801
|
Anand U, Jakhmola S, Indari O, Jha HC, Chen ZS, Tripathi V, Pérez de la Lastra JM. Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Front Immunol 2021; 12:658519. [PMID: 34276652 PMCID: PMC8278575 DOI: 10.3389/fimmu.2021.658519] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly pathogenic novel virus that has caused a massive pandemic called coronavirus disease 2019 (COVID-19) worldwide. Wuhan, a city in China became the epicenter of the outbreak of COVID-19 in December 2019. The disease was declared a pandemic globally by the World Health Organization (WHO) on 11 March 2020. SARS-CoV-2 is a beta CoV of the Coronaviridae family which usually causes respiratory symptoms that resemble common cold. Multiple countries have experienced multiple waves of the disease and scientific experts are consistently working to find answers to several unresolved questions, with the aim to find the most suitable ways to contain the virus. Furthermore, potential therapeutic strategies and vaccine development for COVID-19 management are also considered. Currently, substantial efforts have been made to develop successful and safe treatments and SARS-CoV-2 vaccines. Some vaccines, such as inactivated vaccines, nucleic acid-based, and vector-based vaccines, have entered phase 3 clinical trials. Additionally, diverse small molecule drugs, peptides and antibodies are being developed to treat COVID-19. We present here an overview of the virus interaction with the host and environment and anti-CoV therapeutic strategies; including vaccines and other methodologies, designed for prophylaxis and treatment of SARS-CoV-2 infection with the hope that this integrative analysis could help develop novel therapeutic approaches against COVID-19.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - José M. Pérez de la Lastra
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones científicas (CSIS), Santa Cruz de Tenerife, Spain
| |
Collapse
|
802
|
Exhaled-Breath Testing Using an Electronic Nose during Spinal Cord Stimulation in Patients with Failed Back Surgery Syndrome: An Experimental Pilot Study. J Clin Med 2021; 10:jcm10132921. [PMID: 34209972 PMCID: PMC8269089 DOI: 10.3390/jcm10132921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The increased awareness of discrepancies between self-reporting outcome measurements and objective outcome measurements within the field of neuromodulation has accelerated the search towards more objective measurements. The aim of this study was to evaluate whether an electronic nose can differentiate between chronic pain patients in whom Spinal Cord Stimulation (SCS) was activated versus deactivated. Twenty-seven patients with Failed Back Surgery Syndrome (FBSS) participated in this prospective pilot study. Volatile organic compounds in exhaled breath were measured with electronic nose technology (Aeonose™) during SCS on and off states. Random forest was used with a leave-10%-out cross-validation method to determine accuracy of discriminating between SCS on and off states. Our random forest showed an accuracy of 0.56, with an area under the curve of 0.62, a sensitivity of 62% (95% CI: 41–79%) and a specificity of 50% (95% CI: 30–70%). Pain intensity scores were significantly different between both SCS states. Our findings indicate that we cannot discriminate between SCS off and on states based on exhaled breath with the Aeonose™ in patients with FBSS. In clinical practice, these findings imply that with a noninvasive electronic nose, exhaled breath cannot be used as an additional marker of the effect of neuromodulation.
Collapse
|
803
|
Tao X, Luo X, Zhang T, Hershey B, Esteller R, Ji RR. Spinal Cord Stimulation Attenuates Mechanical Allodynia and Increases Central Resolvin D1 Levels in Rats With Spared Nerve Injury. Front Physiol 2021; 12:687046. [PMID: 34248674 PMCID: PMC8267572 DOI: 10.3389/fphys.2021.687046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Mounting evidence from animal models of inflammatory and neuropathic pain suggests that inflammation regulates the resolution of pain by producing specialized pro-resolving mediators (SPMs), such as resolvin D1 (RvD1). However, it remains unclear how SPMs are induced in the central nervous system and whether these mechanisms can be reconciled with outcomes of neuromodulation therapies for pain, such as spinal cord stimulation. Here, we show that in a male rat model of neuropathic pain produced by spared nerve injury (SNI), 1 kHz spinal cord stimulation (1 kHz SCS) alone was sufficient to reduce mechanical allodynia and increase RvD1 in the cerebrospinal fluid (CSF). SNI resulted in robust and persistent mechanical allodynia and cold allodynia. Spinal cord electrode implantation was conducted at the T11-T13 vertebral level 1 week after SNI. The spinal locations of the implanted electrodes were validated by X-Ray radiography. 1 kHz SCS was applied for 6 h at 0.1 ms pulse-width, and this stimulation alone was sufficient to effectively reduce nerve injury-induced mechanical allodynia during stimulation without affecting SNI-induced cold allodynia. SCS alone significantly reduced interleukin-1β levels in both serum and CSF samples. Strikingly, SCS significantly increased RvD1 levels in the CSF but not serum. Finally, intrathecal injection of RvD1 (100 and 500 ng, i.t.) 4 weeks after nerve injury reduced SNI-induced mechanical allodynia in a dose-dependent manner. Our findings suggest that 1 kHz SCS may alleviate neuropathic pain via reduction of IL-1β and via production and/or release of RvD1 to control SNI-induced neuroinflammation.
Collapse
Affiliation(s)
- Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Tianhe Zhang
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA, United States
| | - Brad Hershey
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA, United States
| | - Rosana Esteller
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
804
|
Cheng L, Suresh K S, He H, Rajput RS, Feng Q, Ramesh S, Wang Y, Krishnan S, Ostrovidov S, Camci-Unal G, Ramalingam M. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives. Int J Nanomedicine 2021; 16:4289-4319. [PMID: 34211272 PMCID: PMC8239380 DOI: 10.2147/ijn.s311001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.
Collapse
Affiliation(s)
- Lijia Cheng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Shoma Suresh K
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hongyan He
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Ritu Singh Rajput
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Qiyang Feng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Saravanan Ramesh
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Yuzhuang Wang
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Sasirekha Krishnan
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
805
|
Exploration of the Supraspinal Hypotheses about Spinal Cord Stimulation and Dorsal Root Ganglion Stimulation: A Systematic Review. J Clin Med 2021; 10:jcm10132766. [PMID: 34201877 PMCID: PMC8268298 DOI: 10.3390/jcm10132766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/27/2022] Open
Abstract
Despite the established efficacy and effectiveness of Spinal Cord Stimulation (SCS), there is still no consensus on the supraspinal mechanisms of action of this therapy. The purpose of this study was to systematically review previously raised hypotheses concerning supraspinal mechanisms of action of SCS based on human, animal and computational studies. Searches were conducted using four electronic databases (PubMed, EMBASE, SCOPUS and Web of Science), backward reference searching and consultation with experts. The study protocol was registered prior to initiation of the review process (PROSPERO CRD42020161531). A total of 54 publications were included, 21 of which were animal studies, and 33 were human studies. The supraspinal hypotheses (n = 69) identified from the included studies could be categorized into six groups concerning the proposed supraspinal hypothesis, namely descending pathways (n = 24); ascending medial pathway (n = 13); ascending lateral pathway (n = 10); affective/motivational influences (n = 8); spinal–cerebral (thalamic)-loop (n = 3) and miscellaneous (n = 11). Scientific support is provided for the hypotheses identified. Modulation of the descending nociceptive inhibitory pathways, medial and lateral pathways were the most frequently reported hypotheses about the supraspinal mechanisms of action of SCS. These hypotheses were mainly supported by studies with a high or moderate confidence in the body of evidence.
Collapse
|
806
|
Sharma S, Jeyaraman M, Muthu S, Anudeep TC, Jeyaraman N, Shringeri AS, Kumar V, Somasundaram R, Jain R, Jha SK. A Step Toward Optimizing Regenerative Medicine Principle to Combat COVID-19. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1731597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractDrugs are currently not licensed in specific to pulverize COVID-19. On an emergency basis, vaccines were approved to prevent the further spread of COVID-19. This serves as a potential background for considering the optimization of biologics. In this context, evidence on convalescent plasma and stem cells has shown a beneficial role. Here, we have considered this as plausible therapy, and further hypothesize that their cocktails will synergistically boost the immunogenicity to relegate COVID-19. This warrants a large volume clinical trial on an emergent basis, because the sooner we establish a safe and effective cure, the better.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
| | - Talagavadi Channaiah Anudeep
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai, Maharashtra, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
| | | | | | | | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
807
|
Schatman ME, Petersen EA, Sayed D. No Zero Sum in Opioids for Chronic Pain: Neurostimulation and the Goal of Opioid Sparing, Not Opioid Eradication. J Pain Res 2021; 14:1809-1812. [PMID: 34163236 PMCID: PMC8215906 DOI: 10.2147/jpr.s323661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Michael E Schatman
- Department of Diagnostic Sciences, Tufts University School of Dental Medicine, Boston, MA, USA.,Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA.,School of Social Work, North Carolina State University, Raleigh, NC, USA
| | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
808
|
Luo M, Sun J, Gong Z, Wang Z. What is always necessary throughout efforts to prevent and control COVID-19 and other infectious diseases? A physical containment strategy and public mobilization and management. Biosci Trends 2021; 15:188-191. [PMID: 34135260 DOI: 10.5582/bst.2021.01218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The COVID-19 pandemic continues to ravage the world. As many countries have entered the postpandemic period, current efforts to prevent and control COVID-19 have gradually been normalized in many countries. Although the focus is on vaccines to achieve herd immunity, conventional physical containment strategies should be reassessed as part of efforts to prevent and control infectious diseases. Continued respiratory protective measures such as social distancing and the wearing of masks have been extensively accepted by the public in most countries. A point worth noticing is that the activities of influenza and other respiratory diseases have decreased as these strategies have been implemented. Public mobilization and large-scale campaigns to promote health are also important to interrupting the transmission of pathogens. A good example can be found in the achievements of China's Patriotic Public Health Campaign. These practices underscore the importance of enhancing physical containment strategies and public mobilization and management, with support from the legal system, to respond to any potential emerging infectious diseases.
