751
|
Kim SY, Park KH, Gul R, Jang KY, Kim UH. Role of kidney ADP-ribosyl cyclase in diabetic nephropathy. Am J Physiol Renal Physiol 2008; 296:F291-7. [PMID: 19073639 DOI: 10.1152/ajprenal.90381.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The role of ADP-ribosyl cyclases (ADPR-cyclases) in diabetic nephropathy was investigated. ADPR-cyclases synthesize cADP-ribose (cADPR), a Ca(2+)-mobilizing second messenger, and are stimulated by G protein-coupled receptors. We have previously reported that ADPR-cyclases can be activated by ANG II and showed that a specific kidney ADPR-cyclase inhibitor, 4,4'-dihydroxyazobenzene (DHAB), can protect ANG II-mediated mesangial cell growth (Kim SY, Gul R, Rah SY, Kim SH, Park SK, Im MJ, Kwon HJ, Kim UH. Am J Physiol Renal Physiol 294: F982-F989, 2008). In this study, we examined the preventive effect of DHAB on glomerular injury in streptozotocin (STZ)-induced diabetic mice. Male mice were randomly assigned to normal control and diabetic groups of comparable age. A diabetic group received 45 microg/kg of DHAB for 6 wk via daily intraperitoneal injections. Several nephropathy parameters were improved in the DHAB-treated diabetic group compared with the diabetic group, including urinary albumin (diabetic, 44.6 +/- 5.1 vs. treated, 33.9 +/- 3.9 microg/day), creatinine clearance (diabetic, 0.72 +/- 0.03 vs. treated, 0.83 +/- 0.04 ml.min(-1).100 g(-1)), ratio of kidney to body weight (diabetic, 2.5 +/- 0.04 vs. treated, 1.4 +/- 0.04), and mesangial matrix expansion (diabetic, 13.9 +/- 2.2 vs. treated, 8.5 +/- 2.0%). These results indicate that kidney function in STZ-induced diabetes was improved by DHAB administration. Furthermore, DHAB inhibited phosphorylation of Akt and nuclear factor of activated T cell 3 nuclear translocation, as well as ADPR-cyclase activity and cADPR production, which were increased in the kidneys of the diabetic group. In addition, DHAB treatment decreased fibrosis marker protein expression and glomerular hypertrophy in the diabetic kidney. These findings indicate a crucial role that ADPR-cyclase signaling plays in the renal pathogenesis of diabetes and provide a therapeutic tool for the treatment of renal diseases.
Collapse
Affiliation(s)
- Seon-Young Kim
- Dept. of Biochemistry, Chonbuk National Univ. Medical School, Keum-am dong, Jeonju, 561-182, Republic of Korea
| | | | | | | | | |
Collapse
|
752
|
Ginsenoside Rg1, a major active component isolated from Panax notoginseng, restrains tubular epithelial to myofibroblast transition in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2008; 122:35-41. [PMID: 19101622 DOI: 10.1016/j.jep.2008.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 09/30/2008] [Accepted: 11/24/2008] [Indexed: 02/05/2023]
Abstract
The medicinal herb, Panax notoginseng, has been used for thousands of years in traditional Chinese medicine and possesses anti-fibrosis properties. Epithelial-myofibroblast transition (EMT) plays an important role in renal tubulointerstitial fibrosis. The present study was designed to examine whether ginsenoside Rg1, a major active component isolated from Panax notoginseng, has an ability to block this phenotypic transition in rat renal tubular epithelial cells (NRK-52E) induced by transforming growth factor-beta1 (TGF-beta1). The morphology of tubular epithelial-myofibroblast transition was observed through light microscope and transmission electron microscopy. alpha-SMA and E-cadherin are two markers of tubular epithelial-myofibroblast transition, their protein expressions were assessed by immunohistochemistry and western blot analysis. Gene expression of alpha-SMA as well as the two major extracellular matrix components collagen I and fibronectin was measured by real-time PCR analysis. Enzyme-linked immunosorbent assay was used to quantitatively detect collagen I and fibronectin in the supernatant. Our results revealed that ginsenoside Rg1 obviously blocked morphologic transformation in NRK-52E induced by TGF-beta1. Meanwhile, ginsenoside Rg1 inhibited the expression of alpha-SMA and the loss of E-cadherin, subsequently decreased the levels of collagen I and fibronectin in a dose-dependent manner. In addition, western blot analysis indicated that ginsenoside Rg1 inhibited the expression of P-ERK1/2 in NRK-52E induced by TGF-beta1. These results suggest that ginsenoside Rg1 can restrain the process of EMT maybe via suppressing the expression of P-ERK1/2 in vitro.
Collapse
|
753
|
Dolman M, Fretz M, Segers G, Lacombe M, Prakash J, Storm G, Hennink W, Kok R. Renal targeting of kinase inhibitors. Int J Pharm 2008; 364:249-57. [DOI: 10.1016/j.ijpharm.2008.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 01/19/2023]
|
754
|
Souto MFO, Teixeira AL, Russo RC, Penido MGMG, Silveira KD, Teixeira MM, Simões E Silva AC. Immune mediators in idiopathic nephrotic syndrome: evidence for a relation between interleukin 8 and proteinuria. Pediatr Res 2008; 64:637-42. [PMID: 18679168 DOI: 10.1203/pdr.0b013e318186ddb2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pathogenesis of idiopathic nephrotic syndrome (INS) remains unknown. Several findings suggest a role for the immune system. This study aimed to evaluate immune mediators in INS by measuring plasma and urinary levels of transforming growth factor beta1 (TGF-beta1), monocyte chemoattractant protein-1 (MCP-1/CCL2), regulated on activation normal T-cell expressed and secreted (RANTES/CCL5) and IL-8 (IL-8/CXCL8) in pediatric patients with INS and in age-matched healthy controls. Patients were divided according to their response to corticosteroids: steroid-sensitive (SS, n = 8), or steroid-resistant (SR, n = 24). Immune mediators were also compared in regard with disease activity (relapse and remission). Immune mediators were measured by ELISA. Plasma TGF-beta1 levels in SR patients were approximately 2.8-fold higher than control values (p < 0.05). Urinary IL-8/CXCL8 was 2.9-fold higher in INS patients in relapse (proteinuria >100 mg/m2/24 h) when compared with patients in remission (p < 0.05), and levels had a positive correlation with individual proteinuria values (p < 0.05). Urinary IL-8/CXCL8 was significantly higher in relapsed SR than in SS patients in remission. No changes in MCP-1/CCL2 and RANTES/CCL5 levels were detected. Our findings suggest that IL-8/CXCL8 and TGF-beta1 are involved in the pathogenesis of INS: IL-8/CXCL8 associated with local changes in glomerular permeability and TGF-beta1 could be related to worse response to corticosteroids.
Collapse
Affiliation(s)
- Marcelo F O Souto
- Departamento de Pediatria, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | | | | | | | | | | | | |
Collapse
|
755
|
Ni JQ, Jiang XH, Tang WH. Relationship between pancreatic stellate cells and pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2008; 16:3782-3786. [DOI: 10.11569/wcjd.v16.i33.3782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic carcinoma is a highly malignant tumor in digestive tract, characterized by rapid progression, early metastasis, limited response to chemotherapy and radiotherapy, and an intense fibrotic reaction known as tumor desmoplasia. Carcinoma cells are surrounded by dense stroma consisting of myofibroblast-like cells, collagens, and fibronectin. Recent studies suggest that pancreatic stellate cells play an important role in this reaction and can stimulate pancreatic tumor cell proliferation, progression and metastasis. This review describes the discovery, activation pathway, interaction between pancreatic stellate cells and pancreatic tumor cells, and the role of pancreatic stellate cells in the process of pancreatic cancer initiation, progression, and metastasis.
Collapse
|
756
|
Kiefer JC, Nieto A, Thiery JP. Primer and interview: epithelial to mesenchymal transition. [Interview by Julie Kiefer]. Dev Dyn 2008; 237:2769-74. [PMID: 18816863 DOI: 10.1002/dvdy.21696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A complex body plan would not be possible without the evolution of the epithelial to mesenchymal (EMT) transition. This primer introduces the hallmarks of EMT, molecular mechanisms underlying the process, and its role in development and disease. Accompanying the primer is a discussion of current topics in the field with EMT experts Angela Nieto, Ph.D., and Jean Paul Thiery, Ph.D.
