751
|
Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, Chang MS, Walton C. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genet 2009; 10:11. [PMID: 19267896 PMCID: PMC2660364 DOI: 10.1186/1471-2156-10-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/06/2009] [Indexed: 12/28/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) is widely used in population genetic and phylogenetic studies in animals. However, such studies can generate misleading results if the species concerned contain nuclear copies of mtDNA (Numts) as these may amplify in addition to, or even instead of, the authentic target mtDNA. The aim of this study was to determine if Numts are present in Aedes aegypti mosquitoes, to characterise any Numts detected, and to assess the utility of using mtDNA for population genetics studies in this species. Results BLAST searches revealed large numbers of Numts in the Ae. aegypti nuclear genome on 146 supercontigs. Although the majority are short (80% < 300 bp), some Numts are almost full length mtDNA copies. These long Numts are not due to misassembly of the nuclear genome sequence as the Numt-nuclear genome junctions could be recovered by amplification and sequencing. Numt evolution appears to be a complex process in Ae. aegypti with ongoing genomic integration, fragmentation and mutation and the secondary movement of Numts within the nuclear genome. The PCR amplification of the putative mtDNA nicotinamide adenine dinucleotide dehydrogenase subunit 4 (ND4) gene from 166 Southeast Asian Ae. aegypti mosquitoes generated a network with two highly divergent lineages (clade 1 and clade 2). Approximately 15% of the ND4 sequences were a composite of those from each clade indicating Numt amplification in addition to, or instead of, mtDNA. Clade 1 was shown to be composed at least partially of Numts by the removal of clade 1-specific bases from composite sequences following enrichment of the mtDNA. It is possible that all the clade 1 sequences in the network were Numts since the clade 2 sequences correspond to the known mitochondrial genome sequence and since all the individuals that produced clade 1 sequences were also found to contain clade 2 mtDNA-like sequences using clade 2-specific primers. However, either or both sets of clade sequences could have Numts since the BLAST searches revealed two long Numts that match clade 2 and one long Numt that matches clade 1. The substantial numbers of mutations in cloned ND4 PCR products also suggest there are both recently-derived clade 1 and clade 2 Numt sequences. Conclusion We conclude that Numts are prevalent in Ae. aegypti and that it is difficult to distinguish mtDNA sequences due to the presence of recently formed Numts. Given this, future population genetic or phylogenetic studies in Ae. aegypti should use nuclear, rather than mtDNA, markers.
Collapse
Affiliation(s)
- Thaung Hlaing
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
752
|
Zhou G, Velasquez LS, Geiser DL, Mayo JJ, Winzerling JJ. Differential regulation of transferrin 1 and 2 in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:234-244. [PMID: 19166934 DOI: 10.1016/j.ibmb.2008.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/17/2008] [Accepted: 12/18/2008] [Indexed: 05/27/2023]
Abstract
Available evidence has shown that transferrins are involved in iron metabolism, immunity and development in eukaryotic organisms including insects. Here we characterize the gene and message expression profile of Aedes aegypti transferrin 2 (AaTf2) in response to iron, bacterial challenge and life stage. We show that AaTf2 shares a low similarity with A. aegypti transferrin 1 (AaTf1), but higher similarity with mammalian transferrins and avian ovotransferrin. Iron-binding pocket analysis indicates that AaTf2 has residue substitutions of Y188F, T120S, and R124S in the N lobe, and Y517N, H585N, T452S, and R456T in the C lobe, which could alter or reduce iron-binding activity. In vivo studies of message expression reveal that AaTf2 message is expressed at higher levels in larva and pupa, as well as adult female ovaries 72h post blood meal (PBM) and support that AaTf2 could play a role in larval and pupal development and in late physiological events of the gonotrophic cycle. Bacterial challenge significantly increases AaTf1 expression in ovaries at 0 and 24h PBM, but decreases AaTf2 expression in ovaries at 72h PBM, suggesting that AaTf1 and AaTf2 play different roles in immunity of female adults during a gonotrophic cycle.
Collapse
Affiliation(s)
- Guoli Zhou
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
753
|
Armbruster P, White S, Dzundza J, Crawford J, Zhao X. Identification of genes encoding atypical odorant-binding proteins in Aedes albopictus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:271-280. [PMID: 19351077 DOI: 10.1603/033.046.0211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Insect odorant-binding proteins (OBPs) are a diverse gene family that encode proteins thought to function as molecular chaperones by binding semiochemicals and transporting them through the aqueous lymph of insect sensilla. Between 66 and 68 genes have been classified as OBPs in both Anopheles gambiae (Giles) and Aedes aegypti L. based on bioninformatics criteria. We have cloned and sequenced from a subtracted cDNA library three OBPs in Aedes albopcitus (Skuse). BLASTP and phylogenetic analysis of deduced amino acid sequences identified a unique putative ortholog in Ae. aegypti for each Ae. albopictus OBP. Comparison of these putative Ae. aegypti orthologs with the results of previous bioinformatics analyses of OBP genes in Ae. aegypti highlight the potential variability of bioinformatics analyses and suggest that the OBP gene family of Culicids is even more diverse than previously described. Alignment of deduced amino acid sequences and phylogenetic analysis identified the N-terminal region of Culicid OBPs that is associated with aedine-specific diversification. Analysis of tissue-specific expression indicates that two of the Ae. albopictus OBPs are expressed both in preadult stages and in the hemolymph of adults, suggesting that the proteins encoded by these genes may be involved in the transport of hydrophobic ligands in the hemolymph. The other Ae. albopictus OBP is expressed exclusively in antennae and leg, suggesting a chemosensory function. These results are discussed within the context of the evolution and functional diversification of OBPs in mosquitoes.
Collapse
Affiliation(s)
- Peter Armbruster
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA.
| | | | | | | | | |
Collapse
|
754
|
Lu FH, Tang SM, Shen XJ, Wang N, Zhao QL, Zhang GZ, Guo XJ. Molecular cloning and characterization of hatching enzyme-like gene in the silkworm, Bombyx mori. Mol Biol Rep 2009; 37:1175-82. [PMID: 19253029 DOI: 10.1007/s11033-009-9483-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/19/2009] [Indexed: 01/30/2023]
Abstract
Hatching is the important process for the life of the metazoan, in which hatching enzyme (HE) plays a key role. In this paper, we cloned the full-length sequence of hatching enzyme-like cDNA from bluish-silkworm-eggs of Bombyx mori (BmHEL) by the method of in silico cloning, SMART cDNA synthesis and RACE-PCR technique. The BmHEL is 974 bp in length, and contains an ORF of 885 bp, encoding 294 amino acids residues. The deduced amino acid sequence of BmHEL has 30.3-47.1% identities to that of HE identified in the other species. Two similar signature sequences of HE gene family harbor in the BmHEL. The BmHEL gene structure is 6-exon-5-intron, and a promoter region with high scores has been predicted, which harbors some basal elements and some embryo-development related transcription factor binding sites. In the silkworm eggs at different developmental stages during incubation, the BmHEL transcripts can be detected and keep at a low level during the early stages, increase dramatically since 7th day of incubation, and reach to the maximum on 9th day. Change of BmHEL transcripts is in accordance with the process of embryo development and hatching, indicated that it plays an important role in these processes. Moreover, BmHEL transcript can be detected in the midgut and testis at larval stage, suggested that BmHEL may have other biological functions. To the best of our knowledge, this is the first report on HE gene in the Lepidoptera insects and will be helpful to provide a molecular basis for understanding the complicated mechanism underlying silkworm hatching.
