801
|
Wooten DK, Xie X, Bartos D, Busche RA, Longmore GD, Watowich SS. Cytokine signaling through Stat3 activates integrins, promotes adhesion, and induces growth arrest in the myeloid cell line 32D. J Biol Chem 2000; 275:26566-75. [PMID: 10858439 PMCID: PMC2396147 DOI: 10.1074/jbc.m003495200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hematopoietic cell development and function is dependent on cytokines and on intercellular interactions with the microenvironment. Although the intracellular signaling pathways stimulated by cytokine receptors are well described, little is known about the mechanisms through which these pathways modulate hematopoietic cell adhesion events in the microenvironment. Here we show that cytokine-activated Stat3 stimulates the expression and function of cell surface adhesion molecules in the myeloid progenitor cell line 32D. We generated an erythropoietin receptor (EpoR) isoform (ER343/401-S3) that activates Stat3 rather than Stat5 by substituting the Stat3 binding/activation sequence motif from gp130 for the sequences surrounding tyrosines 343 and 401 in the receptor cytoplasmic region. Activation of Stat3 leads to homotypic cell aggregation, increased expression of intercellular adhesion molecule 1 (ICAM-1), CD18, and CD11b, and activation of signaling through CD18-containing integrins. Unlike the wild type EpoR, ER343/401-S3 is unable to support long term Epo-dependent proliferation in 32D cells. Instead, Epo-treated ER343/401-S3 cells undergo G(1) arrest and express elevated levels of the cyclin-dependent kinase inhibitor p27(Kip1). Sustained activation of Stat3 in these cells is required for their altered morphology and growth properties since constitutive SOCS3 expression abrogates homotypic cell aggregation, signaling through CD18-containing integrins, G(1) arrest, and accumulation of p27(Kip1). Collectively, our results demonstrate that cytokine-activated Stat3 stimulates the expression and function of cell surface adhesion molecules, indicating that a role for Stat3 is to regulate intercellular contacts in myeloid cells.
Collapse
Affiliation(s)
- David K. Wooten
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Xiaoling Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - David Bartos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Ruth A. Busche
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Gregory D. Longmore
- Departments of Medicine and Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- To whom correspondence should be addressed: The University of Texas MD Anderson Cancer Center, Box 178, 1515 Holcombe Blvd., Houston, TX 77030. Tel.: 713-792-8376; Fax: 713-794-1322; E-mail:
| |
Collapse
|
802
|
Bianchi M, Meng C, Ivashkiv LB. Inhibition of IL-2-induced Jak-STAT signaling by glucocorticoids. Proc Natl Acad Sci U S A 2000; 97:9573-8. [PMID: 10920190 PMCID: PMC16906 DOI: 10.1073/pnas.160099797] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory agents that block cytokine production. We investigated whether GCs also block cytokine signaling via the Janus kinase (Jak)-signal transducer and activator of transcription (STAT) pathway. Dexamethasone inhibited IL-2-induced DNA binding, tyrosine phosphorylation, and nuclear translocation of Stat5 in primary T cells. Inhibition of Stat5 correlated with inhibition of expression of IL-2-inducible genes and T cell proliferation. The mechanism of inhibition involved suppression of IL-2 receptor and Jak3 expression. Signaling by IL-4, IL-7, and IL-15, which use IL-2 receptor components, also was inhibited, indicating a block in T cell responses similar to that seen in immunodeficient patients lacking the IL-2 receptor gamma chain or Jak3. IL-2 signaling also was blocked in patients after treatment with GCs, suggesting that inhibition of cytokine signaling contributes to the clinical efficacy of these agents. These results identify inhibition of Jak-STAT signaling by IL-2 and related cytokines as a novel mechanism of GC action and suggest that inhibition of both cytokine production and signaling contribute to their therapeutic potency.
Collapse
Affiliation(s)
- M Bianchi
- Department of Medicine, Hospital for Special Surgery, Graduate Program in Immunology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
803
|
Abstract
Abstract
The IL-3 family of cytokines transduces signals through Stat5 and regulates myeloid development. Previous studies have determined that a carboxy terminally truncated isoform of Stat5 is activated in immature myeloid cells. This isoform, which lacks a transcriptional activation domain, is generated by a protein-processing event. To determine whether Stat5 cleavage plays an important role in the growth and maturation of myeloid progenitors, the FdCP1 model of myeloid maturation was evaluated. FdCP1 cells are IL-3–dependent myeloid progenitors that differentiate into monocytes when cultured in granulocyte macrophage–colony-stimulating factor (GM-CSF). Consistent with their immature phenotype, when FdCP1 cells are cultured in IL-3 they exhibit robust protease activity and signal through truncated Stat5 isoforms. In contrast, maturation leads to a loss of protease activity and a switch to the expression to full-length Stat5 isoforms. Introduction of a noncleavable, full-length Stat5 mutant into undifferentiated FdCP1 cells leads to a partially differentiated phenotype and prevents further differentiation in response to GM-CSF. These results support our hypothesis that Stat5 processing is important for myeloid maturation.
