751
|
Belley M, Sullivan R, Reeves A, Evans J, O'Neill G, Ng GY. Synthesis of the nanomolar photoaffinity GABA(B) receptor ligand CGP 71872 reveals diversity in the tissue distribution of GABA(B) receptor forms. Bioorg Med Chem 1999; 7:2697-704. [PMID: 10658574 DOI: 10.1016/s0968-0896(99)00214-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A radioiodinated probe, [125I]-CGP 71872, containing an azido group that can be photoactivated, was synthesized and used to characterize GABA(B) receptors. Photoaffinity labeling experiments using crude membranes prepared from rat brain revealed two predominant ligand binding species at approximately 130 and approximately 100 kDa believed to represent the long (GABA(B)R1a) and short (GABA(B)R1b) forms of the receptor. Indeed, these ligand binding proteins were immunoprecipitated using a GABA(B) receptor-specific antibody confirming the receptor specificity of the photoaffinity probe. Most convincingly, [125I]-CGP 71872 binding was competitively inhibited in a dose-dependent manner by cold CGP 71872, GABA, saclofen, (-)-baclofen, (+)-baclofen and (L)-glutamic acid with a rank order and stereospecificity characteristic of the GABA(B) receptor. Photoaffinity labeling experiments revealed that the recombinant GABA(B)R2 receptor does not bind [125I]-CGP 71872, providing surprising and direct evidence that CGP 71872 is a GABA(B)R1 selective antagonist. Photoaffinity labeling experiments using rat tissues showed that both GABA(B)R1a and GABA(B)R1b are co-expressed in the brain, spinal cord, stomach and testis, but only the short GABA(B)R1b receptor form was detected in kidney and liver whereas the long GABA(B)R1a form was selectively expressed in the adrenal gland, pituitary, spleen and prostate. We report herein the synthesis and biochemical characterization of the nanomolar affinity [125I]-CGP 71872 and CGP 71872 GABA(B)R1 ligands, and differential tissue expression of the long GABA(B)R1a and short GABA(B)R1b receptor forms in rat and dog.
Collapse
Affiliation(s)
- M Belley
- Department of Chemistry, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
752
|
Hedlund PB, Carson MJ, Sutcliffe JG, Thomas EA. Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors. Biochem Pharmacol 1999; 58:1807-13. [PMID: 10571256 DOI: 10.1016/s0006-2952(99)00274-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oleamide belongs to a family of amidated lipids with diverse biological activities, including sleep induction and signaling modulation of several 5-hydroxytryptamine (5-HT) receptor subtypes, including 5-HT1A, 5-HT2A/2C, and 5-HT7. The 5-HT7 receptor, predominantly localized in the hypothalamus, hippocampus, and frontal cortex, stimulates cyclic AMP formation and is thought to be involved in the regulation of sleep-wake cycles. Recently, it was proposed that oleamide acts at an allosteric site on the 5-HT7 receptor to regulate cyclic AMP formation. We have further investigated the interaction between oleamide and 5-HT7 receptors by performing radioligand binding assays with HeLa cells transfected with the 5-HT7 receptor. Methiothepin, clozapine, and 5-HT all displaced specific [3H]5-HT (100 nM) binding, with pK(D) values of 7.55, 7.85, and 8.39, respectively. Oleamide also displaced [3H]5-HT binding, but the maximum inhibition was only 40% of the binding. Taking allosteric (see below) cooperativity into account, a K(D) of 2.69 nM was calculated for oleamide. In saturation binding experiments, oleamide caused a 3-fold decrease in the affinity of [3H]5-HT for the 5-HT7 receptor, without affecting the number of binding sites. A Schild analysis showed that the induced shift in affinity of [3H]5-HT reached a plateau, unlike that of a competitive inhibitor, illustrating the allosteric nature of the interaction between oleamide and the 5-HT7 receptor. Oleic acid, the product of oleamide hydrolysis, had a similar effect on [3H]5-HT binding, whereas structural analogs of oleamide, trans-9,10-octadecenamide, cis-8,9-octadecenamide, and erucamide, did not alter [3H]5-HT binding significantly. The findings support the hypothesis that oleamide acts via an allosteric site on the 5-HT7 receptor regulating receptor affinity.
Collapse
Affiliation(s)
- P B Hedlund
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
753
|
Bräuner-Osborne H, Krogsgaard-Larsen P. Functional pharmacology of cloned heterodimeric GABAB receptors expressed in mammalian cells. Br J Pharmacol 1999; 128:1370-4. [PMID: 10602314 PMCID: PMC1571770 DOI: 10.1038/sj.bjp.0702914] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/1999] [Revised: 08/25/1999] [Accepted: 09/02/1999] [Indexed: 11/09/2022] Open
Abstract
1. In this study we report a new assay of heterodimeric gamma-amino-butanoic acid subtype B (GABAB) receptors where either GABABR1a or GABABR1b are co-expressed with GABABR2 and the chimeric G-protein Galphaq-z5 in tsA cells. In this manner we obtained a robust response to GABAB agonists measured as increase in phosphoinositide hydrolysis. 2. We used this assay to characterize a number of commonly used GABAB receptor ligands. Both splice variants displayed the same rank order of agonist potency; 3-aminopropyl(methyl)phosphinic acid (SKF-97541)>GABA>(R)-4-amino-3-(4-chlorophenyl)butanoic acid ((R)-baclofen)>(RS)-4-amino-3-(5-chloro-2-thienyl)butanoic acid (BCTG)>3-aminopropylphosphonic acid (3-APPA) and furthermore, the absolute agonist potency values were very close to each other. 3. 3-APPA was a partial agonist displaying maximal responses of 41 and 61% compared to GABA at GABABR1a and GABABR1b, respectively. The antagonist (RS)-3-amino-2-(4-chlorophenyl)-2-hydroxypropylsulphonic acid (2-OH-saclofen) displayed KB values of 15 and 7.8 microM at GABABR1a and GABABR1b, respectively. 4. The rank order of agonist potency as well as the absolute ligand potencies correspond very well with those previously reported in different tissues, and this study thus provides a functional assay of cloned GABAB receptors which should be a valuable tool for further characterization of GABAB ligands. Finally, we can conclude that the functional pharmacological profiles of the two GABABR1 splice variants are very similar.