Collapse
Affiliation(s)
- Julie C Kiefer
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | |
Collapse
|
757
|
Tang J, Zhan C, Zhou J. Effects of tanshinone IIA on transforming growth factor beta1-Smads signal pathway in renal interstitial fibroblasts of rats. ACTA ACUST UNITED AC 2008; 28:539-42. [PMID: 18846334 DOI: 10.1007/s11596-008-0511-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Indexed: 11/25/2022]
Abstract
The effects of tanshinone IIA (TSN) on transforming growth factor beta1 (TGFbeta1) signal transduction in renal interstitial fibroblasts of rats were studied in order to investigate its mechanism in prevention of renal interstitial fibrosis. Rat renal fibroblasts of the line NRK/49F were cultured in vitro, stimulated with 5 ng/mL TGFbeta1 and pretreated with 10(-6), 10(-5), 10(-4) mol/L TSN respectively. The mRNA levels of fibronectin (FN) were examined by RT-PCR. The protein expression of FN and Smads was detected by Western blot. TGFbeta1 induced the expression of FN mRNA and Smads in a time-dependent manner in a certain range. Compared with pre-stimulation, the FN mRNA and protein levels were increased by 1.1 times and 1.5 times respectively (P<0.01, P<0.01), and the protein expression of phosphorylated Smad2/3 (p-Smad2/3) increased by 7 times at the end of TGFbeta1 stimulation (P<0.01). TSN pretreatment may down-regulate the FN and p-Smad2/3 expression in a dose-dependent manner. 10(-6) mol/L TSN pretreatment had no effect on the FN and p-Smad2/3 expression (both P>0.05). After pretreatment with 10(-5) and 10(-4) mol/L TSN, the FN mRNA levels were decreased by 28.1% and 43.8% respectively (P<0.05, P<0.01), the FN protein levels were decreased by 40% and 44% respectively (P<0.05, P<0.05), and the p-Smad2/3 protein expression were decreased by 40% and 65% respectively (P<0.05, P<0.01). The inhibitory effect of TSN on renal interstitial fibrosis may be related to its blocking effect on TGFbeta1-Smads signal pathway in renal interstitial fibroblasts.
Collapse
Affiliation(s)
- Jinhui Tang
- Department of Pediatrics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | |
Collapse
|
758
|
Linehan WM, Rubin JS, Bottaro DP. VHL loss of function and its impact on oncogenic signaling networks in clear cell renal cell carcinoma. Int J Biochem Cell Biol 2008; 41:753-6. [PMID: 18950731 DOI: 10.1016/j.biocel.2008.09.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/11/2008] [Accepted: 09/15/2008] [Indexed: 11/28/2022]
Abstract
Loss of von Hippel-Lindau tumor suppressor gene function occurs in familial and most sporadic clear cell renal cell carcinoma, resulting in the aberrant expression of genes that control cell proliferation, metabolism, invasion and angiogenesis. The molecular mechanisms by which loss of function leads to tumorigenesis are not yet fully defined. The von Hippel-Lindau gene product is part of an ubiquitin ligase complex that targets hypoxia inducible factors for polyubiquitination and proteasomal degradation, linking hypoxia response genes to renal cell carcinoma oncogenesis. Loss von Hippel-Lindau gene function also promotes cell invasiveness in response to hepatocyte growth factor, an important regulator of kidney development and renal homeostasis. Increased cell invasiveness is mediated by another ubiquitin ligase target with relevance to the molecular pathogenesis of renal cell carcinoma: beta-catenin. This discovery and other recent insights into kidney cancer oncogenesis implicate convergent developmental and homeostatic signaling pathways in tumorigenesis, tumor invasiveness and metastasis.
Collapse
Affiliation(s)
- W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
759
|
Rosenbloom J, Jiménez SA. Molecular ablation of transforming growth factor beta signaling pathways by tyrosine kinase inhibition: the coming of a promising new era in the treatment of tissue fibrosis. ACTA ACUST UNITED AC 2008; 58:2219-24. [PMID: 18668575 DOI: 10.1002/art.23634] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Joel Rosenbloom
- Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107-5541, USA
| | | |
Collapse
|
760
|
The controversial role of tumor necrosis factor alpha in fibrotic diseases. ACTA ACUST UNITED AC 2008; 58:2228-35. [PMID: 18668576 DOI: 10.1002/art.23645] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
761
|
O'Riordan A, Johnston O, McMorrow T, Wynne K, Maguire P, Hegarty JE, McCormick A, Watson AJ, Cagney G, Gallagher WM, Ryan MP. Identification of Apolipoprotein AI as a serum biomarker of chronic kidney disease in liver transplant recipients, using proteomic techniques. Proteomics Clin Appl 2008; 2:1338-48. [DOI: 10.1002/prca.200780167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Indexed: 11/06/2022]
|
762
|
Kenneth Ward W. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol 2008; 2:768-77. [PMID: 19885259 PMCID: PMC2769792 DOI: 10.1177/193229680800200504] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological response to implanted biomaterials in mammals is a complex series of events that involves many biochemical pathways. Shortly after implantation, fibrinogen and other proteins bind to the device surface, a process known as biofouling. Macrophages then bind to receptors on the proteins, join into multinucleated giant cells, and release transforming growth factor beta and other inflammatory cytokines. In response to these signals, quiescent fibroblasts are transformed into myofibroblasts, which synthesize procollagen via activation of Smad mediators. The procollagen becomes crosslinked after secretion into the extracellular space. Mature crosslinked collagen and other extracellular matrix proteins gradually contribute to formation of a hypocellular dense fibrous capsule that becomes impermeable or hypopermeable to many compounds. Porous substrates and angiogenic growth factors can stimulate formation of microvessels, which to some extent can maintain analyte delivery to implanted sensors. However, stimulation by vascular endothelial growth factor alone may lead to formation of leaky, thin-walled, immature vessels. Other growth factors are most probably needed to act upon these immature structures to create more robust vessels.During implantation of foreign bodies, the foreign-body response is difficult to overcome, and thousands of biomaterials have been tested. Biomimicry (i.e., creating membranes whose chemical structure mimics natural cellular compounds) may diminish the response, but as of this writing, it has not been possible to create a stealth material that circumvents the ability of the mammalian surveillance systems to distinguish foreign from self.
Collapse
Affiliation(s)
- W Kenneth Ward
- Legacy Clinical Research and Technology Center and Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
763
|
Vitalone MJ, O'Connell PJ, Jimenez-Vera E, Yuksel A, Wavamunno M, Fung CLS, Chapman JR, Nankivell BJ. Epithelial-to-mesenchymal transition in early transplant tubulointerstitial damage. J Am Soc Nephrol 2008; 19:1571-83. [PMID: 18480317 PMCID: PMC2488255 DOI: 10.1681/asn.2007050580] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 02/13/2008] [Indexed: 12/25/2022] Open
Abstract
It is unknown whether epithelial-to-mesenchymal transition (EMT) leads to tubulointerstitial fibrosis in renal transplants. In this study, interstitial fibrosis and markers of EMT were followed in protocol transplant biopsies in 24 patients. Tubulointerstitial damage (TID) increased from 34 to 54% between 1 and 3 mo after transplantation. Detection of EMT depended on the marker used; low levels of alpha-smooth muscle actin were found in 61% of biopsies, but the less specific marker S100 calcium binding protein-A4 (also known as Fsp1) suggested a higher incidence of EMT. The presence or development of TID did not correlate with EMT but instead significantly correlated with subclinical immune activity (P < 0.05). Among biopsies showing TID, microarray analysis revealed differential regulation of 127 genes at 1 mo and 67 genes at 3 mo compared with baseline; these genes were predominantly associated with fibrosis, tissue remodeling, and immune response. Of the 173 EMT-associated genes interrogated, however, only 8.1% showed an expression pattern consistent with EMT at 1 mo and 6.3% at 3 mo. The remainder were not differentially altered, or their changes in expression were opposite those expected to promote EMT. Quantitative reverse transcriptase-PCR revealed that the expression pattern of 12 EMT-associated genes was inconsistent over time, opposite that expected, or consistent with subclinical rejection or inflammation. In conclusion, EMT does not seem to play a significant role in the development of early allograft fibrosis.
