801
|
Sadok I, Jędruchniewicz K, Rawicz-Pruszyński K, Staniszewska M. UHPLC-ESI-MS/MS Quantification of Relevant Substrates and Metabolites of the Kynurenine Pathway Present in Serum and Peritoneal Fluid from Gastric Cancer Patients-Method Development and Validation. Int J Mol Sci 2021; 22:6972. [PMID: 34203517 PMCID: PMC8269001 DOI: 10.3390/ijms22136972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolites and enzymes involved in the kynurenine pathway (KP) are highly promising targets for cancer treatment, including gastrointestinal tract diseases. Thus, accurate quantification of these compounds in body fluids becomes increasingly important. The aim of this study was the development and validation of the UHPLC-ESI-MS/MS methods for targeted quantification of biologically important KP substrates (tryptophan and nicotinamide) and metabolites(kynurenines) in samples of serum and peritoneal fluid from gastric cancer patients. The serum samples were simply pretreated with trichloroacetic acid to precipitate proteins. The peritoneal fluid was purified by solid-phase extraction before analysis. Validation was carried out for both matrices independently. Analysis of the samples from gastric cancer patients showed different accumulations of tryptophan and its metabolites in different biofluids of the same patient. The protocols will be used for the evaluation of tryptophan and kynurenines in blood and peritoneal fluid to determine correlation with the clinicopathological status of gastric cancer or the disease's prognosis.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland; (I.S.); (K.J.)
| | - Katarzyna Jędruchniewicz
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland; (I.S.); (K.J.)
| | - Karol Rawicz-Pruszyński
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13, 20-080 Lublin, Poland;
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland; (I.S.); (K.J.)
| |
Collapse
|
802
|
Yang Y, Bai L, Liao W, Feng M, Zhang M, Wu Q, Zhou K, Wen F, Lei W, Zhang N, Huang J, Li Q. The role of non-apoptotic cell death in the treatment and drug-resistance of digestive tumors. Exp Cell Res 2021; 405:112678. [PMID: 34171351 DOI: 10.1016/j.yexcr.2021.112678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
Tumor cell apoptosis evasion is one of the main reasons for easy metastasis occurrence, chemotherapy resistance, and the low five-year survival rate of digestive system tumors. Current research has shown that non-apoptotic cell death plays an important role in tumors of the digestive system. Therefore, increasing the proportion of non-apoptotic tumor cells is one of the effective methods of improving therapeutic efficacies for digestive system tumors. Non-apoptotic cell death modes mainly include autophagic cell death, pyroptosis, ferroptosis, in addition to other cell death modes. This review covers a systematic review relating to the research progress made into autophagic cell death, pyroptosis, ferroptosis, and other cell death modes in the treatment of digestive system tumors. It also highlights how treatment is a reasonable prospect based on clinical experience and provides reliable guidance for the further development of digestive system tumor treatments.
Collapse
Affiliation(s)
- Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - LiangLiang Bai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Weiting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mingyang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mengxi Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiuji Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Nan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Jiaxing Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China.
| |
Collapse
|
803
|
Activity Guided Isolation of Phenolic Compositions from Anneslea fragrans Wall. and Their Cytoprotective Effect against Hydrogen Peroxide Induced Oxidative Stress in HepG2 Cells. Molecules 2021; 26:molecules26123690. [PMID: 34204227 PMCID: PMC8234824 DOI: 10.3390/molecules26123690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/04/2023] Open
Abstract
Anneslea fragrans Wall., commonly known as “Pangpo Tea”, is traditionally used as a folk medicine and healthy tea for the treatment of liver and intestine diseases. The aim of this study was to purify the antioxidative and cytoprotective polyphenols from A. fragrans leaves. After fractionation with polar and nonpolar organic solvents, the fractions of aqueous ethanol extract were evaluated for their total phenolic (TPC) and flavonoid contents (TFC) and antioxidant activities (DPPH, ABTS, and FRAP assays). The n-butanol fraction (BF) showed the highest TPC and TFC with the strongest antioxidant activity. The bio-guided chromatography of BF led to the purification of six flavonoids (1–6) and one benzoquinolethanoid (7). The structures of these compounds were determined by NMR and MS techniques. Compound 6 had the strongest antioxidant capacity, which was followed by 5 and 2. The protective effect of the isolated compounds on hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells revealed that the compounds 5 and 6 exhibited better protective effects by inhibiting ROS productions, having no significant difference with vitamin C (p > 0.05), whereas 6 showed the best anti-apoptosis activity. The results suggest that A. fragrans could serve as a valuable antioxidant phytochemical source for developing functional food and health nutraceutical products.
Collapse
|
804
|
Wang YT, Lin MR, Chen WC, Wu WH, Wang FS. Optimization of a modeling platform to predict oncogenes from genome-scale metabolic networks of non-small-cell lung cancers. FEBS Open Bio 2021. [PMID: 34137202 PMCID: PMC8329960 DOI: 10.1002/2211-5463.13231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer cell dysregulations result in the abnormal regulation of cellular metabolic pathways. By simulating this metabolic reprogramming using constraint-based modeling approaches, oncogenes can be predicted, and this knowledge can be used in prognosis and treatment. We introduced a trilevel optimization problem describing metabolic reprogramming for inferring oncogenes. First, this study used RNA-Seq expression data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples and their healthy counterparts to reconstruct tissue-specific genome-scale metabolic models and subsequently build the flux distribution pattern that provided a measure for the oncogene inference optimization problem for determining tumorigenesis. The platform detected 45 genes for LUAD and 84 genes for LUSC that lead to tumorigenesis. A high level of differentially expressed genes was not an essential factor for determining tumorigenesis. The platform indicated that pyruvate kinase (PKM), a well-known oncogene with a low level of differential gene expression in LUAD and LUSC, had the highest fitness among the predicted oncogenes based on computation. By contrast, pyruvate kinase L/R (PKLR), an isozyme of PKM, had a high level of differential gene expression in both cancers. Phosphatidylserine synthase 1 (PTDSS1), an oncogene in LUAD, was inferred to have a low level of differential gene expression, and overexpression could significantly reduce survival probability. According to the factor analysis, PTDSS1 characteristics were close to those of the template, but they were unobvious in LUSC. Angiotensin-converting enzyme 2 (ACE2) has recently garnered widespread interest as the SARS-CoV-2 virus receptor. Moreover, we determined that ACE2 is an oncogene of LUSC but not of LUAD. The platform developed in this study can identify oncogenes with low levels of differential expression and be used to identify potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- You-Tyun Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Min-Ru Lin
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wei-Chen Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wu-Hsiung Wu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
805
|
Wu ZH, Huang HM, Yang DL. Integrated analysis of the functions and prognostic values of RNA binding proteins in hepatocellular carcinoma. BMC Gastroenterol 2021; 21:265. [PMID: 34130650 PMCID: PMC8204501 DOI: 10.1186/s12876-021-01843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the most common malignant tumors worldwide, ranks as the fifth most common cancer and has been the second most frequent cause of cancer-related death. RNA binding proteins (RBPs) are proteins that interact with different classes of RNA and are commonly detected in cells. Methods We used RNA sequencing data from TCGA to display dysfunctional RBPs microenvironments and provide potential useful biomarkers for HCC diagnosis and prognosis. Results 330 differently expressed RBPs (208 upregulated and 122 downregulated) were identified. KEGG were mainly enriched in RNA degradation, Influenza A, Hepatitis C, RIG-I-like receptor signaling pathway, Herpes simplex virus 1 infection and RNA transport. CBioPortal results demonstrated that these genes were altered in 50 samples out of 357 HCC patients (14%) and the amplification of BRCA1 was the largest frequent copy-number alteration. Conclusion Based on the online database, we identified novel RBPs markers for the prognosis of hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01843-0.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Ming Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dong-Liang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
806
|
Zhao S, Lin C, Yang T, Qian X, Lu J, Cheng J. Expression of long non-coding RNA LUCAT1 in patients with chronic obstructive pulmonary disease and its potential functions in regulating cigarette smoke extract-induced 16HBE cell proliferation and apoptosis. J Clin Lab Anal 2021; 35:e23823. [PMID: 34125980 PMCID: PMC8274995 DOI: 10.1002/jcla.23823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), characterized by persistent airflow limitation, was a disease mediated by a combination of inflammatory factors, immune cells, and immune mediators. COPD was an inflammatory and autoimmune disease involving T-lymphocytes triggered by cigarette smoke and other factors that progressively affected the bronchi, lung parenchyma, and pulmonary blood vessels. LncRNAs were reported to be implicated in COPD pathogenesis and development. METHODS Non-smokers, smokers (non-COPD), and COPD patients were randomly selected in an established COPD surveillance cohort. Demographic and clinical information of all subjects were collected. Pulmonary function was measured by post-bronchodilator testing. qRT-PCR and ELISA assays were performed to detect the expression levels of lncRNA LUCAT1, miR-181a-5p, and inflammatory cytokines. An in vitro exposure model was constructed using cigarette smoke extract (CSE)-induced human bronchial epithelial (16HBE) cells. The dual-luciferase reporter and RNA pull-down assays were used to detect the binding relationship between lncRNA LUCAT1 and miR-181a-5p; meanwhile, Spearman's correlation assay was used to verify the correlation between lncRNA LUCAT1 and miR-181a-5p. Afterward, the lncRNA LUCAT1 silencing plasmid was constructed and co-transfected with a miR-181a-5p inhibitor to evaluate the effects on CSE-induced 16HBE cell proliferation and apoptosis. Finally, a Western blot assay was utilized to determine the mechanism of lncRNA LUCAT1/miR-181a-5p/Wnt/β-catenin axis in COPD. RESULTS LncRNA LUCAT1 was upregulated in the serums of COPD patients. Correlation analysis further confirmed the strong correlation between LUCAT1 expression and inflammatory cytokines IL-1β, IL-6, and TNF-α. Receiver operating characteristic (ROC) analysis verified the potential of LUCAT1 in COPD diagnosis. After treatment with CSE, LUCAT1 was significantly increased while its target miR-181a-5p was decreased in 16HBE cells. Cell proliferation and apoptosis assays showed that LUCAT1 silencing alleviated CSE's effects on 16HBE cell proliferation and apoptosis. Mechanically, rescue assays demonstrated that miR-181a-5p inhibition could partially counteract the impact of LUCAT1 on COPD progression through the Wnt/β-catenin pathway. CONCLUSIONS LncRNA LUCAT1 may be a valuable indicator for differentiating COPD. Moreover, LncRNA LUCAT1/miR-181-5p/Wnt/β-catenin axis behaved as a critical role in COPD development, shedding new sights for clinical treatment.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Clinical Laboratory, Affiliated Yixing People's Hospital, Jiangsu University, Wuxi, China
| | - Chunyan Lin
- Department of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Yang
- Department of Clinical Laboratory, Affiliated Yixing People's Hospital, Jiangsu University, Wuxi, China
| | - Xiaoyu Qian
- Department of Clinical Laboratory, Affiliated Yixing People's Hospital, Jiangsu University, Wuxi, China
| | - Junjie Lu
- Department of Critical Care Medicine, Affiliated Yixing People's Hospital, Jiangsu University, Wuxi, China
| | - Jing Cheng
- Department of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
807
|
Wu J, Gao L, Chen H, Zhou X, Lu X, Mao Z. LINC02535 promotes cell growth in poorly differentiated gastric cancer. J Clin Lab Anal 2021; 35:e23877. [PMID: 34125981 PMCID: PMC8373362 DOI: 10.1002/jcla.23877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background Abnormal long non‐coding RNA (lncRNA) expression plays important roles in gastric cancer. However, the functions of many lncRNAs in poorly differentiated gastric cancer (PDGC) remain unknown. Methods Three sets of paired tissues from patients with PDGC were used, and transcriptome sequencing was performed, followed by the construction and sequencing of a library and mapping of the reads. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein‐protein interaction (PPI) networks were analysed, and canonical pathway significance was calculated among the differentially expressed genes (DEGs; p < 0.05). Gene expression in 30 paired PDGC specimens and four cell lines was validated through quantitative PCR. Cell proliferation, migration, invasion, apoptosis, and wound healing were analysed. Results A total of 499 upregulated DEGs and 627 downregulated DEGs were identified between peritumoral and gastric cancer tissues. The proportions of positive and negative correlations between LINC02535 and the DEGs were 98.40% and 92.66%, respectively, while the Spearman's correlation coefficient was greater than 0.5. The PPI network showed that approximately 73.15% of the top five genes were directly correlated with LINC02535 according to the STRING database. Based on KEGG analysis, the functions of LINC02535 target genes were enriched in signalling pathways related to cancer cell growth. Furthermore, cell function studies showed that LINC02535 upregulation contributed to cell proliferation, migration, invasion, and wound healing and that its inhibition facilitated cell apoptosis. Conclusion LINC02535 expression was upregulated in PDGC and contributed to cell proliferation, migration, invasion and wound healing, whereas its inhibition in PDGC facilitated cell apoptosis.