Collapse
Affiliation(s)
- Mingyu Luo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jimin Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhenyu Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhen Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
809
|
Endothelial Progenitor Cell-Derived Extracellular Vesicles: Potential Therapeutic Application in Tissue Repair and Regeneration. Int J Mol Sci 2021; 22:ijms22126375. [PMID: 34203627 PMCID: PMC8232313 DOI: 10.3390/ijms22126375] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Recently, many studies investigated the role of a specific type of stem cell named the endothelial progenitor cell (EPC) in tissue regeneration and repair. EPCs represent a heterogeneous population of mononuclear cells resident in the adult bone marrow. EPCs can migrate and differentiate in injured sites or act in a paracrine way. Among the EPCs’ secretome, extracellular vesicles (EVs) gained relevance due to their possible use for cell-free biological therapy. They are more biocompatible, less immunogenic, and present a lower oncological risk compared to cell-based options. EVs can efficiently pass the pulmonary filter and deliver to target tissues different molecules, such as micro-RNA, growth factors, cytokines, chemokines, and non-coding RNAs. Their effects are often analogous to their cellular counterparts, and EPC-derived EVs have been tested in vitro and on animal models to treat several medical conditions, including ischemic stroke, myocardial infarction, diabetes, and acute kidney injury. EPC-derived EVs have also been studied for bone, brain, and lung regeneration and as carriers for drug delivery. This review will discuss the pre-clinical evidence regarding EPC-derived EVs in the different disease models and regenerative settings. Moreover, we will discuss the translation of their use into clinical practice and the possible limitations of this process.
Collapse
|
810
|
Arjmand B, Alavi-Moghadam S, Parhizkar Roudsari P, Rezaei-Tavirani M, Rahim F, Gilany K, Mohamadi-Jahani F, Adibi H, Larijani B. COVID-19 Pathology on Various Organs and Regenerative Medicine and Stem Cell-Based Interventions. Front Cell Dev Biol 2021; 9:675310. [PMID: 34195193 PMCID: PMC8238122 DOI: 10.3389/fcell.2021.675310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2, a novel betacoronavirus, has caused the global outbreak of a contagious infection named coronavirus disease-2019. Severely ill subjects have shown higher levels of pro-inflammatory cytokines. Cytokine storm is the term that can be used for a systemic inflammation leading to the production of inflammatory cytokines and activation of immune cells. In coronavirus disease-2019 infection, a cytokine storm contributes to the mortality rate of the disease and can lead to multiple-organ dysfunction syndrome through auto-destructive responses of systemic inflammation. Direct effects of the severe acute respiratory syndrome associated with infection as well as hyperinflammatory reactions are in association with disease complications. Besides acute respiratory distress syndrome, functional impairments of the cardiovascular system, central nervous system, kidneys, liver, and several others can be mentioned as the possible consequences. In addition to the current therapeutic approaches for coronavirus disease-2019, which are mostly supportive, stem cell-based therapies have shown the capacity for controlling the inflammation and attenuating the cytokine storm. Therefore, after a brief review of novel coronavirus characteristics, this review aims to explain the effects of coronavirus disease-2019 cytokine storm on different organs of the human body. The roles of stem cell-based therapies on attenuating cytokine release syndrome are also stated.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center, Avicenna Research Institute, The Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
811
|
BMSC-Derived Exosomes Ameliorate LPS-Induced Acute Lung Injury by miR-384-5p-Controlled Alveolar Macrophage Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9973457. [PMID: 34234888 PMCID: PMC8216833 DOI: 10.1155/2021/9973457] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common critical diseases. Bone marrow mesenchymal stem cell (BMSC) transplantation is previously shown to effectively rescue injured lung tissues. The therapeutic mechanism of BMSC-derived exosomes is not fully understood. Here, we investigated the BMSC-derived exosomal microRNAs (miRNAs) on effecting lipopolysaccharide- (LPS-) induced ALI and its mechanism. In vitro, rat alveolar macrophages were treated with or without exosomes in the presence of 10 μg/ml LPS for 24 h. Cell viability was determined with Cell Counting Kit-8 assay. Apoptotic ratio was determined with TUNEL and Annexin V-FITC/PI double staining. The levels of miR-384-5p and autophagy-associated genes were measured by RT-qPCR and western blot. Autophagy was observed by TEM and assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay. In vivo, we constructed LPS-induced ALI rat models. Exosomes were injected into rats via the caudal vein or trachea 4 h later after LPS treatment. The lung histological pathology was determined by H&E staining. Pulmonary vascular permeability was assessed by wet-to-dry weight ratio and Evans blue dye leakage assay, and inflammatory cytokines in serum and BALF were measured by ELISA. Furthermore, the therapeutic mechanism involved in miR-384-5p and Beclin-1 was determined. The results showed that BMSC-derived exosomes were taken up by the alveolar macrophages and attenuated LPS-induced alveolar macrophage viability loss and apoptosis. Exosomes effectively improved the survival rate of ALI rats within 7 days, which was associated with alleviating lung pathological changes and pulmonary vascular permeability and attenuating inflammatory response. Furthermore, this study for the first time found that miR-384-5p was enriched in BMSC-derived exosomes, and exosomal miR-384-5p resulted in relieving LPS-injured autophagy disorder in alveolar macrophages by targeting Beclin-1. Therefore, exosomal miR-384-5p could be demonstrated as a promising therapeutic strategy for ALI/ARDS.
Collapse
|
812
|
Fiani B, Kondilis A, Runnels J, Rippe P, Davati C. Pulsed Electromagnetic Field Stimulators Efficacy for Noninvasive Bone Growth in Spine Surgery. J Korean Neurosurg Soc 2021; 64:486-494. [PMID: 34107606 PMCID: PMC8273786 DOI: 10.3340/jkns.2020.0269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
The growth of pulsed electromagnetic field (PEMF) therapy and its progress over the years for use in post-operative bone growth has been revolutionary in its effect on bone tissue proliferation and vascular flow. However, further progress in PEMF therapy has been difficult due to lack of more evidence-based understanding of its mechanism of action. Our objective was to review the current understanding of bone growth physiology, the mechanism of PEMF therapy action along with its application in spinal surgery and associated outcomes. The authors of this review examined multiple controlled, comparative, and cohort studies to compare fusion rates of patients undergoing PEMF stimulation. Examining spinal fusion rates, a rounded comparison of post-fusion outcomes with and without bone stimulator was performed. Results showed that postoperative spinal surgery PEMF stimulation had higher rates of fusion than control groups. Though PEMF therapy was proven more effective, multiple factors contributed to difficulty in patient compliance for use. Extended timeframe of treatment and cost of treatment were the main obstacles to full compliance. This review showed that PEMF therapy presented an increased rate of recovery in patients, supporting the use of these devices as an effective post-surgical aid. Given the recent advances in the development of PEMF devices, affordability and access will be much easier suited to the patient population, allowing for more readily available treatment options.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Athanasios Kondilis
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - Juliana Runnels
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Preston Rippe
- University of Pikeville-Kentucky College of Osteopathic Medicine, Pikeville, KY, USA
| | - Cyrus Davati
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
813
|
Damodharan K, Arumugam GS, Ganesan S, Doble M, Thennarasu S. A comprehensive overview of vaccines developed for pandemic viral pathogens over the past two decades including those in clinical trials for the current novel SARS-CoV-2. RSC Adv 2021; 11:20006-20035. [PMID: 35479882 PMCID: PMC9033969 DOI: 10.1039/d0ra09668g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
The unprecedented coronavirus disease 2019 (COVID-19) is triggered by a novel strain of coronavirus namely, Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Researchers are working around the clock to control this pandemic and consequent waves of viral reproduction, through repurposing existing drugs as well as designing new vaccines. Several countries have hastened vaccine design and clinical trials to quickly address this outbreak. Currently, more than 250 aspirants against SARS-CoV-2 are in progress, including mRNA-replicating or non-replicating viral vectored-, DNA-, autologous dendritic cell-based-, and inactivated virus-vaccines. Vaccines work by prompting effector mechanisms such as cells/molecules, which target quickly replicating pathogens and neutralize their toxic constituents. Vaccine-stimulated immune effectors include adjuvant, affinity, avidity, affinity maturation, antibodies, antigen-presenting cells, B lymphocytes, carrier protein, CD4+ T-helper cells. In this review, we describe updated information on the various vaccines available over the last two decades, along with recent progress in the ongoing battle developing 63 diverse vaccines against SARS-CoV-2. The inspiration of our effort is to convey the current investigation focus on registered clinical trials (as of January 08, 2021) that satisfy the safety and efficacy criteria of international wide vaccine development.
Collapse
Affiliation(s)
- Kannan Damodharan
- Department of Organic and Bioorganic Chemistry, CSIR-Central Leather Research Institute (CLRI) Chennai 600020 India
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM) Chennai 600032 India
| | | | - Suresh Ganesan
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM) Chennai 600032 India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM) Chennai 600032 India
| | - Sathiah Thennarasu
- Department of Organic and Bioorganic Chemistry, CSIR-Central Leather Research Institute (CLRI) Chennai 600020 India
| |
Collapse
|
814
|
Zheng XS, Tan C, Castagnola E, Cui XT. Electrode Materials for Chronic Electrical Microstimulation. Adv Healthc Mater 2021; 10:e2100119. [PMID: 34029008 PMCID: PMC8257249 DOI: 10.1002/adhm.202100119] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Electrical microstimulation has enabled partial restoration of vision, hearing, movement, somatosensation, as well as improving organ functions by electrically modulating neural activities. However, chronic microstimulation is faced with numerous challenges. The implantation of an electrode array into the neural tissue triggers an inflammatory response, which can be exacerbated by the delivery of electrical currents. Meanwhile, prolonged stimulation may lead to electrode material degradation., which can be accelerated by the hostile inflammatory environment. Both material degradation and adverse tissue reactions can compromise stimulation performance over time. For stable chronic electrical stimulation, an ideal microelectrode must present 1) high charge injection limit, to efficiently deliver charge without exceeding safety limits for both tissue and electrodes, 2) small size, to gain high spatial selectivity, 3) excellent biocompatibility that ensures tissue health immediately next to the device, and 4) stable in vivo electrochemical properties over the application period. In this review, the challenges in chronic microstimulation are described in detail. To aid material scientists interested in neural stimulation research, the in vitro and in vivo testing methods are introduced for assessing stimulation functionality and longevity and a detailed overview of recent advances in electrode material research and device fabrication for improving chronic microstimulation performance is provided.