Collapse
Affiliation(s)
- Matthew J Vitalone
- Centre for Transplant and Renal Research, University of Sydney, Westmead Hospital, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
764
|
Wei CC, Li HH, Hsu YH, Hsing CH, Sung JM, Chang MS. Interleukin-20 targets renal cells and is associated with chronic kidney disease. Biochem Biophys Res Commun 2008; 374:448-53. [PMID: 18639518 DOI: 10.1016/j.bbrc.2008.07.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 07/06/2008] [Indexed: 10/21/2022]
Abstract
Interleukin (IL)-10 is an anti-inflammatory factor that suppresses renal fibrosis and improves renal function in CKD rats. IL-20 belongs to the IL-10 family; therefore, we sought to determine whether IL-20 is involved in CKD. CKD patients at stage five expressed significantly higher IL-20 in serum than controls. Immunohistochemical staining demonstrated that more IL-20 protein was expressed in the kidney tubular-epithelial cells, mesangial cells, and immune cells of CKD rats with a 5/6 nephrectomy. The lung, liver, and heart tissue of CKD rats also overexpressed IL-20. Thus, we treated two tubular epithelial cells, TKPTS and M-1 cells, with IL-20 to study its effects on CKD. IL-20 treatment induced apoptosis in these cells via caspase-3 activation. Incubating IL-20 with rat interstitial fibroblasts, NRK-49F cells, upregulated TGF-beta1 production, one key inducer for renal fibrogenesis. Therefore, IL-20 injured renal epithelial cells and induced fibroblasts to produce TGF-beta1 that hastened the progression of CKD.
Collapse
Affiliation(s)
- Chi-Chen Wei
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
| | | | | | | | | | | |
Collapse
|
765
|
Lv LL, Liu BC. Clinical application of antibody microarray in chronic kidney disease: How far to go? Proteomics Clin Appl 2008; 2:989-96. [PMID: 21136899 DOI: 10.1002/prca.200780134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Indexed: 11/10/2022]
Abstract
Chronic kidney disease (CKD) that affects about 10% of the adult population has been shown as a worldwide public health problem in recent years. Both basic and clinical investigations have identified complex disease-associated protein networks involved in the pathophysiologic processes of CKD. The traditional single-assay approach and proteomic analysis of those related proteins have given birth to a steadily increasing panel of molecules that may have the potential to serve as biomarkers for CKD. However, both approaches suffered from some shortcomings from a technological point of view. Antibody microarray (AbM) is characterized by high sensitivity, specificity, and quantitative ability for a particular set of known proteins. However, its application in CKD has been very limited so far. The objective of this review, therefore, is to address the potential applications of AbM in studying of CKD. We will briefly discuss the proteins involved in the development of CKD, future directions in which AbM approaches would probably display its potential and also some key issues that need to be considered in application of this novel technique.
Collapse
Affiliation(s)
- Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China
| | | |
Collapse
|
766
|
Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, Sasaki S, Abe K. Aquaporin‐11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J 2008; 22:3672-84. [DOI: 10.1096/fj.08-111872] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shinji Okada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuko Tanaka
- Department of Medical PhysiologyMeiji Pharmaceutical UniversityTokyoJapan
| | - Ichiro Matsumoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kenichi Ishibashi
- Department of Medical PhysiologyMeiji Pharmaceutical UniversityTokyoJapan
| | - Sei Sasaki
- Department of NephrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
767
|
Cantini LP, Ferrini MG, Vernet D, Magee TR, Qian A, Gelfand RA, Rajfer J, Gonzalez-Cadavid NF. Profibrotic Role of Myostatin in Peyronie's Disease. J Sex Med 2008; 5:1607-22. [DOI: 10.1111/j.1743-6109.2008.00847.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
768
|
Ichino M, Mori T, Kusaka M, Kuroyanagi Y, Ishikawa K, Shiroki R, Kowa H, Kurahashi H, Hoshinaga K. Global gene expression profiling of renal scarring in a rat model of pyelonephritis. Pediatr Nephrol 2008; 23:1059-71. [PMID: 18214547 DOI: 10.1007/s00467-007-0717-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 09/20/2007] [Accepted: 11/12/2007] [Indexed: 12/12/2022]
Abstract
Renal scarring is a serious complication of chronic pyelonephritis that occurs due to vesicoureteral reflux. In our study, we performed global expression profiling of the kidney during renal scarring formation in a rat pyelonephritis model. An inoculum of Escherichia coli was injected directly into the renal cortex. Histologically, renal scarring developed during the 3-to-4 week period after injection. The time-course expression profile of 18,442 genes was then analyzed using microarrays, followed by validation with real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Most of the genes found to be up-regulated during renal scarring are associated with immune and defense responses, including cytokines, chemokines and their receptors, complement factors, adhesion molecules and extracellular matrix proteins. These genes were up-regulated as early as 1 week after injection, when no fibrotic changes were yet evident, peaked at 2 weeks, and gradually decreased thereafter. However, a subset of cytokine genes was found to be persistently activated even at 6 weeks after injection, including interleukin (IL)-1beta, transforming growth factor (TGF)-beta, and IL-3. Further statistical analysis indicated that the pathways mediated by these cytokines are activated concomitantly with renal scarring formation. The products of these genes may thus potentially be novel non-invasive diagnostic or prognostic biomarkers of renal scarring.
Collapse
Affiliation(s)
- Manabu Ichino
- Department of Urology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
769
|
Ferraccioli G, Romano G. Renal interstitial cells, proteinuria and progression of lupus nephritis: new frontiers for old factors. Lupus 2008; 17:533-40. [DOI: 10.1177/0961203307088002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interstitial cells, inflammatory-immune cells, tubular cells and endothelial cells of the peritubular capillaries have arisen as possible major players of the nephron damage in lupus nephritis. Increased ICAM-1, Von Willebrand factor, soluble endothelial protein C receptors and decreased ADAMS-13 point to a diffuse vascular damage. Albuminuria elicits a rapid generation of hydrogen peroxide in proximal tubular cells along with nuclear factor-kB activation, endothelin-1 and transforming growth factor (TGF-β1) upregulation. TGF-β1 enhances epithelial-to-mesenchymal transdifferentiation. Albuminuria also enhances the expression of macrophage chemotactic protein-1 and macrophage inflammatory protein-1α, thus leading to increased interstitial inflammation. TGF-β1 and thrombospondin-1, a putative activator of TGF-β, induce apoptosis of peritubular capillaries, as well as of glomerular endothelial cells. All these events can be counteracted by hepatocyte growth factor (HGF), which is expressed by the epithelial tubular cells and stimulates the growth of epithelial cells (mitogen), enhances the motility of epithelial cells (motogen), induces renal epithelial tubule regeneration (morphogen) and enhances angiogenesis (angiogen). The balance between TGF-β1 and HGF could be a key to define the prognostic value of kidney histopathology at baseline and during follow-up, in lupus nephritis. Therapeutic strategies aiming at altering the biological balance in the patients are at hand to test and prove the experimental evidences.
Collapse
Affiliation(s)
- G Ferraccioli
- Division of Rheumatology, Catholic University of the Sacred Heart, Rome, Italy
| | - G Romano
- Nephrology Unit, University of Udine, Udine, Italy
| |
Collapse
|
770
|
Uhlenhaut NH, Treier M. Transcriptional regulators in kidney disease: gatekeepers of renal homeostasis. Trends Genet 2008; 24:361-71. [PMID: 18514358 DOI: 10.1016/j.tig.2008.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 11/29/2022]
Abstract
Although we are rapidly gaining a more complete understanding of the genes required for kidney function, the molecular pathways that actively maintain organ homeostasis are only beginning to emerge. The study of the most common genetic cause of renal failure, polycystic kidney disease, has revealed a surprising role for primary cilia in controlling nuclear gene expression and cell division during development as well as maintenance of kidney architecture. Conditions that disturb kidney integrity seem to be associated with reversal of developmental processes that ultimately lead to kidney fibrosis and end-stage renal disease (ESRD). In this review, we discuss transcriptional regulators and networks that are important in kidney disease, focusing on those that mediate cilia function and drive renal fibrosis.