Collapse
Affiliation(s)
- Fu-hao Lu
- College of Biotechnology and Environmental Engineering, Jiangsu University of Science and Technology, Zhenjiang, People's Republic China
| | | | | | | | | | | | | |
Collapse
|
755
|
Lu B, Wang N, Xiao J, Xu Y, Murphy RW, Huang D. Expression and evolutionary divergence of the non-conventional olfactory receptor in four species of fig wasp associated with one species of fig. BMC Evol Biol 2009; 9:43. [PMID: 19232102 PMCID: PMC2661049 DOI: 10.1186/1471-2148-9-43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 02/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interactions of fig wasps and their host figs provide a model for investigating co-evolution. Fig wasps have specialized morphological characters and lifestyles thought to be adaptations to living in the fig's syconium. Although these aspects of natural history are well documented, the genetic mechanism(s) underlying these changes remain(s) unknown. Fig wasp olfaction is the key to host-specificity. The Or83b gene class, an unusual member of olfactory receptor family, plays a critical role in enabling the function of conventional olfactory receptors. Four Or83b orthologous genes from one pollinator (PFW) (Ceratosolen solmsi) and three non-pollinator fig wasps (NPFWs) (Apocrypta bakeri, Philotrypesis pilosa and Philotrypesis sp.) associated with one species of fig (Ficus hispida) can be used to better understand the molecular mechanism underlying the fig wasp's adaptation to its host. We made a comparison of spatial tissue-specific expression patterns and substitution rates of one orthologous gene in these fig wasps and sought evidence for selection pressures. RESULTS A newly identified Or83b orthologous gene was named Or2. Expressions of Or2 were restricted to the heads of all wingless male fig wasps, which usually live in the dark cavity of a fig throughout their life cycle. However, expressions were widely detected in the antennae, legs and abdomens of all female fig wasps that fly from one fig to another for oviposition, and secondarily pollination. Weak expression was also observed in the thorax of PFWs. Compared with NPFWs, the Or2 gene in C. solmsi had an elevated rate of substitutions and lower codon usage. Analyses using Tajima's D, Fu and Li's D* and F* tests indicated a non-neutral pattern of nucleotide variation in all fig wasps. Unlike in NPFWs, this non-neutral pattern was also observed for synonymous sites of Or2 within PFWs. CONCLUSION The sex- and species-specific expression patterns of Or2 genes detected beyond the known primary olfactory tissues indicates the location of cryptic olfactory inputs. The specialized ecological niche of these wasps explains the unique habits and adaptive evolution of Or2 genes. The Or2 gene in C. solmsi is evolving very rapidly. Negative deviation from the neutral model of evolution reflects possible selection pressures acting on Or2 sequences of fig wasp, particularly on PFWs who are more host-specific to figs.
Collapse
Affiliation(s)
- Bin Lu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | | | | | | | | | | |
Collapse
|
756
|
Hill CA, Guerrero FD, Van Zee JP, Geraci NS, Walling JG, Stuart JJ. The position of repetitive DNA sequence in the southern cattle tick genome permits chromosome identification. Chromosome Res 2009; 17:77-89. [PMID: 19221885 DOI: 10.1007/s10577-008-9003-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 11/28/2022]
Abstract
Fluorescent in-situ hybridization (FISH) using meiotic chromosome preparations and highly repetitive DNA from the southern cattle tick, Rhipicephalus microplus, was undertaken to investigate genome organization. Several classes of highly repetitive DNA elements were identified by screening a R. microplus bacterial artificial chromosome (BAC) library. A repeat unit of approximately 149 bp, RMR-1 was localized to the subtelomeric regions of R. microplus autosomes 1-6 and 8-10. A second repeat unit, RMR-2 was localized to the subtelomeric regions of all autosomes and the X chromosome. RMR-2 was composed of three distinct repeat populations, RMR-2a, RMR-2b and RMR-2c of 178, 177 and 216 bp in length, respectively. Localization of an rDNA probe identified a single nucleolar organizing region on one autosome. Using a combination of labeled probes, we developed a preliminary karyotype for R. microplus. We present evidence that R. microplus has holocentric chromosomes and explore the implications of these findings for tick chromosome biology and genomic research.
Collapse
Affiliation(s)
- Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
757
|
Sánchez-Vargas I, Scott JC, Poole-Smith BK, Franz AWE, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog 2009; 5:e1000299. [PMID: 19214215 PMCID: PMC2633610 DOI: 10.1371/journal.ppat.1000299] [Citation(s) in RCA: 338] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 01/14/2009] [Indexed: 02/05/2023] Open
Abstract
A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV) infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi), is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA), which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs). These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2) infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti. Dengue viruses, globally the most prevalent arboviruses, are transmitted to humans by persistently infected Aedes aegypti mosquitoes. Understanding the mechanisms mosquitoes use to modulate infections by these agents of serious human diseases should give us critical insights into virus–vector interactions leading to transmission. RNA interference (RNAi) is an innate defense mechanism used by invertebrates to inhibit RNA virus infections; however, little is known about the antiviral role of RNAi in mosquitoes. RNAi is triggered by double-stranded RNA, leading to degradation of RNA with sequence homology to the dsRNA trigger. We show that dengue virus type 2 (DENV2) infection of Ae. aegypti by the natural route generates dsRNA and DENV2-specific small interfering RNAs, hallmarks of the RNAi response; nevertheless, persistent infection of mosquitoes occurs, suggesting that DENV2 circumvents RNAi. We also show that DENV2 infection is modulated by RNAi, since impairment by silencing expression of genes encoding important sensor and effector proteins in the RNAi pathway increases virus replication in the vector and decreases the incubation period before virus transmission. Our findings indicate a significant role for RNAi in determining the mosquito vector's potential for transmitting human diseases.
Collapse
Affiliation(s)
- Irma Sánchez-Vargas
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jaclyn C. Scott
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - B. Katherine Poole-Smith
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alexander W. E. Franz
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Valérie Barbosa-Solomieu
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ken E. Olson
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carol D. Blair
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
758
|
Comparative genomics allows the discovery of cis-regulatory elements in mosquitoes. Proc Natl Acad Sci U S A 2009; 106:3053-8. [PMID: 19211788 DOI: 10.1073/pnas.0813264106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery and mapping of cis-regulatory elements is important for understanding regulation of gene transcription in mosquito vectors of human diseases. Genome sequence data are available for 3 species, Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus (Diptera: Culicidae), representing 2 subfamilies (Culicinae and Anophelinae) that are estimated to have diverged 145 to 200 million years ago. Comparative genomics tools were used to screen genomic DNA fragments located in the 5'-end flanking regions of orthologous genes. These analyses resulted in the identification of 137 sequences, designated "mosquito motifs," 7 to 9 nucleotides in length, representing 18 families of putative cis-regulatory elements conserved significantly among the 3 species when compared to the fruit fly, Drosophila melanogaster. Forty-one of the motifs were implicated previously in experiments as sites for binding transcription factors or functioning in the regulation of mosquito gene expression. Further analyses revealed associations between specific motifs and expression profiles, particularly in those genes that show increased or decreased mRNA abundance in females following a blood meal, and those accumulating transcription products exclusively or preferentially in the midgut, fat bodies, or ovaries. These results validate the methodology and support a relationship between the discovered motifs and the conservation of hematophagy in mosquitoes.
Collapse
|
759
|
Abstract
John Marshall and Charles Taylor review recent advances in the development of transgenic mosquitoes for malaria control.
Collapse
|
760
|
Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics 2009; 10:33. [PMID: 19154594 PMCID: PMC2647948 DOI: 10.1186/1471-2164-10-33] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary importance of horizontal gene transfer (HGT) from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. RESULTS We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis), suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. CONCLUSION The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation.
Collapse
Affiliation(s)
- Lisa Klasson
- Department of Zoology, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
761
|
Matsui T, Yamamoto T, Wyder S, Zdobnov EM, Kadowaki T. Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates. BMC Genomics 2009; 10:17. [PMID: 19138430 PMCID: PMC2656531 DOI: 10.1186/1471-2164-10-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. RESULTS We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. CONCLUSION These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes.
Collapse
Affiliation(s)
- Toshiaki Matsui
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | |
Collapse
|
762
|
Martin DMA, Miranda-Saavedra D, Barton GJ. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res 2009; 37:D244-50. [PMID: 18974176 PMCID: PMC2686601 DOI: 10.1093/nar/gkn834] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/14/2022] Open
Abstract
The regulation of protein function through reversible phosphorylation by protein kinases and phosphatases is a general mechanism controlling virtually every cellular activity. Eukaryotic protein kinases can be classified into distinct, well-characterized groups based on amino acid sequence similarity and function. We recently reported a highly sensitive and accurate hidden Markov model-based method for the automatic detection and classification of protein kinases into these specific groups. The Kinomer v. 1.0 database presented here contains annotated classifications for the protein kinase complements of 43 eukaryotic genomes. These span the taxonomic range and include fungi (16 species), plants (6), diatoms (1), amoebas (2), protists (1) and animals (17). The kinomes are stored in a relational database and are accessible through a web interface on the basis of species, kinase group or a combination of both. In addition, the Kinomer v. 1.0 HMM library is made available for users to perform classification on arbitrary sequences. The Kinomer v. 1.0 database is a continually updated resource where direct comparison of kinase sequences across kinase groups and across species can give insights into kinase function and evolution. Kinomer v. 1.0 is available at http://www.compbio.dundee.ac.uk/kinomer/.