Collapse
Affiliation(s)
- Jianzhong Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastroenterology Surgery, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xialiang Lu
- Department of Pathology, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, China
| | - Zhongqi Mao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
808
|
A case of immunoglobulin G4-related sclerosing mesenteritis without other organ involvement. Clin J Gastroenterol 2021; 14:1411-1418. [PMID: 34097250 DOI: 10.1007/s12328-021-01451-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
A 64-year-old man presented to our hospital with abdominal pain and 4-5 episodes of watery diarrhea per day for 2 months. Abdominal ultrasound examination revealed a mass in the peritoneal cavity, and computed tomography showed a 13.4 cm mass in the mesentery and a 3 cm mass in the mesocolon. The patient underwent laparoscopic partial resection for diagnosis. Microscopically, abundant fibrosis and numerous immunoglobulin (Ig) G4-positive plasma cells were observed. The serum level of IgG4 was 665 mg/dl postoperatively. These findings suggested that the lesion was consistent with IgG4-related sclerosing mesenteritis. Oral steroids resulted in rapid disappearance of symptoms and a decrease in masses. Recently, sclerosing mesenteritis are reported as IgG4-related disease or mimicking IgG4-related disease but multiple lesions rarely occur in the same organ. We report a case of IgG4-related sclerosing mesenteritis with multiple lesions without involvement of other organs, such as the pancreas and salivary glands.
Collapse
|
809
|
Al-Dherasi A, Huang QT, Liao Y, Al-Mosaib S, Hua R, Wang Y, Yu Y, Zhang Y, Zhang X, Huang C, Mousa H, Ge D, Sufiyan S, Bai W, Liu R, Shao Y, Li Y, Zhang J, Shi L, Lv D, Li Z, Liu Q. A seven-gene prognostic signature predicts overall survival of patients with lung adenocarcinoma (LUAD). Cancer Cell Int 2021; 21:294. [PMID: 34092242 PMCID: PMC8183047 DOI: 10.1186/s12935-021-01975-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common types in the world with a high mortality rate. Despite advances in treatment strategies, the overall survival (OS) remains short. Our study aims to establish a reliable prognostic signature closely related to the survival of LUAD patients that can better predict prognosis and possibly help with individual monitoring of LUAD patients. Methods Raw RNA-sequencing data were obtained from Fudan University and used as a training group. Differentially expressed genes (DEGs) for the training group were screened. The univariate, least absolute shrinkage and selection operator (LASSO), and multivariate cox regression analysis were conducted to identify the candidate prognostic genes and construct the risk score model. Kaplan–Meier analysis, time-dependent receiver operating characteristic (ROC) curve were used to evaluate the prognostic power and performance of the signature. Moreover, The Cancer Genome Atlas (TCGA-LUAD) dataset was further used to validate the predictive ability of prognostic signature. Results A prognostic signature consisting of seven prognostic-related genes was constructed using the training group. The 7-gene prognostic signature significantly grouped patients in high and low-risk groups in terms of overall survival in the training cohort [hazard ratio, HR = 8.94, 95% confidence interval (95% CI)] [2.041–39.2]; P = 0.0004), and in the validation cohort (HR = 2.41, 95% CI [1.779–3.276]; P < 0.0001). Cox regression analysis (univariate and multivariate) demonstrated that the seven-gene signature is an independent prognostic biomarker for predicting the survival of LUAD patients. ROC curves revealed that the 7-gene prognostic signature achieved a good performance in training and validation groups (AUC = 0.91, AUC = 0.7 respectively) in predicting OS for LUAD patients. Furthermore, the stratified analysis of the signature showed another classification to predict the prognosis. Conclusion Our study suggested a new and reliable prognostic signature that has a significant implication in predicting overall survival for LUAD patients and may help with early diagnosis and making effective clinical decisions regarding potential individual treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01975-z.
Collapse
Affiliation(s)
- Aisha Al-Dherasi
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Biochemistry, Faculty of Science, Ibb University, Ibb, Yemen
| | - Qi-Tian Huang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yuwei Liao
- Yangjiang Key Laboratory of Respiratory Diseases, Yangjiang People's Hospital, Yangjiang, Guangdong Province, People's Republic of China
| | - Sultan Al-Mosaib
- Department of Computer Science and Technology, Sahyadri Science College, Kuvempu University, Shimoga, Karnataka, India
| | - Rulin Hua
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yichen Wang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Yu Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Chao Huang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Haithm Mousa
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Dongcen Ge
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Sufiyan Sufiyan
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Wanting Bai
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Ruimei Liu
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yanyan Shao
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yulong Li
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Jingkai Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Dekang Lv
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Zhiguang Li
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Quentin Liu
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
810
|
Comprehensive Analysis of Prognostic Value of MEX3A and Its Relationship with Immune Infiltrates in Ovarian Cancer. J Immunol Res 2021; 2021:5574176. [PMID: 34189143 PMCID: PMC8195639 DOI: 10.1155/2021/5574176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
MEX3A is a critical RNA-binding ubiquitin ligase that is upregulated in various types of cancer. However, the correlations of MEX3A with prognosis and its molecular mechanism in ovarian cancer (OC) remain unclear. The expression level, prognostic values, and the genetic variations of MEX3A were analyzed via Gene Expression Profiling Interactive Analysis (GEPIA) Oncomine, Kaplan-Meier plotter, and cBioPortal. We used the LinkedOmics database to investigate the functions of MEX3A coexpressed genes and performed visualizing gene interaction network analysis on the GeneMANIA website. The correlations between MEX3A and cancer immune infiltration were analyzed by the Tumor Immune Estimation Resource (TIMER) site and the TISIDB database. Furthermore, in vitro analysis was performed to evaluate the biological functions of MEX3A in OC cells. Our study showed that the expression of the MEX3A in OC was higher than in normal tissues; it had the greatest prognostic value in OC, and strong physical interaction with PABPC1, LAMTOR2, KHDRBS2, and IGF2BP2, which indicated the association between MEX3A and immune infiltration. We also found that MEX3A was negatively related to infiltrating levels of several types of immune cells, including macrophages, neutrophils, dendritic cells (DCs), B cells, and CD8+ T cells. Additionally, in vitro experiments demonstrated that MEX3A promotes proliferation and migration in OC cells. Taken together, MEX3A might influence the biological functions of OC cells by regulating the immune infiltration in the microenvironment as a prognostic biomarker and a potential therapeutic target.
Collapse
|
811
|
Jie Y, Yang X, Chen W. Expression and gene regulation network of TYMS and BCL2L1 in colorectal cancer based on data mining. PeerJ 2021; 9:e11368. [PMID: 34141464 PMCID: PMC8179227 DOI: 10.7717/peerj.11368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background The purpose of this study was to study the role of thymidylate synthetase (TYMS) and B-cell lymphoma-2 like 1 (BCL2L1) in the occurrence and development of colorectal cancer and its potential regulatory mechanism. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were analyzed to examine the expression and prognostic value of TYMS and BCL2L1 in colorectal cancer. C-BioPortal analysis was used to detect the TYMS and BCL2L1 alterations. Through The Human Protein Atlas (THPA), the TYMS and BCL2L1 protein levels were also assessed. The protein protein interaction (PPI) network was built using GeneMANIA analysis, while co-expression genes correlated with TYMS and BCL2L1 were identified using LinkedOmics analysis. Finally, we collected clinical samples to verify the expressions of TYMS and BCL2L1 in colorectal cancer. Results TYMS and BCL2L1 were up-regulated, and TYMS and BCL2L1 genomic alterations were not associated with the occurrence of colorectal cancer. TYMS and BCL2L1 were significantly connected with the prognosis of colorectal cancer patients. The genes interacted with TYMS and BCL2L1 were linked to functional networks involving pathway of apoptosis, apoptosis-multiple species, colorectal cancer, platinum drug resistance and p53 signaling pathway. qRT-PCR verification results of TYMS were consistent with the result of TCGA and GEO analysis. Conclusions This study display that data mining can efficiently provide information on expression of TYMS and BCL2L1, correlated genes of TYMS and BCL2L1, core pathways and potential functional networks in colorectal cancer, suggesting that TYMS and BCL2L1 may become new prognostic and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Yanghua Jie
- Department of Radiotherapy center, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaobei Yang
- Department of Anorectal, Urumqi City Hospital of Traditional Chinese Medicine, Urumqi, China
| | - Weidong Chen
- Department of Anorectal, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| |
Collapse
|
812
|
Zhao Z, Wu X, Cheng Y, Zhou Y, Ma X, Zhang J, Heng X, Feng F. TROAP regulates cell cycle and promotes tumor progression through Wnt/β-Catenin signaling pathway in glioma cells. CNS Neurosci Ther 2021; 27:1064-1076. [PMID: 34077623 PMCID: PMC8339535 DOI: 10.1111/cns.13688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Experimental evidence demonstrated a crucial role of TROAP (Trophinin-associated protein) in regulating the cell proliferation of multiple tumors, while TROAP expression and function were largely unknown in glioma. We aimed to investigate the oncogenic role of TROAP and its potential mechanisms in gliomagenesis. METHODS Four gene expression databases (GEO, TCGA, GTEx and CCLE) were enrolled in our study and used for TROAP expression and survival analysis. TROAP expression was quantified by qRT-PCR, western blot and immunohistochemistry assays in glioma tissues and cell lines. TROAP knockdown and overexpression vector were constructed and transfected into glioma cells. CCK-8, colony formation, transwell, and wound healing assays were used to evaluate cell viability, migration and invasion, flow cytometry to determine cell cycle arrest. Gene set enrichment analysis (GSEA) was conducted to screen the pathway involved in TROAP-high phenotype. The expression of cell cycle and Wnt/β-Catenin signaling proteins were analyzed by immunofluorescence and western blot. RESULTS Based on the bioinformatic analysis and a series of functional assays, we found the TROAP was enriched in glioma tissues and cell lines, its overexpression was correlated with the clinicopathologic characteristics and poor prognosis. TROAP knockdown inhibited cell proliferation, migration, invasion, and G1/S cell cycle arrest compared with control group in glioma. Mechanism analysis revealed that TROAP activated Wnt/β-Catenin pathway and upregulated its downstream targets expression, while silencing β-Catenin or Axin2 could reverse the tumor-promoting effects caused by TROAP, confirming that TROAP-induced malignant phenotype and tumorigenesis via Wnt/β-Catenin signaling pathway. CONCLUSION The present study found that TROAP accelerated the progression of gliomagenesis through Wnt/β-Catenin pathway, and TROAP might be considered as a novel target for glioma therapy.