Collapse
Affiliation(s)
- N Henriette Uhlenhaut
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
771
|
Murphy M, Docherty NG, Griffin B, Howlin J, McArdle E, McMahon R, Schmid H, Kretzler M, Droguett A, Mezzano S, Brady HR, Furlong F, Godson C, Martin F. IHG-1 amplifies TGF-beta1 signaling and is increased in renal fibrosis. J Am Soc Nephrol 2008; 19:1672-80. [PMID: 18508967 PMCID: PMC2518434 DOI: 10.1681/asn.2007101080] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Induced in high glucose-1 (IHG-1) is an evolutionarily conserved gene transcript upregulated by high extracellular glucose concentrations, but its function is unknown. Here, it is reported that the abundance of IHG-1 mRNA is nearly 10-fold higher in microdissected, tubule-rich renal biopsies from patients with diabetic nephropathy compared with control subjects. In the diabetic nephropathy specimens, in situ hybridization localized IHG-1 to tubular epithelial cells along with TGF-beta1 and activated Smad3, suggesting a possible role in the development of tubulointerstitial fibrosis. Supporting this possibility, IHG-1 mRNA and protein expression also increased with unilateral ureteral obstruction. In the HK-2 proximal tubule cell line, overexpression of IHG-1 increased TGF-beta1-stimulated expression of connective tissue growth factor and fibronectin. IHG-1 was found to amplify TGF-beta1-mediated transcriptional activity by increasing and prolonging phosphorylation of Smad3. Conversely, inhibition of endogenous IHG-1 with small interference RNA suppressed transcriptional responses to TGF-beta1. In summary, IHG-1, which increases in diabetic nephropathy, may enhance the actions of TGF-beta1 and contribute to the development of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Madeline Murphy
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
772
|
Hu K, Mars WM, Liu Y. Novel actions of tissue-type plasminogen activator in chronic kidney disease. FRONT BIOSCI-LANDMRK 2008; 13:5174-86. [PMID: 18508579 DOI: 10.2741/3073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue-type plasminogen activator (tPA) is traditionally viewed as a simple serine protease whose main function is to convert plasminogen into biologically active plasmin. As a protease, tPA plays a crucial role in regulating blood fibrinolysis, in maintaining the homeostasis of extracellular matrix and in modulating the post-translational activation of growth factors. However, emerging evidence indicates that tPA also functions as a cytokine that transmits its signal across the cell membrane, initiates a diverse array of intracellular signaling, and dictates gene expression in the nuclei. tPA binds to the cell membrane LDL receptor-related protein 1 (LRP-1), triggers its tyrosine phosphorylation. As a cytokine, tPA plays a pivotal role in the pathogenesis of renal interstitial fibrosis through diverse mechanisms. It facilitates tubular epithelial to mesenchymal transition, potentiates myofibroblast activation, and protects renal interstitial fibroblasts/myofibroblasts from apoptosis. Together, growing evidence has implicated tPA as a fibrogenic cytokine that promotes the progression of kidney diseases. These new findings have radically changed our conception of tPA in renal fibrogenesis and represent a paradigm shift towards uncovering its cytokine function.
Collapse
Affiliation(s)
- Kebin Hu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
773
|
Jefferson JA, Shankland SJ, Pichler RH. Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int 2008; 74:22-36. [PMID: 18418356 DOI: 10.1038/ki.2008.128] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Proteinuria is the hallmark of diabetic kidney disease (DKD) and is an independent risk factor for both renal disease progression, and cardiovascular disease. Although the characteristic pathological changes in DKD include thickening of the glomerular basement membrane and mesangial expansion, these changes per se do not readily explain how patients develop proteinuria. Recent advances in podocyte and glomerular endothelial cell biology have shifted our focus to also include these cells of the glomerular filtration barrier in the development of proteinuria in DKD. This review describes the pathophysiological mechanisms at a cellular level which explain why patients with DKD develop proteinuria.
Collapse
Affiliation(s)
- J A Jefferson
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
774
|
Liu Y, van Goor H, Havinga R, Baller JFW, Bloks VW, van der Leij FR, Sauer PJJ, Kuipers F, Navis G, de Borst MH. Neonatal dexamethasone administration causes progressive renal damage due to induction of an early inflammatory response. Am J Physiol Renal Physiol 2008; 294:F768-76. [DOI: 10.1152/ajprenal.00163.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucocorticoids (GCs) are widely used to prevent chronic lung disease in immature newborns. Emerging evidence indicates that GC exposure in early life may interfere with kidney function and is associated with hypertension in later life. In this study, we have investigated the effect of neonatal dexamethasone (DEX) administration on renal function in rats. Male rats were treated with DEX in the first 3 days after birth, controls received saline (SAL). Severe renal damage associated with premature death was found at 50 wks upon DEX treatment, while renal function and morphology were normal in controls. A subsequent time-course study was performed from 2 days to 32 wks. Compared with controls, neonatal DEX administration led to significant and persistent growth retardation. Progressive proteinuria and increased systolic blood pressure were found from 8 wks onwards in DEX-treated animals. Renal α-SMA gene expression was elevated from wk 24 onwards and morphological fibrosis was noted at 32 wks of age following DEX treatment. Markedly increased renal gene expression of TNF-α and MCP-1 in DEX -treated rats was observed at day 7, probably contributing to the permanent increase in interstitial macrophage numbers that started at 14 days. Permanently elevated renal TGF-β gene expression was induced by DEX administration from 4 wks onwards. Our data indicate that neonatal DEX administration in rats leads to renal failure in later life, presumably due to an early inflammatory trigger that elicits a persistent pro-fibrotic process that eventually results in progressive renal deterioration.
Collapse
|
775
|
Tan R, He W, Lin X, Kiss LP, Liu Y. Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication. Am J Physiol Renal Physiol 2008; 294:F1076-83. [PMID: 18353873 DOI: 10.1152/ajprenal.00323.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Smad ubiquitination regulatory factor-2 (Smurf2) is an E3 ubiqutin ligase that plays a pivotal role in regulating TGF-beta signaling via selectively targeting key components of the Smad pathway for degradation. In this study, we have investigated the regulation of Smurf2 expression, its target specificity, and the functional implication of its induction in the fibrotic kidney. Immunohistochemical staining revealed that Smurf2 was upregulated specifically in renal tubules of kidney biopsies from patients with various nephropathies. In vitro, Smurf2 mRNA and protein were induced in human proximal tubular epithelial cells (HKC-8) upon TGF-beta1 stimulation. Ectopic expression of Smurf2 was sufficient to reduce the steady-state levels of Smad2, but not Smad1, Smad3, Smad4, and Smad7, in HKC-8 cells. Interestingly, Smurf2 was also able to downregulate the Smad transcriptional corepressors Ski, SnoN, and TG-interacting factor. Inhibition of the proteasomal pathway prevented Smurf2-mediated downregulation of Smad2 and Smad corepressors. Functionally, overexpression of Smurf2 enhanced the transcription of the TGF-beta-responsive promoter and augmented TGF-beta1-mediated E-cadherin suppression, as well as fibronectin and type I collagen induction in HKC-8 cells. These results indicate that Smurf2 specifically targets both positive and negative Smad regulators for destruction in tubular epithelial cells, thereby providing a complex fine-tuning of TGF-beta signaling. It appears that dysregulation of Smurf2 could contribute to an aberrant TGF-beta/Smad signaling in the pathogenesis of kidney fibrosis.
Collapse
Affiliation(s)
- Ruoyun Tan
- Department of Medicine, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
776
|
Ivanova L, Butt MJ, Matsell DG. Mesenchymal transition in kidney collecting duct epithelial cells. Am J Physiol Renal Physiol 2008; 294:F1238-48. [PMID: 18322023 DOI: 10.1152/ajprenal.00326.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Progressive organ damage due to tissue scarring and fibrosis is a paradigm shared by numerous human diseases including chronic kidney disease. The purpose of this study was to confirm the hypothesis that collecting duct (CD) epithelial cells can undergo mesenchymal transition (EMT) in vitro. The mechanism by which CDs undergo EMT is complex and involves both early and late cellular events. Early events include rapid insulin-like growth factor (IGF)-induced Akt and GSK-3beta phosphorylation, associated with early disruption of E-cadherin-beta-catenin membrane colocalization, with translocation of E-cadherin to endosomes, with translocation of beta-catenin to the nucleus, and with an increase in Snail expression. Transforming growth factor-beta1, on the other hand, induced early activation of Smad3 and its translocation to the nucleus, Erk1/2 phosphorylation, and early disruption of membrane E-cadherin localization. The late consequences of these events included a phenotypic transformation of the cells to a mesenchymal morphology with associated increase in vimentin and alpha-smooth muscle actin protein expression and a decrease in total cellular E-cadherin expression, detectable as early as 24 h after stimulation.