Collapse
Affiliation(s)
| | | | - Geoffrey J. Barton
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
763
|
Infra- and Transspecific Clues to Understanding the Dynamics of Transposable Elements. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2009_044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
764
|
Han P, Zhu YX. BARD1 may be renamed ROW1 because it functions mainly as a REPRESSOR OF WUSCHEL1. PLANT SIGNALING & BEHAVIOR 2009; 4:52-54. [PMID: 19704708 PMCID: PMC2634073 DOI: 10.4161/psb.4.1.7312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 05/28/2023]
Abstract
Human BRCA1 (BRreast CAncer susceptible gene1) is known to involve in cell cycle control, transcriptional regulation, DNA recombination, DNA repair and many other processes. hBARD1 (BRCA1-Associated Ring Domain 1) forms heterodimer via its N-terminal conserved RING domain with BRCA1. In Arabidopsis, two genes, At4g21070 and At1g04020, that share N-terminal RING domain and C-terminal BRCT (for BRCA1 C-Terminal) domains with no substantial similarities for other motifs, have been identified. AtBRCA1 was induced by gamma-ray while AtBARD1 was required for DNA repair. Recently, we find that AtBARD1 may function to confine WUS transcription in the shoot apical meristem organization center, together with the ATPase-dependent chromatin remodeling factor, SYD. In bard1-3 Arabidopsis knockout mutant, WUS was released to the outer layers and expressed at extremely high level comparing to wild-type. Our data suggest that BARD1 mainly function as a REPRESSOR OF WUSCHEL1 (ROW1). Extensive motif analyses carried out here showed that ROW1 possesses substantial sequence identity with a reported transcription repressor, MLL and also a potential PHD domain which recognizes histone tail codes, in its uncharacterized middle region. We suggest that ROW1 represses transcription in a chromatin-related mechanism.
Collapse
Affiliation(s)
- Pei Han
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | |
Collapse
|
765
|
Park H, Huxley-Jones J, Boot-Handford RP, Bishop PN, Attwood TK, Bella J. LRRCE: a leucine-rich repeat cysteine capping motif unique to the chordate lineage. BMC Genomics 2008; 9:599. [PMID: 19077264 PMCID: PMC2637281 DOI: 10.1186/1471-2164-9-599] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/12/2008] [Indexed: 01/27/2023] Open
Abstract
Background The small leucine-rich repeat proteins and proteoglycans (SLRPs) form an important family of regulatory molecules that participate in many essential functions. They typically control the correct assembly of collagen fibrils, regulate mineral deposition in bone, and modulate the activity of potent cellular growth factors through many signalling cascades. SLRPs belong to the group of extracellular leucine-rich repeat proteins that are flanked at both ends by disulphide-bonded caps that protect the hydrophobic core of the terminal repeats. A capping motif specific to SLRPs has been recently described in the crystal structures of the core proteins of decorin and biglycan. This motif, designated as LRRCE, differs in both sequence and structure from other, more widespread leucine-rich capping motifs. To investigate if the LRRCE motif is a common structural feature found in other leucine-rich repeat proteins, we have defined characteristic sequence patterns and used them in genome-wide searches. Results The LRRCE motif is a structural element exclusive to the main group of SLRPs. It appears to have evolved during early chordate evolution and is not found in protein sequences from non-chordate genomes. Our search has expanded the family of SLRPs to include new predicted protein sequences, mainly in fishes but with intriguing putative orthologs in mammals. The chromosomal locations of the newly predicted SLRP genes would support the large-scale genome or gene duplications that are thought to have occurred during vertebrate evolution. From this expanded list we describe a new class of SLRP sequences that could be representative of an ancestral SLRP gene. Conclusion Given its exclusivity the LRRCE motif is a useful annotation tool for the identification and classification of new SLRP sequences in genome databases. The expanded list of members of the SLRP family offers interesting insights into early vertebrate evolution and suggests an early chordate evolutionary origin for the LRRCE capping motif.
Collapse
Affiliation(s)
- Hosil Park
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
766
|
Abstract
Dengue is a spectrum of disease caused by four serotypes of the most prevalent arthropod-borne virus affecting humans today, and its incidence has increased dramatically in the past 50 years. Due in part to population growth and uncontrolled urbanization in tropical and subtropical countries, breeding sites for the mosquitoes that transmit dengue virus have proliferated, and successful vector control has proven problematic. Dengue viruses have evolved rapidly as they have spread worldwide, and genotypes associated with increased virulence have expanded from South and Southeast Asia into the Pacific and the Americas. This review explores the human, mosquito, and viral factors that contribute to the global spread and persistence of dengue, as well as the interaction between the three spheres, in the context of ecological and climate changes. What is known, as well as gaps in knowledge, is emphasized in light of future prospects for control and prevention of this pandemic disease.
Collapse
Affiliation(s)
- Jennifer L Kyle
- Division of Infectious Diseases, School of Public Health, and Graduate Group in Microbiology, University of California, Berkeley, California 94720-7354, USA.
| | | |
Collapse
|
767
|
The International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1036-45. [PMID: 19121390 DOI: 10.1016/j.ibmb.2008.11.004] [Citation(s) in RCA: 493] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 11/28/2008] [Accepted: 11/28/2008] [Indexed: 05/21/2023]
Abstract
Bombyx mori, the domesticated silkworm, is a major insect model for research, and the first lepidopteran for which draft genome sequences became available in 2004. Two independent data sets from whole-genome shotgun sequencing were merged and assembled together with newly obtained fosmid- and BAC-end sequences. The remarkably improved new assembly is presented here. The 8.5-fold sequence coverage of an estimated 432 Mb genome was assembled into scaffolds with an N50 size of approximately 3.7 Mb; the largest scaffold was 14.5 million base pairs. With help of a high-density SNP linkage map, we anchored 87% of the scaffold sequences to all 28 chromosomes. A particular feature was the high repetitive sequence content estimated to be 43.6% and that consisted mainly of transposable elements. We predicted 14,623 gene models based on a GLEAN-based algorithm, a more accurate prediction than the previous gene models for this species. Over three thousand silkworm genes have no homologs in other insect or vertebrate genomes. Some insights into gene evolution and into characteristic biological processes are presented here and in other papers in this issue. The massive silk production correlates with the existence of specific tRNA clusters, and of several sericin genes assembled in a cluster. The silkworm's adaptation to feeding on mulberry leaves, which contain toxic alkaloids, is likely linked to the presence of new-type sucrase genes, apparently acquired from bacteria. The silkworm genome also revealed the cascade of genes involved in the juvenile hormone biosynthesis pathway, and a large number of cuticular protein genes.
Collapse
|
768
|
Osanai-Futahashi M, Suetsugu Y, Mita K, Fujiwara H. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1046-1057. [PMID: 19280695 DOI: 10.1016/j.ibmb.2008.05.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To elucidate the contribution of transposable elements (TEs) to the silkworm genome structure and evolution, we have conducted genome-wide analysis of TEs using the newly released genome assembly. The TEs made up 35% of the genome and contributed greatly to the genome size. Non-long terminal repeat retrotransposons (non-LTRs) and short interspersed nuclear elements (SINEs) were the predominant TE classes. From characterization of the TE distribution in the genome, it was revealed that non-LTRs, especially R1 clade elements, are frequently inserted into GC-rich regions. The GC content of non-LTRs themselves was over 40%, which indicate their contribution to the GC content of the insertion region. TEs accumulated in regions with low gene density, and there were relatively strong positive correlations between TE density and chromosomal recombination rate. We also characterized the clade distribution of the non-LTRs. The silkworm non-LTRs represented 10 of the 16 previously defined clades, which had the most variety than that reported for other genomes. Two partial CRE clade elements were found, which is one of the most ancient lineages of non-LTRs, and have been only found in Trypanosoma and fungi before. This analysis suggests that Bombyx genome is influenced by numerous amounts and variety of TEs.