Collapse
Affiliation(s)
- Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chao Tan
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
815
|
Banimohamad‐Shotorbani B, Farajpour H, Sefat F, Khosroshahi SA, Shafaei H, Heidari keshel S. Efficacy of mesenchymal stromal cells and cellular products in improvement of symptoms for COVID-19 and similar lung diseases. Biotechnol Bioeng 2021; 118:2168-2183. [PMID: 33629351 PMCID: PMC8014656 DOI: 10.1002/bit.27729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
At the end of 2019, respiratory coronavirus diseases 2019 (COVID-19) appeared and spread rapidly in the world. Besides several mutations, the outcome of this pandemic was the death up to 15% of hospitalized patients. Mesenchymal stromal cell therapy as a therapeutic strategy seemed successful in treatment of several diseases. Not only mesenchymal stromal cells of several tissues, but also their secreted extracellular vesicles and even secretome indicated beneficial therapeutic function. All of these three options were studied for treatment of COVID-19 as well as those respiratory diseases that have similar symptom. Fortunately, most of the outcomes were promising and optimistic. In this paper, we review in-vivo and clinical studies which have been used different sources of mesenchymal stromal cell, secreted extracellular vesicles, and secretome to improve and treat symptoms of COVID-19 and similar lung diseases.
Collapse
Affiliation(s)
- Behnaz Banimohamad‐Shotorbani
- Student Research CommitteeUniversity of Medical SciencesTabrizIran
- Department of Tissue Engineering, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Hekmat Farajpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of EngineeringUniversity of BradfordBradfordUK
- School of Engineering, Interdisciplinary Research Center in Polymer Science & Technology (Polymer IRC)University of BradfordBradfordUK
| | - Shiva Ahdi Khosroshahi
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Hajar Shafaei
- Department of Tissue Engineering, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Department of Anatomical Sciences, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Saeed Heidari keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
816
|
Gupta A, Maffulli N, Rodriguez HC, Carson EW, Bascharon RA, Delfino K, Levy HJ, El-Amin SF. Safety and efficacy of umbilical cord-derived Wharton's jelly compared to hyaluronic acid and saline for knee osteoarthritis: study protocol for a randomized, controlled, single-blind, multi-center trial. J Orthop Surg Res 2021; 16:352. [PMID: 34059080 PMCID: PMC8165766 DOI: 10.1186/s13018-021-02475-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common joint disorder in the United States of America (USA) with a fast-rising prevalence. Current treatment modalities are limited, and total knee replacement surgeries have shown disadvantages, especially for grade II/III OA. The interest in the use of biologics, including umbilical cord (UC)-derived Wharton's jelly (WJ), has grown in recent years. The results from a preliminary study demonstrated the presence of essential components of regenerative medicine, namely growth factors, cytokines, hyaluronic acid (HA), and extracellular vesicles, including exosomes, in WJ. The proposed study aims to evaluate the safety and efficacy of intra-articular injection of UC-derived WJ for the treatment of knee OA symptoms. METHODS A randomized, controlled, single-blind, multi-center, prospective study will be conducted in which the safety and efficacy of intra-articular administration of UC-derived WJ are compared to HA (control) and saline (placebo control) in patients suffering from grade II/III knee OA. A total of 168 participants with grade II or III knee OA on the KL scale will be recruited across 53 sites in the USA with 56 participants in each arm and followed for 1 year post-injection. Patient satisfaction, Numeric Pain Rating Scale, Knee Injury and Osteoarthritis Outcome Score, 36-Item Short Form Survey (SF-36), and 7-point Likert Scale will be used to assess the participants. Physical exams, X-rays, and MRI with Magnetic Resonance Observation of Cartilage Repair Tissue score will be used to assess improvement in associated anatomy. DISCUSSION The study results will provide valuable information into the safety and efficacy of intra-articular administration of Wharton's jelly for grade II/III knee osteoarthritis. The results of this study will also add to the treatment options available for grade II/III OA as well as help facilitate the development of a more focused treatment strategy for patients. TRIAL REGISTRATION ClinicalTrials.gov, NCT04711304 . Registered on January 15, 2021.
Collapse
Affiliation(s)
- Ashim Gupta
- BioIntegrate, Lawrenceville, GA USA
- Future Biologics, Lawrenceville, GA USA
- South Texas Orthopaedic Research Institute, Laredo, TX USA
- Veterans in Pain, Los Angeles, CA USA
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Orthopedica” Department, Hospital of Salerno, Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, UK
| | - Hugo C. Rodriguez
- Future Biologics, Lawrenceville, GA USA
- South Texas Orthopaedic Research Institute, Laredo, TX USA
- Future Physicians of South Texas, San Antonio, TX USA
- University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX USA
| | - Eric W. Carson
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO USA
| | | | - Kristin Delfino
- Southern Illinois University, School of Medicine, Springfield, IL USA
| | - Howard J. Levy
- BioIntegrate, Lawrenceville, GA USA
- Department of Orthopaedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY USA
| | - Saadiq F. El-Amin
- BioIntegrate, Lawrenceville, GA USA
- El-Amin Orthopaedic and Sports Medicine Institute, 2505 Newpoint Pkwy, Suite – 100, Lawrenceville, GA 30043 USA
| |
Collapse
|
817
|
Cardoso TC, Panegossi LC, Gameiro R. Upregulation of INF-γ, IL-6, and IL-8 expression during replication of turkey coronavirus in nonepithelial cells obtained from Meleagris gallopavo. Arch Virol 2021; 166:2285-2289. [PMID: 34057608 PMCID: PMC8165514 DOI: 10.1007/s00705-021-05120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) are considered multipotent progenitors with the capacity to differentiate into mesoderm-like cells in many species. The immunosuppressive properties of MSCs are important for downregulating inflammatory responses. Turkey coronavirus (TCoV) is the etiological agent of a poult mortality syndrome that affects intestinal epithelial cells. In this study, poult MSCs were isolated, characterized, and infected with TCoV after in vitro culture. The poult-derived MSCs showed fibroblast-like morphology and the ability to undergo differentiation into mesodermal-derived cells and to support virus replication. Infection with TCoV resulted in cytopathic effects and the loss of cell viability. TCoV antigens and new viral progeny were detected at high levels, as were transcripts of the pro-inflammatory factors INFγ, IL-6, and IL-8. These findings suggest that the cytokine storm phenomenon is not restricted to one genus of the family Coronaviridae and that MSCs cannot always balance the process.
Collapse
Affiliation(s)
- Tereza Cristina Cardoso
- Laboratory of Animal Virology and Cell Culture, UNESP-University of São Paulo State, São Paulo, Brazil. .,Departamento de Apoio, Produção e Saúde Animal, Curso de Medicina Veterinária, Rua Clóvis Pestana, 793, Araçatuba, SP, 16.050-680, Brazil.
| | - Letícia Colin Panegossi
- Laboratory of Animal Virology and Cell Culture, UNESP-University of São Paulo State, São Paulo, Brazil.,Laboratory of Anatomy, Histology and Embryology, College of Veterinary Medicine, Araçatuba, São Paulo, 16050-680, Brazil
| | - Roberto Gameiro
- Laboratory of Anatomy, Histology and Embryology, College of Veterinary Medicine, Araçatuba, São Paulo, 16050-680, Brazil
| |
Collapse
|
818
|
Application of artificial intelligence for detection of chemico-biological interactions associated with oxidative stress and DNA damage. Chem Biol Interact 2021; 345:109533. [PMID: 34051207 DOI: 10.1016/j.cbi.2021.109533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
In recent years, various AI-based methods have been developed in order to uncover chemico-biological interactions associated with DNA damage and oxidative stress. Various decision trees, bayesian networks, random forests, logistic regression models, support vector machines as well as deep learning tools, have great potential in the area of molecular biology and toxicology, and it is estimated that in the future, they will greatly contribute to our understanding of molecular and cellular mechanisms associated with DNA damage and repair. In this concise review, we discuss recent attempts to build machine learning tools for assessment of radiation - induced DNA damage as well as algorithms that can analyze the data from the most frequently used DNA damage assays in molecular biology. We also review recent works on the detection of antioxidant proteins with machine learning, and the use of AI-related methods for prediction and evaluation of noncoding DNA sequences. Finally, we discuss previously published research on the potential application of machine learning tools in aging research.
Collapse
|
819
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Hatmal M, Alhaj-Qasem DM, Olaimat TM, Mohamud R. Side Effects and Perceptions Following COVID-19 Vaccination in Jordan: A Randomized, Cross-Sectional Study Implementing Machine Learning for Predicting Severity of Side Effects. Vaccines (Basel) 2021; 9:vaccines9060556. [PMID: 34073382 PMCID: PMC8229440 DOI: 10.3390/vaccines9060556] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Since the coronavirus disease 2019 (COVID-19) was declared a pandemic, there was no doubt that vaccination is the ideal protocol to tackle it. Within a year, a few COVID-19 vaccines have been developed and authorized. This unparalleled initiative in developing vaccines created many uncertainties looming around the efficacy and safety of these vaccines. This study aimed to assess the side effects and perceptions following COVID-19 vaccination in Jordan. Methods: A cross-sectional study was conducted by distributing an online survey targeted toward Jordan inhabitants who received any COVID-19 vaccines. Data were statistically analyzed and certain machine learning (ML) tools, including multilayer perceptron (MLP), eXtreme gradient boosting (XGBoost), random forest (RF), and K-star were used to predict the severity of side effects. Results: A total of 2213 participants were involved in the study after receiving Sinopharm, AstraZeneca, Pfizer-BioNTech, and other vaccines (38.2%, 31%, 27.3%, and 3.5%, respectively). Generally, most of the post-vaccination side effects were common and non-life-threatening (e.g., fatigue, chills, dizziness, fever, headache, joint pain, and myalgia). Only 10% of participants suffered from severe side effects; while 39% and 21% of participants had moderate and mild side effects, respectively. Despite the substantial variations between these vaccines in the presence and severity of side effects, the statistical analysis indicated that these vaccines might provide the same protection against COVID-19 infection. Finally, around 52.9% of participants suffered before vaccination from vaccine hesitancy and anxiety; while after vaccination, 95.5% of participants have advised others to get vaccinated, 80% felt more reassured, and 67% believed that COVID-19 vaccines are safe in the long term. Furthermore, based on the type of vaccine, demographic data, and side effects, the RF, XGBoost, and MLP gave both high accuracies (0.80, 0.79, and 0.70, respectively) and Cohen’s kappa values (0.71, 0.70, and 0.56, respectively). Conclusions: The present study confirmed that the authorized COVID-19 vaccines are safe and getting vaccinated makes people more reassured. Most of the post-vaccination side effects are mild to moderate, which are signs that body’s immune system is building protection. ML can also be used to predict the severity of side effects based on the input data; predicted severe cases may require more medical attention or even hospitalization.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
- Correspondence: (M.M.H.); (R.M.)