Collapse
Affiliation(s)
- Larissa Ivanova
- Department of Pediatrics and Child and Family Research Institute, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
777
|
Nguyen TQ, Goldschmeding R. Bone Morphogenetic Protein-7 and Connective Tissue Growth Factor: Novel Targets for Treatment of Renal Fibrosis? Pharm Res 2008; 25:2416-26. [DOI: 10.1007/s11095-008-9548-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 01/28/2008] [Indexed: 12/11/2022]
|
778
|
Hu K, Wu C, Mars WM, Liu Y. Tissue-type plasminogen activator promotes murine myofibroblast activation through LDL receptor-related protein 1-mediated integrin signaling. J Clin Invest 2008; 117:3821-32. [PMID: 18037995 DOI: 10.1172/jci32301] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 09/19/2007] [Indexed: 12/16/2022] Open
Abstract
The activation of interstitial fibroblasts to become alpha-SMA-positive myofibroblasts is an essential step in the evolution of chronic kidney fibrosis, as myofibroblasts are responsible for the production and deposition of the ECM components that are a hallmark of the disease. Here we describe a signaling pathway that leads to this activation. Tissue-type plasminogen activator (tPA) promoted TGF-beta1-mediated alpha-SMA and type I collagen expression in rat kidney interstitial fibroblasts. This fibrogenic effect was independent of its protease activity but required its membrane receptor, the LDL receptor-related protein 1 (LRP-1). In rat kidney fibroblasts, tPA induced rapid LRP-1 tyrosine phosphorylation and enhanced beta1 integrin recruitment by facilitating the LRP-1/beta1 integrin complex formation. Blockade or knockdown of beta1 integrin abolished type I collagen and alpha-SMA expression. Furthermore, inhibition of the integrin-linked kinase (ILK), a downstream effector of beta1 integrin, or disruption of beta1 integrin/ILK engagement, abrogated the tPA action, whereas ectopic expression of ILK mimicked tPA in promoting myofibroblast activation. In murine renal interstitium after obstructive injury, tPA and alpha-SMA colocalized with LRP-1, and tPA deficiency reduced LRP-1/beta1 integrin interaction and myofibroblast activation. These findings show that tPA induces LRP-1 tyrosine phosphorylation, which in turn facilitates the LRP-1-mediated recruitment of beta1 integrin and downstream ILK signaling, thereby leading to myofibroblast activation. This study implicates tPA as a fibrogenic cytokine that promotes the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Kebin Hu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
779
|
Combination of exercise and losartan enhances renoprotective and peripheral effects in spontaneously type 2 diabetes mellitus rats with nephropathy. J Hypertens 2008; 26:312-21. [DOI: 10.1097/hjh.0b013e3282f2450b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
780
|
Davis LK, Rodgers BD, Kelley KM. Angiotensin II- and glucose-stimulated extracellular matrix production: mediation by the insulin-like growth factor (IGF) axis in a murine mesangial cell line. Endocrine 2008; 33:32-9. [PMID: 18392786 PMCID: PMC2684556 DOI: 10.1007/s12020-008-9055-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/22/2008] [Accepted: 03/06/2008] [Indexed: 02/05/2023]
Abstract
In diabetic nephropathy, glomerular mesangial cells exhibit aberrant anabolic activity that includes excessive production of extracellular matrix (ECM) proteins, leading to crowding of filtration surface areas and possible renal failure. In the present study, a murine mesangial cell line (MES-13 cells) was studied to determine the roles of the renin-angiotensin system (RAS) and the insulin-like growth factor (IGF) axis in the anabolic response to elevated glucose levels. Culture of MES-13 cells in medium containing supra-physiological glucose concentrations (>5.5 mmol/l) resulted in increased production of ECM proteins including laminin, fibronectin, and heparan sulfate proteoglycan with concurrent increases in IGF-binding protein (IGFBP)-2 production. These responses were blocked by the angiotensin receptor antagonists saralasin and losartan, while exogenous angiotensin II (Ang II) treatment directly stimulated increases in ECM and IGFBP-2. In all experiments, IGFBP-2 levels were correlated with anabolic activity implicating IGFBP-2 as a possible mediator in cellular responses to high glucose and Ang II. Such mediation appears to involve IGFBP-2 modulation of IGF-I signaling, since all responses to high glucose or Ang II were blocked by immuno-neutralization of IGF-I. These data suggest alterations in the IGF axis as key mechanisms underlying nephropathic responses of mesangial cells to Ang II and high glucose.
Collapse
Affiliation(s)
- Lori K. Davis
- Endocrinology Laboratory, Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA, e-mail:
| | - Buel D. Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Kevin M. Kelley
- Endocrinology Laboratory, Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA, e-mail:
| |
Collapse
|
781
|
Kruppel-like zinc finger protein Glis2 is essential for the maintenance of normal renal functions. Mol Cell Biol 2008; 28:2358-67. [PMID: 18227149 DOI: 10.1128/mcb.01722-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To obtain insight into the physiological functions of the Krüppel-like zinc finger protein Gli-similar 2 (Glis2), mice deficient in Glis2 expression were generated. Glis2 mutant (Glis2(mut)) mice exhibit significantly shorter life spans than do littermate wild-type (WT) mice due to the development of progressive chronic kidney disease with features resembling nephronophthisis. Glis2(mut) mice develop severe renal atrophy involving increased cell death and basement membrane thickening in the proximal convoluted tubules. This development is accompanied by infiltration of lymphocytic inflammatory cells and interstitial/glomerular fibrosis. The severity of the fibrosis, inflammatory infiltrates, and glomerular and tubular changes progresses with age. Blood urea nitrogen and creatinine increase, and Glis2(mut) mice develop proteinuria and ultimately die prematurely of renal failure. A comparison of the gene expression profiles of kidneys from 25-day-old/60-day-old WT and Glis2(mut) mice by microarray analysis showed increased expressions of many genes involved in immune responses/inflammation and fibrosis/tissue remodeling in kidneys of Glis2(mut) mice, including several cytokines and adhesion and extracellular matrix proteins. Our data demonstrate that a deficiency in Glis2 expression leads to tubular atrophy and progressive fibrosis, similar to nephronophthisis, that ultimately results in renal failure. Our study indicates that Glis2 plays a critical role in the maintenance of normal kidney architecture and functions.
Collapse
|
782
|
Li Y, Kang YS, Dai C, Kiss LP, Wen X, Liu Y. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:299-308. [PMID: 18202193 DOI: 10.2353/ajpath.2008.070057] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Podocyte dysfunction plays an essential role in the pathogenesis of proteinuria and glomerulosclerosis. However, the mechanism underlying podocyte dysfunction in many common forms of chronic kidney diseases remains poorly understood. Here we tested the hypothesis that podocytes may undergo epithelial-to-mesenchymal transition after injury. Conditionally immortalized mouse podocytes were incubated with transforming growth factor (TGF)-beta1, a potent fibrogenic cytokine that is up-regulated in the diseased kidney. TGF-beta1 suppressed the slit diaphragm-associated protein P-cadherin, zonula occludens-1, and nephrin, a change consistent with loss of the epithelial feature. Meanwhile, TGF-beta1 induced the expression of the intermediate filament protein desmin and interstitial matrix components fibronectin and collagen I. Furthermore, TGF-beta1 promoted the expression and secretion of matrix metalloproteinase-9 by podocytes. Functionally, TGF-beta1 increased albumin permeability across podocyte monolayers, as demonstrated by a paracellular albumin influx assay. The expression of Snail, a key transcriptional factor that has been implicated in initiating epithelial-to-mesenchymal transition, was induced by TGF-beta1, and ectopic expression of Snail suppressed P-cadherin and nephrin in podocytes. In vivo, in addition to loss of nephrin and zonula occludens-1, mesenchymal markers such as desmin, fibroblast-specific protein-1, and matrix metalloproteinase-9 could be observed in glomerular podocytes of diabetic nephropathy. These results suggest that podocyte dedifferentiation and mesenchymal transition could be a potential pathway leading to their dysfunction, thereby playing a role in the genesis of proteinuria.