Collapse
Affiliation(s)
- Zong‐qing Zhao
- Department of NeurosurgeryLinyi People’s HospitalLinyiChina
- Institute of Brain Science and Brain‐Like IntelligenceLinyi People’s HospitalLinyiChina
| | - Xiu‐jie Wu
- Department of NeurosurgeryLinyi People’s HospitalLinyiChina
- Institute of Brain Science and Brain‐Like IntelligenceLinyi People’s HospitalLinyiChina
| | - Yan‐hao Cheng
- Department of NeurosurgeryLinyi People’s HospitalLinyiChina
- Institute of Brain Science and Brain‐Like IntelligenceLinyi People’s HospitalLinyiChina
| | - Yun‐fei Zhou
- Institute of Brain Science and Brain‐Like IntelligenceLinyi People’s HospitalLinyiChina
| | - Xi‐meng Ma
- Institute of Brain Science and Brain‐Like IntelligenceLinyi People’s HospitalLinyiChina
| | - Jian Zhang
- Department of NeurosurgeryLinyi People’s HospitalLinyiChina
- Institute of Brain Science and Brain‐Like IntelligenceLinyi People’s HospitalLinyiChina
| | - Xue‐yuan Heng
- Department of NeurosurgeryLinyi People’s HospitalLinyiChina
- Institute of Brain Science and Brain‐Like IntelligenceLinyi People’s HospitalLinyiChina
| | - Fan Feng
- Department of NeurosurgeryLinyi People’s HospitalLinyiChina
- Institute of Brain Science and Brain‐Like IntelligenceLinyi People’s HospitalLinyiChina
- Institute of Clinical Medicine CollegeGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
813
|
Li CS, Lu ZZ, Fang DL, Zhou WJ, Wei J. Immune-related long non-coding RNAs can serve as prognostic biomarkers for clear cell renal cell carcinoma. Transl Androl Urol 2021; 10:2478-2492. [PMID: 34295734 PMCID: PMC8261450 DOI: 10.21037/tau-21-445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background The immune microenvironment is a critical regulator of clear cell renal cell carcinoma (ccRCC) progression. However, the underlying mechanisms the regulatory role of immune-related long non-coding RNAs (irlncRNAs) in the ccRCC tumor microenvironment (TME) are still obscure. Herein, we investigated prognostics role of irlncRNAs for ccRCC. Methods The raw data of patients with ccRCC were downloaded from The Cancer Genome Atlas (TCGA) database, and immune-related genes were obtained from the ImmPort database. First, we investigated the correlation between the immune-related genes and irlncRNAs. Then, we identified the differentially expressed irlncRNA pairs (ILRPs) between normal and cancer tissue samples, and prognostic model was constructed with the differentially expressed ILRPs. We further explored whether the signature risk scores of ILRPs had a considerable impact on immune cell infiltration. Finally, we performed a drug sensitivity analysis based on risk score. Results There were 13 upregulated and 40 downregulated irlncRNAs between the ccRCC and normal tissue samples. We further selected the irlncRNAs that significantly affect the prognosis of patients with ccRCC via univariate Cox, lasso regression, and multivariate regression analyses. Twelve ILRPs were used to construct a prognostic signature. The model showed the ILRPs model could be used to assess the prognosis of ccRCC patients. Study of the influence of risk score and clinical characteristics on the prognosis of patients with ccRCC showed risk score to be an independent factor affecting the outcome of ccRCC. We further performed the difference analysis of immune cell abundance between ccRCC and normal tissue samples. The results showed that patients with higher abundance of M0 macrophages, plasma cells, follicular helper T cells, and regulatory T cells (Tregs) had a poor outcome. Finally, we performed a drug sensitivity analysis based on risk score. The results showed that high-risk score patients are sensitive to orafenib, sunitinib, temsirolimus, cisplatin, and gemcitabine. Conclusions Our study has developed a novel and reasonable ILPRs model for prognostic prediction, which does not require transcriptional levels to be detected.
Collapse
Affiliation(s)
- Cheng Shan Li
- Department of Urology, Baise People's Hospital, Baise, China
| | - Zhang Ze Lu
- Department of Urology, Baise People's Hospital, Baise, China
| | - Da Lang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wei Jie Zhou
- Department of Clinical Laboratory, Baise People's Hospital, Baise, China
| | - Jie Wei
- Department of Hematology, Baise People's Hospital, Baise, China
| |
Collapse
|
814
|
Zhu D, Wu ZH, Xu L, Yang DL. Single sample scoring of hepatocellular carcinoma: A study based on data mining. Int J Immunopathol Pharmacol 2021; 35:20587384211018389. [PMID: 34053310 PMCID: PMC8168165 DOI: 10.1177/20587384211018389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a high mortality malignancy and the second leading cause of cancer-related deaths. Because the immune system plays a dual role by assisting the host barrier and tumor progression, there are complex interactions with considerable prognostic significance. Herein, we performed single-sample gene set enrichment (ssGSEA) to explore the tumor microenvironment (TME) and quantify the tumor-infiltrating immune cell (TIIC) subgroups of immune responses based on the HCC cohort of The Cancer Genome Atlas (TCGA) database. We evaluate molecular subpopulations, survival, function, and expression differential associations, as well as reveal potential targets, and biomarkers for immunotherapy. We combined the TME score and the 29 immune cell types in the low, medium, and high immunity groups. The stromal score, immune score, and ESTIMATE score were positively correlated with immune activity but negatively correlated with the tumor purity. There were 23 human leukocyte antigen (HLA)-related genes that were significantly different. However, KIAA1429 was not significant among the different immunity groups. Besides, programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression increased with the increase of immune activity. This may provide valuable information for HCC immunotherapy. We also found that there was no significant difference in naïve B cells, macrophages M1, activated mast cells, resting natural killer (NK) cells, and T cells gamma delta among the different immunity groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the differential proteins were mainly enriched in alpha-linolenic acid (ALA) metabolism, cytokine-cytokine receptor interaction, glycosaminoglycan biosynthesis-heparan sulfate/heparin, glycosphingolipid biosynthesis-ganglio series and proteasome. Our findings provide a deeper understanding of the immune scene, uncovering remarkable immune infiltration patterns of various subtypes of HCC using ssGSEA. This study advances the understanding of immune response and provides a basis for research to enhance immunotherapy.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeng-Hong Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Xu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dong-Liang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
815
|
Jia Z, Xie Y, Wu H, Wang Z, Li A, Li Z, Yang Z, Zhang Z, Xing Z, Zhang X. Phlorizin from sweet tea inhibits the progress of esophageal cancer by antagonizing the JAK2/STAT3 signaling pathway. Oncol Rep 2021; 46:137. [PMID: 34036398 PMCID: PMC8165578 DOI: 10.3892/or.2021.8088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Phlorizin, an important member of the dihydrochalcone family, has been widely used as a Chinese Traditional Medicine for treatment of numerous diseases. The present study aimed to investigate the potential therapeutic effects of phlorizin on esophageal cancer. Phlorizin, extracted from sweet tea, was used to treat esophageal cancer cells. Cell proliferation, migration and invasion were determined using Cell Counting Kit-8 and colony formation assays, and wound healing and Transwell assays, respectively. RNA sequencing and bioinformatics analysis was used to investigate the potential mechanism of phlorizin in the development of esophageal cancer. Fluorescent staining and flow cytometry was used to measure the level of apoptosis. The expression level of the proteins, P62/SQSTM1 and LC3 І/II, and the effect of phlorizin on the JAK2/STAT3 signaling pathway was detected using western blot analysis. The results demonstrated that phlorizin could inhibit cell proliferation, migration and invasion. Bioinformatics analysis showed that phlorizin might be involved in pleiotropic effects, such as the ‘JAK/STAT signaling pathway’ (hsa04630), ‘MAPK signaling pathway’(hsa04010) and ‘apoptosis’ (hsa04210). It was also confirmed that phlorizin promoted apoptosis and inhibited autophagy in the esophageal cancer cells. Notably, phlorizin might inhibit the proteins in the JAK/STAT signaling pathway, which would affect cancer cells. Taken together, the present data showed that phlorizin inhibited the progression of esophageal cancer by antagonizing the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhenxian Jia
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hongjiao Wu
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zhuo Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Ze Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zhenbang Yang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zhi Zhang
- Department of Oncology, Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Zhaobin Xing
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
816
|
Cui Q, Wang Y, Zhou W, He S, Yang M, Xue Q, Wang Y, Zhao T, Cao J, Khan A, Cheng G. Phenolic composition, antioxidant and cytoprotective effects of aqueous‐methanol extract from
Anneslea fragrans
leaves as affected by drying methods. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qimin Cui
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming 650500 China
| | - Yudan Wang
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming 650500 China
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials Yunnan Minzu University Kunming 650500 China
| | - Wenbing Zhou
- Yunnan Tobacco Company Yuxi Branch Yuxi 653100 China
| | - Shuyue He
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming 650500 China
| | - Meilian Yang
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming 650500 China
| | - Qingwang Xue
- Department of Chemistry Liaocheng University Liaocheng 252059 China
| | - Yifen Wang
- Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Tianrui Zhao
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming 650500 China
| | - Jianxin Cao
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming 650500 China
| | - Afsar Khan
- Department of Chemistry COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Guiguang Cheng
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming 650500 China
| |
Collapse
|
817
|
Zhivodernikov I, Ratushnyy A, Buravkova L. Simulated Microgravity Remodels Extracellular Matrix of Osteocommitted Mesenchymal Stromal Cells. Int J Mol Sci 2021; 22:ijms22115428. [PMID: 34063955 PMCID: PMC8196606 DOI: 10.3390/ijms22115428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
The extracellular matrix (ECM) is the principal structure of bone tissue. Long-term spaceflights lead to osteopenia, which may be a result of the changes in composition as well as remodeling of the ECM by osteogenic cells. To elucidate the cellular effects of microgravity, human mesenchymal stromal cells (MSCs) and their osteocommitted progeny were exposed to simulated microgravity (SMG) for 10 days using random positioning machine (RPM). After RPM exposure, an imbalance of MSC collagen/non-collagen ratio at the expense of a decreased level of collagenous proteins was detected. At the same time, the secretion of proteases (cathepsin A, cathepsin D, MMP3) was increased. No significant effects of SMG on the expression of stromal markers and cell adhesion molecules on the MSC surface were noted. Upregulation of COL11A1, CTNND1, TIMP3, and TNC and downregulation of HAS1, ITGA3, ITGB1, LAMA3, MMP1, and MMP11 were detected in RPM exposed MSCs. ECM-associated transcriptomic changes were more pronounced in osteocommitted progeny. Thus, 10 days of SMG provokes a decrease in the collagenous components of ECM, probably due to the decrease in collagen synthesis and activation of proteases. The presented data demonstrate that ECM-associated molecules of both native and osteocommitted MSCs may be involved in bone matrix reorganization during spaceflight.