Collapse
Affiliation(s)
- H Bräuner-Osborne
- NeuroScience PharmaBiotec Centre, Department of Medicinal Chemistry, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
754
|
Abstract
1. In the mammalian central nervous system, GABA is the main inhibitory neurotransmitter. GABA is a highly flexible molecule and, thus, can exist in many low-energy conformations. Conformationally restricted analogues of GABA have been used to help identify three major GABA receptors, termed GABAA, GABAB and GABAC receptors. 2. GABAA and GABAC receptors are members of a super-family of transmitter-gated ion channels that include nicotinic acetylcholine, strychnine-sensitive glycine and 5HT3 receptors. GABAA receptors are hetero-oligomeric Cl- channels that are selectively blocked by the alkaloid bicuculline and modulated by steroids, barbiturates and benzodiazepines. To date, 16 human GABAA receptor cDNA have been cloned. 3. GABAB receptors are seven transmembrane receptors that are coupled to G-proteins and activate second messenger systems and Ca2+ and K+ ion channels. To date, three GABAB receptor proteins have been cloned and these resemble metabotropic glutamate receptors. GABAB receptors are hetero-oligomeric receptors made up of a mixture of a combination of the subunits. These receptors are selectively activated by (-)-baclofen and CCGP27492 and are blocked by phaclofen, the phosphonic acid analogue of baclofen. 4. In contrast, GABAC receptors represent a relatively simple form of transmitter-gated Cl- channel made up of a single type of protein subunit. Two human GABAC receptor cDNA have been cloned. These receptors are not blocked by bicuculline nor are they modulated by steroids, barbiturates or benzodiazepines. Instead, GABAC receptors are selectively activated by the conformationally restricted analogues of GABA in the folded conformation cis-4-aminocrotonic acid and (1s,2R)-2-(aminomethyl)-1-carboxycyclopropane. (1,2,5,6-Tetrahydropyridine-4-yl)methylphosphinic acid, a methylphosphinic acid analogue of GABA in a partially folded conformation, is a selective antagonist at GABAC receptors.
Collapse
Affiliation(s)
- M Chebib
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology, University of Sydney, New South Wales, Australia.
| | | |
Collapse
|
755
|
Bonino M, Cantino D, Sassoè-Pognetto M. Cellular and subcellular localization of gamma-aminobutyric acidB receptors in the rat olfactory bulb. Neurosci Lett 1999; 274:195-8. [PMID: 10548423 DOI: 10.1016/s0304-3940(99)00697-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Olfactory nerve axons terminate in rounded regions of the olfactory bulb, termed glomeruli, where they make excitatory synapses with the dendrites of second-order neurons. Neurotransmission from the olfactory nerve to the postsynaptic targets is negatively regulated by gamma-aminobutyric acid (GABA), and there is evidence that inhibition of sensory input is mediated, at least in part, by GABA(B) receptors. Using an antiserum that recognizes two GABA(B) receptor splice variants (GBR1a and GBR1b), we show here that GABA(B) receptors are located on the axon terminals of the olfactory nerve, where they are concentrated at sites of axodendritic apposition. Taken with previous data, these results indicate that GABA(B) receptors act presynaptically to regulate the release of glutamate from olfactory nerve terminals.
Collapse
Affiliation(s)
- M Bonino
- Department of Anatomy, Pharmacology and Forensic Medicine, Turin, Italy
| | | | | |
Collapse
|
756
|
Marshall FH, Jones KA, Kaupmann K, Bettler B. GABAB receptors - the first 7TM heterodimers. Trends Pharmacol Sci 1999; 20:396-9. [PMID: 10498952 DOI: 10.1016/s0165-6147(99)01383-8] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- F H Marshall
- Receptor Systems, Molecular Pharmacology Unit, Glaxo Wellcome Medicines Research Centre, Gunnels Wood Road, Stevenage, UK SG1 2NY.
| | | | | | | |
Collapse
|
757
|
Ehrenreich H. The astrocytic endothelin system: toward solving a mystery focus on "distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca(2+) signaling". THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C614-5. [PMID: 10516090 DOI: 10.1152/ajpcell.1999.277.4.c614] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
758
|
Pu L, Bao GB, Ma L, Pei G. Acute desensitization of nociceptin/orphanin FQ inhibition of voltage-gated calcium channels in freshly dissociated hippocampal neurons. Eur J Neurosci 1999; 11:3610-6. [PMID: 10564368 DOI: 10.1046/j.1460-9568.1999.00776.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ), an endogenous ligand for opioid receptor-like receptor, has been shown to inhibit high-voltage-gated calcium channels (VGCCs) in acutely dissociated rat hippocampal pyramidal cells [Knoflach, F., Reinscheid, R.K., Civelli, O. & Kemp, J.A. (1996), J. Neurosci., 16, 6657]. In this study, it was further demonstrated that N/OFQ inhibition of calcium channel current was blocked by its specific antagonist PGN, [Phe1-psi(CH2-NH)-Gly2]nociceptin (1-13)-NH2, and the EC50 of the N/OFQ inhibition was approximately 10 nM, indicating that this effect was really mediated via the opioid receptor-like receptor. The N/OFQ inhibition of the calcium channel current was significantly reduced, as the maximal inhibition decreased from 36 to 23%, by 1-min pretreatment of freshly dissociated hippocampal neurons with the same peptide. The inhibition completely recovered from this acute desensitization in less than 20 min. The N/OFQ inhibition was also greatly attenuated by pretreatment of the neurons with the GABAB (gamma-aminobutyric acid) agonist baclofen while the baclofen inhibition of the calcium channel current was significantly reduced by N/OFQ pretreatment, revealing the agonist-induced desensitization was heterologous in nature. This desensitization was blocked by pretreating the neurons with the sodium channel blocker, tetrodotoxin (TTX), or by removing the extracellular calcium, which indicates the necessity of membrane depolarization and extracellular calcium influx in the process. Furthermore, pretreatment of the neurons with the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), attenuated the N/OFQ inhibition of the calcium channel current whereas the cAMP-dependent kinase A activator, forskolin, showed no effect, suggesting the probable involvement of PKC in the N/OFQ-induced desensitization.
Collapse
Affiliation(s)
- L Pu
- Shanghai Institute of Cell Biology, Shanghai Research Center of Life Sciences, Chinese Academy of Sciences, People's Republic of China
| | | | | | | |
Collapse
|
759
|
Benke D, Honer M, Michel C, Bettler B, Mohler H. gamma-aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution. J Biol Chem 1999; 274:27323-30. [PMID: 10480953 DOI: 10.1074/jbc.274.38.27323] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subunit architecture of gamma-aminobutyric acid, type B (GABA(B)), receptors in situ is largely unknown. The GABA(B) receptor variants, characterized by the constituents GBR1a and GBR1b, were therefore analyzed with regard to their subunit composition as well as their regional and subcellular distribution in situ. The analysis was based on the use of antisera recognizing selectively GBR1a, GBR1b, and GBR2. Following their solubilization, GBR1a and GBR1b were both found by immunoprecipitation to occur as heterodimers associated with GBR2. Furthermore, monomers of GBR1a, GBR1b, or GBR2 were not detectable, suggesting that practically all GABA(B) receptors are heterodimers in situ. Finally, there was no evidence for an association of GBR1a with GBR1b indicating that these two constituents represent two different receptor populations. A size determination of solubilized GABA(B) receptors by sucrose density centrifugation revealed two distinct peaks of which one corresponded to dimeric receptors, and the higher molecular weight peak pointed to the presence of yet unknown receptor-associated proteins. The distribution and relative abundance of GBR2 immunoreactivity corresponded in all brain regions to that of the sum of GBR1a and GBR1b, supporting the view that most if not all GBR1 proteins are associated with GBR2. However, GBR1a was present preferentially at postsynaptic densities, whereas GBR1b may be mainly attributed to presynaptic or extrasynaptic sites. Thus, GBR1a and GBR1b are both associated with GBR2 to form heterodimers at mainly different subcellular locations where they are expected to subserve different functions.