Collapse
Affiliation(s)
- Mizuko Osanai-Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | |
Collapse
|
769
|
Ohtsuki H, Yokoyama J, Ohba N, Ohmiya Y, Kawata M. Nitric oxide synthase (NOS) in the Japanese fireflies Luciola lateralis and Luciola cruciata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:176-188. [PMID: 18980232 DOI: 10.1002/arch.20275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Species-specific flash patterns in firefly species are important for the investigation of the evolution of Lampyridae. Since nitric oxide synthase (NOS) is one of the key enzymes controlling flash patterns, we determined the cDNA sequences of NOS in the Japanese fireflies Luciola lateralis and L. cruciata. The identity of the NOS sequences was very high between these 2 species. Firefly NOS also exhibited a high identity with those of other insect species, and the cofactor-binding domains were particularly well conserved. Many negatively selected sites were detected throughout the NOS sequences; however, no positive selection was detected. The phylogenetic relationship of insect NOS was different from that of the general classification system, although the lineages corresponded to the major recognized taxonomic groups.
Collapse
Affiliation(s)
- Hajime Ohtsuki
- Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Miyagi, Japan.
| | | | | | | | | |
Collapse
|
770
|
Sengul MS, Tu Z. Characterization and expression of the odorant-binding protein 7 gene in Anopheles stephensi and comparative analysis among five mosquito species. INSECT MOLECULAR BIOLOGY 2008; 17:631-645. [PMID: 18811600 DOI: 10.1111/j.1365-2583.2008.00837.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Odorant-binding proteins (OBPs) are important molecular players in insect olfaction, which has a great influence on the host-seeking behaviour of mosquitoes and other disease vectors. The mRNA level of the Anopheles gambiae Obp7 gene (Agam-Obp7) is higher in the adult female antennae and is slightly reduced in the female heads after blood-feeding. Here we report the cloning, sequencing, chromosomal mapping and transcript analysis of Aste-Obp7, the Obp7 gene from the Asian malaria mosquito Anopheles stephensi. Quantitative reverse transcription PCR showed that in adult female mosquitoes, Aste-Obp7 was expressed abundantly in the antennae, much less in pooled maxillary palp and proboscis and at the lowest level in the legs. The Aste-Obp7 level in female antennae was significantly higher than in male antennae and it slightly increased 24 h after a bloodmeal. The same pattern held for leg samples as well. The Aste-Obp7 mRNA level dropped more than 10-fold in the female maxillary palp and proboscis after a bloodmeal, although it was still significantly higher than in the males. Together, the above expression profiles suggest that Aste-Obp7 probably functions in female olfaction and may possibly be involved in behaviour related to blood-feeding. We also characterized the Obp7 gene from Anopheles quadriannulatus. Comparison among Anopheles Obp7 genes revealed conserved noncoding sequences that contain potential regulatory elements. The coding sequence and gene structure of Obp7 as well as local synteny of surrounding genes are conserved among the three Anopheles species and two divergent mosquitoes, Aedes aegypti and Culex pipiens quinquefasciatus. OBP7 protein phylogeny is congruent with the mosquito phylogeny and there is evidence of purifying selection acting on the mosquito Obp7 gene. Comparative genomics analysis will improve our understanding of the evolution and regulation of genes involved in mosquito olfaction.
Collapse
Affiliation(s)
- M S Sengul
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
771
|
Sánchez-Gracia A, Rozas J. Divergent evolution and molecular adaptation in the Drosophila odorant-binding protein family: inferences from sequence variation at the OS-E and OS-F genes. BMC Evol Biol 2008; 8:323. [PMID: 19038039 PMCID: PMC2631505 DOI: 10.1186/1471-2148-8-323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/27/2008] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The Drosophila Odorant-Binding Protein (Obp) genes constitute a multigene family with moderate gene number variation across species. The OS-E and OS-F genes are the two phylogenetically closest members of this family in the D. melanogaster genome. In this species, these genes are arranged in the same genomic cluster and likely arose by tandem gene duplication, the major mechanism proposed for the origin of new members in this olfactory-system family. RESULTS We have analyzed the genomic cluster encompassing OS-E and OS-F genes (Obp83 genomic region) to determine the role of the functional divergence and molecular adaptation on the Obp family size evolution. We compared nucleotide and amino acid variation across 18 Drosophila and 4 mosquito species applying a phylogenetic-based maximum likelihood approach complemented with information of the OBP three-dimensional structure and function. We show that, in spite the OS-E and OS-F genes are currently subject to similar and strong selective constraints, they likely underwent divergent evolution. Positive selection was likely involved in the functional diversification of new copies in the early stages after the gene duplication event; moreover, it might have shaped nucleotide variation of the OS-E gene concomitantly with the loss of functionally related members. Besides, molecular adaptation likely affecting the functional OBP conformational changes was supported by the analysis of the evolution of physicochemical properties of the OS-E protein and the location of the putative positive selected amino acids on the OBP three-dimensional structure. CONCLUSION Our results support that positive selection was likely involved in the functional differentiation of new copies of the OBP multigene family in the early stages after their birth by gene duplication; likewise, it might shape variation of some members of the family concomitantly with the loss of functionally related genes. Thus, the stochastic gene gain/loss process coupled with the impact of natural selection would influence the observed OBP family size.
Collapse
Affiliation(s)
- Alejandro Sánchez-Gracia
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Avda, Diagonal 645, 08028 Barcelona, Spain.
| | | |
Collapse
|
772
|
Duncan EJ, Wilson MJ, Smith JM, Dearden PK. Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods. BMC Genomics 2008; 9:558. [PMID: 19032778 PMCID: PMC2631020 DOI: 10.1186/1471-2164-9-558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 11/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene clusters, such as the Hox gene cluster, are known to have critical roles in development. In eukaryotes gene clusters arise primarily by tandem gene duplication and divergence. Genes within a cluster are often co-regulated, providing selective pressure to maintain the genome organisation, and this co-regulation can result in temporal or spatial co-linearity of gene expression. It has been previously noted that in Drosophila melanogaster, three of the four runt-domain (RD) containing genes are found in a relatively tight cluster on chromosome 1, raising the possibility of a putative functional RD gene cluster in D. melanogaster. RESULTS To investigate the possibility of such a gene cluster, orthologues of the Drosophila melanogaster RD genes were identified in several endopterygotan insects, two exopterygotan insects and two non-insect arthropods. In all insect species four RD genes were identified and orthology was assigned to the Drosophila sequences by phylogenetic analyses. Although four RD genes were found in the crustacean D. pulex, orthology could not be assigned to the insect sequences, indicating independent gene duplications from a single ancestor following the split of the hexapod lineage from the crustacean lineage.In insects, two chromosomal arrangements of these genes was observed; the first a semi-dispersed cluster, such as in Drosophila, where lozenge is separated from the core cluster of three RD genes often by megabases of DNA. The second arrangement was a tight cluster of the four RD genes, such as in Apis mellifera.This genomic organisation, particularly of the three core RD genes, raises the possibility of shared regulatory elements. In situ hybridisation of embryonic expression of the four RD genes in Drosophila melanogaster and the honeybee A. mellifera shows no evidence for either spatial or temporal co-linearity of expression during embryogenesis. CONCLUSION All fully sequenced insect genomes contain four RD genes and orthology can be assigned to these genes based on similarity to the D. melanogaster protein sequences. Examination of the genomic organisation of these genes provides evidence for a functional RD gene cluster. RD genes from non-insect arthropods are also clustered, however the lack of orthology between these and insect RD genes suggests this cluster is likely to have resulted from a duplication event independent from that which created the insect RD gene cluster. Analysis of embryonic RD gene expression in two endopterygotan insects, A. mellifera and D. melanogaster, did not show evidence for coordinated gene expression, therefore while the functional significance of this gene cluster remains unknown its maintenance during insect evolution implies some functional significance to the cluster.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Laboratory for Evolution and Development, University of Otago, PO Box 56, Dunedin, Aotearoa-New Zealand
| | | | | | | |
Collapse
|
773
|
Hittinger CT, Carroll SB. Evolution of an insect-specific GROUCHO-interaction motif in the ENGRAILED selector protein. Evol Dev 2008; 10:537-45. [PMID: 18803772 PMCID: PMC2597661 DOI: 10.1111/j.1525-142x.2008.00269.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Animal morphology evolves through alterations in the genetic regulatory networks that control development. Regulatory connections are commonly added, subtracted, or modified via mutations in cis-regulatory elements, but several cases are also known where transcription factors have gained or lost activity-modulating peptide motifs. In order to better assess the role of novel transcription factor peptide motifs in evolution, we searched for synapomorphic motifs in the homeotic selectors of Drosophila melanogaster and related insects. Here, we describe an evolutionarily novel GROUCHO (GRO)-interaction motif in the ENGRAILED (EN) selector protein. This "ehIFRPF" motif is not homologous to the previously characterized "engrailed homology 1" (eh1) GRO-interaction motif of EN. This second motif is an insect-specific "WRPW"-type motif that has been maintained by purifying selection in at least the dipteran/lepidopteran lineage. We demonstrate that this motif contributes to in vivo repression of the wingless (wg) target gene and to interaction with GRO in vitro. The acquisition and conservation of this auxiliary peptide motif shows how the number and activity of short peptide motifs can evolve in transcription factors while existing regulatory functions are maintained.