Collapse
|
804
|
Myeloid differentiation of FdCP1 cells is dependent on Stat5 processing. Blood 2000. [DOI: 10.1182/blood.v96.4.1358.h8001358_1358_1365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IL-3 family of cytokines transduces signals through Stat5 and regulates myeloid development. Previous studies have determined that a carboxy terminally truncated isoform of Stat5 is activated in immature myeloid cells. This isoform, which lacks a transcriptional activation domain, is generated by a protein-processing event. To determine whether Stat5 cleavage plays an important role in the growth and maturation of myeloid progenitors, the FdCP1 model of myeloid maturation was evaluated. FdCP1 cells are IL-3–dependent myeloid progenitors that differentiate into monocytes when cultured in granulocyte macrophage–colony-stimulating factor (GM-CSF). Consistent with their immature phenotype, when FdCP1 cells are cultured in IL-3 they exhibit robust protease activity and signal through truncated Stat5 isoforms. In contrast, maturation leads to a loss of protease activity and a switch to the expression to full-length Stat5 isoforms. Introduction of a noncleavable, full-length Stat5 mutant into undifferentiated FdCP1 cells leads to a partially differentiated phenotype and prevents further differentiation in response to GM-CSF. These results support our hypothesis that Stat5 processing is important for myeloid maturation.
Collapse
|
805
|
Abstract
Cytokines regulate cellular behavior by interacting with receptors on the plasma membrane of target cells and activating intracellular signal transduction cascades such as the JAK-STAT pathway. Suppressors of cytokine signaling (SOCS) proteins negatively regulate cytokine signaling. The SOCS family consists of eight proteins: SOCS1-SOCS7 and CIS, each of which contains a central Src-homology 2 (SH2) domain and a C-terminal SOCS box. The expression of CIS, SOCS1, SOCS2 and SOCS3 is induced in response to stimulation by a wide variety of cytokines, and overexpression of these proteins in cell lines results in inhibition of cytokine signaling. Thus, SOCS proteins appear to form part of a classical negative feedback loop. The analysis of mice lacking SOCS1 has revealed that it is critical in the negative regulation of IFN(gamma) signaling and in the differentiation of T cells. Additionally, the analysis of mouse embryos lacking SOCS3 suggests that SOCS3 negatively regulates fetal liver erythropoiesis, probably through its ability to modulate erythropoietin (Epo) signaling. Thus, the use of gene targeting has confirmed that SOCS proteins regulate cytokine signaling in a physiological setting.
Collapse
Affiliation(s)
- D L Krebs
- The Walter and Eliza Hall Institute of Medical Research and the Cooperative Research Center for Cellular Growth Factors, Post Office, Royal Melbourne Hospital, Victoria 3050, Australia.
| | | |
Collapse
|
806
|
Ariyoshi K, Nosaka T, Yamada K, Onishi M, Oka Y, Miyajima A, Kitamura T. Constitutive activation of STAT5 by a point mutation in the SH2 domain. J Biol Chem 2000; 275:24407-13. [PMID: 10823841 DOI: 10.1074/jbc.m909771199] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a constitutively active form of STAT (signal transducer and activator of transcription) 5A by polymerase chain reaction-driven random mutagenesis followed by retrovirus-mediated expression screening, which had two point mutations in the DNA-binding and transcriptional activation domains, and was designated STAT5A1*6. STAT5A1*6 showed markedly elevated DNA binding and transactivation activities with stable tyrosine phosphorylation and nuclear accumulation, and conferred autonomous cell growth on interleukin 3-dependent Ba/F3 cells. We now report another constitutively active mutant, STAT5A-N642H which has a single point mutation (N642H) in its SH2 domain, identified using the same strategy as that used to identify STAT5A1*6. STAT5A-N642H showed identical properties to those of STAT5A1*6 both biochemically and biologically. Interestingly the mutation in STAT5A-N642H resulted in restoration of the conserved critical histidine which is involved in the binding of phosphotyrosine in the majority of SH2-containing proteins. Introduction of an additional mutation (Y694F) to STAT5A-N642H, which disrupted critical tyrosine 694 required for dimerization of STAT5, abolished all the activities manifested by the mutant STAT5A-N642H, which indicates that dimerization is required for the activity of STAT5A-N642H as was the case for the wild-type STAT5A. The present findings also show that different mutations rendered STAT5A constitutively active, through a common mechanism, which is similar to that of physiological activation.