Collapse
Affiliation(s)
- D Benke
- Institute of Pharmacology, Swiss Federal Institute and Technology (ETH) and University of Zurich, CH-8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
760
|
Marchese A, George SR, Kolakowski LF, Lynch KR, O'Dowd BF. Novel GPCRs and their endogenous ligands: expanding the boundaries of physiology and pharmacology. Trends Pharmacol Sci 1999; 20:370-5. [PMID: 10462760 DOI: 10.1016/s0165-6147(99)01366-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nearly all molecules known to signal cells via G proteins have been assigned a cloned G-protein-coupled-receptor (GPCR) gene. This has been the result of a decade-long genetic search that has also identified some receptors for which ligands are unknown; these receptors are described as orphans (oGPCRs). More than 80 of these novel receptor systems have been identified and the emphasis has shifted to searching for novel signalling molecules. Thus, multiple neurotransmitter systems have eluded pharmacological detection by conventional means and the tremendous physiological implications and potential for these novel systems as targets for drug discovery remains unexploited. The discovery of all the GPCR genes in the genome and the identification of the unsolved receptor-transmitter systems, by determining the endogenous ligands, represents one of the most important tasks in modern pharmacology.
Collapse
Affiliation(s)
- A Marchese
- Dept of Pharmacology, University of Toronto, Medical Sciences Building, Toronto, ON, Canada M5S 1A8.
| | | | | | | | | |
Collapse
|
761
|
Damgaard I, Nyitrai G, Kovács I, Kardos J, Schousboe A. Possible involvement of GABA(A) and GABA(B) receptors in the inhibitory action of lindane on transmitter release from cerebellar granule neurons. Neurochem Res 1999; 24:1189-93. [PMID: 10485591 DOI: 10.1023/a:1020724823117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cerebellar granule cells in culture express receptors for GABA belonging to the GABA(A) and GABA(B) classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 microM THIP as this is known to influence the properties of both GABA(A) and GABA(B) receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABA(A) and GABA(B) receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABA(A) and GABA(B) receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABA(A) and GABA(B) receptors is able to indirectly interfere with both GABA(A) and GABA(B) receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.
Collapse
Affiliation(s)
- I Damgaard
- NeuroScience, PharmaBiotec Center, Dept. of Pharmacology, Royal Danish School of Pharmacy, Copenhagen
| | | | | | | | | |
Collapse
|
762
|
Keir MJ, Barakat MJ, Dev KK, Bittiger H, Bettler B, Henley JM. Characterisation and partial purification of the GABA(B) receptor from the rat cerebellum using the novel antagonist [3H]CGP 62349. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:279-89. [PMID: 10521582 DOI: 10.1016/s0169-328x(99)00199-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The novel GABA(B) receptor antagonist [3H]CGP 62349 binds rat cerebellar synaptosomal membranes with high affinity at a single population of sites (K(d) = 0.9 nM, B(max) = 760 fmol/mg protein). Solubilisation with 1% Triton X-100/0.5 M NaCl/10% glycerol resulted in a marked increase in [3H]CGP 62349 binding (K(d) = 0.5 nM, B(max) = 1285 fmol/mg protein). Competition of [3HCGP 35348 = CGP 36742. The GABA(A) ligand isoguvacine did not displace [3H]CGP 62349 binding. Partial purification of [3H]CGP 62349 binding sites was obtained by sucrose density centrifugation and a predominant protein in the peak binding fraction was recognised by an anti-GABA(B) receptor antibody and had a molecular weight similar to the recombinant expressed GABA(B)R1a. These results demonstrate that [3H]CGP 62349 provides a useful additional tool for further characterisation of the pharmacology and biochemistry of the native GABA(B) receptor.
Collapse
Affiliation(s)
- M J Keir
- Department of Anatomy, Medical School, University Walk, Bristol University, Bristol, UK
| | | | | | | | | | | |
Collapse
|
763
|
Durkin MM, Gunwaldsen CA, Borowsky B, Jones KA, Branchek TA. An in situ hybridization study of the distribution of the GABA(B2) protein mRNA in the rat CNS. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:185-200. [PMID: 10521573 DOI: 10.1016/s0169-328x(99)00182-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system. GABA exerts its actions through two classes of receptors: GABA(A), multimeric ligand-gated Cl(-) ion channels (a class which has been proposed to include the homomeric variant previously called GABA(C), to be designated GABA(A0r)); and GABA(B), G-protein coupled receptors which regulate Ca(2+) and K(+) channels. Currently, within the GABA(B) receptor family two proteins have been identified through molecular cloning techniques and designated GABA(B1) and GABA(B2). Two N-terminal variants of GABA(B1) were isolated and designated GABA(B1a) and GABA(B1b). The distribution of neurons in the rat CNS expressing the mRNA for the GABA(B1) isoforms have been previously described by in situ hybridization histochemistry. The recent isolation and identification of the GABA(B2) protein by homology cloning has enabled the use of radiolabeled oligonucleotides to detect the distribution of the expression of GABA(B2) mRNA in the rat CNS. The expression of GABA(B2) mRNA was observed to be primarily related to neuronal profiles. The highest levels of GABA(B2) mRNA expression were detected in the piriform cortex, hippocampus, and medial habenula. GABA(B2) mRNA was abundant in all layers of the cerebral cortex, the thalamus and in cerebellar Purkinje cells. Moderate expression was observed in several hypothalamic and brainstem nuclei. In contrast to the distribution of GABA(B1) mRNA, only a weak hybridization signal for GABA(B2) was detected over cells of the basal ganglia, including the caudate-putamen, nucleus accumbens, olfactory tubercle and throughout most of the hypothalamus. Moderate-to-heavy GABA(B2) mRNA expression was also seen over dorsal root and trigeminal ganglion cells. In general, the pattern of GABA(B2) mRNA expression in the rat brain overlaps considerably with the distributions described for both GABA(B1) mRNAs, and is concordant with the distribution described for GABA(B) receptor binding sites. However, differences between GABA(B2) expression levels and GABA(B) binding sites were observed in the basal ganglia.