Collapse
Affiliation(s)
- Chris Todd Hittinger
- Laboratory of Genetics, Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706-1534, USA
| | | |
Collapse
|
774
|
Low conservation of gene content in the Drosophila Y chromosome. Nature 2008; 456:949-51. [PMID: 19011613 PMCID: PMC2713029 DOI: 10.1038/nature07463] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/26/2008] [Indexed: 11/27/2022]
Abstract
Chromosomal organization is sufficiently evolutionarily stable that large syntenic blocks of genes can be recognized even between species as distantly related as mammals and puffer fish (450 Myr divergence)1–7. In Diptera the gene content of the X chromosome and the autosomes is well conserved: in Drosophila more than 95% of the genes have remained on the same chromosome arm in the 12 sequenced species (63 Myr of divergence, traversing 400 Myr of evolution)2,4,6, and the same linkage groups are clearly recognizable in mosquito genomes (260 Myr of divergence)3,5,7. Here we investigate the conservation of Y-linked gene content among the 12 sequenced Drosophila species. We found that only 1/4 of D. melanogaster Y-linked genes (3 out 12 ) are Y-linked in all sequenced species, and that the majority of them (7 out 12) were acquired less than 63 Myr ago. Hence, whereas the organization of other Drosophila chromosomes trace back to the common ancestor with mosquitoes, the gene content of the D. melanogaster Y is much younger. Gene losses are known to play a major role in the evolution of Y chromosomes8–10, and we indeed found two such cases. However, the rate of gene gain in the Drosophila Y chromosomes investigated is 10.9 times higher than the rate of gene loss (95% confidence interval: 2.3 – 52.5), and hence their gene content seems to be increasing. In contrast with the mammalian Y, gene gains have a prominent role in the evolution of the Drosophila Y chromosome.
Collapse
|
775
|
Anopheles gambiae APL1 is a family of variable LRR proteins required for Rel1-mediated protection from the malaria parasite, Plasmodium berghei. PLoS One 2008; 3:e3672. [PMID: 18989366 PMCID: PMC2577063 DOI: 10.1371/journal.pone.0003672] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 10/20/2008] [Indexed: 11/20/2022] Open
Abstract
Background We previously identified by genetic mapping an Anopheles gambiae chromosome region with strong influence over the outcome of malaria parasite infection in nature. Candidate gene studies in the genetic interval, including functional tests using the rodent malaria parasite Plasmodium berghei, identified a novel leucine-rich repeat gene, APL1, with functional activity against P. berghei. Principal Findings Manual reannotation now reveals APL1 to be a family of at least 3 independently transcribed genes, APL1A, APL1B, and APL1C. Functional dissection indicates that among the three known APL1 family members, APL1C alone is responsible for host defense against P. berghei. APL1C functions within the Rel1-Cactus immune signaling pathway, which regulates APL1C transcript and protein abundance. Gene silencing of APL1C completely abolishes Rel1-mediated host protection against P. berghei, and thus the presence of APL1C is required for this protection. Further highlighting the influence of this chromosome region, allelic haplotypes at the APL1 locus are genetically associated with and have high explanatory power for the success or failure of P. berghei parasite infection. Conclusions APL1C functions as a required transducer of Rel1-dependent immune signal(s) to efficiently protect mosquitoes from P. berghei infection, and allelic genetic haplotypes of the APL1 locus display distinct levels of susceptibility and resistance to P. berghei.
Collapse
|
776
|
Woolfit M, Iturbe-Ormaetxe I, McGraw EA, O'Neill SL. An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Mol Biol Evol 2008; 26:367-74. [PMID: 18988686 DOI: 10.1093/molbev/msn253] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extent and biological relevance of horizontal gene transfer (HGT) in eukaryotic evolution remain highly controversial. Recent studies have demonstrated frequent and large-scale HGT from endosymbiotic bacteria to their hosts, but the great majority of these transferred genes rapidly become nonfunctional in the recipient genome. Here, we investigate an ancient HGT between a host metazoan and an endosymbiotic bacterium, Wolbachia pipientis. The transferred gene has so far been found only in mosquitoes and Wolbachia. In mosquitoes, it is a member of a gene family encoding candidate receptors required for malaria sporozoite invasion of the mosquito salivary gland. The gene copy in Wolbachia has substantially diverged in sequence from the mosquito homolog, is evolving under purifying selection, and is expressed, suggesting that this gene is also functional in the bacterial genome. Several lines of evidence indicate that the gene may have been transferred from eukaryotic host to bacterial endosymbiont. Regardless of the direction of transfer, however, these results demonstrate that interdomain HGT may give rise to functional, persistent, and possibly evolutionarily significant new genes.
Collapse
Affiliation(s)
- Megan Woolfit
- School of Integrative Biology, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
777
|
Cristescu ME, Innes DJ, Stillman JH, Crease TJ. D- and L-lactate dehydrogenases during invertebrate evolution. BMC Evol Biol 2008; 8:268. [PMID: 18828920 PMCID: PMC2570690 DOI: 10.1186/1471-2148-8-268] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 10/01/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(-)-lactate and D(+)-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh. RESULTS Our phylogenetic analyses of L-LDH in vertebrates are consistent with the general view that the main isozymes (LDH-A, LDH-B and LDH-C) evolved through a series of gene duplications after the vertebrates diverged from tunicates. We report several gene duplication events in the crustacean, Daphnia pulex, and the leech, Helobdella robusta. Several amino acid sequences with strong similarity to putative mammalian D-LDH and to yeast DLD1 with D-LDH activity were found in both vertebrates and invertebrates. CONCLUSION The presence of both L-Ldh and D-Ldh genes in several chordates and invertebrates suggests that the two enzymatic forms are not necessarily mutually exclusive. Although, the evolution of L-Ldh has been punctuated by multiple events of gene duplication in both vertebrates and invertebrates, a shared evolutionary history of this gene in the two groups is apparent. Moreover, the high degree of sequence similarity among D-LDH amino acid sequences suggests that they share a common evolutionary history.