Collapse
Affiliation(s)
- Yingjian Li
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
783
|
Hu K, Lin L, Tan X, Yang J, Bu G, Mars WM, Liu Y. tPA protects renal interstitial fibroblasts and myofibroblasts from apoptosis. J Am Soc Nephrol 2008; 19:503-14. [PMID: 18199803 DOI: 10.1681/asn.2007030300] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Activation and expansion of interstitial fibroblasts and myofibroblasts play an essential role in the evolution of renal fibrosis. After obstructive injury, mice lacking tissue-type plasminogen activator (tPA) have fewer myofibroblasts and less interstitial fibrosis than wild-type controls. This suggests that tPA controls the size of the fibroblast/myofibroblast population in vivo, and this study sought to determine the underlying mechanism. In vitro, tPA inhibited staurosporine or H(2)O(2)-induced caspase-3 activation, prevented cellular DNA fragmentation, and suppressed the release of cytochrome C from mitochondria into the cytosol in a rat interstitial fibroblast cell line (NRK-49F). tPA also protected TGF-beta1-activated myofibroblasts from apoptosis. This antiapoptotic effect of tPA was independent of its protease activity but required its membrane receptor, the LDL receptor-related protein 1 (LRP-1). Deletion or knockdown of LRP-1 abolished tPA-mediated cell survival, whereas re-introduction of an LRP-1 minigene in a mouse LRP-1-deficient fibroblast cell line (PEA-13) restored the cytoprotective ability of tPA. tPA triggered a cascade of survival signaling involving extracellular signal-regulated kinase 1/2 (Erk1/2), p90RSK, and phosphorylation of Bad. Blockade of Erk1/2 activation abrogated the antiapoptotic effect of tPA, whereas expression of constitutively active MEK1 promoted cell survival similar to tPA. In vivo, compared with wild-type controls, apoptosis of interstitial myofibroblasts was increased in tPA(-/-) mice after obstructive injury, and myofibroblasts were completely depleted 4 wk after relief of the obstruction. Together, these findings illustrate that tPA is a survival factor that prevents apoptosis of renal interstitial fibroblasts and myofibroblasts through an LRP-1-, Erk1/2-, p90RSK-, and Bad-dependent mechanism.
Collapse
Affiliation(s)
- Kebin Hu
- Department of Pathology, University of Pittsburgh, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
784
|
Bruno NE, Yano Y, Takei Y, Gabazza EC, Qin L, Nagashima M, Morser J, D'Alessandro-Gabazza CN, Taguchi O, Sumida Y. Protective role of thrombin activatable fibrinolysis inhibitor in obstructive nephropathy-associated tubulointerstitial fibrosis. J Thromb Haemost 2008; 6:139-46. [PMID: 17988229 DOI: 10.1111/j.1538-7836.2007.02826.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) has been reported to affect wound healing and fibrotic processes, but its role in renal tubulointerstitial fibrosis remains unknown. OBJECTIVE To study its potential role, we compared TAFI-deficient and wild-type mice for the degree of renal fibrosis caused by unilateral ureteral obstruction (UUO). METHODS The grade of tubulointerstitial fibrosis, the activity of plasmin, MMP-2 and MMP-9 were evaluated on days 4 and 9 after UUO. RESULTS The renal content of hydroxyproline and the activity of plasmin, MMP-2 and MMP-9 were significantly increased in kidneys with UUO from TAFI-deficient mice compared with those from wild-type mice. These differences disappeared when animals with UUO from both groups were treated with the plasmin inhibitor tranexamic acid. The renal concentrations of fibrogenic cytokines were also significantly elevated in kidneys with UUO from TAFI-deficient mice compared with those from wild-type mice. CONCLUSION The results of this study suggest that increased renal activity of plasmin in TAFI-deficient mice causes increased renal interstitial fibrosis in obstructive nephropathy.
Collapse
Affiliation(s)
- N E Bruno
- Department of Diabetes and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
785
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
786
|
|
787
|
Das F, Ghosh-Choudhury N, Venkatesan B, Li X, Mahimainathan L, Choudhury GG. Akt kinase targets association of CBP with SMAD 3 to regulate TGFbeta-induced expression of plasminogen activator inhibitor-1. J Cell Physiol 2007; 214:513-27. [PMID: 17671970 DOI: 10.1002/jcp.21236] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-beta (TGFbeta) controls expression of plasminogen activator inhibitor type 1 (PAI-1), which regulates degradation of extracellular matrix proteins in fibrotic diseases. The TGFbeta receptor-specific Smad 3 has been implicated in the PAI-1 expression. The mechanism by which non-Smad signaling contributes to this process is not known. We studied the cross-talk between Smad 3 and PI 3 kinase/Akt signaling in TGFbeta-induced PAI-1 expression in renal mesangial cells. Inhibition of PI 3 kinase and Akt kinase blocked TGFbeta- and Smad 3-mediated expression of PAI-1. In contrast, constitutively active PI 3 kinase and Akt kinase increased PAI-1 expression, similar to TGFbeta. Inhibition of PI 3 kinase and Akt kinase had no effect on TGFbeta-induced Smad 3 phosphorylation and its translocation to the nucleus. Notably, inhibition of PI 3 kinase-dependent Akt kinase abrogated TGFbeta-induced PAI-1 transcription, without affecting binding of Smad 3 to the PAI-1 Smad binding DNA element. However, PI 3 kinase inhibition and dominant negative Akt kinase antagonized the association of the transcriptional coactivator CBP with Smad 3 in response to TGFbeta, resulting in inhibition of Smad 3 acetylation. Together our findings identify TGFbeta-induced PI 3 kinase/Akt signaling as a critical regulator of Smad 3-CBP interaction and Smad 3 acetylation, which cause increased PAI-1 expression.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
788
|
Pozdzik AA, Salmon IJ, Debelle FD, Decaestecker C, Van den Branden C, Verbeelen D, Deschodt-Lanckman MM, Vanherweghem JL, Nortier JL. Aristolochic acid induces proximal tubule apoptosis and epithelial to mesenchymal transformation. Kidney Int 2007; 73:595-607. [PMID: 18094681 DOI: 10.1038/sj.ki.5002714] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aristolochic acid contamination in herbal remedies leads to interstitial fibrosis, tubular atrophy, and renal failure in humans. To study the cellular mechanisms contributing to the pathophysiology of this renal disease, we studied Wistar rats treated with aristolochic acid and measured tubular and interstitial cell proliferation, epithelial/mesenchymal cell marker expression, tubular membrane integrity, myofibroblast accumulation, oxidative stress, mitochondrial damage, tubular apoptosis, and fibrosis. Oxidative stress, a loss of cadherin concomitant with vimentin expression, basement membrane denudation with active caspase-3 expression, and mitochondrial injury within tubular cells were evident within 5 days of administration of the toxin. During the chronic phase, interstitial mesenchymal cells accumulated in areas of collagen deposits. Impaired regeneration and apoptosis of proximal tubular cells resulted in tubule atrophy with a near absence of dedifferentiated cell transmembrane migration. We suggest that resident fibroblast activation plays a critical role in the process of renal fibrosis during aristolochic acid toxicity.