Collapse
Affiliation(s)
- M M Durkin
- Department of Pharmacology, Synaptic Pharmaceutical Corporation, 215 College Road, Paramus, NJ 07652, USA.
| | | | | | | | | |
Collapse
|
764
|
Pan YX, Xu J, Bolan E, Abbadie C, Chang A, Zuckerman A, Rossi G, Pasternak GW. Identification and characterization of three new alternatively spliced mu-opioid receptor isoforms. Mol Pharmacol 1999; 56:396-403. [PMID: 10419560 DOI: 10.1124/mol.56.2.396] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have identified four new mu-opiod receptor (MOR)-1 exons, indicating that the gene now contains at least nine exons spanning more than 200 kilobases. Replacement of exon 4 by combinations of the new exons yields three new receptors. When expressed in Chinese hamster ovary cells, all three variants displayed high affinity for mu-opioid ligands, but kappa and delta drugs were inactive. However, there were subtle, but significant, differences in the binding profiles of the three variants among themselves and from MOR-1. Immunohistochemically, the major variant, MOR-1C, displayed a regional distribution quite distinct from that of MOR-1. Region-specific processing also was seen at the mRNA level. Antisense mapping revealed that the four new exons were all involved in morphine analgesia. Together with two other variants generated from alternative splicing of exon 4, there are now six distinct MOR-1 receptors.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Brain/metabolism
- Cloning, Molecular
- Cricetinae
- Exons/genetics
- Male
- Mice
- Mice, Inbred ICR
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/isolation & purification
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/isolation & purification
Collapse
Affiliation(s)
- Y X Pan
- The Cotzias Laboratory of Neuro-Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
765
|
Pfaff T, Malitschek B, Kaupmann K, Prézeau L, Pin JP, Bettler B, Karschin A. Alternative splicing generates a novel isoform of the rat metabotropic GABA(B)R1 receptor. Eur J Neurosci 1999; 11:2874-82. [PMID: 10457184 DOI: 10.1046/j.1460-9568.1999.00704.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we present a novel isoform of the metabotropic G-protein-coupled receptor for gamma-aminobutyric acid (GABA). The isoform, termed GABA(B)R1c (R1c), differs from the recently identified R1a and R1b receptors by an in-frame insertion of 31 amino acids between the second extracellular loop and the fifth transmembrane region. Analysis of the rat GABA(B)R1 gene demonstrates that the insertion is the result of an alternative splicing event within a 567-bp intron between exons 16 and 17. In situ hybridization in the rat brain shows a wide distribution of R1c transcripts and an overlap with the R1a and R1b transcripts. The highest mRNA levels are found in cerebellar Purkinje cells, cerebral cortex, thalamus and hippocampal CA1 and CA3 regions. Western blots and immunodetection of recombinant epitope-tagged receptors as well as [125I]CGP71872 photoaffinity labelling of cell membranes demonstrate that R1c is correctly expressed, although at a lower level than the previously identified isoforms. When coexpressed with the newly characterized GABA(B)R2, R1c functionally couples to G-protein-activated Kir3.1/3.2 channels in Xenopus oocytes and to PLC-activating chimeric G(alpha)qo subunits in HEK-293 cells with a similar EC50 for agonists. These data suggest that the R1c isoform represents a functional GABA(B)R in the rat brain.
Collapse
Affiliation(s)
- T Pfaff
- Molecular Neurobiology of Signal Transduction, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
766
|
Malitschek B, Schweizer C, Keir M, Heid J, Froestl W, Mosbacher J, Kuhn R, Henley J, Joly C, Pin JP, Kaupmann K, Bettler B. The N-terminal domain of gamma-aminobutyric Acid(B) receptors is sufficient to specify agonist and antagonist binding. Mol Pharmacol 1999; 56:448-54. [PMID: 10419566 DOI: 10.1124/mol.56.2.448] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recently identified gamma-aminobutyric acid type B receptors (GABA(B)Rs) share low sequence similarity with the metabotropic glutamate (mGlu) receptors. Like the mGlu receptors, the N-terminal extracellular domain (NTED) of GABA(B)Rs is proposed to be related to bacterial periplasmic binding proteins (PBPs). However, in contrast to the mGlu receptors, the GABA(B)Rs lack a cysteine-rich region that links the PBP-like domain to the first transmembrane domain. This cysteine-rich region is necessary for the PBP-like domain of mGlu receptors to bind glutamate. To delimit the ligand-binding domain of GABA(B)Rs, we constructed a series of chimeric GABA(B)R1/mGluR1 and truncated GABA(B)R1 receptor mutants. We provide evidence that despite the lack of a cysteine-rich region, the NTED of GABA(B)Rs contains all of the structural information that is necessary and sufficient for ligand binding. Moreover, a soluble protein corresponding to the NTED of GABA(B)Rs reproduces the binding pharmacology of wild-type receptors. This demonstrates that the ligand-binding domain of the GABA(B)Rs can correctly fold when dissociated from the transmembrane domains.
Collapse
Affiliation(s)
- B Malitschek
- Novartis Pharma AG, Nervous System Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
767
|
Xie Z, Lee SP, O'Dowd BF, George SR. Serotonin 5-HT1B and 5-HT1D receptors form homodimers when expressed alone and heterodimers when co-expressed. FEBS Lett 1999; 456:63-7. [PMID: 10452531 DOI: 10.1016/s0014-5793(99)00918-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serotonin (5-hydroxytryptamine (5-HT)) 1B and 1D receptor subtypes share a high amino acid sequence identity and have similar ligand binding properties. In this study, we demonstrate that both receptor subtypes exist as monomers and homodimers when expressed alone and as monomers and heterodimers when co-expressed. Gene expression studies have shown that there are brain regions where the 5-HT1B and 5-HT1D receptors are co-localized and where heterodimerization may occur physiologically. This is the first direct visualization of the physical association between G protein-coupled receptors of different subtypes.
Collapse
Affiliation(s)
- Z Xie
- Department of Pharmacology, University of Toronto, Ont., Canada
| | | | | | | |
Collapse
|
768
|
Abe J, Suzuki H, Notoya M, Yamamoto T, Hirose S. Ig-hepta, a novel member of the G protein-coupled hepta-helical receptor (GPCR) family that has immunoglobulin-like repeats in a long N-terminal extracellular domain and defines a new subfamily of GPCRs. J Biol Chem 1999; 274:19957-64. [PMID: 10391944 DOI: 10.1074/jbc.274.28.19957] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel member of the G protein-coupled receptor (GPCR) family was cloned and characterized, which is unique, among the members, in its long extracellular domain comprising Ig-like repeats and in its high expression predominantly in the lung. The clone (Ig-Hepta) was first identified as a polymerase chain reaction product generated with primers designed to amplify secretin receptor family members including the parathyroid hormone-related peptide receptors. Analysis of the open reading frame of cDNAs isolated from a rat lung cDNA library indicated that Ig-Hepta is a protein of 1389 amino acid residues and has two Ig-like repeats in the N-terminal extracellular domain (exodomain) of 1053 amino acid residues and 7 transmembrane spans in the C-terminal region. Northern blot analysis revealed very high expression of its mRNA in the lung and low but detectable levels in the kidney and heart. The mRNA expression in the lung was found to be strongly induced postnatally. Biochemical analysis indicated that Ig-Hepta is a highly glycosylated protein and exists as a disulfide-linked dimer. Immunohistochemistry on rat lung and kidney sections revealed dense localization of Ig-Hepta in alveolar walls and intercalated cells in the collecting duct, respectively, suggesting a role in the regulation of acid-base balance. Ig-Hepta defines a new subfamily of GPCRs.