Collapse
Affiliation(s)
- Melania E Cristescu
- University of Windsor, Great Lakes Institute for Environmental Research, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - David J Innes
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| | - Jonathon H Stillman
- San Francisco State University, Romberg Tiburon Center for Environmental Studies, 3152 Paradise Drive, Tiburon, CA 94920, USA
| | - Teresa J Crease
- University of Guelph, Department of Integrative Biology, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
778
|
Campbell CL, Black WC, Hess AM, Foy BD. Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genomics 2008; 9:425. [PMID: 18801182 PMCID: PMC2566310 DOI: 10.1186/1471-2164-9-425] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 09/18/2008] [Indexed: 11/26/2022] Open
Abstract
Background Small RNA regulatory pathways (SRRPs) control key aspects of development and anti-viral defense in metazoans. Members of the Argonaute family of catalytic enzymes degrade target RNAs in each of these pathways. SRRPs include the microRNA, small interfering RNA (siRNA) and PIWI-type gene silencing pathways. Mosquitoes generate viral siRNAs when infected with RNA arboviruses. However, in some mosquitoes, arboviruses survive antiviral RNA interference (RNAi) and are transmitted via mosquito bite to a subsequent host. Increased knowledge of these pathways and functional components should increase understanding of the limitations of anti-viral defense in vector mosquitoes. To do this, we compared the genomic structure of SRRP components across three mosquito species and three major small RNA pathways. Results The Ae. aegypti, An. gambiae and Cx. pipiens genomes encode putative orthologs for all major components of the miRNA, siRNA, and piRNA pathways. Ae. aegypti and Cx. pipiens have undergone expansion of Argonaute and PIWI subfamily genes. Phylogenetic analyses were performed for these protein families. In addition, sequence pattern recognition algorithms MEME, MDScan and Weeder were used to identify upstream regulatory motifs for all SRRP components. Statistical analyses confirmed enrichment of species-specific and pathway-specific cis-elements over the rest of the genome. Conclusion Analysis of Argonaute and PIWI subfamily genes suggests that the small regulatory RNA pathways of the major arbovirus vectors, Ae. aegypti and Cx. pipiens, are evolving faster than those of the malaria vector An. gambiae and D. melanogaster. Further, protein and genomic features suggest functional differences between subclasses of PIWI proteins and provide a basis for future analyses. Common UCR elements among SRRP components indicate that 1) key components from the miRNA, siRNA, and piRNA pathways contain NF-kappaB-related and Broad complex transcription factor binding sites, 2) purifying selection has occurred to maintain common pathway-specific elements across mosquito species and 3) species-specific differences in upstream elements suggest that there may be differences in regulatory control among mosquito species. Implications for arbovirus vector competence in mosquitoes are discussed.
Collapse
Affiliation(s)
- Corey L Campbell
- Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
779
|
Volfova V, Hostomska J, Cerny M, Votypka J, Volf P. Hyaluronidase of bloodsucking insects and its enhancing effect on leishmania infection in mice. PLoS Negl Trop Dis 2008; 2:e294. [PMID: 18820742 PMCID: PMC2553483 DOI: 10.1371/journal.pntd.0000294] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 08/19/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Salivary hyaluronidases have been described in a few bloodsucking arthropods. However, very little is known about the presence of this enzyme in various bloodsucking insects and no data are available on its effect on transmitted microorganisms. Here, we studied hyaluronidase activity in thirteen bloodsucking insects belonging to four different orders. In addition, we assessed the effect of hyaluronidase coinoculation on the outcome of Leishmania major infection in BALB/c mice. PRINCIPAL FINDINGS High hyaluronidase activity was detected in several Diptera tested, namely deer fly Chrysops viduatus, blackflies Odagmia ornata and Eusimilium latipes, mosquito Culex quinquefasciatus, biting midge Culicoides kibunensis and sand fly Phlebotomus papatasi. Lower activity was detected in cat flea Ctenocephalides felis. No activity was found in kissing bug Rhodnius prolixus, mosquitoes Anopheles stephensi and Aedes aegypti, tse-tse fly Glossina fuscipes, stable fly Stomoxys calcitrans and human louse Pediculus humanus. Hyaluronidases of different insects vary substantially in their molecular weight, the structure of the molecule and the sensitivity to reducing conditions or sodium dodecyl sulphate. Hyaluronidase exacerbates skin lesions caused by Leishmania major; more severe lesions developed in mice where L. major promastigotes were coinjected with hyaluronidase. CONCLUSIONS High hyaluronidase activities seem to be essential for insects with pool-feeding mode, where they facilitate the enlargement of the feeding lesion and serve as a spreading factor for other pharmacologically active compounds present in saliva. As this enzyme is present in all Phlebotomus and Lutzomyia species studied to date, it seems to be one of the factors responsible for enhancing activity present in sand fly saliva. We propose that salivary hyaluronidase may facilitate the spread of other vector-borne microorganisms, especially those transmitted by insects with high hyaluronidase activity, namely blackflies (Simuliidae), biting midges (Ceratopogonidae) and horse flies (Tabanidae).
Collapse
Affiliation(s)
- Vera Volfova
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
780
|
Rezende GL, Martins AJ, Gentile C, Farnesi LC, Pelajo-Machado M, Peixoto AA, Valle D. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC DEVELOPMENTAL BIOLOGY 2008; 8:82. [PMID: 18789161 PMCID: PMC2561029 DOI: 10.1186/1471-213x-8-82] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 09/13/2008] [Indexed: 11/10/2022]
Abstract
Background One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing. Results We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1) possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed. Conclusion In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle.
Collapse
Affiliation(s)
- Gustavo Lazzaro Rezende
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ and Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
781
|
|
782
|
Quantitative trait loci mapping of genome regions controlling permethrin resistance in the mosquito Aedes aegypti. Genetics 2008; 180:1137-52. [PMID: 18723882 DOI: 10.1534/genetics.108.087924] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Permethrin is an insecticide used to suppress Ae. aegypti adult populations but metabolic and target site resistance to pyrethroids has evolved in many locations worldwide. Quantitative trait loci (QTL) controlling permethrin survival in Ae. aegypti were mapped in an F(3) advanced intercross line. Parents came from a collection of mosquitoes from Isla Mujeres, México, that had been selected for permethrin resistance for two generations and a reference permethrin-susceptible strain originally from New Orleans. Following a 1-hr permethrin exposure, 439 F(3) adult mosquitoes were phenotyped as knockdown resistant, knocked down/recovered, or dead. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 22 loci with potential antixenobiotic activity including genes encoding cytochrome P450s (CYP), esterases (EST), or glutathione transferases (GST) and at 12 previously mapped loci. Seven antixenobiotic genes mapped to chromosome I, six to chromosome II, and nine to chromosome III. Two QTL of major effect were detected on chromosome III. One corresponds with a SNP previously associated with permethrin resistance in the para sodium channel gene and the second with the CCEunk7o esterase marker. Additional QTL but of relatively minor effect were also found. These included two sex-linked QTL on chromosome I affecting knockdown and recovery and a QTL affecting survival and recovery. On chromosome II, one QTL affecting survival and a second affecting recovery were detected. The patterns confirm that mutations in the para gene cause target-site insensitivity and are the major source of permethrin resistance but that other genes dispersed throughout the genome contribute to recovery and survival of mosquitoes following permethrin exposure.
Collapse
|
783
|
Molecular cloning, characterization and mRNA expression of peroxiredoxin in Zhikong scallop Chlamys farreri. Mol Biol Rep 2008; 36:1451-9. [DOI: 10.1007/s11033-008-9335-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 07/30/2008] [Indexed: 11/26/2022]
|
784
|
Chapple CE, Guigó R. Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes. PLoS One 2008; 3:e2968. [PMID: 18698431 PMCID: PMC2500217 DOI: 10.1371/journal.pone.0002968] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/24/2008] [Indexed: 11/19/2022] Open
Abstract
Background Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. Methodology/Principal Findings In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. Conclusions/Significance Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may be related to the fundamental differences in antioxidant defense between these animals and other metazoans.
Collapse
Affiliation(s)
- Charles E. Chapple
- Center for Genomic Regulation, Universitat Pompeu Fabra and Institut Municipal d'Investigació Mèdica, Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Center for Genomic Regulation, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
785
|
Bhutkar A, Gelbart WM, Smith TF. Inferring genome-scale rearrangement phylogeny and ancestral gene order: a Drosophila case study. Genome Biol 2008; 8:R236. [PMID: 17996033 PMCID: PMC2258185 DOI: 10.1186/gb-2007-8-11-r236] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 09/17/2007] [Indexed: 01/01/2023] Open
Abstract
A simple, fast, and biologically-inspired computational approach to infer genome-scale rearrangement phylogeny and ancestral gene order has been developed and applied to eight Drosophila genomes, providing insights into evolutionary chromosomal dynamics. A simple, fast, and biologically inspired computational approach for inferring genome-scale rearrangement phylogeny and ancestral gene order has been developed. This has been applied to eight Drosophila genomes. Existing techniques are either limited to a few hundred markers or a small number of taxa. This analysis uses over 14,000 genomic loci and employs discrete elements consisting of pairs of homologous genetic elements. The results provide insight into evolutionary chromosomal dynamics and synteny analysis, and inform speciation studies.