Collapse
Affiliation(s)
- A A Pozdzik
- Experimental Nephrology Unit, Faculty of Medicine, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
789
|
Zhang Y. Effect of Kangxianling Decoction on expression of hepatocyte growth factor mRNA and phosphorylations of extracellular signal-regulated protein kinase 1/2 and p38 in renal tissue of rats with unilateral ureteral obstruction. ACTA ACUST UNITED AC 2007; 5:656-60. [DOI: 10.3736/jcim20070611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
790
|
|
791
|
Tamm ER, Fuchshofer R. What Increases Outflow Resistance in Primary Open-angle Glaucoma? Surv Ophthalmol 2007; 52 Suppl 2:S101-4. [DOI: 10.1016/j.survophthal.2007.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
792
|
Inhibitors of dipeptidyl peptidase IV-like activity mediate antifibrotic effects in normal and keloid-derived skin fibroblasts. J Invest Dermatol 2007; 128:855-66. [PMID: 17943180 DOI: 10.1038/sj.jid.5701104] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Suppression of collagen and matrix synthesis and inhibition of the fibrogenic cytokine transforming growth factor-beta(1) (TGF-beta(1)) is a major therapeutic goal in the treatment of fibrosis and keloids. Inhibitors of dipeptidyl peptidase IV (DP IV)-like activity affect cell growth and cytokine production and are currently under investigation for the treatment of metabolic, autoimmune and inflammatory diseases. We show here that the inhibitors of DP IV-like activity, Lys[Z(NO(2))]-thiazolidide and Lys[Z(NO(2))]-pyrrolidide, suppress proliferation in human skin fibroblasts and keloid-derived skin fibroblasts in vitro. They significantly decrease TGF-beta(1) expression and secretion of procollagen type I C-terminal peptide in supernatants of both cell types. Furthermore, they abrogate the TGF-beta(1)-induced stimulation of collagen synthesis, matrix deposition, and TGF-beta(1) and fibronectin expression. Both inhibitors lead to dephosphorylation of mitogen-activated protein kinases pp38 and pERK1/2, which are activated upon TGF-beta1 stimulation and have been implicated in fibrogenesis. In a mouse model of dermal fibrosis, induced by repetitive intracutaneous injections of TGF-beta(1), the profibrotic effect of TGF-beta(1) detected by dermal thickening, collagen I, and alpha-smooth muscle actin expression, is significantly suppressed in the presence of inhibitors. Inhibition of DP IV-like enzymatic activity may therefore represent a promising therapeutic approach for the treatment of fibrotic skin disorders and keloids.
Collapse
|
793
|
Garrett MR, Gunning WT, Radecki T, Richard A. Dissection of a genetic locus influencing renal function in the rat and its concordance with kidney disease loci on human chromosome 1q21. Physiol Genomics 2007; 30:322-34. [PMID: 17504948 PMCID: PMC3153419 DOI: 10.1152/physiolgenomics.00001.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we conducted a genome scan on a population derived from the Dahl salt-sensitive hypertensive (S) and the spontaneously hypertensive rat (SHR) using urinary albumin excretion (UAE) as our primary measure of renal function. We identified 10 quantitative trait loci (QTL) linked to several renal and/or cardiovascular traits. In particular, linkage and subsequent congenic strain analysis demonstrated that the loci on chromosome 2 had a large and significant effect on UAE compared with the S rat. The present work sought to characterize the chromosome 2 congenic strain [S.SHR] by conducting a time-course analysis (week 4-20), including evaluating additional renal parameters, histology, electron microscopy, and gene expression/ pathway analysis. Throughout the time course the congenic strain consistently maintained a threefold reduction in UAE compared with S rats and was supported by the histological findings of significantly reduced glomerular, tubular and interstitial changes. Gene expression/pathway analysis performed at week 4, 12, and 20 revealed that pathways involved in cellular assembly and organization, cellular movement, and immune response were controlled differently between the S and congenic. When all the data are considered, the chromosome 2 congenic appears to attenuate renal damage primarily through an altered fibrotic response. Recombinant progeny testing was employed to reduce the QTL to approximately 1.5 cM containing several interesting candidate genes. The concordance of this rat QTL with renal disease loci on human chromosome 1q21 demonstrate that elucidating the causative gene and mechanism of the rat QTL may be of particular importance for understanding kidney disease in humans.
Collapse
Affiliation(s)
- Michael R Garrett
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, University of Toledo, Health Science Campus, Toledo, Ohio, USA.
| | | | | | | |
Collapse
|
794
|
Decramer S, Bascands JL, Schanstra JP. Non-invasive markers of ureteropelvic junction obstruction. World J Urol 2007; 25:457-65. [PMID: 17701042 DOI: 10.1007/s00345-007-0201-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/09/2007] [Indexed: 01/08/2023] Open
Abstract
Non-invasive prognosis of the clinical progression of disease is of high interest, especially in newborn and children. Neonatal ureteropelvic (UPJ) junction obstruction needs close and invasive surveillance to determine the necessity of pyeloplasty. A number of groups have initiated research with the aim to find non-invasive biomarkers for UPJ obstruction. Two different strategies have been followed. One strategy, based on the knowledge obtained in animal models of UPJ obstruction, has identified a number of individual urinary markers of severe UPJ obstruction. Combining these markers might allow prediction of which patients will require surgery and in which patients UPJ obstruction will spontaneously resolve. The other strategy is based on urinary proteomics. In this strategy the entire urinary proteome is probed for a set of biomarkers that correlates with the degree of UPJ obstruction. In subsequent steps, these sets of urinary biomarkers are used for prediction of the clinical evolution of UPJ obstruction patients. This proteomic-based strategy allowed prediction, several months in advance, of the clinical evolution of neonates with UPJ-obstruction. Both strategies will be complementary and will hopefully replace in the near future the invasive follow-up of newborns with UPJ obstruction.
Collapse
Affiliation(s)
- Stephane Decramer
- INSERM, U858/I2MR, Team 5 Renal and Cardiac Remodeling, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | |
Collapse
|
795
|
Kümpers P, Gueler F, Rong S, Mengel M, Tossidou I, Peters I, Haller H, Schiffer M. Leptin is a coactivator of TGF-beta in unilateral ureteral obstructive kidney disease. Am J Physiol Renal Physiol 2007; 293:F1355-62. [PMID: 17686962 DOI: 10.1152/ajprenal.00003.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Progressive tubulointerstitial fibrosis is the common end point leading to end-stage renal disease in experimental and clinical settings. Since the peptide hormone leptin is involved not only in the regulation of obesity but also in the regulation of inflammation and fibrosis, we tested the hypothesis whether leptin deficiency has an impact on tubulointerstitial fibrosis in mice. Leptin-deficient (ob/ob) and leptin receptor-deficient mice (db/db) were exposed to 14 days of unilateral ureteral obstruction (UUO). The degree of fibrosis and inflammation was compared with that in sham-operated mice by performing immunohistochemistry, quantitative PCR, and Western blotting. We found that tubulointerstitial fibrosis was significantly reduced in the obstructed kidneys of ob/ob compared with db/db mice or control mice. Detailed analysis of infiltrating inflammatory cells by immunohistochemistry revealed a significant reduction of CD4(+) cells at 14 days after UUO in both ob/ob and db/db mice. In contrast, we could not detect significant differences in CD8(+) cells and macrophage content. Transforming growth factor (TGF)-beta mRNA levels, TGF-beta-induced Smad-2/3 activation, and the upregulation of downstream target genes were significantly reduced in ob/ob mice. In addition, we demonstrated that leptin could enhance TGF-beta signaling in normal rat kidney fibroblasts in vitro. We conclude that leptin can serve as a cofactor of TGF-beta activation and thus plays an important role in renal tubulointerstitial fibrosis. Therefore, selective blockade of the leptin axis might provide a therapeutic possibility to prevent or delay fibrotic kidney disease.
Collapse
Affiliation(s)
- Philipp Kümpers
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
796
|
Xu Q, Norman JT, Shrivastav S, Lucio-Cazana J, Kopp JB. In vitro models of TGF-β-induced fibrosis suitable for high-throughput screening of antifibrotic agents. Am J Physiol Renal Physiol 2007; 293:F631-40. [PMID: 17494090 DOI: 10.1152/ajprenal.00379.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Progressive fibrosis is a cause of progressive organ dysfunction. Lack of quantitative in vitro models of fibrosis accounts, at least partially, for the slow progress in developing effective antifibrotic drugs. Here, we report two complementary in vitro models of fibrosis suitable for high-throughput screening. We found that, in mesangial cells and renal fibroblasts grown in eight-well chamber slides, transforming growth factor-β1 (TGF-β1) disrupted the cell monolayer and induced cell migration into nodules in a dose-, time- and Smad3-dependent manner. The nodules contained increased interstitial collagens and showed an increased collagen I:IV ratio. Nodules are likely a biological consequence of TGF-β1-induced matrix overexpression since they were mimicked by addition of collagen I to the cell culture medium. TGF-β1-induced nodule formation was inhibited by vacuum ionized gas treatment of the plate surface. This blockage was further enhanced by precoating plates with matrix proteins but was prevented, at least in part, by poly-l-lysine (PLL). We have established two cell-based models of TGF-β-induced fibrogenesis, using mesangial cells or fibroblasts cultured in matrix protein or PLL-coated 96-well plates, on which TGF-β1-induced two-dimensional matrix accumulation, three-dimensional nodule formation, and monolayer disruption can be quantitated either spectrophotometrically or by using a colony counter, respectively. As a proof of principle, chemical inhibitors of Alk5 and the antifibrotic compound tranilast were shown to have inhibitory activities in both assays.