Collapse
|
818
|
Li Y, Li F, Bai X, Li Y, Ni C, Zhao X, Zhang D. ITGA3 Is Associated With Immune Cell Infiltration and Serves as a Favorable Prognostic Biomarker for Breast Cancer. Front Oncol 2021; 11:658547. [PMID: 34094951 PMCID: PMC8172804 DOI: 10.3389/fonc.2021.658547] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background ITGA3 is a member of the integrin family, a cell surface adhesion molecule that can interact with extracellular matrix (ECM) proteins. The purpose of this study was to explore the significance of ITGA3 expression in the prognosis and clinical diagnosis of breast cancer patients. Methods Oncomine, the Human Protein Atlas (HPA) and UALCAN were used to analyze the expression of ITGA3 in various cancers. PrognoScan, GEPIA, Kaplan–Meier plotter and Easysurv were utilized to analyze the prognosis of ITGA3 in certain cancers. Based on TCGA data, a receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of ITGA3 expression. cBio-Portal and MethSurv were used to evaluate the genomic mechanism. LinkedOmics, NetworkAnalyst and Metascape were used to build the signaling network. TIMER is a web server for comprehensive analysis of tumor infiltrating immune cells and tumor infiltrating lymphocytes (TILs). Results The expression of ITGA3 in normal breast tissues was greater than that in breast cancer tissues at both the mRNA and protein levels. High expression of ITGA3 was associated with better prognosis of breast cancer patients. ROC analysis indicated that ITGA3 had significant diagnostic value. Genomic analysis revealed that promoter methylation of ITGA3 leads to transcriptional silencing, which may be one of the mechanisms underlying ITGA3 downregulation in BRCA. Immune infiltration analysis showed that ITGA3 may be involved in the recruitment of immune cells. Conclusions This study identified ITGA3 as a novel biomarker to estimate the diagnosis and prognosis of breast cancer. In addition, ITGA3 is involved in ECM regulation and immune cell infiltration.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
819
|
Liu S, Wu M, Wang F. Research Progress in Prognostic Factors and Biomarkers of Ovarian Cancer. J Cancer 2021; 12:3976-3996. [PMID: 34093804 PMCID: PMC8176232 DOI: 10.7150/jca.47695] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is a serious threat to women's health; its early diagnosis rate is low and prone to metastasis and recurrence. The current conventional treatment for ovarian cancer is a combination of platinum and paclitaxel chemotherapy based on surgery. The recurrence and progression of ovarian cancer with poor prognosis is a major challenge in treatment. With rapid advances in technology, understanding of the molecular pathways involved in ovarian cancer recurrence and progression has increased, biomarker-guided treatment options can greatly improve the prognosis of patients. This review systematically discusses and summarizes existing and new information on prognostic factors and biomarkers of ovarian cancer, which is expected to improve the clinical management of patients and lead to effective personalized treatment.
Collapse
Affiliation(s)
- Shuna Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Ming Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| |
Collapse
|
820
|
Lederer M, Müller S, Glaß M, Bley N, Ihling C, Sinz A, Hüttelmaier S. Oncogenic Potential of the Dual-Function Protein MEX3A. BIOLOGY 2021; 10:415. [PMID: 34067172 PMCID: PMC8151450 DOI: 10.3390/biology10050415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
MEX3A belongs to the MEX3 (Muscle EXcess) protein family consisting of four members (MEX3A-D) in humans. Characteristic for MEX3 proteins is their domain structure with 2 HNRNPK homology (KH) domains mediating RNA binding and a C-terminal really interesting new gene (RING) domain that harbors E3 ligase function. In agreement with their domain composition, MEX3 proteins were reported to modulate both RNA fate and protein ubiquitination. MEX3 paralogs exhibit an oncofetal expression pattern, they are severely downregulated postnatally, and re-expression is observed in various malignancies. Enforced expression of MEX3 proteins in various cancers correlates with poor prognosis, emphasizing their oncogenic potential. The latter is supported by MEX3A's impact on proliferation, self-renewal as well as migration of tumor cells in vitro and tumor growth in xenograft studies.
Collapse
Affiliation(s)
- Marcell Lederer
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Simon Müller
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Markus Glaß
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Nadine Bley
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Christian Ihling
- Center for Structural Mass Spectrometry, Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (C.I.); (A.S.)
| | - Andrea Sinz
- Center for Structural Mass Spectrometry, Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (C.I.); (A.S.)
| | - Stefan Hüttelmaier
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| |
Collapse
|
821
|
Wei Q, Li Z, Feng H, Ren L. Serum Exosomal EphA2 is a Prognostic Biomarker in Patients with Pancreatic Cancer. Cancer Manag Res 2021; 13:3675-3683. [PMID: 33994808 PMCID: PMC8112875 DOI: 10.2147/cmar.s304719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background Pancreatic cancer (PC) is one of the worst prognoses amongst all malignant diseases. It is therefore of great significance to identify biomarkers with predictive clinical value for the prognosis and recurrence of PC. Methods In our study, enzyme-linked immunosorbent assays (ELISA) were used to detect the expression of Exo-EphA2 in the serum of PC patients and controls. Kaplan–Meier curve and Cox regression analyses were used to evaluate the prognostic value of Exo-EphA2 expression in patients with primary and recurrent PC. Results The level of serum Exo-EphA2 was significantly higher in the PC group when compared to that of the control group. High expression of Exo-EphA2 in PC was associated with shorter overall survival (OS) and proved to be a significant negative prognostic factor in the multivariate analysis (HR = 1.04, 95% CI: 1.00–1.09, P <0.001). Additionally, we found that the level of serum Exo-EphA2 in recurrent PC patients (first recurrence < 12 months) was positively correlated with the level of Exo-EphA2 at primary diagnosis. Multivariate analysis showed that a high expression of Exo-EphA2 in recurrent PC was associated with shorter recurrence-free survival (RFS) (HR = 1.41, 95% CI: 1.10–1.70, P < 0.001). Conclusion High expression of serum Exo-EphA2 represents a novel biomarker for a poor prognosis in PC patients.
Collapse
Affiliation(s)
- Qian Wei
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Ze Li
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Honglei Feng
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Li Ren
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| |
Collapse
|
822
|
Tyagi K, Mandal S, Roy A. Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: A promise towards disease remission. Biochim Biophys Acta Rev Cancer 2021; 1876:188563. [PMID: 33971276 DOI: 10.1016/j.bbcan.2021.188563] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer, the most lethal gynecological malignancy, is diagnosed at advanced stage, recurs and displays chemoresistance to standard chemotherapeutic regimen of taxane/platinum drugs. Despite development of recent therapeutic approaches including poly-ADP ribose polymerase inhibitors, this fatal disease is diagnosed at advanced stage and heralds strategies for early detection and improved treatment. Recent literature suggests that high propensity of ovarian cancer cells to consume and metabolize glucose via glycolysis even in the presence of oxygen (the 'Warburg effect') can significantly contribute to disease progression and chemoresistance and hence, it has been exploited as novel drug target. This review focuses on the molecular cues of aberrant glycolysis as drivers of chemo-resistance and aggressiveness of recurrent ovarian cancer. Furthermore, we discuss the status quo of small molecule inhibition of aerobic glycolysis and significance of metabolic coupling between cancer cells and tumor microenvironment as novel therapeutic interventions against this lethal pathology.
Collapse
Affiliation(s)
- Komal Tyagi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Supratim Mandal
- Department of Microbiology, Kalyani University, West Bengal 741235, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
823
|
Qian XL, Zhou F, Xu S, Jiang J, Chen ZP, Wang SK, Zuo Y, Ni C. MiR-454-3p Promotes Oxaliplatin Resistance by Targeting PTEN in Colorectal Cancer. Front Oncol 2021; 11:638537. [PMID: 34017681 PMCID: PMC8129568 DOI: 10.3389/fonc.2021.638537] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer is one of the most common malignancies worldwide. Oxaliplatin is the first-line chemotherapeutic agent for the treatment of advanced colorectal cancer. However, acquired resistance to oxaliplatin limits its therapeutic efficacy, and the underlying mechanism remains largely unclear. In this study, we compared the expression of a panel of microRNAs (miRNAs) between oxaliplatin-sensitive and -resistant HCT-116 colorectal cancer cells. We found that miR-454-3p was significantly up-regulated in oxaliplatin-resistant cells and was the most differently expressed miRNA. Interestingly, we observed that inhibition of miR-454-3p resensitized resistant cells to oxaliplatin and enhanced oxaliplatin-induced cellular apoptosis. Moreover, we determined that miR-454-3p promoted oxaliplatin resistance through targeting PTEN and activating the AKT signaling pathway. In vivo study revealed that overexpression of miR-454-3p decreased the sensitivity of HCT-116 xenograft tumors to oxaliplatin treatment in a mouse model. Clinically, overexpression of miR-454-3p was associated with decreased responsiveness to oxaliplatin-based chemotherapy, as well as a short progression-free survival. Taken together, our study indicated that the expression of miR-454-3p could be used to predict oxaliplatin sensitivity, and targeting miR-454-3p could overcome oxaliplatin resistance in colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Lan Qian
- Department of Oncology, Zhangjiagang First People's Hospital, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Fang Zhou
- Department of Oncology, Zhangjiagang First People's Hospital, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Song Xu
- Department of Oncology, Zhangjiagang First People's Hospital, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jian Jiang
- Department of Oncology, Zhangjiagang First People's Hospital, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Zhi-Peng Chen
- Department of Oncology, Zhangjiagang First People's Hospital, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Shao-Kai Wang
- Department of Oncology, Zhangjiagang First People's Hospital, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Yun Zuo
- Department of Oncology, Zhangjiagang First People's Hospital, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Chen Ni
- Department of Oncology, Zhangjiagang First People's Hospital, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| |
Collapse
|
824
|
Nabi MM, Mamun MA, Islam A, Hasan MM, Waliullah ASM, Tamannaa Z, Sato T, Kahyo T, Setou M. Mass spectrometry in the lipid study of cancer. Expert Rev Proteomics 2021; 18:201-219. [PMID: 33793353 DOI: 10.1080/14789450.2021.1912602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer is a heterogeneous disease that exploits various metabolic pathways to meet the demand for increased energy and structural components. Lipids are biomolecules that play essential roles as high energy sources, mediators, and structural components of biological membranes. Accumulating evidence has established that altered lipid metabolism is a hallmark of cancer.Areas covered: Mass spectrometry (MS) is a label-free analytical tool that can simultaneously identify and quantify hundreds of analytes. To date, comprehensive lipid studies exclusively rely on this technique. Here, we reviewed the use of MS in the study of lipids in various cancers and discuss its instrumental limitations and challenges.Expert opinion: MS and MS imaging have significantly contributed to revealing altered lipid metabolism in a variety of cancers. Currently, a single MS approach cannot profile the entire lipidome because of its lack of sensitivity and specificity for all lipid classes. For the metabolic pathway investigation, lipid study requires the integration of MS with other molecular approaches. Future developments regarding the high spatial resolution, mass resolution, and sensitivity of MS instruments are warranted.