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | | | | | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
- Correspondence: (M.M.H.); (R.M.)
| |
Collapse
|
820
|
Ullah M, Qian NPM, Yannarelli G. Advances in innovative exosome-technology for real time monitoring of viable drugs in clinical translation, prognosis and treatment response. Oncotarget 2021; 12:1029-1031. [PMID: 34084276 PMCID: PMC8169069 DOI: 10.18632/oncotarget.27927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Mujib Ullah
- Correspondence to:Mujib Ullah, Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, USA email
| | | | | |
Collapse
|
821
|
Abstract
The coronavirus disease 2019 (COVID-19) vaccine was launched in India on 16 January 2021, prioritising health care workers which included medical students. We aimed to assess vaccine hesitancy and factors related to it among medical students in India. An online questionnaire was filled by 1068 medical students across 22 states and union territories of India from 2 February to 7 March 2021. Vaccine hesitancy was found among 10.6%. Concern regarding vaccine safety and efficacy, lack of awareness regarding their eligibility for vaccination and lack of trust in government agencies predicted COVID-19 vaccine hesitancy among medical students. On the other hand, the presence of risk perception regarding themselves being affected with COVID-19 reduced vaccine hesitancy as well as hesitancy in participating in COVID-19 vaccine trials. Vaccine-hesitant students were more likely to derive information from social media and less likely from teachers at their medical colleges. Choosing between the two available vaccines (Covishield and Covaxin) was considered important by medical students both for themselves and for their future patients. Covishield was preferred to Covaxin by students. Majority of those willing to take the COVID-19 vaccine felt that it was important for them to resume their clinical posting, face-to-face classes and get their personal life back on track. Around three-fourths medical students viewed that COVID-19 vaccine should be made mandatory for both health care workers and international travellers. Prior adult vaccination did not have an effect on COVID-19 vaccine hesitancy. Targeted awareness campaigns, regulatory oversight of vaccine trials and public release of safety and efficacy data and trust building activities could further reduce COVID-19 vaccine hesitancy among medical students.
Collapse
|
822
|
Singh B, Mal G, Verma V, Tiwari R, Khan MI, Mohapatra RK, Mitra S, Alyami SA, Emran TB, Dhama K, Moni MA. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 2021; 12:283. [PMID: 33980321 PMCID: PMC8114669 DOI: 10.1186/s13287-021-02334-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. MAIN BODY Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. CONCLUSIONS The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
823
|
Wang S, Chen G, Yao B, Chee AJY, Wang Z, Du P, Qu S, Yu ACH. In Situ and Intraoperative Detection of the Ureter Injury Using a Highly Sensitive Piezoresistive Sensor with a Tunable Porous Structure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21669-21679. [PMID: 33929181 DOI: 10.1021/acsami.0c22791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iatrogenic ureteral injury, as a commonly encountered problem in gynecologic, colorectal, and pelvic surgeries, is known to be difficult to detect in situ and in real-time. Consequently, this injury may be left untreated, thereby leading to serious complications such as infections, renal failure, or even death. Here, high-performance tubular porous pressure sensors were proposed to identify the ureter in situ intraoperatively. The electrical conductivity, mechanical compressibility, and sensor sensitivity can be tuned by changing the pore structure of porous conductive composites. A low percolation threshold of 0.33 vol % was achieved due to the segregated conductive network by pores. Pores also lead to a low effective Young's modulus and high compressibility of the composites and thus result in a high sensitivity of 448.2 kPa-1 of sensors, which is consistent with the results of COMSOL simulation. Self-mounted on the tip of forceps, the sensors can monitor tube pressures with different frequencies and amplitudes, as demonstrated using an artificial pump system. The sensors can also differentiate ureter pulses from aorta pulses of a Bama minipig in situ and in real-time. This work provides a facile, cost-effective, and nondestructive method to identify the ureter intraoperatively, which cannot be effectively achieved by traditional methods.
Collapse
Affiliation(s)
- Shan Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Guorui Chen
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bing Yao
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Adrian J Y Chee
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Zongrong Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Piyi Du
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shaoxing Qu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo N2L 3G1, Canada
| |
Collapse
|
824
|
Ma C, Xu S, Yao Y, Yu P, Xu Y, Wu R, Chen H, Dong X. Mild Breakthrough Infection in a Healthcare Professional Working in the Isolation Area of a Hospital Designated for Treating COVID-19 Patients - Shaanxi Province, China, March, 2021. China CDC Wkly 2021; 3:397-400. [PMID: 34594892 PMCID: PMC8422182 DOI: 10.46234/ccdcw2021.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
What is already known about this topic? Healthcare workers are at high risk of acquiring COVID-19 from occupational exposure to COVID-19 virus during their daily medical service work. Excellent infection prevention and control measures and adequate personal protective equipment (PPE) are essential to reduce the risk of hospital-acquired COVID-19. What is added by this report? On March 17, 2021, a female healthcare professional who already received both doses of the COVID-19 vaccination and was working in the isolation area of a designated COVID-19 hospital was diagnosed with COVID-19 in Xi’an city. Her exposure likely occurred five days before illness onset when she obtained nasopharyngeal and oropharyngeal swabs from the two imported cases that were identified as belonging to the B.1.1.7 lineage, the variant first detected in the United Kingdom. What are the implications for public health practices? Since the healthcare worker had been fully vaccinated and had mild symptomatology, it is considered a mild breakthrough infection. All vaccines are associated with breakthrough infections. In addition to rigorous adherence to infection prevention and control measures, use of adequate PPE, and using good clinical practices, the potential role of chronic upper respiratory infection in acquiring COVID-19 during medical procedures deserves further consideration.
Collapse
Affiliation(s)
- Chaofeng Ma
- Xi'an Center for Diseases Control and Prevention, Xi'an, Shaanxi, China
| | - Songtao Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yecheng Yao
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pengbo Yu
- Shaanxi Center for Diseases Control and Prevention, Xi'an, Shaanxi, China
| | - You Xu
- Xi'an No. 8 Hospital, Xi'an, Shaanxi, China
| | - Rui Wu
- Xi'an Center for Diseases Control and Prevention, Xi'an, Shaanxi, China
| | - Hailong Chen
- Xi'an Center for Diseases Control and Prevention, Xi'an, Shaanxi, China
| | - Xiaoping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
825
|
Faizo AA, Alandijany TA, Abbas AT, Sohrab SS, El-Kafrawy SA, Tolah AM, Hassan AM, Azhar EI. A Reliable Indirect ELISA Protocol for Detection of Human Antibodies Directed to SARS-CoV-2 NP Protein. Diagnostics (Basel) 2021; 11:825. [PMID: 34063315 PMCID: PMC8147428 DOI: 10.3390/diagnostics11050825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
A few months ago, the availability of a reliable and cost-effective testing capacity for COVID-19 was a concern for many countries. With the emergence and circulation of new SARS-CoV-2 variants, another layer of challenge can be added for COVID-19 testing at both molecular and serological levels. This is particularly important for the available tests principally designed to target the S gene/protein where multiple mutations have been reported. Herein, the SARS-CoV-2 NP recombinant protein was utilized to develop a simple and reliable COVID-19 NP human IgG ELISA. The optimized protocol was validated against a micro-neutralization (MN) assay, in-house S-based ELISA, and commercial chemiluminescence immunoassay (CLIA). The developed assay provides 100% sensitivity, 98.9% specificity, 98.9% agreement, and high overall accuracy with an area under curve equal to 0.9998 ± 0.0002 with a 95% confidence interval of 0.99 to 1.00. The optical density values of positive samples significantly correlated with their corresponding MN titers. The assay specifically detects IgG antibodies to the SARS-CoV-2 NP protein and does not cross-detect IgG to the viral S protein. Moreover, it does not cross-react with antibodies related to other coronaviruses (e.g., the Middle East respiratory syndrome coronavirus or human coronavirus HKU1). The availability of this reliable COVID-19 NP IgG ELISA protocol is highly valuable for its diagnostic and epidemiological applications.
Collapse
Affiliation(s)
- Arwa A. Faizo
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (A.A.F.); (A.T.A.); (S.S.S.); (S.A.E.-K.); (A.M.T.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia
| | - Thamir A. Alandijany
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (A.A.F.); (A.T.A.); (S.S.S.); (S.A.E.-K.); (A.M.T.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia
| | - Ayman T. Abbas
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (A.A.F.); (A.T.A.); (S.S.S.); (S.A.E.-K.); (A.M.T.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia
| | - Sayed S. Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (A.A.F.); (A.T.A.); (S.S.S.); (S.A.E.-K.); (A.M.T.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia
| | - Sherif A. El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (A.A.F.); (A.T.A.); (S.S.S.); (S.A.E.-K.); (A.M.T.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia
| | - Ahmed M. Tolah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (A.A.F.); (A.T.A.); (S.S.S.); (S.A.E.-K.); (A.M.T.); (A.M.H.)
| | - Ahmed M. Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (A.A.F.); (A.T.A.); (S.S.S.); (S.A.E.-K.); (A.M.T.); (A.M.H.)
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (A.A.F.); (A.T.A.); (S.S.S.); (S.A.E.-K.); (A.M.T.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia
| |
Collapse
|
826
|
Spinetti G, Avolio E, Madeddu P. Treatment of COVID-19 by stage: any space left for mesenchymal stem cell therapy? Regen Med 2021; 16:477-494. [PMID: 33988482 PMCID: PMC8127835 DOI: 10.2217/rme-2020-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
In many countries, COVID-19 now accounts for more deaths per year than car accidents and even the deadliest wars. Combating the viral pandemics requires a coordinated effort to develop therapeutic protocols adaptable to the disease severity. In this review article, we summarize a graded approach aiming to shield cells from SARS-CoV-2 entry and infection, inhibit excess inflammation and evasion of the immune response, and ultimately prevent systemic organ failure. Moreover, we focus on mesenchymal stem cell therapy, which has shown safety and efficacy as a treatment of inflammatory and immune diseases. The cell therapy approach is now repurposed in patients with severe COVID-19. Numerous trials of mesenchymal stem cell therapy are ongoing, especially in China and the USA. Leader companies in cell therapy have also started controlled trials utilizing their quality assessed cell products. Results are too premature to reach definitive conclusions.