Collapse
Affiliation(s)
- K Ariyoshi
- Department of Hematopoietic Factors, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
807
|
Oda A, Sawada KI. Signal transduction in primary cultured human erythroid cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:417-23. [PMID: 10982239 DOI: 10.1089/152581600419071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Development of erythrocytes is a complex process governed by multiple cytokines. Colony assays have revealed the physiologic importance of these cytokines, although biochemical studies of highly purified human colony-forming unit-erythroid (CFU-E) generated in vitro from CD34+ cells have only recently begun. Studies from our groups and others suggested that signal transduction in primary erythroid cells differs considerably from that in cell lines or primary cells from other species. In this review, we summarize results of these studies with emphasis on possible implications for hematotherapy.
Collapse
Affiliation(s)
- A Oda
- Hokkaido Red Cross Blood Center, Sapporo, Japan
| | | |
Collapse
|
808
|
Chakraborty A, Dyer KF, Tweardy DJ. Delineation and mapping of Stat5 isoforms activated by granulocyte colony-stimulating factor in myeloid cells. Blood Cells Mol Dis 2000; 26:320-30. [PMID: 11042034 DOI: 10.1006/bcmd.2000.0309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine critical for proliferation and differentiation of granulocytic precursors and neutrophil functions that has previously been demonstrated to activate Stat3 and Stat5, two members of the signal transducer and activator of transcription (STAT) protein family. Stat3 has been identified to be critical for G-CSF receptor (G-CSFR)-mediated signaling for granulocyte differentiation. Stat5 activation has been mapped to the proximal portion of the cytosolic region of the G-CSFR. However, delineation and mapping of the specific Stat5 isoforms activated by G-CSF in myeloid cells have not been reported. In this study, we demonstrated that G-CSF activated a Stat5 complex in human myeloid cells containing three isoforms of Stat5: Stat5A, Stat5B, and Stat5 p80. Activation of Stat5A and Stat5B maps to the proliferation-specific domain of the G-CSFR, whereas Stat5 p80 is recruited by phosphotyrosine-704 within the region of G-CSFR required for differentiation. G-CSF-activated Stat5A/B, but not Stat5 p80, formed a heterodimer with Stat3. The Stat5A/B-Stat3 heterodimer can bind to specific DNA sequences preferred by both Stat3 and Stat5. These findings are consistent with the possibility that Stat5 p80 contributes to G-CSF-induced myeloid differentiation.
Collapse
Affiliation(s)
- A Chakraborty
- Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
809
|
Abstract
The Janus family of protein tyrosine kinases (JAKs) and STAT transcription factors regulate cellular processes involved in cell growth, differentiation, and transformation through their association with cytokine receptors. The CIS family of proteins (also referred to as the SOCS or SSI family) has been implicated in the regulation of signal transduction by a variety of cytokines. Most of them appear to be induced after stimulation with several different cytokines, and at least three of them (CIS1, CIS3/SOCS3, and JAB/SOCS1) negatively regulate cytokine signal transduction by various means: CIS1 inhibits STAT5 activation by binding to cytokine receptors that recruit STAT5, whereas JAB/SOCS-1 and CIS3/SOCS-3 directly bind to the kinase domain of JAKs, thereby inhibiting tyrosine-kinase activity. Therefore, these CIS family members seem to function in a classical negative feedback loop of cytokine signaling. Biochemical characterization as well as gene disruption studies indicate that JAB/SOCS1/SSI-1 is an important negative regulator of interferon gamma signaling. The mechanisms by which these inhibitors of cytokine signal transduction exert their effects have been extensively studied and will provide useful information for regulating tyrosine-kinase activity.
Collapse
Affiliation(s)
- H Yasukawa
- Institute of Life Science, Kurume University, Aikawamachi 2432-3, Kurume 839-0861, Japan
| | | | | |
Collapse
|
810
|
Wang D, Feng J, Wen R, Marine JC, Sangster MY, Parganas E, Hoffmeyer A, Jackson CW, Cleveland JL, Murray PJ, Ihle JN. Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity 2000; 13:25-35. [PMID: 10933392 DOI: 10.1016/s1074-7613(00)00005-4] [Citation(s) in RCA: 365] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many receptors activate phospholipase Cgamma1 or -gamma2. To assess the role of PLCgamma2, we derived enzyme-deficient mice. The mice are viable but have decreased mature B cells, a block in pro-B cell differentiation, and B1 B cell deficiency. IgM receptor-induced Ca2+ flux and proliferation to B cell mitogens are absent. IgM, IgG2a, and IgG3 levels are reduced, and T cell-independent antibody production is absent. The similarity to Btk- or Blnk-deficient mice demonstrates that PLCgamma2 is downstream in Btk/Blnk signaling. FcRgamma signaling is also defective, resulting in a loss of collagen-induced platelet aggregation, mast cell FcepsilonR function, and NK cell FcgammaRIII and 2B4 function. The results define a signal transduction pathway broadly utilized by immunoglobulin superfamily receptors.