Collapse
Affiliation(s)
- Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, Bangladesh
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
825
|
Liu F, Deng W, Wan Z, Xu D, Chen J, Yang X, Xu J. lncRNA MAGI2-AS3 overexpression had antitumor effect on Hepatic cancer via miRNA-23a-3p/PTEN axis. Food Sci Nutr 2021; 9:2517-2530. [PMID: 34026068 PMCID: PMC8116851 DOI: 10.1002/fsn3.2199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to evaluate the antitumor effects of MAGI2-AS3 and its mechanism in liver cancer. Cancer tissues and adjacent nontumor tissues were collected, and lncRNAs were analyzed via chip assay. The correlation between MAGEI2-AS3 and patient pathology and prognosis was then analyzed. Bel-7402 and Huh-7 cell lines were also used in our study. For the in vitro study, MTT assay, flow cytometry, transwell assay, and wound healing assay were conducted to evaluate hepatic cancer cell (Bel-7402 and Huh-7) proliferation, apoptosis, invasion, and migration. The relative mechanisms were evaluated by Western blot (WB) and cellular immunofluorescence. The correlation among MAGI2-AS3, miRNA-23a-3p, and PTEN was determined by a dual-luciferase reporter assay. The expression of lncRNA MAGI2-AS3 was significantly downregulated in tumor tissues. MAGI2-AS3 expression was closely correlation with HCC patient's clinicopathology and prognosis and prognosis. In the cell experiment, compared with the negative control (NC) group, MAGI2-AS3 overexpression reduced cell proliferation, invasion, and migration and increased cell apoptosis in Bel-7402 and Huh-7 cell lines. However, when Bel-7402 and Huh-7 cells were transfected with miRNA-23a-3p, their biological activities (proliferation, invasion, and migration) were significantly increased. Through WB assay, MAGI2-AS3 could increase PTEN and depress p-AKT and MMP-9 protein expressions via miRNA-23a-3p suppression. The dual-luciferase reporter assay revealed that MAGI2-AS3 directly targeted miRNA-23a-3p and that miRNA-23a-3p could target PTEN. MAGI2-AS3 might be a potential therapeutic target for liver cancer owing to its regulation by the miRNA-23a-3p/PTEN axis.
Collapse
Affiliation(s)
- Fei Liu
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Wenwen Deng
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Zhenda Wan
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Dajin Xu
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Jun Chen
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Xin Yang
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Jianhua Xu
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| |
Collapse
|
826
|
Zhou C, Li AH, Liu S, Sun H. Identification of an 11-Autophagy-Related-Gene Signature as Promising Prognostic Biomarker for Bladder Cancer Patients. BIOLOGY 2021; 10:biology10050375. [PMID: 33925460 PMCID: PMC8146553 DOI: 10.3390/biology10050375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Human bladder cancer, one of the most common cancers worldwide, is a molecularly heterogenous and complex disease. Identifying novel prognostic biomarkers and establishing new predictive signatures are important for personalized medicine and effective treatment of bladder cancer patients. Autophagy, a cell self-maintenance process that removes damaged organelles and misfolded proteins, displays both tumor promotion and suppression activities. The aim of our study is to investigate the function of autophagy-related genes in bladder cancer with the main focus on their contribution to prognostic outcome. By analyzing data obtained from The Cancer Genome Atlas (TCGA), we identified 32 autophagy-related genes that were highly associated with overall survival of bladder cancer patients. Further statistical assessment established an 11-autophagy-related-gene signature as an effective prognostic biomarker to predict the survival outcomes of bladder cancer patients. Abstract Background: Survival rates for highly invasive bladder cancer (BC) patients have been very low, with a 5-year survival rate of 6%. Accurate prediction of tumor progression and survival is important for diagnosis and therapeutic decisions for BC patients. Our study aims to develop an autophagy-related-gene (ARG) signature that helps to predict the survival of BC patients. Methods: RNA-seq data of 403 BC patients were retrieved from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) database. Univariate Cox regression analysis was performed to identify overall survival (OS)-related ARGs. The Lasso Cox regression model was applied to establish an ARG signature in the TCGA training cohort (N = 203). The performance of the 11-gene ARG signature was further evaluated in a training cohort and an independent validation cohort (N = 200) using Kaplan-Meier OS curve analysis, receiver operating characteristic (ROC) analysis, as well as univariate and multivariate Cox regression analysis. Results: Our study identified an 11-gene ARG signature that is significantly associated with OS, including APOL1, ATG4B, BAG1, CASP3, DRAM1, ITGA3, KLHL24, P4HB, PRKCD, ULK2, and WDR45. The ARGs-derived high-risk bladder cancer patients exhibited significantly poor OS in both training and validation cohorts. The prognostic model showed good predictive efficacy, with the area under the ROC curve (AUCs) for 1-year, 3-year, and 5-year overall survival of 0.702 (0.695), 0.744 (0.640), and 0.794 (0.658) in the training and validation cohorts, respectively. A prognostic nomogram, which included the ARGs-derived risk factor, age and stage for eventual clinical translation, was established. Conclusion: We identified a novel ARG signature for risk-stratification and robust prediction of overall survival for BC patients.
Collapse
Affiliation(s)
| | | | | | - Hong Sun
- Correspondence: ; Tel.: +1-(646)-754-9459
| |
Collapse
|
827
|
Cheng Q, Bao L, Li M, Chang K, Yi X. Erastin synergizes with cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and in vivo. J Obstet Gynaecol Res 2021; 47:2481-2491. [PMID: 33882617 DOI: 10.1111/jog.14779] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 03/13/2021] [Indexed: 12/30/2022]
Abstract
AIM Cisplatin-based chemotherapy is the first-line treatment for ovarian cancer. However, acquired resistance to cisplatin treatment or serious side effects often occurs in ovarian cancer, and thus, there is an urgent need for effective and combined therapies to overcome such obstacles. In the present study, we aimed to uncover synergistic effects between erastin and cisplatin (CDDP) in inhibiting ovarian cancer cell growth by inducing ferroptosis in vitro and in vivo. METHODS We performed a CCK-8 assay to detect cell viability in response to erastin alone or in combination with cisplatin and provided further confirmation by western blotting analysis. Transmission electron microscopy and flow cytometry analysis were used to depict the characteristics of ferroptosis. In addition, an ovarian cancer tumor xenograft was built to verify the effects in vivo. RESULTS CDDP induced multiple modes of cell death-including ferroptosis in ovarian cancer cell lines. Mechanistically, erastin triggered ferroptosis and increased the levels of reactive oxygen species (ROS) so as to augment the cytotoxic effect of cisplatin. Combination therapy based on CDDP and erastin appeared to maximize the therapeutic effects while minimizing side effects in ovarian cancer both in vitro and in vivo. CONCLUSION Collectively, our results indicate that erastin works synergistically with cisplatin to inhibit ovarian cancer cell growth, which may be manipulated by a ROS-mediated mechanism that enhances cisplatin therapy, and offers a novel strategy for overcoming cisplatin therapy resistance.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Lingjie Bao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Mingqing Li
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Kaikai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaofang Yi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
828
|
Liu ZQ, Zhang GT, Jiang L, Li CQ, Chen QT, Luo DQ. Construction and Comparison of ceRNA Regulatory Network for Different Age Female Breast Cancer. Front Genet 2021; 12:603544. [PMID: 33968126 PMCID: PMC8097183 DOI: 10.3389/fgene.2021.603544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Studies have shown the difference appearing among the prognosis of patients in different age groups. However, the molecular mechanism implicated in this disparity have not been elaborated. In this study, expression profiles of female breast cancer (BRCA) associated mRNAs, lncRNAs and miRNAs were downloaded from the TCGA database. The sample were manually classified into three groups according to their age at initial pathological diagnosis: young (age ≤ 39 years), elderly (age ≥ 65 years), and intermediate (age 40-64 years). lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was respectively constructed for different age BRCA. Then, the biological functions of differentially expressed mRNAs (DEmRNAs) in ceRNA network were further investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, survival analysis was used to identify prognostic biomarkers for different age BRCA patients. We identified 13 RNAs, 38 RNAs and 40 RNAs specific to patients aged ≤ 39 years, aged 40-64 years, and aged ≥ 65 years, respectively. Furthermore, the unique pathways were mainly enriched in cytokine-cytokine receptor interaction in patients aged 40-64 years, and were mainly enriched in TGF-beta signaling pathway in patients aged ≥ 65 years. According to the survival analysis, AGAP11, has-mir-301b, and OSR1 were respectively functioned as prognostic biomarkers in young, intermediate, and elderly group. In summary, our study identified the differences in the ceRNA regulatory networks and provides an effective bioinformatics basis for further understanding of the pathogenesis and predicting outcomes for different age BRCA.
Collapse
Affiliation(s)
- Zhi-Qin Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, College of Pharmaceutical Science, Hebei University, Baoding, China
| | - Gao-Tao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| | - Li Jiang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| | - Chun-Qing Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| | - Que-Ting Chen
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Du-Qiang Luo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
829
|
Abstract
Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), previously known as Type-II enteropathy-associated T-cell lymphoma (EATL), is a rare subset of relatively aggressive lymphoma with a poor prognosis. We present a case of a previously healthy 59-year-old male with a 2-week history of abdominal distention who was found to have a non-bleeding ulcerated segment in the proximal jejunum secondary to MEITL. This exceedingly rare type of lymphoma usually presents with non-specific symptoms and can be challenging to diagnose. Our case demonstrates the importance of understanding the endoscopic and histological findings to allow the prompt diagnosis and treatment of this aggressive disease.
Collapse
|
830
|
miR-1224-3p Promotes Breast Cancer Cell Proliferation and Migration through PGM5-Mediated Aerobic Glycolysis. JOURNAL OF ONCOLOGY 2021; 2021:5529770. [PMID: 33986801 PMCID: PMC8079189 DOI: 10.1155/2021/5529770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022]
Abstract
Metabolic reprogramming of aerobic glycolysis is a hallmark of cancer cells. Regulators of aerobic glycolysis have become targets for cancer diagnosis and therapy. However, the regulators of aerobic glycolysis in breast cancer development have not been well elucidated. Here, we show that the phosphoglucomutase (PGM) family member PGM5 promotes conversion of glucose-1-phosphate (G1P) into glucose-6-phosphate (G6P) and inhibits breast cancer cell proliferation and migration through regulating aerobic glycolysis. In breast cancer patients, PGM5 is significantly downregulated, and its low expression is a predictor of poor prognosis. MicroRNA-1224-3p (miR-1224-3p) inhibits the PGM5 level through directly targeting its 3'-untranslated region and suppresses PGM5-mediated breast cancer cell proliferation, migration, and glycolytic function. Moreover, the miR-1224-3p/PGM5 axis regulates the expression of cell cycle- and apoptosis-related genes and the markers of epithelial-mesenchymal transition (EMT), a process involved in migration and metastasis of cancer cells. Taken together, our results indicate that miR-1224-3p/PGM5 axis plays important roles in breast cancer cell proliferation, migration, and aerobic glycolysis and may be a potential target for breast cancer therapy.