Collapse
Affiliation(s)
| | - Elisa Avolio
- Bristol Medical School, Translational Health Sciences,
University of Bristol, Bristol BS2 8HW, UK
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences,
University of Bristol, Bristol BS2 8HW, UK
| |
Collapse
|
827
|
Kashte S, Gulbake A, El-Amin III SF, Gupta A. COVID-19 vaccines: rapid development, implications, challenges and future prospects. Hum Cell 2021; 34:711-733. [PMID: 33677814 PMCID: PMC7937046 DOI: 10.1007/s13577-021-00512-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 has affected millions of people and put an unparalleled burden on healthcare systems as well as economies throughout the world. Currently, there is no decisive therapy for COVID-19 or related complications. The only hope to mitigate this pandemic is through vaccines. The COVID-19 vaccines are being developed rapidly, compared to traditional vaccines, and are being approved via Emergency Use Authorization (EUA) worldwide. So far, there are 232 vaccine candidates. One hundred and seventy-two are in preclinical development and 60 in clinical development, of which 9 are approved under EUA by different countries. This includes the United Kingdom (UK), United States of America (USA), Canada, Russia, China, and India. Distributing vaccination to all, with a safe and efficacious vaccine is the leading priority for all nations to combat this COVID-19 pandemic. However, the current accelerated process of COVID-19 vaccine development and EUA has many unanswered questions. In addition, the change in strain of SARS-CoV-2 in UK and South Africa, and its increasing spread across the world have raised more challenges, both for the vaccine developers as well as the governments across the world. In this review, we have discussed the different type of vaccines with examples of COVID-19 vaccines, their rapid development compared to the traditional vaccine, associated challenges, and future prospects.
Collapse
Affiliation(s)
- Shivaji Kashte
- Department of Stem Cell and Regenerative Medicine, Center for Interdisciplinary Research, D.Y. Patil Education Society (Institution Deemed To Be University), Kolhapur, Maharashtra 416006 India
| | - Arvind Gulbake
- Dehradun Institute of Technology (DIT) University, Dehradun, Uttarakhand 248009 India
| | - Saadiq F. El-Amin III
- El-Amin Orthopaedic and Sports Medicine Institute, Lawrenceville, GA 30043 USA
- BioIntegrate, Lawrenceville, GA 30043 USA
| | - Ashim Gupta
- BioIntegrate, Lawrenceville, GA 30043 USA
- South Texas Orthopaedic Research Institute, Laredo, TX 78045 USA
- Veterans in Pain, Valencia, CA 91354 USA
- Future Biologics, Lawrenceville, GA 30043 USA
| |
Collapse
|
828
|
Machine Learning and Intelligent Diagnostics in Dental and Orofacial Pain Management: A Systematic Review. Pain Res Manag 2021; 2021:6659133. [PMID: 33986900 PMCID: PMC8093041 DOI: 10.1155/2021/6659133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/11/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
Purpose The study explored the clinical influence, effectiveness, limitations, and human comparison outcomes of machine learning in diagnosing (1) dental diseases, (2) periodontal diseases, (3) trauma and neuralgias, (4) cysts and tumors, (5) glandular disorders, and (6) bone and temporomandibular joint as possible causes of dental and orofacial pain. Method Scopus, PubMed, and Web of Science (all databases) were searched by 2 reviewers until 29th October 2020. Articles were screened and narratively synthesized according to PRISMA-DTA guidelines based on predefined eligibility criteria. Articles that made direct reference test comparisons to human clinicians were evaluated using the MI-CLAIM checklist. The risk of bias was assessed by JBI-DTA critical appraisal, and certainty of the evidence was evaluated using the GRADE approach. Information regarding the quantification method of dental pain and disease, the conditional characteristics of both training and test data cohort in the machine learning, diagnostic outcomes, and diagnostic test comparisons with clinicians, where applicable, were extracted. Results 34 eligible articles were found for data synthesis, of which 8 articles made direct reference comparisons to human clinicians. 7 papers scored over 13 (out of the evaluated 15 points) in the MI-CLAIM approach with all papers scoring 5+ (out of 7) in JBI-DTA appraisals. GRADE approach revealed serious risks of bias and inconsistencies with most studies containing more positive cases than their true prevalence in order to facilitate machine learning. Patient-perceived symptoms and clinical history were generally found to be less reliable than radiographs or histology for training accurate machine learning models. A low agreement level between clinicians training the models was suggested to have a negative impact on the prediction accuracy. Reference comparisons found nonspecialized clinicians with less than 3 years of experience to be disadvantaged against trained models. Conclusion Machine learning in dental and orofacial healthcare has shown respectable results in diagnosing diseases with symptomatic pain and with improved future iterations and can be used as a diagnostic aid in the clinics. The current review did not internally analyze the machine learning models and their respective algorithms, nor consider the confounding variables and factors responsible for shaping the orofacial disorders responsible for eliciting pain.
Collapse
|
829
|
Spinal cord stimulation in chronic neuropathic pain: mechanisms of action, new locations, new paradigms. Pain 2021; 161 Suppl 1:S104-S113. [PMID: 33090743 PMCID: PMC7434213 DOI: 10.1097/j.pain.0000000000001854] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
830
|
Datta B, Paul D, Pal U, Rakshit T. Intriguing Biomedical Applications of Synthetic and Natural Cell-Derived Vesicles: A Comparative Overview. ACS APPLIED BIO MATERIALS 2021; 4:2863-2885. [PMID: 35014382 DOI: 10.1021/acsabm.0c01480] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The significant role of a vesicle is well recognized; however, only lately has the advancement in biomedical applications started to uncover their usefulness. Although the concept of vesicles originates from cell biology, it later transferred to chemistry and material science to develop nanoscale artificial vesicles for biomedical applications. Herein, we examine different synthetic and biological vesicles and their applications in the biomedical field in general. As our understanding of biological vesicles increases, more suitable biomimicking synthetic vesicles will be developed. The comparative discussion between synthetic and natural vesicles for biomedical applications is a relevant topic, and we envision this could enable the development of a proper approach to realize the next-generation treatment goals.
Collapse
Affiliation(s)
- Brateen Datta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Debashish Paul
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Tatini Rakshit
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
831
|
Najafi-Ghalehlou N, Roudkenar MH, Langerodi HZ, Roushandeh AM. Taming of Covid-19: potential and emerging application of mesenchymal stem cells. Cytotechnology 2021; 73:253-298. [PMID: 33776206 PMCID: PMC7982879 DOI: 10.1007/s10616-021-00461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has turned out to cause a pandemic, with a sky scraping mortality. The virus is thought to cause tissue injury by affecting the renin-angiotensin system. Also, the role of the over-activated immune system is noteworthy, leading to severe tissue injury via the cytokine storms. Thus it would be feasible to modulate the immune system response in order to attenuate the disease severity, as well as treating the patients. Today different medicines are being administered to the patients, but regardless of the efficacy of these treatments, adverse effects are pretty probable. Meanwhile, mesenchymal stem cells (MSCs) prove to be an effective candidate for treating the patients suffering from COVID-19 pneumonia, owing to their immunomodulatory and tissue-regenerative potentials. So far, several experiments have been conducted; transplanting MSCs and results are satisfying with no adverse effects being reported. This paper aims to review the recent findings regarding the novel coronavirus and the conducted experiments to treat patients suffering from COVID-19 pneumonia utilizing MSCs.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Habib Zayeni Langerodi
- Guilan Rheumatology Research Center (GRRC), Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Anatomical Sciences Department, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
832
|
Abstract
BACKGROUND Back pain is a common chief complaint within the United States and is caused by a multitude of etiologies. There are many different treatment modalities for back pain, with a frequent option being spinal fusion procedures. The success of spinal fusion greatly depends on instrumentation, construct design, and bone grafts used in surgery. Bone allografts are important for both structural integrity and providing a scaffold for bone fusion to occur. METHOD Searches were performed using terms "allografts" and "bone" as well as product names in peer reviewed literature Pubmed, Google Scholar, FDA-510k approvals, and clinicaltrials.gov. RESULTS This study is a review of allografts and focuses on currently available products and their success in both animal and clinical studies. CONCLUSION Bone grafts used in surgery are generally categorized into 3 main types: autogenous (from patient's own body), allograft (from cadaveric or living donor), and synthetic. This paper focuses on allografts and provides an overview on the different subtypes with an emphasis on recent product development and uses in spinal fusion surgery.
Collapse
Affiliation(s)
- Justin D. Cohen
- Department of
Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E. Kanim
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew J. Tronits
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyun W. Bae
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
833
|
Saha S, Kadam S. Convalescent plasma therapy - a silver lining for COVID-19 management? Hematol Transfus Cell Ther 2021; 43:201-211. [PMID: 33903854 PMCID: PMC8059940 DOI: 10.1016/j.htct.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic has pushed the world towards social, economic, and medical challenges. Scientific research in medicine is the only means to overcome novel and complex diseases like COVID-19. To sum up the therapeutic wild-goose chase, many available antivirals and repurposed drugs have failed to show successful clinical evidence in patient recovery, several vaccine candidates are still waiting in the trial pipelines and a few have become available to the common public for administration in record time. However, with upcoming evidence of coronavirus mutations, available vaccines may thrive on the spirit of doubt about efficacy and effectiveness towards these new strains of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV2). In all these collective uncertainties, plasma therapy has shown a ray of hope for critically ill patients. To date, with very few published case studies of convalescent plasma in COVID-19, there are two school of thought process in the scientific community regarding plasma therapy efficiency and this leads to confusion due to the lack of optimal randomized and controlled studies. Without undertaking any robust scientific studies, evidence or caution, accepting any therapy unanimously may cause more harm than good, but with a clearer understanding of SARS-CoV2 immunopathology and drug response, plasma therapy might be the silver lining against COVID-19 for the global community.
Collapse
|
834
|
任 义, 黄 若, 王 存, 马 亚, 李 晓. [Advantages and challenges of carbon nanotubes as bone repair materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:271-277. [PMID: 33719233 PMCID: PMC8171765 DOI: 10.7507/1002-1892.202009073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Indexed: 11/03/2022]
Abstract
With the in-depth research on bone repair process, and the progress in bone repair materials preparation and characterization, a variety of artificial bone substitutes have been fully developed in the treatment of bone related diseases such as bone defects. However, the current various natural or synthetic biomaterials are still unable to achieve the structure and properties of natural bone. Carbon nanotubes (CNTs) have provided a new direction for the development of new materials in the field of bone repair due to their excellent structural stability, mechanical properties, and functional group modifiability. Moreover, CNTs and their composites have broad prospects in the design of bone repair materials and as drug delivery carriers. This paper describes the advantages of CNTs related to bone tissue regeneration from the aspects of morphology, chemistry, mechanics, electromagnetism, and biosafety, as well as the application of CNTs in drug delivery carriers and reinforcement components of scaffold materials. In addition, the potential problems and prospects of CNTs in bone regenerative medicine are discussed.