Collapse
Affiliation(s)
- Qihe Xu
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Disases, National Institutes of Health, Bethesda, MD 20892-1268, USA
| | | | | | | | | |
Collapse
|
797
|
Li Y, Dai C, Wu C, Liu Y. PINCH-1 Promotes Tubular Epithelial-to-Mesenchymal Transition by Interacting with Integrin-Linked Kinase. J Am Soc Nephrol 2007; 18:2534-43. [PMID: 17656471 DOI: 10.1681/asn.2007030315] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PINCH-1 is an adaptor protein that binds to the integrin-linked kinase (ILK), an intracellular serine/threonine protein kinase that plays a critical role in mediating tubular epithelial-to-mesenchymal transition (EMT). To determine whether PINCH-1 is also involved in the EMT process, we investigated its regulation and function during TGF-beta1-stimulated EMT. TGF-beta1 induced PINCH-1 mRNA and protein expression in human proximal tubular epithelial cells in a time-dependent fashion, an effect that was largely dependent on intracellular Smad signaling. Overexpression of PINCH-1 suppressed epithelial markers E-cadherin and ZO-1 and increased fibronectin expression and extracellular assembly, whereas knockdown of PINCH-1 via small interfering RNA reduced TGF-beta1-mediated fibronectin expression and partially restored E-cadherin. PINCH-1 formed a ternary complex with ILK at the focal adhesion sites of tubular epithelial cells. Treatment with an ILK inhibitor or disruption of the ILK/PINCH-1 interaction by overexpressing a dominant-negative N-terminal ankyrin domain of ILK resulted in reduced fibronectin deposition, indicating that the ability of PINCH-1 to stimulate EMT is ILK-dependent. In a mouse model of obstructive nephropathy, PINCH-1 expression increased in a time-dependent manner, suggesting that it may play a role in EMT and renal fibrosis in vivo. We conclude that PINCH-1, through its interaction with ILK, plays an important role in regulating TGF-beta1-mediated EMT and could be a potential future therapeutic target to prevent progression of renal disease.
Collapse
Affiliation(s)
- Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
798
|
Abstract
PURPOSE OF REVIEW The regulation of phosphate homeostasis was thought to be passively mediated by the calciotrophic hormones parathyroid hormone and 1,25(OH)2D3. This article summarizes the emerging trends that show an active regulation of phosphate homeostasis by fibroblast growth factor 23 (FGF-23) - a process fairly independent of calcium homeostasis - and how altered mineral ion metabolism may affect the aging process. RECENT FINDINGS A major breakthrough in FGF-23 biology has been achieved by the demonstration of strikingly similar physical/biochemical phenotypes of Fgf-23(-/-) and klotho hypomorph mice, which eventually led to the identification of klotho as a cofactor in FGF-23 and its receptor interactions. Furthermore, FGF-23 has emerged as a counter regulator of the renal 1alpha(OH)ase and sodium-phosphate cotransporter activities to modulate phosphate homeostasis. Finally, studies point towards a role of dentine matrix protein 1 in affecting phosphate homeostasis, in coordination with FGF-23. SUMMARY Recent mouse genetic studies have broadened our understanding of biochemical/molecular pathways involved in phosphate homeostasis, and linked FGF-23 to such regulation. Understanding the molecular interactions of essential calcium and phosphate regulators will enhance our knowledge of the coordinated regulation of mineral ion metabolism, and will help to redefine the molecular pathology of age-associated lesions accompanied by abnormal mineral ion metabolism such as vascular calcifications and osteoporosis.
Collapse
Affiliation(s)
- Beate Lanske
- Department of Developmental Biology, Harvard School of Dental Medicine, Research and Educational Building, 190 Longwood Ave, Boston, MA 02115, USA
| | - M. Shawkat Razzaque
- Department of Developmental Biology, Harvard School of Dental Medicine, Research and Educational Building, 190 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
799
|
Ishii A, Sakai Y, Nakamura A. Molecular pathological evaluation of clusterin in a rat model of unilateral ureteral obstruction as a possible biomarker of nephrotoxicity. Toxicol Pathol 2007; 35:376-82. [PMID: 17455085 DOI: 10.1080/01926230701230320] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the present study, to determine the validity of considering clusterin as a possible biomarker of nephrotoxicity, the expression and distribution of clusterin in the rat UUO kidney were investigated. Real-time RT-PCR revealed an immediate increase in the clusterin mRNA level in the kidney, within 6 hours after UUO, and also maintenance of the mRNA expression level from day-1 to day-3 was 60-fold higher in the UUO kidney than in the sham kidney. ISH analysis revealed clusterin mRNA signals in the UUO renal tubular epithelium, whereas no signal was observed in the sham kidney. Detection of clusterin-alpha and -beta was conducted using the subtype-specific antibodies, by both of western blotting and immunohistochemistry. Although clusterin-alpha was predominant in the UUO urine, only faint signals were noted at the brush border of the tubular epithelium or intraductal. On the other hand, strong signals of clusterin-beta were detected in the UUO kidney homogenate, and the molecule was localized in the renal tubular epithelium. These results suggest that clusterin was translated in the renal tubular epithelium after de novo expression induced by renal injury. Thus, detection of clusterin mRNA and clusterin-beta in the kidney or clusterin-alpha in the urine may be useful for predicting nephrotoxicity.
Collapse
Affiliation(s)
- Aiko Ishii
- Taisho Pharmaceutical Co. Ltd., Saitama 331-9530, Japan
| | | | | |
Collapse
|
800
|
Bardella C, Dettori D, Olivero M, Coltella N, Mazzone M, Di Renzo MF. The therapeutic potential of hepatocyte growth factor to sensitize ovarian cancer cells to cisplatin and paclitaxel in vivo. Clin Cancer Res 2007; 13:2191-8. [PMID: 17404103 DOI: 10.1158/1078-0432.ccr-06-1915] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Advanced ovarian cancers are initially responsive to combinatorial chemotherapy with platinum drugs and taxanes but, in most cases, develop drug resistance. We recently showed that, in vitro, hepatocyte growth factor (HGF) enhances death of human ovarian cancer cell lines treated with cisplatin (CDDP) and paclitaxel. The present study addresses whether in vivo HGF makes ovarian carcinoma cells more responsive to these chemotherapeutics. EXPERIMENTAL DESIGN Using Lentiviral vectors carrying the HGF transgene, we transduced SK-OV-3 and NIH:OVCAR-3 ovarian carcinoma cell lines to obtain stable autocrine and paracrine HGF receptor activation. In vitro, we assayed growth, motility, invasiveness, and the response to CDDP and paclitaxel of the HGF-secreting bulk unselected cell populations. In vivo, we tested the cytotoxic effects of the drugs versus s.c. tumors formed by the wild-type and HGF-secreting cells in immunocompromised mice. Tumor-bearing mice were treated with CDDP (i.p.) and paclitaxel (i.v.), combined in different schedules and doses. RESULTS In vitro, HGF-secreting cells did not show altered proliferation rates and survival but were strongly sensitized to the death triggered by CDDP and paclitaxel, alone or in combination. In vivo, we found a therapeutic window in which autocrine/paracrine HGF made tumors sensitive to low doses of the drugs, which were ineffective on their own. CONCLUSIONS These data provide the proof-of-concept that in vivo gene therapy with HGF might be competent in sensitizing ovarian cancer cells to conventional chemotherapy.
Collapse
Affiliation(s)
- Chiara Bardella
- Laboratory of Cancer Genetics and Division of Molecular Oncology of the Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|