Collapse
|
831
|
Xu Y, Pan S, Chen H, Qian H, Wang Z, Zhu X. MEX3A suppresses proliferation and EMT via inhibiting Akt signaling pathway in cervical cancer. Am J Cancer Res 2021; 11:1446-1462. [PMID: 33948367 PMCID: PMC8085868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023] Open
Abstract
MEX3A, one member of the human MEX3 gene family, exerts different effects on a variety of human cancer cells. However, the biological functions and regulatory mechanism have not been explored in cervical cancer. In our study, we used multiple approaches to determine the functions and underlying molecular mechanism of MEX3A in cervical tumorigenesis, including CCK-8 assay, BrdU assay, FACS for cell cycle and apoptosis, wound healing assay, Transwell migration and invasion assays, immunohistochemistry (IHC) assay, Transfection, real-time RT-PCR and Western blotting analysis. IHC results showed that the expression levels of MEX3A were decreased in cervical cancer patients with advanced clinical stages and lymph node involvement. Moreover, upregulation of MEX3A attenuated cell proliferation, migration and invasion and induced cell cycle arrest at G0/G1 phase in human cervical cancer cells, whereas knockdown of MEX3A exhibited the opposite effects. Mechanistically, MEX3A exerted its tumor suppressive functions via inactivation of Akt signaling pathway and inhibiting epithelial to mesenchymal transition (EMT). Importantly, Akt activation by its activator SC79 reversed the biological functions of MEX3A overexpression. Furthermore, MEX3A inhibited tumor growth in xenograft models. Overall, our investigation suggested that MEX3A participated in antitumor activity in cervical cancer by inhibition of the Akt signaling pathway and EMT. Hence, targeting MEX3A might have a therapeutic potential to treat cervical cancer.
Collapse
Affiliation(s)
- Yichi Xu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, People's Republic of China
| | - Shuya Pan
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, People's Republic of China
| | - Hong Chen
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, People's Republic of China
| | - Hongfei Qian
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, People's Republic of China
| | - Zhiwei Wang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, People's Republic of China
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, People's Republic of China
| |
Collapse
|
832
|
Li J, Sun P, Huang T, He S, Li L, Xue G. Extensive analysis of the molecular biomarkers excision repair cross complementing 1, ribonucleotide reductase M1, β-tubulin III, thymidylate synthetase, and topoisomerase IIα in breast cancer: Association with clinicopathological characteristics. Medicine (Baltimore) 2021; 100:e25344. [PMID: 33832110 PMCID: PMC8036124 DOI: 10.1097/md.0000000000025344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/10/2021] [Indexed: 01/05/2023] Open
Abstract
Excision repair cross complementing 1 (ERCC1), ribonucleotide reductase M1 (RRM1), β-tubulin III (TUBB3), thymidylate synthetase (TYMS), and topoisomerase IIα (TOP2A) genes have been shown to be associated with the pathogenesis and prognosis of various types of carcinomas; however, their roles in breast cancer have not been fully validated. In this study, we evaluated the correlations among these biomarkers and the associations between their expression intensity and the clinicopathological characteristics to investigate whether the above genes are underlying biomarkers for patients with breast cancer.Ninety-seven tissue specimens collected from breast cancer patients. The expression levels of these biomarkers were measured by the multiplex branched DNA liquidchip (MBL) technology and clinicopathological characteristics were collected simultaneously.The expression levels of ERCC1, TUBB3, TYMS, and TOP2A were significantly associated with the characteristics of menopausal status, tumor size, lymph node metastasis, hormone receptor status, triple-negative status, Ki-67 index, and epidermal growth factor receptor. The expression intensity of ERCC1 negatively associated with that of TUBB3 and TYMS, and positively associated with that of RRM1. The expression intensity of TOP2A positively associated with that of TYMS. Hierarchical clustering analysis and difference test indicated that breast cancer with higher levels of TUBB3, TYMS, and TOP2A, as well as lower levels of ERCC1 and RRM1 tended to have higher histological grade and Ki-67 index.Our studies showed that ERCC1, TYMS, TUBB3, and TOP2A may be potential biomarkers for prognosis and individualized chemotherapy guidance, while there may be interactions between ERCC1 and RRM1, or TUBB3, or TYMS, as well as between TOP2A and TYMS in pathogenesis and development of breast cancer.
Collapse
Affiliation(s)
- Juncheng Li
- Department of Thyroid and Breast Surgery, the General Hospital of Western Theater Command of People's Liberation Army, Chengdu
- Department of Breast Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Peng Sun
- Department of Thyroid and Breast Surgery, the General Hospital of Western Theater Command of People's Liberation Army, Chengdu
| | - Tao Huang
- Department of Thyroid and Breast Surgery, the General Hospital of Western Theater Command of People's Liberation Army, Chengdu
| | - Shengdong He
- Department of Thyroid and Breast Surgery, the General Hospital of Western Theater Command of People's Liberation Army, Chengdu
| | - Lingfan Li
- Department of Thyroid and Breast Surgery, the General Hospital of Western Theater Command of People's Liberation Army, Chengdu
| | - Gang Xue
- Department of Thyroid and Breast Surgery, the General Hospital of Western Theater Command of People's Liberation Army, Chengdu
- Department of Breast Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
833
|
Jolliffe J, Stokes M, Buxey K. Lesser sac hernia through the gastrocolic ligament 20 years post subtotal colectomy. ANZ J Surg 2021; 91:2847-2849. [PMID: 33830580 DOI: 10.1111/ans.16851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Jarrod Jolliffe
- Department of Surgery, Sandringham Hospital, Melbourne, Victoria, Australia.,Department of Surgery, Alfred Health, Melbourne, Victoria, Australia
| | - Matthew Stokes
- Department of Surgery, Sandringham Hospital, Melbourne, Victoria, Australia.,Department of Surgery, Alfred Health, Melbourne, Victoria, Australia
| | - Kenneth Buxey
- Department of Surgery, Sandringham Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
834
|
The effects of MEX3A knockdown on proliferation, apoptosis and migration of osteosarcoma cells. Cancer Cell Int 2021; 21:197. [PMID: 33827584 PMCID: PMC8028067 DOI: 10.1186/s12935-021-01882-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Osteosarcoma is an aggressive malignant tumor which has attracted worldwide attention. MEX3A may be associated with tumors while has not yet seen its coverage on osteosarcoma. Herein, this study was to investigate the correlation between MEX3A and the progression of osteosarcoma. Methods Firstly, we determined that expression of MEX3A was significantly higher in osteosarcoma tissues than that in marginal bone by immunohistochemical staining. Additionally, MEX3A expression was downregulated by the RNAi‐mediated knockdown. The functions of MEX3A knockdown on proliferation, apoptosis, cell cycle, migration was assessed by MTT assay, flow cytometry, wound-healing assay and Transwell assay, respectively. Knockdown of MEX3A resulted in suppressing cell proliferation, increasing cell apoptosis, inducing the G2 phase cell cycle arrest, and attenuating cellular migration. Furthermore, mouse xenograft model confirmed inhibitory effects of MEX3A knockdown on osteosarcoma formation. Results The preliminary exploration on the molecular mechanism of MEX3A in osteosarcoma cells showed that the induction of apoptosis needs the participation of a series of apoptosis- associated factors, such as upregulation of Caspase 3, Caspase 8 and HSP60, downregulation of HSP27 and XIAP. Conclusions In summary, these findings predicated that therapy directed at decreasing MEX3A expression is a potential osteosarcoma treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01882-3.
Collapse
|
835
|
Liu Y, Xu Y, Jiang W, Ji H, Wang ZW, Zhu X. Discovery of key genes as novel biomarkers specifically associated with HPV-negative cervical cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:492-506. [PMID: 33997099 PMCID: PMC8091489 DOI: 10.1016/j.omtm.2021.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Cervical cancer is a common female malignancy that is mainly caused by human papillomavirus (HPV) infection. However, the incidence of HPV-negative cervical cancer has shown an increasing trend in recent years. Because the mechanism of HPV-negative cervical cancer development is unclear, this study aims to find the pattern of differential gene expression in HPV-negative cervical cancer and verify the underlying potential mechanism. Differentially expressed genes were compared among HPV-positive cervical cancer, HPV-negative cervical cancer, and normal cervical tissues retrieved from TCGA. Subsequently, dysregulated differentially expressed genes specifically existed in HPV-negative cervical cancer tissues and HPV-negative cell lines were validated by qRT-PCR, western blotting, and immunohistochemical staining. We found seventeen highly expressed genes that were particularly associated with HPV-negative cervical cancer from analysis of TCGA database. Among the 17 novel genes, 7 genes (preferentially expressed antigen in melanoma [PRAME], HMGA2, ETS variant 4 [ETV4], MEX3A, TM7SF2, SLC19A1, and tweety-homologs 3 [TTYH3]) displayed significantly elevated expression in HPV-negative cervical cancer cells and HPV-negative cervical cancer tissues. Additionally, higher expression of MEX3A and TTYH3 was associated with a shorter overall survival of patients with HPV-negative cervical cancer. Our study implies that these seven genes are more likely to provide novel insights into the occurrence and progression of HPV-negative cervical cancer.
Collapse
Affiliation(s)
- Yi Liu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yichi Xu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenxiao Jiang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Huihui Ji
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Wei Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
836
|
Diallo I, Ho J, Laffont B, Laugier J, Benmoussa A, Lambert M, Husseini Z, Soule G, Kozak R, Kobinger GP, Provost P. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021; 22:ijms22073792. [PMID: 33917562 PMCID: PMC8038836 DOI: 10.3390/ijms22073792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013–2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jeffrey Ho
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Benoit Laffont
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jonathan Laugier
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Abderrahim Benmoussa
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Marine Lambert
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Zeinab Husseini
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Département de Microbiologie Médicale, Université du Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patrick Provost
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
837
|
Guo X, Tian S, Cao P, Xie Y, Dong W. High Expression of PIGC Predicts Unfavorable Survival in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:211-222. [PMID: 33854986 PMCID: PMC8040696 DOI: 10.2147/jhc.s297601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose The effects of phosphatidylinositol glycan anchor biosynthesis, class C (PIGC), in the progression of liver cancer are unknown. In this study, we attempted to clarify the clinical significance and mechanism of PIGC in hepatocellular carcinoma (HCC). Patients and Methods To explore the expression profiles, DNA methylation, mutation status, clinical relevance, and prognostic value of PIGC in patients with HCC, a series of bioinformatic databases and websites were searched. Moreover, numerous vitro experiments were performed to investigate the mechanism of PIGC in the regulation of cancerous liver cells. Results Expression of PIGC mRNA and protein was upregulated in cancerous liver specimens compared with normal liver tissues. High expression of PIGC mRNA was related to higher tumor grade, lymphatic metastasis, advanced TNM stage, and TP53 mutation. High expression of PIGC mRNA predicted more unfavorable overall survival (OS) (HR=1.7, P=0.0028) and disease-free survival (DFS) (HR=1.5, P=0.0067) in patients with liver cancer. The mutation rate of PIGC was 10%, and amplification was the most common mutant type. Expression of PIGC mRNA was negatively regulated by its DNA methylation (r=−0.398, P<0.0001). Moreover, silencing of PIGC in HepG2 cell line inhibited the proliferation and migration and led to cell cycle arrest at G0/G1 stage by reducing cyclinD1, CDK2, CDK4, and CDK6 expression, while overexpression of PIGC in Hcclm3 cell line revealed the opposite effect. Conclusion PIGC is related to aggressive clinical features, and overexpression of PIGC signifies worse survival in patients with HCC. PIGC promotes proliferation and migration of cancerous liver cells through the regulation of the cell cycle.