Collapse
Affiliation(s)
- 义行 任
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 若愚 黄
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 存阳 王
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 亚洁 马
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 晓明 李
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| |
Collapse
|
835
|
Deer TR, Eldabe S, Falowski SM, Huntoon MA, Staats PS, Cassar IR, Crosby ND, Boggs JW. Peripherally Induced Reconditioning of the Central Nervous System: A Proposed Mechanistic Theory for Sustained Relief of Chronic Pain with Percutaneous Peripheral Nerve Stimulation. J Pain Res 2021; 14:721-736. [PMID: 33737830 PMCID: PMC7966353 DOI: 10.2147/jpr.s297091] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve stimulation (PNS) is an effective tool for the treatment of chronic pain, although its efficacy and utilization have previously been significantly limited by technology. In recent years, purpose-built percutaneous PNS devices have been developed to overcome the limitations of conventional permanently implanted neurostimulation devices. Recent clinical evidence suggests clinically significant and sustained reductions in pain can persist well beyond the PNS treatment period, outcomes that have not previously been observed with conventional permanently implanted neurostimulation devices. This narrative review summarizes mechanistic processes that contribute to chronic pain, and the potential mechanisms by which selective large diameter afferent fiber activation may reverse these changes to induce a prolonged reduction in pain. The interplay of these mechanisms, supported by data in chronic pain states that have been effectively treated with percutaneous PNS, will also be discussed in support of a new theory of pain management in neuromodulation: Peripherally Induced Reconditioning of the Central Nervous System (CNS).
Collapse
Affiliation(s)
- Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Steven M Falowski
- Department of Neurosurgery, Neurosurgical Associates of Lancaster, Lancaster, PA, USA
| | - Marc A Huntoon
- Anesthesiology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
836
|
Modani S, Tomar D, Tangirala S, Sriram A, Mehra NK, Kumar R, Khatri DK, Singh PK. An updated review on exosomes: biosynthesis to clinical applications. J Drug Target 2021; 29:925-940. [PMID: 33709876 DOI: 10.1080/1061186x.2021.1894436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exosomes are membrane-based extracellular vesicles naturally released by the cells. Nano size range of exosomes and unique properties such as stability, biocompatibility and low immunogenicity are key parameters, which make them suitable as nanoparticulate drug delivery system and also considered as promising delivery carriers for future clinical use. This review outlines the composition, biogenesis, isolation and characterisation methods along with biological and clinical applications of exosomes. Further, the biopharmaceutical features of exosomes include loading method, modified exosomes and potential use of exosomes for different diseases are well explained with the current case studies. We well elaborate the future directions for clinical use of exosomes as drug delivery platforms.
Collapse
Affiliation(s)
- Sheela Modani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Devendrasingh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Suma Tangirala
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
837
|
Asimakidou E, Matis GK. Spinal cord stimulation in the treatment of peripheral vascular disease: a systematic review - revival of a promising therapeutic option? Br J Neurosurg 2021; 36:555-563. [PMID: 33703962 DOI: 10.1080/02688697.2021.1884189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Peripheral vascular disease (PVD) is caused by a blood circulation disorder of the arteries and Critical Limb Ischemia (CLI) is the advanced state of PVD. For patients with surgically non-reconstructable CLI, Spinal Cord Stimulation (SCS) appears to be an alternative therapeutic option. OBJECTIVE The aim of our study was to investigate the efficacy of SCS in non-reconstructable CLI compared with the conservative treatment and re-appraise the existing literature in light of the recent advances in neuromodulation. METHODS We conducted a systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, using electronic databases and reference lists for article retrieval. RESULTS A total of 404 records were identified and finally 6 randomised controlled trials (RCTs), a Cochrane review and a meta-analysis were included in our systematic review. The studies assessed the efficacy of tonic SCS in the treatment of patients with non-reconstructable CLI compared with the conservative treatment. There is moderate to high quality evidence suggesting, that tonic SCS has beneficial effects for patients suffering from non-reconstructable CLI in terms of limb salvage, pain relief, clinical improvement and quality of life. The contradictory conclusions of the two meta-analyses regarding the efficacy of SCS for limb salvage at 12 months refer rather to the magnitude of the beneficial effect than to the effect itself. So far, the current literature provides evidence about the traditional tonic SCS but there is a lack of studies investigating the efficacy of new waveforms in the treatment of non-reconstructable CLI. CONCLUSION SCS represents an alternative for PVD patients with non-reconstructable CLI and the existing literature provides encouraging clinical results, that should not be neglected. Instead, they should be re-appraised in light of the recent advances in neuromodulation with the emergence of novel waveform technologies and neuromodulation targets.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Stereotactic and Functional Neurosurgery, University Cologne Hospital, Cologne, Germany
| | - Georgios K Matis
- Department of Stereotactic and Functional Neurosurgery, University Cologne Hospital, Cologne, Germany
| |
Collapse
|
838
|
Lu J, Xie ZY, Zhu DH, Li LJ. Human menstrual blood-derived stem cells as immunoregulatory therapy in COVID-19: A case report and review of the literature. World J Clin Cases 2021; 9:1705-1713. [PMID: 33728315 PMCID: PMC7942055 DOI: 10.12998/wjcc.v9.i7.1705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) caused by novel coronavirus 2019 in December 2019 has spread all around the globe and has caused a pandemic. There is still no current effective guidance on the clinical management of COVID-19. Mesenchymal stem cell therapy has been shown to be one of the therapeutic approaches to alleviate pneumonia and symptoms through their immunomo-dulatory effect in COVID-19 patients.
CASE SUMMARY We describe the first confirmed case of COVID-19 in Hangzhou to explore the role of human menstrual blood-derived stem cells (MenSCs) in the treatment of COVID-19. Moreover, we review the immunomodulation effect including non-specific and specific immune functions of MenSCs for the therapy of COVID-19.
CONCLUSION MenSCs can be helpful to find a promising therapeutic approach for COVID-19.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Zhong-Yang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Dan-Hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
839
|
Baker EA, Fleischer MM, Vara AD, Salisbury MR, Baker KC, Fortin PT, Friedrich CR. Local and Systemic In Vivo Responses to Osseointegrative Titanium Nanotube Surfaces. NANOMATERIALS 2021; 11:nano11030583. [PMID: 33652733 PMCID: PMC7996927 DOI: 10.3390/nano11030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 01/25/2023]
Abstract
Orthopedic implants requiring osseointegration are often surface modified; however, implants may shed these coatings and generate wear debris leading to complications. Titanium nanotubes (TiNT), a new surface treatment, may promote osseointegration. In this study, in vitro (rat marrow-derived bone marrow cell attachment and morphology) and in vivo (rat model of intramedullary fixation) experiments characterized local and systemic responses of two TiNT surface morphologies, aligned and trabecular, via animal and remote organ weight, metal ion, hematologic, and nondecalcified histologic analyses. In vitro experiments showed total adherent cells on trabecular and aligned TiNT surfaces were greater than control at 30 min and 4 h, and cells were smaller in diameter and more eccentric. Control animals gained more weight, on average; however, no animals met the institutional trigger for weight loss. No hematologic parameters (complete blood count with differential) were significantly different for TiNT groups vs. control. Inductively coupled plasma mass spectrometry (ICP-MS) showed greater aluminum levels in the lungs of the trabecular TiNT group than in those of the controls. Histologic analysis demonstrated no inflammatory infiltrate, cytotoxic, or necrotic conditions in proximity of K-wires. There were significantly fewer eosinophils/basophils and neutrophils in the distal region of trabecular TiNT-implanted femora; and, in the midshaft of aligned TiNT-implanted femora, there were significantly fewer foreign body giant/multinucleated cells and neutrophils, indicating a decreased immune response in aligned TiNT-implanted femora compared to controls.
Collapse
Affiliation(s)
- Erin A. Baker
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA;
- Department of Orthopaedic Surgery, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence:
| | - Mackenzie M. Fleischer
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
| | - Alexander D. Vara
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
| | - Meagan R. Salisbury
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
| | - Kevin C. Baker
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
- Department of Orthopaedic Surgery, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Paul T. Fortin
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
- Department of Orthopaedic Surgery, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Craig R. Friedrich
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA;
| |
Collapse
|
840
|
Smith WJ, Cedeño DL, Thomas SM, Kelley CA, Vetri F, Vallejo R. Modulation of microglial activation states by spinal cord stimulation in an animal model of neuropathic pain: Comparing high rate, low rate, and differential target multiplexed programming. Mol Pain 2021; 17:1744806921999013. [PMID: 33626981 PMCID: PMC7925954 DOI: 10.1177/1744806921999013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While numerous studies and patient experiences have demonstrated the efficacy of spinal cord stimulation as a treatment for chronic neuropathic pain, the exact mechanism underlying this therapy is still uncertain. Recent studies highlighting the importance of microglial cells in chronic pain and characterizing microglial activation transcriptomes have created a focus on microglia in pain research. Our group has investigated the modulation of gene expression in neurons and glial cells after spinal cord stimulation (SCS), specifically focusing on transcriptomic changes induced by varying SCS stimulation parameters. Previous work showed that, in rodents subjected to the spared nerve injury (SNI) model of neuropathic pain, a differential target multiplexed programming (DTMP) approach provided significantly better relief of pain-like behavior compared to high rate (HRP) and low rate programming (LRP). While these studies demonstrated the importance of transcriptomic changes in SCS mechanism of action, they did not specifically address the role of SCS in microglial activation. The data presented herein utilizes microglia-specific activation transcriptomes to further understand how an SNI model of chronic pain and subsequent continuous SCS treatment with either DTMP, HRP, or LRP affects microglial activation. Genes for each activation transcriptome were identified within our dataset and gene expression levels were compared with that of healthy animals, naïve to injury and interventional procedures. Pearson correlations indicated that DTMP yields the highest significant correlations to expression levels found in the healthy animals across all microglial activation transcriptomes. In contrast, HRP or LRP yielded weak or very weak correlations for these transcriptomes. This work demonstrates that chronic pain and subsequent SCS treatments can modulate microglial activation transcriptomes, supporting previous research on microglia in chronic pain. Furthermore, this study provides evidence that DTMP is more effective than HRP and LRP at modulating microglial transcriptomes, offering potential insight into the therapeutic efficacy of DTMP.