Collapse
Affiliation(s)
- Arjun Bhutkar
- BioMolecular Engineering Research Center, Boston University, Cummington St, Boston, MA 02215, USA.
| | | | | |
Collapse
|
786
|
Jagge CL, Pietrantonio PV. Diuretic hormone 44 receptor in Malpighian tubules of the mosquito Aedes aegypti: evidence for transcriptional regulation paralleling urination. INSECT MOLECULAR BIOLOGY 2008; 17:413-426. [PMID: 18651923 DOI: 10.1111/j.1365-2583.2008.00817.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the mosquito Aedes aegypti (L.), the molecular endocrine mechanisms underlying rapid water elimination upon eclosion and blood feeding are not fully understood. The genome contains a single predicted diuretic hormone 44 (DH44) gene, but two DH44 receptor genes. The identity of the DH44 receptor(s) in the Malpighian tubule is unknown in any mosquito species. We show that VectorBase gene ID AAEL008292 encodes the DH44 receptor (GPRDIH1) most highly expressed in Malpighian tubules. Sequence analysis and transcript localization indicate that AaegGPRDIH1 is the co-orthologue of the Drosophila melanogaster DH44 receptor (CG12370-PA). Time-course quantitative PCR analysis of Malpighian tubule cDNA revealed AaegGPRDIH1 expression changes paralleling periods of excretion. This suggests that target tissue receptor biology is linked to the known periods of release of diuretic hormones from the nervous system pointing to a common up-stream regulatory mechanism.
Collapse
Affiliation(s)
- C L Jagge
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | | |
Collapse
|
787
|
The Yin and Yang of linkage disequilibrium: mapping of genes and nucleotides conferring insecticide resistance in insect disease vectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:71-83. [PMID: 18510015 DOI: 10.1007/978-0-387-78225-6_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genetic technologies developed in the last 20 years have lead to novel and exciting methods to identify genes and specific nucleotides within genes that control phenotypes in field collected organisms. In this review we define and explain two of these methods: linkage disequilibrium (LD) mapping and quantitative trait nucleotide (QTN) mapping. The power to detect valid genotype-phenotype associations with LD or QTN mapping depends critically on the extent to which segregating sites in a genome assort independently. LD mapping depends on markers being in disequilibrium with the genes that condition expression of the phenotype. In contrast, QTN mapping depends critically upon most proximal loci being at equilibrium. We show that both patterns actually exist in the genome of Anapheles gambiae, the most important malaria vector in sub-Saharan Africa while segregating sites appear to be largely in equilibrium throughout the genome of Aedes aegypti, the vector of Dengue and Yellow fever flaviviruses. We discuss additional approaches that will be needed to identify genes and nucleotides that control phenotypes in field collected organisms, focusing specifically on ongoing studies of genes conferring resistance to insecticides.
Collapse
|
788
|
Abstract
Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents—bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.
Collapse
Affiliation(s)
- Murray B Gardner
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
789
|
Abstract
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.
Collapse
|
790
|
Mercado-Curiel RF, Black WC, Muñoz MDL. A dengue receptor as possible genetic marker of vector competence in Aedes aegypti. BMC Microbiol 2008; 8:118. [PMID: 18625079 PMCID: PMC2488350 DOI: 10.1186/1471-2180-8-118] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 07/15/2008] [Indexed: 12/01/2022] Open
Abstract
Background Vector competence refers to the intrinsic permissiveness of an arthropod vector for infection, replication and transmission of a virus. Notwithstanding studies of Quantitative Trait Loci (QTL) that influence the ability of Aedes aegypti midgut (MG) to become infected with dengue virus (DENV), no study to date has been undertaken to identify genetic markers of vector competence. Furthermore, it is known that mosquito populations differ greatly in their susceptibility to flaviviruses. Differences in vector competence may, at least in part, be due to the presence of specific midgut epithelial receptors and their identification would be a significant step forward in understanding the interaction of the virus with the mosquito. The first interaction of DENV with the insect is through proteins in the apical membrane of the midgut epithelium resulting in binding and receptor-mediated endocytosis of the virus, and this determines cell permissiveness to infection. The susceptibility of mosquitoes to infection may therefore depend on their specific virus receptors. To study this interaction in Ae. aegypti strains that differ in their vector competence for DENV, we investigated the DS3 strain (susceptible to DENV), the IBO-11 strain (refractory to infection) and the membrane escape barrier strain, DMEB, which is infected exclusively in the midgut epithelial cells. Results (1) We determined the MG proteins that bind DENV by an overlay protein binding assay (VOPBA) in Ae. aegypti mosquitoes of the DS3, DMEB and IBO-11 strains. The main protein identified had an apparent molecular weight of 67 kDa, although the protein identified in the IBO-11 strain showed a lower mass (64 kDa). (2) The midgut proteins recognized by DENV were also determined by VOPBA after two-dimensional gel electrophoresis. (3) To determine whether the same proteins were identified in all three strains, we obtained polyclonal antibodies against R67 and R64 and tested them against the three strains by immunoblotting; both antibodies recognized the 67 and 64 kDa proteins, corroborating the VOPBA results. (4) Specific antibodies against both proteins were used for immunofluorescent location by confocal microscopy; the antibodies recognized the basal lamina all along the MG, and cell membranes and intercellular spaces from the middle to the end of the posterior midgut (pPMG) in the neighborhood of the hindgut. (5) Quantitative analysis showed more intense fluorescence in DS3 and DMEB than in IBO-11. (6) The viral envelope antigen was not homogeneously distributed during MG infection but correlated with MG density and the distribution of R67/R64. Conclusion In this paper we provide evidence that the 67 kDa protein (R67/R64), described previously as a DENV receptor, is related to vector competence in Ae. aegypti. Consequently, our results strongly suggest that this protein may be a marker of vector competence for DENV in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Ricardo F Mercado-Curiel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Ave. Instituto Politécnico Nacional 2508 Col San Pedro Zacatenco, C.P. 07360, México, DF, México.
| | | | | |
Collapse
|
791
|
Abstract
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.
Collapse
|
792
|
Hernandez-Romano J, Carlos-Rivera FJ, Salgado H, Lamadrid-Figueroa H, Valverde-Garduño V, Rodriguez MH, Martinez-Barnetche J. Immunity related genes in dipterans share common enrichment of AT-rich motifs in their 5' regulatory regions that are potentially involved in nucleosome formation. BMC Genomics 2008; 9:326. [PMID: 18613977 PMCID: PMC2491644 DOI: 10.1186/1471-2164-9-326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 07/09/2008] [Indexed: 01/08/2023] Open
Abstract
Background Understanding the transcriptional regulation mechanisms in response to environmental challenges is of fundamental importance in biology. Transcription factors associated to response elements and the chromatin structure had proven to play important roles in gene expression regulation. We have analyzed promoter regions of dipteran genes induced in response to immune challenge, in search for particular sequence patterns involved in their transcriptional regulation. Results 5' upstream regions of D. melanogaster and A. gambiae immunity-induced genes and their corresponding orthologous genes in 11 non-melanogaster drosophilid species and Ae. aegypti share enrichment in AT-rich short motifs. AT-rich motifs are associated with nucleosome formation as predicted by two different algorithms. In A. gambiae and D. melanogaster, many immunity genes 5' upstream sequences also showed NFκB response elements, located within 500 bp from the transcription start site. In A. gambiae, the frequency of ATAA motif near the NFκB response elements was increased, suggesting a functional link between nucleosome formation/remodelling and NFκB regulation of transcription. Conclusion AT-rich motif enrichment in 5' upstream sequences in A. gambiae, Ae. aegypti and the Drosophila genus immunity genes suggests a particular pattern of nucleosome formation/chromatin organization. The co-occurrence of such motifs with the NFκB response elements suggests that these sequence signatures may be functionally involved in transcriptional activation during dipteran immune response. AT-rich motif enrichment in regulatory regions in this group of co-regulated genes could represent an evolutionary constrained signature in dipterans and perhaps other distantly species.