Collapse
Affiliation(s)
- Xufeng Guo
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Pan Cao
- Department of Infectious Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yishan Xie
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
838
|
Sun H, Wang X, Cao X, Liu C, Liu S, Lyu D, Du G. Chemical composition and biological activities of peels and flesh from ten pear cultivars (Pyrus ussuriensis). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
839
|
Qi A, Ju M, Liu Y, Bi J, Wei Q, He M, Wei M, Zhao L. Development of a Novel Prognostic Signature Based on Antigen Processing and Presentation in Patients with Breast Cancer. Pathol Oncol Res 2021; 27:600727. [PMID: 34257557 PMCID: PMC8262234 DOI: 10.3389/pore.2021.600727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023]
Abstract
Background: Complex antigen processing and presentation processes are involved in the development and progression of breast cancer (BC). A single biomarker is unlikely to adequately reflect the complex interplay between immune cells and cancer; however, there have been few attempts to find a robust antigen processing and presentation-related signature to predict the survival outcome of BC patients with respect to tumor immunology. Therefore, we aimed to develop an accurate gene signature based on immune-related genes for prognosis prediction of BC. Methods: Information on BC patients was obtained from The Cancer Genome Atlas. Gene set enrichment analysis was used to confirm the gene set related to antigen processing and presentation that contributed to BC. Cox proportional regression, multivariate Cox regression, and stratified analysis were used to identify the prognostic power of the gene signature. Differentially expressed mRNAs between high- and low-risk groups were determined by KEGG analysis. Results: A three-gene signature comprising HSPA5 (heat shock protein family A member 5), PSME2 (proteasome activator subunit 2), and HLA-F (major histocompatibility complex, class I, F) was significantly associated with OS. HSPA5 and PSME2 were protective (hazard ratio (HR) < 1), and HLA-F was risky (HR > 1). Risk score, estrogen receptor (ER), progesterone receptor (PR) and PD-L1 were independent prognostic indicators. KIT and ACACB may have important roles in the mechanism by which the gene signature regulates prognosis of BC. Conclusion: The proposed three-gene signature is a promising biomarker for estimating survival outcomes in BC patients.
Collapse
Affiliation(s)
- Aoshuang Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Yinfeng Liu
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| |
Collapse
|
840
|
Ulker OC, Panieri E, Suzen S, Jaganjac M, Zarkovic N, Saso L. Short overview on the relevance of microRNA-reactive oxygen species (ROS) interactions and lipid peroxidation for modulation of oxidative stress-mediated signalling pathways in cancer treatment. J Pharm Pharmacol 2021; 74:503-515. [PMID: 33769543 DOI: 10.1093/jpp/rgab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Modulation of oxidative stress-mediated signalling pathways is constantly getting more attention as a valuable therapeutic strategy in cancer treatment. Although complexity of redox signalling pathways might represent a major hurdle, the development of advanced -omics technologies allow thorough studies on cancer-specific biology, which is essential to elucidate the impact of these signalling pathways in cancer cells. The scope of our review is to provide updated information about recent developments in cancer treatment. KEY FINDINGS In recent years identifying oxidative stress-mediated signalling pathways is a major goal of cancer research assuming it may provide novel therapeutic approaches through the development of agents that may have better tissue penetration and therefore affect specific redox signalling pathways. In this review, we discuss some recent studies focussed on the modulation of oxidative stress-related signalling pathways as a novel anti-cancer treatment, with a particular emphasis on the induction of lipid peroxidation. CONCLUSIONS Characterization and modulation of oxidative stress-mediated signalling pathways and lipid peroxidation products will continue to foster novel interest and further investigations, which may pave the way for more effective, selective, and personalized integrative biomedicine treatment strategies.
Collapse
Affiliation(s)
- Ozge Cemiloglu Ulker
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
841
|
Zhu Y, Zhang C, Huang M, Lin J, Fan X, Ni T. TRIM26 Induces Ferroptosis to Inhibit Hepatic Stellate Cell Activation and Mitigate Liver Fibrosis Through Mediating SLC7A11 Ubiquitination. Front Cell Dev Biol 2021; 9:644901. [PMID: 33869196 PMCID: PMC8044755 DOI: 10.3389/fcell.2021.644901] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic stellate cells (HSCs) are activated by inflammatory mediators to secrete extracellular matrix for collagen deposition, leading to liver fibrosis. Ferroptosis is iron- and lipid hydroperoxide-dependent programmed cell death, which has recently been targeted for inhibiting liver fibrogenic processes. Tripartite motif-containing protein 26 (TRIM26) is an E3 ubiquitin ligase that functions as a tumor suppressor in hepatocellular carcinoma, while little is known about its function in liver fibrosis. In the present study, the differential expression of TRIM26 in normal and fibrotic liver tissues was examined based on both online databases and specimens collected from patient cohort. The effects of TRIM26 on HSCs ferroptosis were examined in vitro through evaluating cell proliferation, lipid peroxidation, and expression of key ferroptosis-related factors. In vivo function of TRIM26 in liver fibrosis was examined based on CCl4-induced mice model. We found that TRIM26 was downregulated in fibrotic liver tissues. The overexpression of TRIM26 inhibited HSCs proliferation, promoted lipid peroxidation, manipulated ferroptosis-related factor expressions, and counteracted the effect of iron inhibitor deferoxamine. Moreover, TRIM26 physically interacted with solute carrier family-7 member-11 (SLC7A11), a critical protein for lipid reactive oxygen species (ROS) scavenging, and mediated its ubiquitination. In addition, TRIM26 overexpression induced HSCs ferroptosis and mitigated CCl4-induced liver fibrosis in mice. In conclusion, TRIM26 promotes HSCs ferroptosis to suppress liver fibrosis through mediating the ubiquitination of SLC7A11. The TRIM26-targeted SLC7A11 suppression can be a novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Yiming Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingzhe Huang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Fan
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
842
|
Yoshida K, Yokoi A, Yamamoto Y, Kajiyama H. ChrXq27.3 miRNA cluster functions in cancer development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:112. [PMID: 33766100 PMCID: PMC7992321 DOI: 10.1186/s13046-021-01910-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) regulate the expression of their target genes post-transcriptionally; thus, they are deeply involved in fundamental biological processes. miRNA clusters contain two or more miRNA-encoding genes, and these miRNAs are usually coexpressed due to common expression mechanisms. Therefore, miRNA clusters are effective modulators of biological pathways by the members coordinately regulating their multiple target genes, and an miRNA cluster located on the X chromosome q27.3 region has received much attention in cancer research recently. In this review, we discuss the novel findings of the chrXq27.3 miRNA cluster in various types of cancer. The chrXq27.3 miRNA cluster contains 30 mature miRNAs synthesized from 22 miRNA-encoding genes in an ~ 1.3-Mb region. The expressions of these miRNAs are usually negligible in many normal tissues, with the male reproductive system being an exception. In cancer tissues, each miRNA is dysregulated, compared with in adjacent normal tissues. The miRNA-encoding genes are not uniformly distributed in the region, and they are further divided into two groups (the miR-506-514 and miR-888-892 groups) according to their location on the genome. Most of the miRNAs in the former group are tumor-suppressive miRNAs that are further downregulated in various cancers compared with normal tissues. miR-506-3p in particular is the most well-known miRNA in this cluster, and it has various tumor-suppressive functions associated with the epithelial–mesenchymal transition, proliferation, and drug resistance. Moreover, other miRNAs, such as miR-508-3p and miR-509-3p, have similar tumor-suppressive effects. Hence, the expression of these miRNAs is clinically favorable as prognostic factors in various cancers. However, the functions of the latter group are less understood. In the latter group, miR-888-5p displays oncogenic functions, whereas miR-892b is tumor suppressive. Therefore, the functions of the miR-888–892 group are considered to be cell type- or tissue-specific. In conclusion, the chrXq27.3 miRNA cluster is a critical regulator of cancer progression, and the miRNAs themselves, their regulatory mechanisms, and their target genes might be promising therapeutic targets.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan. .,Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
843
|
Low REST Expression Indicates a Biomarker of Poor Prognosis in Patients with Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6682758. [PMID: 33834072 PMCID: PMC8012131 DOI: 10.1155/2021/6682758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/25/2022]
Abstract
It was initially found that neural-restrictive silencer factor/repressor 1-silencing transcription factor (REST) is a transcriptional repressor of neuronal genes in nonneuronal cells. However, it is reported to be abundantly expressed in various types of aggressive cancer cells. In this study, we evaluated the expression patterns of REST in renal cell carcinoma and found that its expression is lower in tumor tissues compared to normal tissues. The chi-square test showed that the low REST expression was closely related to patients' clinicopathologic parameters, including the pathologic stage and survival status. ROC curve showed that REST had excellent clinical diagnostic prospect. In addition, patients with low REST expression had poor over survival (OS) and relapse-free survival (RFS). Univariate and multivariate Cox regression analysis confirmed that the low REST expression was an independent predictor of poor prognosis in renal cell carcinoma. Gene set enrichment analysis identified P53 pathway, reactive oxygen species pathway, glycolysis, DNA repair, cholesterol homeostasis, and MYC targets V2 enriched with low REST expression phenotype. These results suggested that REST may be a novel biomarker for the diagnosis and prognosis of renal cell carcinoma in clinical applications.
Collapse
|
844
|
Hao X, Xin R, Dong W. Decreased serum exosomal miR-320a expression is an unfavorable prognostic factor in patients with hepatocellular carcinoma. J Int Med Res 2021; 48:300060519896144. [PMID: 32339037 PMCID: PMC7218457 DOI: 10.1177/0300060519896144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective Circulating microRNAs (miRNAs) have promising potential as diagnostic or prognostic biomarkers for hepatocellular carcinoma (HCC). This study aimed to analyze the clinical significance of serum exosomal miR-320a expression in patients with HCC. Methods A total of 104 patients with HCC, 55 patients with chronic liver disease (CLD), and 50 healthy volunteers were enrolled. Serum exosomal miR-320a levels were measured by quantitative reverse-transcriptase polymerase chain reaction and compared among the groups. The relationships between exosomal miR-320a levels and clinicopathological factors in patients with HCC were also analyzed. Results Serum exosomal miR-320a levels were significantly lower in patients with HCC compared with patients with CLD and healthy controls. Receiver-operating characteristic curve analysis showed that serum exosomal miR-320a had good diagnostic value for distinguishing between HCC subjects and normal controls. Serum exosomal miR-320a levels were significantly elevated 1 month after surgery in patients with HCC. Moreover, serum exosomal miR-320a downregulation was strongly associated with positive lymph node metastasis, positive vein invasion, advanced TNM stage, and shorter survival. Serum exosomal miR-320a was confirmed as an independent prognostic marker for HCC. Conclusions Collectively, these results indicate that serum exosomal miR-320a might be a potential biomarker for the detection and prognosis of HCC.