Collapse
Affiliation(s)
- William J Smith
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - David L Cedeño
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Samuel M Thomas
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA, USA
| | - Courtney A Kelley
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | | | - Ricardo Vallejo
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA.,National Spine and Pain Centers, Bloomington, IL, USA
| |
Collapse
|
841
|
Gupta A, Maffulli N, Rodriguez HC, Lee CE, Levy HJ, El-Amin SF. Umbilical cord-derived Wharton's jelly for treatment of knee osteoarthritis: study protocol for a non-randomized, open-label, multi-center trial. J Orthop Surg Res 2021; 16:143. [PMID: 33602286 PMCID: PMC7890617 DOI: 10.1186/s13018-021-02300-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common joint disorder in the USA, and knee OA has the highest prevalence. Inflammation and decrease in vascularization are key factors in the degeneration of articular cartilage and the associated pain and decrease in function. To combat this process, the use of biologics including umbilical cord-derived Wharton's Jelly (UC-derived WJ) has grown. UC-derived WJ contains large quantities of regenerative factors, including growth factors (GFs), cytokines (CKs), hyaluronic acid (HA), and extracellular vesicles (EVs). The proposed study evaluates the safety and efficacy of intraarticular injection of UC-derived WJ for treatment of knee OA symptoms. METHODS AND ANALYSIS This is a non-randomized, open-label, multi-center, prospective study in which the safety and efficacy of intraarticular UC-derived WJ in patients suffering from grade II/III OA will be assessed. Twelve patients with grade II/III OA who meet the inclusion and exclusion criteria will be recruited for this study which will be conducted at up to two sites within the USA. The participants will be followed for 1 s. Participants will be assessed using the Numeric Pain Rating Scale (NPRS), Knee Injury and Osteoarthritis Outcome Score (KOOS), 36-item short form survey (SF-36), Single Assessment Numeric Evaluation (SANE), physical exams, plain radiography, and Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score for improvements in pain, satisfaction, function, and cartilage regeneration. DISCUSSION This prospective study will contribute to the limited amount of data on UC-derived WJ, particularly with regard to its safety and efficacy. The outcomes from this study will also lay the groundwork for a large placebo-controlled trial of intraarticular UC-derived WJ for symptomatic knee OA. TRIAL REGISTRATION ClinicalTrials.gov NCT04719793 . Registered on 22 January 2021.
Collapse
Affiliation(s)
- Ashim Gupta
- BioIntegrate, Lawrenceville, GA USA
- Future Biologics, Lawrenceville, GA USA
- South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX USA
- Veterans in Pain (V.I.P.), Los Angeles, CA USA
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Orthopedica” Department, Hospital of Salerno, Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent, UK
| | - Hugo C. Rodriguez
- Future Biologics, Lawrenceville, GA USA
- South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX USA
- School of Osteopathic Medicine, University of The Incarnate Word, San Antonio, TX USA
- Future Physicians of South Texas, San Antonio, TX USA
| | - Cassidy E. Lee
- El-Amin Orthopaedic and Sports Medicine Institute, 2505 Newpoint Pkwy, Suite 100B, Lawrenceville, GA 30043 USA
| | - Howard J. Levy
- BioIntegrate, Lawrenceville, GA USA
- Department of Orthopaedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY USA
| | - Saadiq F. El-Amin
- BioIntegrate, Lawrenceville, GA USA
- El-Amin Orthopaedic and Sports Medicine Institute, 2505 Newpoint Pkwy, Suite 100B, Lawrenceville, GA 30043 USA
| |
Collapse
|
842
|
Andia I, Maffulli N. Mesenchymal stromal cell products for intra-articular knee injections for conservative management of osteoarthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X21996953. [PMID: 33680097 PMCID: PMC7897835 DOI: 10.1177/1759720x21996953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sports injuries and secondary joint problems, mainly of the knee, are common, especially in sports associated with high impact activities and/or torsional loading. The consequences can be career ending in elite athletes and reduce exercise activities in recreational people. Various cell products can be injected intra-articularly. First, fresh cellular mixtures can be prepared and injected in the same day, such as stromal vascular fraction of adipose tissue (SVF) and bone marrow concentrates (BMCs). Second, autologous mesenchymal stromal cells (MSCs) can be isolated from BMCs or SVF and, after several weeks of laboratory expansion, several millions of MSCs can be obtained for intra-articular injection. Finally, allogeneic MSCs from the bone marrow, adipose tissue or perinatal tissues of selected donors constitute an ‘off-the-shelf’ experimental treatment for injection delivery in patients with osteoarthritis of the knee. The perceived efficacy of all these products is based on the hypothesis of a paracrine mechanism of action: when living cells are delivered within the joint, they establish a molecular cross-talk with immune cells and local cell phenotypes, thereby modulating inflammation with subsequent modifications in the catabolic/degenerative milieu. Current clinical research examines whether injection delivery of MSCs translates into actual clinical benefits. Overall, clinical studies lack the quality needed to answer major research questions, including clinical and structural efficacy, optimal cell dose, and number of injections and specific protocol for cell delivery. Poor experimental designs are exacerbated by the diversity of patient phenotypes that hinder comparisons between treatments. Further understanding of disease pathology is paramount to develop potent function assays and understand whether the host tissue, the cell product or both should be primed before MSCs are injected intra-articularly.
Collapse
Affiliation(s)
- Isabel Andia
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London E1 4DG, UK
| | - Nicola Maffulli
- Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| |
Collapse
|
843
|
Provenzano DA, Heller JA, Hanes MC. Current Perspectives on Neurostimulation for the Management of Chronic Low Back Pain: A Narrative Review. J Pain Res 2021; 14:463-479. [PMID: 33628045 PMCID: PMC7899039 DOI: 10.2147/jpr.s249580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
Neurostimulation techniques for the treatment of chronic low back pain (LBP) have been rapidly evolving; however, questions remain as to which modalities provide the most efficacious and durable treatment for intractable axial symptoms. Modalities of spinal cord stimulation, such as traditional low-frequency paresthesia based, high-density or high dose (HD), burst, 10-kHz high-frequency therapy, closed-loop, and differential target multiplexed, have been limitedly studied to determine their efficacy for the treatment of axial LBP. In addition, stimulation methods that target regions other than the spinal cord, such as medial branch nerve stimulation of the multifidus muscles and the dorsal root ganglion may also be viable treatment options. Here, current scientific evidence behind neurostimulation techniques have been reviewed with a focus on the management of chronic axial LBP.
Collapse
Affiliation(s)
- David A Provenzano
- Pain Diagnostics and Interventional Care, Sewickley, PA, USA.,Western PA Surgery Center, Wexford, PA, USA
| | | | | |
Collapse
|
844
|
Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. EMERGENT MATERIALS 2021; 4:75-99. [PMID: 33615140 PMCID: PMC7881345 DOI: 10.1007/s42247-021-00168-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the recent outbreak of coronavirus 2019 (COVID-19). Although nearly two decades have passed since the emergence of pandemics such as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), no effective drug against the CoV family has yet been approved, so there is a need to find newer therapeutic targets. Currently, simultaneous research across the globe is being performed to discover efficient vaccines or drugs, including both conventional therapies used to treat previous similar diseases and emerging therapies like nanomedicine. Nanomedicine has already proven its value through its application drug delivery and nanosensors in other diseases. Nanomedicine and its components can play an important role in various stages of prevention, diagnosis, treatment, vaccination, and research related to COVID-19. Nano-based antimicrobial technology can be integrated into personal equipment for the greater safety of healthcare workers and people. Various nanomaterials such as quantum dots can be used as biosensors to diagnose COVID-19. Nanotechnology offers benefits from the use of nanosystems, such as liposomes, polymeric and lipid nanoparticles, metallic nanoparticles, and micelles, for drug encapsulation, and facilitates the improvement of pharmacological drug properties. Antiviral functions for nanoparticles can target the binding, entry, replication, and budding of COVID-19. The toxicity-related inorganic nanoparticles are one of the limiting factors of its use that should be further investigated and modified. In this review, we are going to discuss nanomedicine options for COVID-19 management, similar applications for related viral diseases, and their gap of knowledge.
Collapse
Affiliation(s)
- Farzan Vahedifard
- Altman Clinical and Translational Research Institute, University of California San Diego Health Center, San Diego, CA USA
| | - Krishnan Chakravarthy
- Division of Pain Medicine, Department of Anesthesiology, University of California San Diego Health Center, 9400 Campus Point Dr, La Jolla, San Diego, CA USA
| |
Collapse
|
845
|
Su Y, Liu Y, Ma C, Guan C, Ma X, Meng S. Mesenchymal stem cell-originated exosomal lncRNA HAND2-AS1 impairs rheumatoid arthritis fibroblast-like synoviocyte activation through miR-143-3p/TNFAIP3/NF-κB pathway. J Orthop Surg Res 2021; 16:116. [PMID: 33549125 PMCID: PMC7866436 DOI: 10.1186/s13018-021-02248-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNA heart and neural crest derivatives expressed 2-antisense RNA 1 (HAND2-AS1) was found to be elevated in rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLSs). However, whether HAND2-AS1 functions as an exosomal lncRNA related to mesenchymal stem cells (MSCs) in RA progression is unknown. Methods The expression of HAND2-AS1, microRNA (miR)-143-3p, and tumor necrosis factor alpha-inducible protein 3 (TNFAIP3) was detected using quantitative real-time polymerase chain reaction and Western blot. Cell proliferation, apoptosis, migration, and invasion were detected using cell counting kit-8, flow cytometry, and wound healing and transwell assays. The levels of tumor necrosis factor-α (TNF-α) and interleukins (IL)-6 were analyzed using enzyme-linked immunosorbent assay. The level of phosphorylated-p65 was examined by Western blot. The binding interaction between miR-143-3p and HAND2-AS1 or TNFAIP3 was confirmed by the dual-luciferase reporter and RIP assays. Exosomes were isolated by ultracentrifugation and qualified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Results HAND2-AS1 was lowly expressed in RA synovial tissues, and HAND2-AS1 re-expression suppressed the proliferation, motility, and inflammation and triggered the apoptosis in RA-FLSs via the inactivation of NF-κB pathway. Mechanistically, HAND2-AS1 directly sponged miR-143-3p and positively regulated TNFAIP3 expression, the target of miR-143-3p. Moreover, the effects of HAND2-AS1 on RA-FLSs were partially attenuated by miR-143-3p upregulation or TNFAIP3 knockdown. HAND2-AS1 could be packaged into hMSC-derived exosomes and absorbed by RA-FLSs, and human MSC-derived exosomal HAND2-AS1 also repressed above malignant biological behavior of RA-FLSs. Conclusion MSC-derived exosomes participated in the intercellular transfer of HAND2-AS1 and suppressed the activation of RA-FLSs via miR-143-3p/TNFAIP3/NF-κB pathway, which provided a novel insight into the pathogenesis and treatment of RA.