Collapse
Affiliation(s)
- J Abe
- Department of Biological Sciences, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midoriku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
769
|
Pin JP, De Colle C, Bessis AS, Acher F. New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol 1999; 375:277-94. [PMID: 10443583 DOI: 10.1016/s0014-2999(99)00258-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The metabotropic glutamate receptors are GTP-binding-protein (G-protein) coupled receptors that play important roles in regulating the activity of many synapses in the central nervous system. As such, these receptors are involved in a wide number of physiological and pathological processes. Within the last few years, new potent and selective agonists and antagonists as well as radioligands acting on these receptors have been developed. Molecular modeling studies revealed the structural features of the glutamate binding site, and will be useful for the design of more selective and potent ligands. More interestingly, recent data revealed new regulatory sites on the receptor protein, able either to decrease or potentiate the action of the endogenous ligand. No doubt that in the near future a multitude of new tools to modulate the activity of these receptors will be discovered, enabling the identification of the possible therapeutic applications for these new neuroactive molecules.
Collapse
Affiliation(s)
- J P Pin
- Centre INSERM-CNRS de Pharmacologie-Endocrinologie, UPR 9023-CNRS, Laboratoire des Mécanismes Moléculaires des Communications Cellulaires, Montpellier, France.
| | | | | | | |
Collapse
|
770
|
Bräuner-Osborne H, Jensen AA, Sheppard PO, O'Hara P, Krogsgaard-Larsen P. The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain. J Biol Chem 1999; 274:18382-6. [PMID: 10373443 DOI: 10.1074/jbc.274.26.18382] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that displays 19-25% sequence identity to the gamma-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors. All three groups of receptors have a large amino-terminal domain (ATD), which for the mGlu receptors has been shown to bind the endogenous agonist. To investigate whether the agonist-binding domain of the CaR also is located in the ATD, we constructed a chimeric receptor named Ca/1a consisting of the ATD of CaR and the seven transmembrane region and C terminus of mGlu1a. The Ca/1a receptor stimulated inositol phosphate production when exposed to the cationic agonists Ca2+, Mg2+, and Ba2+ in transiently transfected tsA cells (a transformed HEK 293 cell line). The pharmacological profile of Ca/1a (EC50 values of 3.3, 2.6, and 3.9 mM for these cations, respectively) was very similar to that of the wild-type CaR (EC50 values of 3.2, 4.7, and 4.1 mM, respectively). For the mGlu1a receptor, it has been shown that Ser-165 and Thr-188, which are located in the ATD, are involved in the agonist binding. An alignment of CaR with the mGlu receptors showed that these two amino acid residues have been conserved in CaR as Ser-147 and Ser-170, respectively. Each of these residues was mutated to alanines and tested pharmacologically using the endogenous agonist Ca2+. CaR-S147A showed an impaired function as compared with wild-type CaR both with respect to potency of Ca2+ (4-fold increase in EC50) and maximal response (79% of wild-type response). CaR-S170A showed no significant response to Ca2+ even at 50 mM concentration. In contrast, each of the two adjacent mutations, S169A and S171A, resulted in pharmacological profiles almost identical to that of the wild-type receptor. These data demonstrate that Ser-170 and to some extent Ser-147 are involved in the Ca2+ activation of the CaR, and taken together, our results reveal a close resemblance of the activation mechanism between the CaR and the mGlu receptors.
Collapse
Affiliation(s)
- H Bräuner-Osborne
- Department of Medicinal Chemistry, NeuroScience PharmaBiotec Research Centre, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
771
|
Abstract
The opioid system modulates several physiological processes, including analgesia, the stress response, the immune response and neuroendocrine function. Pharmacological and molecular cloning studies have identified three opioid-receptor types, delta, kappa and mu, that mediate these diverse effects. Little is known about the ability of the receptors to interact to form new functional structures, the simplest of which would be a dimer. Structural and biochemical studies show that other G-protein-coupled receptors (GPCRs) interact to form homodimers. Moreover, two non-functional receptors heterodimerize to form a functional receptor, suggesting that dimerization is crucial for receptor function. However, heterodimerization between two fully functional receptors has not been documented. Here we provide biochemical and pharmacological evidence for the heterodimerization of two fully functional opioid receptors, kappa and delta. This results in a new receptor that exhibits ligand binding and functional properties that are distinct from those of either receptor. Furthermore, the kappa-delta heterodimer synergistically binds highly selective agonists and potentiates signal transduction. Thus, heterodimerization of these GPCRs represents a novel mechanism that modulates their function.
Collapse
MESH Headings
- Animals
- COS Cells
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cell Line
- Cloning, Molecular
- Cyclic AMP/metabolism
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/physiology
- Genes, myc
- Ligands
- Mice
- Rats
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/physiology
Collapse
Affiliation(s)
- B A Jordan
- Department of Pharmacology, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
772
|
Felder CB, Graul RC, Lee AY, Merkle HP, Sadee W. The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PHARMSCI 1999; 1:E2. [PMID: 11741199 PMCID: PMC2761117 DOI: 10.1208/ps010202] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Located between the inner and outer membranes of Gram-negative bacteria, periplasmic binding proteins (PBPs) scavenge or sense diverse nutrients in the environment by coupling to transporters or chemotaxis receptors in the inner membrane. Their three-dimensional structures have been deduced in atomic detail with the use of X-ray crystallography, both in the free and liganded state. PBPs consist of two large lobes that close around the bound ligand, resembling a Venus flytrap. This architecture is reiterated in transcriptional regulators, such as the lac repressors. In the process of evolution, genes encoding the PBPs have fused with genes for integral membrane proteins. Thus, diverse mammalian receptors contain extracellular ligand binding domains that are homologous to the PBPs; these include glutamate/glycine-gated ion channels such as the NMDA receptor, G protein-coupled receptors, including metabotropic glutamate, GABA-B, calcium sensing, and pheromone receptors, and atrial natriuretic peptide-guanylate cyclase receptors. Many of these receptors are promising drug targets. On the basis of homology to PBPs and a recently resolved crystal structure of the extracellular binding domain of a glutamate receptor ion channel, it is possible to construct three-dimensional models of their ligand binding domains. Together with the extensive information available on the mechanism of ligand binding to PBPs, such models can serve as a guide in drug discovery.