Collapse
Affiliation(s)
- Xinjie Hao
- Department of Traditional Chinese Medicine, Qingdao No.6 People's Hospital, Qingdao, Shandong Province, China
| | - Ruopei Xin
- Department of Traditional Chinese Medicine, Qingdao No.6 People's Hospital, Qingdao, Shandong Province, China
| | - Wenjing Dong
- Department of Traditional Chinese Medicine, Qingdao No.6 People's Hospital, Qingdao, Shandong Province, China
| |
Collapse
|
845
|
Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int Immunopharmacol 2021; 95:107508. [PMID: 33725635 DOI: 10.1016/j.intimp.2021.107508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors with a high mortality rate and poor survival rate. Depending on the tumor stage, PDAC is either treated by resection surgery, chemotherapies, or radiotherapies. Various chemotherapeutic agents have been used to treat PDAC, alone or in combination. Despite the combinations, chemotherapy exhibits many side-effects leading to an increase in the toxicity profile amongst the PDAC patients. Additionally, these standard chemotherapeutic agents have only a modest impact on patient survival due to their limited efficacy. PDAC was previously considered as an immunologically silent malignancy, but recent findings have demonstrated that effective immune-mediated tumor cell death can be used for its treatment. PDAC is characterized by an immunosuppressive tumor microenvironment accompanied by the major expression of myeloid-derived suppressor cells (MDSC) and M2 tumor-associated macrophages. In contrast, the expression of CD8+ T cells is significantly low. Additionally, infiltration of mast cells in PDAC correlates with the poor prognosis. Immunotherapeutic agents target the immunity mediators and empower them to suppress the tumor and effectively treat PDAC. Different targets are studied and exploited to induce an antitumor immune response in PDAC patients. In recent times, site-specific delivery of immunotherapeutics also gained attention among researchers to effectively treat PDAC. In the present review, existing immunotherapies for PDAC treatment along with their limitations are addressed in detail. The review also includes the pathophysiology, traditional strategies and significance of targeted immunotherapies to combat PDAC effectively. Separately, the identification of ideal targets for the targeted therapy of PDAC is also reviewed exhaustively. Additionally, the review also addresses the applications of targeted immunotherapeutics like checkpoint inhibitors, adoptive T-cell therapy etc.
Collapse
|
846
|
Boby N, Abbas MA, Lee EB, Im ZE, Hsu WH, Park SC. Protective Effect of Pyrus ussuriensis Maxim. Extract against Ethanol-Induced Gastritis in Rats. Antioxidants (Basel) 2021; 10:antiox10030439. [PMID: 33809380 PMCID: PMC8002011 DOI: 10.3390/antiox10030439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pyrus ussuriensis Maxim (Korean pear) has been used for hundreds of years as a traditional herbal medicine for asthma, cough, and atopic dermatitis in Korea and China. Although it was originally shown to possess anti-inflammatory, antioxidant, and antiatopic properties, its gastroprotective effects have not been investigated. In the present study, we evaluated the protective effects of Pyrus ussuriensis Maxim extract (PUE) against ethanol-induced gastritis in rats. The bioactive compound profile of PUE was determined by gas chromatography mass spectroscopy (GC-MS) and high-performance liquid chromatography (HPLC). The gastroprotection of PUE at different doses (250 and 500 mg/kg body weight) prior to ethanol ingestion was evaluated using an in vivo gastritis rat model. Several endpoints were evaluated, including gastric mucosal lesions, cellular degeneration, intracellular damage, and immunohistochemical localization of leucocyte common antigen. The gastric mucosal injury and ulcer score were determined by evaluating the inflamed gastric mucosa and by histological examination. To identify the mechanisms of gastroprotection by PUE, antisecretory action and plasma prostaglandin E2 (PGE2), gastric mucosal cyclic adenosine monophosphate (cAMP), and histamine levels were measured. PUE exhibited significant antioxidant effects with IC50 values of 56.18 and 22.49 µg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′- azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) inhibition (%), respectively. In addition, GC/MS and HPLC analyses revealed several bioactive compounds of PUE. Pretreatment with PUE significantly (p < 0.05) decreased the ulcer index by preventing gastric mucosal lesions, erosion, and cellular degeneration. An immunohistochemical analysis revealed that PUE markedly attenuated leucocyte infiltration in a dose-dependent manner. The enhancement of PGE2 levels and attenuation of cAMP levels along with the inhibition of histamine release following PUE pretreatment was associated with the cytoprotective and healing effects of PUE. In contrast, the downregulation of the H+/K+ ATPase pathway as well as muscarinic receptor (M3R) and histamine receptor (H2R) inhibition was also involved in the gastroprotective effects of PUE; however, the expression of cholecystokinin-2 receptors (CCK2R) was unchanged. Finally, no signs of toxicity were observed following PUE treatment. Based on our results, we conclude that PUE represents an effective therapeutic option to reduce the risk of gastritis and warrants further study.
Collapse
Affiliation(s)
- Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
| | - Zi-Eum Im
- Institute of Forest Resources Development, Gyeongsangbuk-do, Andong-si, Gyeongsangbuk-do 36605, Korea;
| | - Walter H. Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
- Correspondence: ; Tel.: +82-53-950-5964
| |
Collapse
|
847
|
Vural S, Palmisano A, Reinhold WC, Pommier Y, Teicher BA, Krushkal J. Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines. Clin Epigenetics 2021; 13:49. [PMID: 33676569 PMCID: PMC7936435 DOI: 10.1186/s13148-021-01026-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Altered DNA methylation patterns play important roles in cancer development and progression. We examined whether expression levels of genes directly or indirectly involved in DNA methylation and demethylation may be associated with response of cancer cell lines to chemotherapy treatment with a variety of antitumor agents. RESULTS We analyzed 72 genes encoding epigenetic factors directly or indirectly involved in DNA methylation and demethylation processes. We examined association of their pretreatment expression levels with methylation beta-values of individual DNA methylation probes, DNA methylation averaged within gene regions, and average epigenome-wide methylation levels. We analyzed data from 645 cancer cell lines and 23 cancer types from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We observed numerous correlations between expression of genes encoding epigenetic factors and response to chemotherapeutic agents. Expression of genes encoding a variety of epigenetic factors, including KDM2B, DNMT1, EHMT2, SETDB1, EZH2, APOBEC3G, and other genes, was correlated with response to multiple agents. DNA methylation of numerous target probes and gene regions was associated with expression of multiple genes encoding epigenetic factors, underscoring complex regulation of epigenome methylation by multiple intersecting molecular pathways. The genes whose expression was associated with methylation of multiple epigenome targets encode DNA methyltransferases, TET DNA methylcytosine dioxygenases, the methylated DNA-binding protein ZBTB38, KDM2B, SETDB1, and other molecular factors which are involved in diverse epigenetic processes affecting DNA methylation. While baseline DNA methylation of numerous epigenome targets was correlated with cell line response to antitumor agents, the complex relationships between the overlapping effects of each epigenetic factor on methylation of specific targets and the importance of such influences in tumor response to individual agents require further investigation. CONCLUSIONS Expression of multiple genes encoding epigenetic factors is associated with drug response and with DNA methylation of numerous epigenome targets that may affect response to therapeutic agents. Our findings suggest complex and interconnected pathways regulating DNA methylation in the epigenome, which may both directly and indirectly affect response to chemotherapy.
Collapse
Affiliation(s)
- Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
- General Dynamics Information Technology (GDIT), 3150 Fairview Park Drive, Falls Church, VA, 22042, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Beverly A Teicher
- Molecular Pharmacology Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| |
Collapse
|
848
|
LncRNA BACE1-AS enhances the invasive and metastatic capacity of hepatocellular carcinoma cells through mediating miR-377-3p/CELF1 axis. Life Sci 2021; 275:119288. [PMID: 33667514 DOI: 10.1016/j.lfs.2021.119288] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
AIMS Hepatocellular carcinoma (HCC) is a malignant cancer that threatened human life seriously. Long non-coding RNA (lncRNA) BACE1-AS has been reported as a key regulator in tumorigenesis. Yet the specific correlation between BACE1-AS and HCC still needs further investigation. The primary purpose of our study is to reveal the exact correlation between BACE1-AS and HCC. MAIN METHODS Bioinformatics via TCGA database revealed BACE1-AS closely related with HCC. qRT-PCR confirmed the abnormal BACE1-AS level in HCC tissues and cells. Databases prediction suggested that miR-377-3p might be a modulatory target of BACE1-AS and luciferase assay confirmed this hypothesis. Further study discovered that CELF1 also partook in the regulatory axis of BACE1-AS/miR-377-3p. Wound healing assays and transwell assays were utilized to investigate the impact of BACE1-AS, miR-377-3p and CELF1 in vitro. In vivo metastasis was examined by pulmonary metastasis model. KEY FINDINGS This study found that BACE1-AS was overexpressed in HCC tissues and cell lines. Knockdown of BACE1-AS could restrain HCC progression in vitro, and inhibit pulmonary metastasis in vivo. MiR-377-3p was negatively modulated by BACE1-AS in HCC tumor tissues and cells. MiR-377-3p up-regulation inhibited HCC cells migration and invasion via inactivating EMT process. Moreover, CELF1 was identified as a downstream regulator of miR-377-3p and served as an oncogene in HCC cells. SIGNIFICANCE Our findings supported that lncRNA BACE1-AS was up-regulated in HCC, promoting invasion and metastasis of hepatocellular carcinoma cells by modulating miR-377-3p/CELF1 axis via contributing to EMT pathway. BACE1-AS could be a potential biomarker in HCC for future treatment.
Collapse
|
849
|
Jia R, Weng Y, Li Z, Liang W, Ji Y, Liang Y, Ning P. Bioinformatics Analysis Identifies IL6ST as a Potential Tumor Suppressor Gene for Triple-Negative Breast Cancer. Reprod Sci 2021; 28:2331-2341. [PMID: 33650093 DOI: 10.1007/s43032-021-00509-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
Improved insight into the molecular mechanisms of triple-negative breast cancer (TNBC) is required to predict prognosis and develop a new therapeutic strategy for targeted genes. The aim of this study was to identify genes significantly associated with TNBC and further analyze their prognostic significance. The Cancer Genome Atlas (TCGA) TNBC database and gene expression profiles of GSE76275 from Gene Expression Omnibus (GEO) were used to explore differentially co-expressed genes in TNBC compared with those in normal tissues and non-TNBC breast cancer tissues. Differential gene expression and weighted gene co-expression network analyses identified 24 differentially co-expressed genes. Functional annotation suggested that these genes were primarily enriched in processes such as metabolism, membrane, and protein binding. The protein-protein interaction (PPI) network further identified ten hub genes, five of which (MAPT, CBS, SOX11, IL6ST, and MEX3A) were confirmed to be differentially expressed in an independent dataset (GSE38959). Moreover, CBS and MEX3A expression was upregulated, whereas IL6ST expression was downregulated in TNBC tissues compared to that in other breast cancer subtypes. Furthermore, lower expression of IL6ST was associated with worse overall survival in patients with TNBC. Thus, IL6ST might play an important role in TNBC progression and could serve as a tumor suppressor gene for diagnosis and treatment.
Collapse
Affiliation(s)
- Rong Jia
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yujie Weng
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Zhongxian Li
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Wei Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yucheng Ji
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Ying Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
850
|
Shang XC, Chu D, Zhang JX, Zheng YF, Li Y. Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118169] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|