Collapse
Affiliation(s)
- Jesus Hernandez-Romano
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av, Universidad 655, Col Sta Maria Ahuacatitlan, CP 62508, Cuernavaca, Morelos, México.
| | | | | | | | | | | | | |
Collapse
|
793
|
Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 2008; 4:e1000098. [PMID: 18604274 PMCID: PMC2435278 DOI: 10.1371/journal.ppat.1000098] [Citation(s) in RCA: 643] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 06/06/2008] [Indexed: 01/17/2023] Open
Abstract
Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi)-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.
Collapse
Affiliation(s)
- Zhiyong Xi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jose L. Ramirez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
794
|
Wasmuth J, Schmid R, Hedley A, Blaxter M. On the extent and origins of genic novelty in the phylum Nematoda. PLoS Negl Trop Dis 2008; 2:e258. [PMID: 18596977 PMCID: PMC2432500 DOI: 10.1371/journal.pntd.0000258] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/09/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The phylum Nematoda is biologically diverse, including parasites of plants and animals as well as free-living taxa. Underpinning this diversity will be commensurate diversity in expressed genes, including gene sets associated specifically with evolution of parasitism. METHODS AND FINDINGS Here we have analyzed the extensive expressed sequence tag data (available for 37 nematode species, most of which are parasites) and define over 120,000 distinct putative genes from which we have derived robust protein translations. Combined with the complete proteomes of Caenorhabditis elegans and Caenorhabditis briggsae, these proteins have been grouped into 65,000 protein families that in turn contain 40,000 distinct protein domains. We have mapped the occurrence of domains and families across the Nematoda and compared the nematode data to that available for other phyla. Gene loss is common, and in particular we identify nearly 5,000 genes that may have been lost from the lineage leading to the model nematode C. elegans. We find a preponderance of novelty, including 56,000 nematode-restricted protein families and 26,000 nematode-restricted domains. Mapping of the latest time-of-origin of these new families and domains across the nematode phylogeny revealed ongoing evolution of novelty. A number of genes from parasitic species had signatures of horizontal transfer from their host organisms, and parasitic species had a greater proportion of novel, secreted proteins than did free-living ones. CONCLUSIONS These classes of genes may underpin parasitic phenotypes, and thus may be targets for development of effective control measures.
Collapse
Affiliation(s)
- James Wasmuth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Program for Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ralf Schmid
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Ann Hedley
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
795
|
Adelman ZN, Anderson MAE, Morazzani EM, Myles KM. A transgenic sensor strain for monitoring the RNAi pathway in the yellow fever mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:705-13. [PMID: 18549956 PMCID: PMC2518454 DOI: 10.1016/j.ibmb.2008.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 04/10/2008] [Accepted: 04/13/2008] [Indexed: 05/24/2023]
Abstract
The RNA interference pathway functions as an antiviral defense in invertebrates. In order to generate a phenotypic marker which "senses" the status of the RNAi pathway in Aedes aegypti, transgenic strains were developed to express EGFP and DsRED marker genes in the eye, as well as double-stranded RNA homologous to a portion of the EGFP gene. Transgenic "sensor" mosquitoes exhibited robust eye-specific DsRED expression with little EGFP, indicating RNAi-based silencing. Cloning and high-throughput sequencing of small RNAs confirmed that the inverted-repeat transgene was successfully processed into short-interfering RNAs by the mosquito RNAi pathway. When the A. aegypti homologues of the genes DCR-2 or AGO-2 were knocked down, a clear increase in EGFP fluorescence was observed in the mosquito eyes. Knockdown of DCR-2 was also associated with an increase in EGFP mRNA levels, as determined by Northern blot and real-time PCR. Knockdown of AGO-3, a gene involved in the germline-specific piRNA pathway, did not restore EGFP expression at either the mRNA or protein level. This transgenic sensor strain can now be used to identify other components of the mosquito RNAi pathway and has the potential to be used in the identification of arboviral suppressors of RNAi.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | | | |
Collapse
|
796
|
Kleino A, Myllymäki H, Kallio J, Vanha-aho LM, Oksanen K, Ulvila J, Hultmark D, Valanne S, Rämet M. Pirk is a negative regulator of the Drosophila Imd pathway. THE JOURNAL OF IMMUNOLOGY 2008; 180:5413-22. [PMID: 18390723 DOI: 10.4049/jimmunol.180.8.5413] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
NF-kappaB transcription factors are involved in evolutionarily conserved signaling pathways controlling multiple cellular processes including apoptosis and immune and inflammatory responses. Immune response of the fruit fly Drosophila melanogaster to Gram-negative bacteria is primarily mediated via the Imd (immune deficiency) pathway, which closely resembles the mammalian TNFR signaling pathway. Instead of cytokines, the main outcome of Imd signaling is the production of antimicrobial peptides. The pathway activity is delicately regulated. Although many of the Imd pathway components are known, the mechanisms of negative regulation are more elusive. In this study we report that a previously uncharacterized gene, pirk, is highly induced upon Gram-negative bacterial infection in Drosophila in vitro and in vivo. pirk encodes a cytoplasmic protein that coimmunoprecipitates with Imd and the cytoplasmic tail of peptidoglycan recognition protein LC (PGRP-LC). RNA interference-mediated down-regulation of Pirk caused Imd pathway hyperactivation upon infection with Gram-negative bacteria, while overexpression of pirk reduced the Imd pathway response both in vitro and in vivo. Furthermore, pirk-overexpressing flies were more susceptible to Gram-negative bacterial infection than wild-type flies. We conclude that Pirk is a negative regulator of the Imd pathway.
Collapse
Affiliation(s)
- Anni Kleino
- Institute of Medical Technology, University of Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
797
|
How insects survive the cold: molecular mechanisms—a review. J Comp Physiol B 2008; 178:917-33. [DOI: 10.1007/s00360-008-0286-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/12/2008] [Accepted: 06/10/2008] [Indexed: 12/25/2022]
|
798
|
Genetic dissociation of ethanol sensitivity and memory formation in Drosophila melanogaster. Genetics 2008; 178:1895-902. [PMID: 18430923 DOI: 10.1534/genetics.107.084582] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ad hoc genetic correlation between ethanol sensitivity and learning mechanisms in Drosophila could overemphasize a common process supporting both behaviors. To challenge directly the hypothesis that these mechanisms are singular, we examined the learning phenotypes of 10 new strains. Five of these have increased ethanol sensitivity, and the other 5 do not. We tested place and olfactory memory in each of these lines and found two new learning mutations. In one case, altering the tribbles gene, flies have a significantly reduced place memory, elevated olfactory memory, and normal ethanol response. In the second case, mutation of a gene we name ethanol sensitive with low memory (elm), place memory was not altered, olfactory memory was sharply reduced, and sensitivity to ethanol was increased. In sum, however, we found no overall correlation between ethanol sensitivity and place memory in the 10 lines tested. Furthermore, there was a weak but nonsignificant correlation between ethanol sensitivity and olfactory learning. Thus, mutations that alter learning and sensitivity to ethanol can occur independently of each other and this implies that the set of genes important for both ethanol sensitivity and learning is likely a subset of the genes important for either process.
Collapse
|
799
|
Applications of mosquito ecology for successful insect transgenesis-based disease prevention programs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18510022 DOI: 10.1007/978-0-387-78225-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
800
|
Greenwood BM, Fidock DA, Kyle DE, Kappe SHI, Alonso PL, Collins FH, Duffy PE. Malaria: progress, perils, and prospects for eradication. J Clin Invest 2008; 118:1266-76. [PMID: 18382739 DOI: 10.1172/jci33996] [Citation(s) in RCA: 409] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There are still approximately 500 million cases of malaria and 1 million deaths from malaria each year. Yet recently, malaria incidence has been dramatically reduced in some parts of Africa by increasing deployment of anti-mosquito measures and new artemisinin-containing treatments, prompting renewed calls for global eradication. However, treatment and mosquito control currently depend on too few compounds and thus are vulnerable to the emergence of compound-resistant parasites and mosquitoes. As discussed in this Review, new drugs, vaccines, and insecticides, as well as improved surveillance methods, are research priorities. Insights into parasite biology, human immunity, and vector behavior will guide efforts to translate parasite and mosquito genome sequences into novel interventions.
Collapse
Affiliation(s)
- Brian M Greenwood
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|