Collapse
Affiliation(s)
- C B Felder
- Department of Pharmacy, ETH Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
773
|
Yung KK, Ng TK, Wong CK. Subpopulations of neurons in the rat neostriatum display GABABR1 receptor immunoreactivity. Brain Res 1999; 830:345-52. [PMID: 10366692 DOI: 10.1016/s0006-8993(99)01442-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immunoreactivity for gamma aminobutyric acid BR1 receptor (GABABR1) was detected in the neuropilar elements as well as in the perikarya of neurons in the neostriatum. Many of the GABABR1-immunoreactive perikarya were medium-sized with a thin rim of cytoplasm. They resembled the morphology of medium spiny neurons, the projection neurons of the neostriatum. In addition, some GABABR1-immunoreactive neurons were densely labeled and were of medium to large in size. These neurons were characterized by double immunofluorescence using their neurochemicals as markers. Over 90% of the parvalbumin- and choline acetyltransferase-immunoreactive neurons and about 80% of the nitric oxide synthase-immunoreactive neurons displayed GABABR1 immunoreactivity. The present results show for the first time that the major four subpopulations of striatal neurons express GABABR1 receptor and may have a functional implication in the GABA neurotransmission in the microcircuitry of the neostriatum.
Collapse
Affiliation(s)
- K K Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | |
Collapse
|
774
|
Yamada K, Yu B, Gallagher JP. Different subtypes of GABAB receptors are present at pre- and postsynaptic sites within the rat dorsolateral septal nucleus. J Neurophysiol 1999; 81:2875-83. [PMID: 10368404 DOI: 10.1152/jn.1999.81.6.2875] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAB receptor activation modulates neuronal activity mediated by multiple CNS transmitters and can occur at pre- and postsynaptic sites. In low concentrations, baclofen acts presynaptically to diminish transmitter release via both hetero- and autoreceptors, whereas at increasing concentrations, the same compound alters postsynaptic membrane excitability by inducing a membrane hyperpolarization. We have utilized electrophysiological techniques in vitro to focus on the possibility that pharmacologically different subtypes of GABAB receptors are present on presynaptic sites of glutamatergic terminals when compared with GABAB receptors on postsynaptic sites within the dorsolateral septal nucleus (DLSN). The glutamatergic terminal within the DLSN originates from a pyramidal cell body located within the hippocampus and most likely terminates on a GABAergic neuron from which recordings were made. Whole cell patch voltage-clamp methods were employed to record pharmacologically isolated excitatory postsynaptic currents (EPSCs) from DLSN neurons as an index of glutamatergic transmission. Using a modified internal pipette solution containing QX-314 and in which CsGluconate and GDPbetaS replaced Kgluconate and GTP, respectively, we recorded isolated monosynaptic EPSCs. The GABAA receptor antagonists bicuculline and picrotoxin were included in the external standard superfusion solution. Application of the GABAB receptor agonists, (+/-)-baclofen, CGP44533, and CGP35024 (10 nM to 10 microM) depressed glutamate-mediated EPSCs in a concentration-dependent manner. With the use of this combination of solutions, CGP44533 did not produce postsynaptic membrane property changes. Under these conditions, both (+/-)-baclofen and CGP35024 still induced increases of postsynaptic membrane conductance associated with an outward current. The GABAB receptor antagonist CGP55845A (1 microM) blocked the presynaptic CGP44533-mediated depressant effects of EPSCs, whereas CGP35348 (100 microM) or barium (2 mM) was ineffective. Furthermore, both CGP35348 (100 microM) and CGP55845A (1 microM) were effective in blocking the postsynaptic conductance changes associated with baclofen and CGP35024, whereas barium was ineffective. Our results demonstrate a distinct pharmacology for GABAB agonists acting at putative subtypes of GABAB receptors located on presynaptic sites of a glutamatergic terminal versus GABAB receptors on postsynaptic sites of a DLSN neuron. Furthermore, our results also suggest a different pharmacology and/or coupling of a GABAB receptor to different effectors at postsynaptic sites within the DLSN. Thus there may be three or more pharmacologically distinct GABAB receptors or receptor complexes associated with DLSN neurons: at least one pre- and two postsynaptic. If this distinct pharmacology and GABAB receptor distribution also extends to other CNS structures, such differences could provide development of selective drugs to act at these multiple sites.
Collapse
Affiliation(s)
- K Yamada
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1031, USA
| | | | | |
Collapse
|
775
|
Abstract
The vast majority of extracellular signaling molecules, like hormones and neurotransmitters, interact with a class of membranous receptors characterized by a uniform molecular architecture of seven transmembrane alpha-helices linked by extra- and intracelluar peptide loops. In a reversible manner, binding of diverse agonists to heptahelical receptors leads to activation of a limited repertoire of heterotrimeric guanine nucleotide-binding proteins (G proteins) forwarding the signal to intracellular effectors such as enzymes and ion channels. Proper functioning of a G protein-coupled receptor is based on a complex interplay of structural determinants which are ultimately responsible for receptor folding, trafficking and transmembrane signaling. Applying novel biochemical and molecular biological methods interesting insights into receptor structure/function relationships became available. These studies have a significant impact on our understanding of the molecular basis of human diseases and may eventually lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- T Schöneberg
- Institut für Pharmakologie, Freie Universität Berlin, Germany.
| | | | | |
Collapse
|
776
|
Schousboe A. Pharmacologic and therapeutic aspects of the developmentally regulated expression of GABA(A) and GABA(B) receptors: cerebellar granule cells as a model system. Neurochem Int 1999; 34:373-7. [PMID: 10397364 DOI: 10.1016/s0197-0186(99)00044-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cerebellar granule neurons can be conveniently kept in culture. They constitute a useful model to study regulation of glutamatergic activity, in particular the inhibitory action of GABA (7-aminobutyrate). GABA exerts an inhibitory action on evoked transmitter release acting on both GABA(A) and GABA(B) receptors. The functional properties of these receptors are dependent upon the environment of the neurons during early development in culture as the expression of both receptor subtypes is enhanced by exposure of the neurons to GABA(A) receptor agonists. Thus, the inducible GABA(A) receptors are of low affinity and lack benzodiazepine sensitivity, and the G-protein coupling differs among the native and the inducible GABA(B) receptors. Moreover, the GABA(A) and the GABA(B) receptors are functionally coupled, leading to a disinhibitory action of GABA. Therefore drugs exhibiting selective agonist or antagonist action on subclasses of GABA(A) and GABA(B) may be of potential use as regulators of glutamatergic excitatory activity.