Collapse
Affiliation(s)
- Yuhua Su
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Yajing Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Chao Ma
- Internal medicine, Yuncheng Hospital of traditional Chinese Medicine, Heze, 274700, Shandong, China
| | - Chunxiao Guan
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Xiufen Ma
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Shan Meng
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China.
| |
Collapse
|
846
|
Basiri A, Mansouri F, Azari A, Ranjbarvan P, Zarein F, Heidari A, Golchin A. Stem Cell Therapy Potency in Personalizing Severe COVID-19 Treatment. Stem Cell Rev Rep 2021; 17:193-213. [PMID: 33511518 PMCID: PMC7842180 DOI: 10.1007/s12015-020-10110-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Currently, there are no specific and efficient vaccines or drugs for COVID-19, particularly in severe cases. A wide range of variations in the clinical symptoms of different patients attributed to genomic differences. Therefore, personalized treatments seem to play a critical role in improving these symptoms and even similar conditions. Prompted by the uncertainties in the area of COVID-19 therapies, we reviewed the published papers and concepts to gather and provide useful information to clinicians and researchers interested in personalized medicine and cell-based therapy. One novel aspect of this study focuses on the potential application of personalized medicine in treating severe cases of COVID-19. However, it is theoretical, as any real-world examples of the use of genuinely personalized medicine have not existed yet. Nevertheless, we know that stem cells, especially MSCs, have immune-modulatory effects and can be stored for future personalized medicine applications. This theory has been conjugated with some evidence that we review in the present study. Besides, we discuss the importance of personalized medicine and its possible aspects in COVID-19 treatment, then review the cell-based therapy studies for COVID-19 with a particular focus on stem cell-based therapies as a primary personalized tool medicine. However, the idea of cell-based therapy has not been accepted by several scientific communities due to some concerns of lack of satisfactory clinical studies; still, the MSCs and their clinical outcomes have been revealed the safety and potency of this therapeutic approach in several diseases, especially in the immune-mediated inflammatory diseases and some incurable diseases. Promising outcomes have resulted in that clinical studies are going to continue.
Collapse
Affiliation(s)
- Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Mansouri
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Arezo Azari
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Ranjbarvan
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fateme Zarein
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Nanobiotechnology, faculty of biological sciences, Tarbiat Modares University, Tehran, Iran
| | - Arash Heidari
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
847
|
Mazini L, Ezzoubi M, Malka G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther 2021; 12:1. [PMID: 33397467 PMCID: PMC7781178 DOI: 10.1186/s13287-020-02006-w] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have raised big interest in therapeutic applications in regenerative medicine and appear to fulfill the criteria for a successful cell therapy. Their low immunogenicity and their ability to self-renew, to differentiate into different tissue-specific progenitors, to migrate into damaged sites, and to act through autocrine and paracrine pathways have been altogether testified as the main mechanisms whereby cell repair and regeneration occur. The absence of standardization protocols in cell management within laboratories or facilities added to the new technologies improved at patient's bedside and the discrepancies in cell outcomes and engraftment increase the limitations on their widespread use by balancing their real benefit versus the patient safety and security. Also, comparisons across pooled patients are particularly difficult in the fact that multiple medical devices are used and there is absence of harmonized assessment assays despite meeting regulations agencies and efficient GMP protocols. Moreover, the emergence of the COVID-19 breakdown added to the complexity of implementing standardization. Cell- and tissue-based therapies are completely dependent on the biological manifestations and parameters associated to and induced by this virus where the scope is still unknown. The initial flow chart identified for stem cell therapies should be reformulated and updated to overcome patient infection and avoid significant variability, thus enabling more patient safety and therapeutic efficiency. The aim of this work is to highlight the major guidelines and differences in ADSC processing meeting the current good manufacturing practices (cGMP) and the cellular therapy-related policies. Specific insights on standardization of ADSCs proceeding at different check points are also presented as a setup for the cord blood and bone marrow.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Center of Biological and Medical Sciences CIAM, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohamed Ezzoubi
- Centre des Brûlés et chirurgie réparatrice, Centre Hospitalier Universitaire Ibn Rochd Casablanca, Faculté de Médecine et de Pharmacie Casablanca, Casablanca, Morocco
| | - Gabriel Malka
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Center of Biological and Medical Sciences CIAM, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
848
|
Rodriguez HC, Gupta M, Cavazos-Escobar E, El-Amin SF, Gupta A. Umbilical cord: an allogenic tissue for potential treatment of COVID-19. Hum Cell 2021; 34:1-13. [PMID: 33033884 PMCID: PMC7544522 DOI: 10.1007/s13577-020-00444-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic has placed an unprecedented burden on health care systems and economies around the globe. Clinical evidences demonstrate that SARS-CoV-2 infection produces detrimental levels of pro-inflammatory cytokines and chemokines that can lead to acute respiratory distress syndrome (ARDS) and significant systemic organ damage. Currently, there is no definitive therapy for COVID-19 or associated complications, and with the hope of a safe and effective vaccine in the distant future, the search for an answer is paramount. Mesenchymal stem cells (MSCs) provide a viable option due to their immunomodulatory effects and tissue repair and regeneration abilities. Studies have demonstrated that compassionate use of MSCs can reduce symptoms associated with SARS-CoV-2 infection, eliminate fluid buildup, and act as a regenerative technique for alveolar damage; all in a safe and effective way. With multiple autologous sources available for MSCs, each with their own respective limitations, allogenic umbilical cord (UC) and/or UC-derived Wharton's jelly (WJ) seem to be best positioned source to harvest MSCs to treat COVID-19 and associated symptoms. As an allogenic source, UC is readily available, easily obtainable, and is rich in immunomodulatory and regenerative factors. In this manuscript, we reviewed the current evidences and explored the potential therapeutic use of allogenic UC and/or WJ-derived MSCs for the treatment of COVID-19. Although, preliminary preclinical and clinical studies indicate that their use is safe and potentially effective, more multi-center, randomized, controlled trials are needed to adequately assess the safety and efficacy of UC and/or WJ-derived MSCs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Hugo C. Rodriguez
- Future Biologics, 1110 Ballpark Ln Apt 5109, Lawrenceville, GA 30043 USA
- Future Physicians of South Texas, San Antonio, TX USA
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX USA
- South Texas Orthopaedic Research Institute, Laredo, TX USA
| | - Manu Gupta
- Future Biologics, 1110 Ballpark Ln Apt 5109, Lawrenceville, GA 30043 USA
| | - Emilio Cavazos-Escobar
- Future Physicians of South Texas, San Antonio, TX USA
- University of Texas Medical Branch at Galveston, Galveston, TX USA
| | - Saadiq F. El-Amin
- El-Amin Orthopaedic and Sports Medicine Institute, Lawrenceville, GA USA
- BioIntegrate, Lawrenceville, GA USA
| | - Ashim Gupta
- Future Biologics, 1110 Ballpark Ln Apt 5109, Lawrenceville, GA 30043 USA
- South Texas Orthopaedic Research Institute, Laredo, TX USA
- BioIntegrate, Lawrenceville, GA USA
- Veterans in Pain, Los Angeles, CA USA
| |
Collapse
|
849
|
Real-world evidence on spinal cord neuromodulation and pain: Long-term effectiveness analysis in a single-center cohort. BRAIN AND SPINE 2021; 1:100301. [PMID: 36247397 PMCID: PMC9562228 DOI: 10.1016/j.bas.2021.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022]
Abstract
Introduction Chronic pain inflicts damage in multiple spheres of patient's life and remains a challenge for health care providers. Real-world evidence derived from outcome registries represents a key aspect of the ongoing systematic assessment and future development of neurostimulation devices. Research question The objective of the present study was to assess the long-term effectiveness of neurostimulation as a treatment for spinal chronic pain. Material and methods The patients analyzed in the present study represent a singlecenter cohort of 52 individuals. Primary outcome measures included numeric pain rating scale, Beck depression index II and Oswestry disability index variation from baseline to 36-month visits. Secondary outcomes included its evaluation at 6-month, 12-month and 24-month visits. Results A significant improvement in targeted pain, depression and disability values were observed at 36-month follow-up (P < 0.001, P = 0.009 and P < 0.001 respectively). Those results were consistent in the leg and back pain subgroup but not in the neck, chest and arm pain subgroup. The decrease in pain, depression and disability values happened progressively through time, with the exception of the 12-month visit, where a mild stagnation was observed. Discussion and conclusion Our results suggest that spinal cord stimulation is an effective long-term treatment for spinal chronic pain in real-world conditions when applied to a variety of patients and conditions usually seen in routine practice. Nevertheless, some fluctuations may occur during treatment so prolonged follow-up periods should be considered before rendering an unsuccessful therapy diagnosis. Spinal cord stimulation is a treatment option for spinal chronic pain. Real-world evidence from large registries regarding its effectiveness is needed. Long-term improvement in pain, depression and disability can be achieved. Fluctuations during treatment may occur, but do not limit the potential benefit.
Collapse
|
850
|
Bharadwaz A, Jayasuriya AC. Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111748. [PMID: 33545890 PMCID: PMC7867678 DOI: 10.1016/j.msec.2020.111748] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/14/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Bone regeneration using bioactive molecules and biocompatible materials is growing steadily with the advent of the new findings in cellular signaling. Bone Morphogenetic Protein (BMP)-9 is a considerably recent discovery from the BMP family that delivers numerous benefits in osteogenesis. The Smad cellular signaling pathway triggered by BMPs is often inhibited by Noggin. However, BMP-9 is resistant to Noggin, thus, facilitating a more robust cellular differentiation of osteoprogenitor cells into preosteoblasts and osteoblasts. This review encompasses a general understanding of the Smad signaling pathway activated by the BMP-9 ligand molecule with its specific receptors. The robust osteogenic cellular differentiation cue provided by BMP-9 has been reviewed from a bone regeneration perspective with several in vitro as well as in vivo studies reporting promising results for future research. The effect of the biomaterial, chosen in such studies as the scaffold or carrier matrix, on the activity of BMP-9 and subsequent bone regeneration has been highlighted in this review. The non-viral delivery technique for BMP-9 induced bone regeneration is a safer alternative to its viral counterpart. The recent advances in non-viral BMP-9 delivery have also highlighted the efficacy of the protein molecule at a low dosage. This opens a new horizon as a more efficient and safer alternative to BMP-2, which was prevalent among clinical trials; however, BMP-2 applications have reported its downsides during bone defect healing such as cystic bone formation.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|