Ste7. A dominant hyperactive allele of STE11 caused a dramatic increase in the phosphorylation of Kss1, even in the absence of pheromone stimulation, but required Ste7 for this effect, suggesting an order of function: Ste11-->Ste7-->Kss1. When overproduced, Kss1 stimulated recovery from pheromone-imposed G1 arrest. Catalytic activity was essential for Kss1 function in signal transmission, but not for its recovery-promoting activity. Kss1 was found almost exclusively in the particulate material and its subcellular fractionation was unaffected by pheromone treatment. Indirect immunofluorescence demonstrated that Kss1 is concentrated in the nucleus and that its distribution is not altered detectably during signaling.
Collapse
Affiliation(s)
- D Ma
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | | | |
Collapse
|
778
|
Hellingwerf KJ, Postma PW, Tommassen J, Westerhoff HV. Signal transduction in bacteria: phospho-neural network(s) in Escherichia coli? FEMS Microbiol Rev 1995; 16:309-21. [PMID: 7654406 DOI: 10.1111/j.1574-6976.1995.tb00178.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The molecular basis of many forms of signal transfer in living organisms is provided via the transient phosphorylation of regulatory proteins by transfer of phosphoryl groups between these proteins. The dominant form of signal transduction in prokaryotic microorganisms proceeds via so-called two-component regulatory systems. These systems constitute phosphoryl transfer pathways, consisting of two or more components. Most of these pathways are linear, but some converge and some are divergent. The molecular properties of some of the well-characterised representatives of two-component systems comply with the requirements to be put upon the elements of a neural network: they function as logical operators and show the phenomenon of autoamplification. Because there are many phosphoryl transfer pathways in parallel and because there also appears to be cross-talk between these pathways, the total of all two-component regulatory systems in a single prokaryotic cell may show the typical characteristics of a 'phospho-neural network'. This may well lead to signal amplification, associative responses and memory effects, characteristics which are typical for neural networks. One of the main challenges in molecular microbial physiology is to determine the extent of the connectivity of the constituting elements of this presumed 'phospho-neural network', and to outline the extent of intelligence-like behaviour this network can generate. Escherichia coli is the organism of choice for this characterization.
Collapse
Affiliation(s)
- K J Hellingwerf
- Vakgroep Microbiologie, E.C. Slater Instituut, BioCentrum Amsterdam, University of Amsterdam, Netherlands
| | | | | | | |
Collapse
|
779
|
Chapter 26. Tyrosine Kinase Induced Mitogenesis Breaking the Link With Cancer. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1995. [DOI: 10.1016/s0065-7743(08)60939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|