Collapse
Affiliation(s)
- A Schousboe
- PharmaBiotec Research Centre, Department of Pharmacology, Royal Danish School of Pharmacy, Copenhagen.
| |
Collapse
|
777
|
Abstract
In this article I throw attention on to this GABA issue by outlining several aspects of current interest in the field of GABA research. The theme was selected in association with the Pharmacology and Therapeutical Potential of the GABA System symposium of the Second European Congress of Pharmacology held in July 1999 in Budapest, Hungary. A wide range of topics relating to the GABA system were outlined, including new members of the GABAA receptor gene family, subunit composition of native GABA(A) receptors, surface expression and clustering of GABA(A) receptor subunits, allosteric modulation of GABA(A) receptors, localization of agonist binding sites, GABA release, GABA(A)-GABA(B) receptor crosstalk, GABA(A) and GABA(B) receptor functions in different brain areas, altered transport and GABA(A) receptor pattern in different models of epilepsy.
Collapse
Affiliation(s)
- J Kardos
- Department of Neurochemistry, Chemical Institute, Chemical Research Centre, Hungarian Academy of Sciences, Budapest.
| |
Collapse
|
778
|
Pozza MF, Manuel NA, Steinmann M, Froestl W, Davies CH. Comparison of antagonist potencies at pre- and post-synaptic GABA(B) receptors at inhibitory synapses in the CA1 region of the rat hippocampus. Br J Pharmacol 1999; 127:211-9. [PMID: 10369475 PMCID: PMC1565985 DOI: 10.1038/sj.bjp.0702498] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1998] [Revised: 01/27/1999] [Accepted: 01/29/1999] [Indexed: 01/19/2023] Open
Abstract
Synaptic activation of gamma-aminobutyric acid (GABA)B receptors at GABA synapses causes (a) postsynaptic hyperpolarization mediating a slow inhibitory postsynaptic potential/current (IPSP/C) and (b) presynaptic inhibition of GABA release which depresses IPSPs and leads to paired-pulse widening of excitatory postsynaptic potentials (EPSPs). To address whether these effects are mediated by pharmacologically identical receptors the effects of six GABA(B) receptor antagonists of widely ranging potencies were tested against each response. Monosynaptic IPSP(B)s were recorded in the presence of GABA(A), AMPA/kainate and NMDA receptor antagonists. All GABA(B) receptor antagonists tested depressed the IPSP(B) with an IC50 based rank order of potency of CGP55679> or =CGP56433 = CGP55845A = CGP52432>CGP51176>CGP36742. Paired-pulse EPSP widening was recorded as an index of paired-pulse depression of GABA-mediated IPSP/Cs. A similar rank order of potency of antagonism of paired-pulse widening was observed to that for IPSP(B) inhibition. Comparison of the IC50 values for IPSP(B) inhibition and paired-pulse EPSP widening revealed a close correlation between the two effects in that their IC50s lay within the 95% confidence limits of a correlation line that described IC50 values for inhibition of paired-pulse EPSP widening that were 7.3 times higher than those for IPSP(B) inhibition. Using the compounds tested here it is not possible to assign different subtypes of GABA(B) receptor to pre- and post-synaptic loci at GABAergic synapses. However, 5-10 fold higher concentrations of antagonist are required to block presynaptic as opposed to postsynaptic receptors when these are activated by synaptically released GABA.
Collapse
Affiliation(s)
- M F Pozza
- Research and Development Department, Novartis, Basel, Switzerland
| | | | | | | | | |
Collapse
|
779
|
Pace AJ, Gama L, Breitwieser GE. Dimerization of the calcium-sensing receptor occurs within the extracellular domain and is eliminated by Cys --> Ser mutations at Cys101 and Cys236. J Biol Chem 1999; 274:11629-34. [PMID: 10206973 DOI: 10.1074/jbc.274.17.11629] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium-sensing receptors are present in membranes as dimers that can be reduced to monomers with sufhydryl reagents. All studies were carried out on the human calcium-sensing receptor tagged at the carboxyl terminus with green fluorescent protein (hCaR-GFP) to permit identification and localization of expressed proteins. Truncations containing either the extracellular agonist binding domain plus transmembrane helix 1 (ECD/TMH1-GFP) or the transmembrane domain plus the intracellular carboxyl terminus (TMD/carboxyl terminus-GFP) were used to identify the dimerization domain. ECD/TMH1-GFP was a dimer in the absence of reducing reagents, whereas TMD/carboxyl-terminal GFP was a monomer in the absence or presence of reducing agents, suggesting that dimerization occurs via the ECD. To identify the residue(s) involved in dimerization within the ECD, cysteine --> serine point mutations were made in residues that are conserved between hCaR and metabotropic glutamate receptors. Mutations at positions 60 and 131 were expressed at levels comparable to wild type in HEK 293 cells, had minimal effects on hCaR function, and did not eliminate dimerization, whereas mutations at positions 101 and 236 greatly decreased receptor expression and resulted in significant amounts of monomer in the absence of reducing agents. The double point mutant hCaR(C101S/C236S)-GFP was expressed more robustly than either C101S or C236S and covalent dimerization was eliminated. hCaR(C101S/C236S)-GFP had a decreased affinity for extracellular Ca2+ and slower response kinetics upon increases or decreases in agonist concentration. These results suggest that covalent, disulfide bond-mediated dimerization of the calcium-sensing receptor contributes to stabilization of the ECD and to acceleration of the transitions between inactive and active receptor conformations.
Collapse
Affiliation(s)
- A J Pace
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
780
|
Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA, Luster AD, Luscinskas FW, Rosenzweig A. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999; 398:718-23. [PMID: 10227295 DOI: 10.1038/19546] [Citation(s) in RCA: 930] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monocytes contribute to the development of atherosclerotic lesions in mouse models. The chemoattractant proteins (chemokines), monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), are found in human atheroma, and mice lacking receptors for these chemokines are less susceptible to atherosclerosis and have fewer monocytes in vascular lesions. Although MCP-1 has a powerful effect on monocytes, IL-8 is thought to act predominantly on neutrophils and it is unclear how it could recruit monocytes. Here we investigate the ability of chemokines to control the interaction of monocytes under flow conditions with vascular endothelium that has been transduced to express specific leukocyte-adherence receptors. We find that MCP-1 and IL-8 can each rapidly cause rolling monocytes to adhere firmly onto monolayers expressing E-selectin, whereas related chemokines do not. These effects do not correlate with either the induction of a calcium transient or chemotaxis. We conclude that chemokines are important modulators of monocyte-endothelial interactions under flow conditions. Moreover, our finding that IL-8 is a powerful trigger for firm adhesion of monocytes to vascular endothelium reveals an unexpected role for this chemokine in monocyte recruitment.
Collapse
Affiliation(s)
- R E Gerszten
- The Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
781
|
Abstract
Among membrane-bound receptors, the G protein-coupled receptors (GPCRs) are certainly the most diverse. They have been very successful during evolution, being capable of transducing messages as different as photons, organic odorants, nucleotides, nucleosides, peptides, lipids and proteins. Indirect studies, as well as two-dimensional crystallization of rhodopsin, have led to a useful model of a common 'central core', composed of seven transmembrane helical domains, and its structural modifications during activation. There are at least six families of GPCRs showing no sequence similarity. They use an amazing number of different domains both to bind their ligands and to activate G proteins. The fine-tuning of their coupling to G proteins is regulated by splicing, RNA editing and phosphorylation. Some GPCRs have been found to form either homo- or heterodimers with a structurally different GPCR, but also with membrane-bound proteins having one transmembrane domain such as nina-A, odr-4 or RAMP, the latter being involved in their targeting, function and pharmacology. Finally, some GPCRs are unfaithful to G proteins and interact directly, via their C-terminal domain, with proteins containing PDZ and Enabled/VASP homology (EVH)-like domains.
Collapse
Affiliation(s)
- J Bockaert
- UPR CNRS 9023, CCIPE, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | | |
Collapse
|
782
|
Pelchen-Matthews A, Signoret N, Klasse PJ, Fraile-Ramos A, Marsh M. Chemokine receptor trafficking and viral replication. Immunol Rev 1999; 168:33-49. [PMID: 10399063 DOI: 10.1111/j.1600-065x.1999.tb01281.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemokines and chemokine receptors have emerged as crucial factors controlling the development and function of leukocytes. Recent studies have indicated that, in addition to these essential roles, both chemokines and chemokine receptors play critical roles in viral infection and replication. Not only are chemokine receptors key components of the receptor/fusion complexes of primate immunodeficiency viruses, but chemokines can also influence virus entry and infection. Many viruses, in particular herpesviruses, encode chemokines and chemokine receptors that influence the replication of both the parent virus and other unrelated viruses. The cell surface expression of the chemokine receptors is regulated through their interaction with membrane trafficking pathways. Ligands induce receptor internalization and downmodulation through endocytosis, and recycling is regulated within endosomes. Part of the mechanism through which chemokines protect cells from HIV infection is through ligand-induced internalization of the specific chemokine receptor co-receptors. In addition, mechanisms may exist to regulate the trafficking of newly synthesized receptors to the cell surface. Here we discuss aspects of the mechanisms through which chemokine receptors interact with membrane-trafficking pathways and the influence of these interactions on viral replication.
Collapse
Affiliation(s)
- A Pelchen-Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| | | | | | | | | |
Collapse
|
783
|
Ng GY, Clark J, Coulombe N, Ethier N, Hebert TE, Sullivan R, Kargman S, Chateauneuf A, Tsukamoto N, McDonald T, Whiting P, Mezey E, Johnson MP, Liu Q, Kolakowski LF, Evans JF, Bonner TI, O'Neill GP. Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J Biol Chem 1999; 274:7607-10. [PMID: 10075644 DOI: 10.1074/jbc.274.12.7607] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors are commonly thought to bind their cognate ligands and elicit functional responses primarily as monomeric receptors. In studying the recombinant gamma-aminobutyric acid, type B (GABAB) receptor (gb1a) and a GABAB-like orphan receptor (gb2), we observed that both receptors are functionally inactive when expressed individually in multiple heterologous systems. Characterization of the tissue distribution of each of the receptors by in situ hybridization histochemistry in rat brain revealed co-localization of gb1 and gb2 transcripts in many brain regions, suggesting the hypothesis that gb1 and gb2 may interact in vivo. In three established functional systems (inwardly rectifying K+ channel currents in Xenopus oocytes, melanophore pigment aggregation, and direct cAMP measurements in HEK-293 cells), GABA mediated a functional response in cells coexpressing gb1a and gb2 but not in cells expressing either receptor individually. This GABA activity could be blocked with the GABAB receptor antagonist CGP71872. In COS-7 cells coexpressing gb1a and gb2 receptors, co-immunoprecipitation of gb1a and gb2 receptors was demonstrated, indicating that gb1a and gb2 act as subunits in the formation of a functional GABAB receptor.
Collapse
Affiliation(s)
- G Y Ng
- Merck Frosst Center for Therapeutic Research, Kirkland, Quebec H9H 3L1, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
784
|
Bai M, Trivedi S, Kifor O, Quinn SJ, Brown EM. Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc Natl Acad Sci U S A 1999; 96:2834-9. [PMID: 10077597 PMCID: PMC15855 DOI: 10.1073/pnas.96.6.2834] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently demonstrated that the G protein-coupled, extracellular calcium-sensing receptor (CaR) forms disulfide-linked dimers. The functional significance of dimerization of this receptor was suggested by our earlier observations that CaRs carrying certain point mutations exert dominant negative effects on the function of the coexpressed wild-type receptor both in vivo and when cotransfected in human embryonic kidney cells. In this study, we explored the functional consequences of CaR dimerization. Coexpression in human embryonic kidney cells of specific pairs of mutant CaRs, each with reduced or absent activity because of distinct loss-of-function mutations, results in the formation of heterodimers and partially reconstitutes extracellular calcium-dependent signaling. Moreover, our results suggest that the CaR has at least two functionally separable domains. However, the presence of an abnormal domain in each mutant monomer substantially impairs the function of the CaR heterodimer, resulting in the reconstituted CaRs having characteristics distinct from those of the wild-type CaR. Our study suggests that intermolecular interactions within the dimeric CaR are important for the receptor's function.
Collapse
Affiliation(s)
- M Bai
- Endocrine-Hypertension Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
785
|
Martin SC, Russek SJ, Farb DH. Molecular identification of the human GABABR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABABR1. Mol Cell Neurosci 1999; 13:180-91. [PMID: 10328880 DOI: 10.1006/mcne.1999.0741] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have identified a gene encoding a GABAB receptor, the human GABABR2, located on chromosome 9q22.1, that is distinct from the recently reported rat GABABR1. GABABR2 structurally resembles GABABR1 (35% identity), having seven transmembrane domains and a large extracellular region, but differs in having a longer carboxy-terminal tail. GABABR2 is localized to the cell surface in transfected COS cells, and negatively couples to adenylyl cyclase in response to GABA, baclofen, and 3-aminopropyl(methyl)phosphinic acid in CHO cells lacking GABABR1. Baclofen action is inhibited by the GABABR antagonist, 2-hydroxysaclofen. The human GABABR2 and GABABR1 genes are differentially expressed in the nervous system, with the greatest difference being detected in the striatum in which GABABR1 but not GABABR2 mRNA transcripts are detected. GABABR2 and GABABR1 mRNAs are also coexpressed in various brain regions such as the Purkinje cell layer of the cerebellum. Identification of a functional homomeric GABABR2 coupled to adenylyl cyclase suggests that the complexity of GABAB pharmacological data is at least in part due to the presence of more than one receptor and opens avenues for future research leading to an understanding of metabotropic GABA receptor signal transduction mechanisms.
Collapse
Affiliation(s)
- S C Martin
- Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts, 02118-2394, USA
| | | | | |
Collapse
|
786
|
Affiliation(s)
- H Möhler
- Institute of Pharmacology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | |
Collapse
|