Collapse
Affiliation(s)
- D Wang
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
811
|
Nevalainen MT, Ahonen TJ, Yamashita H, Chandrashekar V, Bartke A, Grimley PM, Robinson GW, Hennighausen L, Rui H. Epithelial defect in prostates of Stat5a-null mice. J Transl Med 2000; 80:993-1006. [PMID: 10908145 DOI: 10.1038/labinvest.3780105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The transcription factor Stat5a critically mediates prolactin (PRL)-induced mammary gland development and lactogenesis. PRL also stimulates growth and differentiation of prostate tissue. Specifically, hyperprolactinemia gives rise to prostate hyperplasia, and prostate size is reduced in PRL-deficient mice. We therefore investigated the importance of Stat5a for prostate development and function by examining Stat5a-null mice. The absence of Stat5a in mice was associated with a distinct prostate morphology characterized by an increased prevalence of local disorganization within acinar epithelium of ventral prostates. Affected acini were typically filled with desquamated, granular epithelial cells that had become embedded in dense, coagulated secretory material. These features were reminiscent of acinar cyst formation and degeneration frequently observed in human benign prostate hyperplasia, however, cystic changes in prostate acini of Stat5a-deficient mice were not associated with increased prostate size or morphologic hallmarks of epithelial hyperplasia. Instead, immunohistochemistry of the prostate-specific secretory marker, probasin, suggested that hypersecretory function of the epithelium could underlie local congestion and cyst formation in prostates of Stat5a-null mice. Serum testosterone and PRL levels were normal in Stat5a knockout mice, but prostate PRL receptor expression was reduced as determined by immunohistochemistry. Expression levels or activation states of other PRL signal transduction proteins, including Stat5b, Stat3, Stat1, ERK1, and ERK2 were not altered. The present study offers the first evidence for a direct role of Stat5a in the maintenance of normal tissue architecture and function of the mouse prostate.
Collapse
Affiliation(s)
- M T Nevalainen
- Department of Pathology, Uniformed Services University of the Health Sciences, and National Institutes of Diabetes and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
812
|
Binart N, Helloco C, Ormandy CJ, Barra J, Clément-Lacroix P, Baran N, Kelly PA. Rescue of preimplantatory egg development and embryo implantation in prolactin receptor-deficient mice after progesterone administration. Endocrinology 2000; 141:2691-7. [PMID: 10875275 DOI: 10.1210/endo.141.7.7568] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PRL, a hormone secreted essentially by the pituitary and other extrapituitary sources such as decidua, has been attributed regulatory roles in reproduction and cell growth in mammals. These effects are mediated by a membrane PRL receptor belonging to the cytokine receptor superfamily. Null mutation of the PRL receptor gene leads to female sterility due to a severely compromised preimplantation development and a complete failure of the implantation of the few embryos reaching the blastocyst stage, strongly implicating PRL in the maternal control of implantation. We measured the hormonal status of -/- mice, which confirmed that the corpus luteum is unable to produce progesterone. Progesterone administration to -/- mice completely rescued the development of preimplantatory eggs and embryo implantation. Pregnancy could be maintained to 19.5 days postcoitum, with about 22% of resulting embryos reaching adulthood. Although progesterone and perhaps PRL appear to facilitate mouse preembryo development throughout the preimplantation stages, other factors as well as a possible direct effect of PRL on the uterus are probably necessary to fully maintain pregnancy. Finally, reduced ductal side-branching in the mammary gland can be rescued by progesterone treatment, but females exhibit reduced alveolar formation. Our model establishes the PRL receptor as a key regulator of reproduction and provides novel insights into the function of lactogenic hormones and their receptor.
Collapse
Affiliation(s)
- N Binart
- INSERM, U-344, Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
813
|
Abstract
We previously reported a fusion between TEL and JAK2in a t(9;12)(p24;p13) chromosomal translocation in childhood acute T-cell leukemia. This fusion gene encodes a TEL-JAK2 chimeric protein in which the 336 amino-terminal residues of TEL, including its specific self-association domain, are fused to the kinase domain of JAK2. TEL-JAK2 exhibits constitutive activation of its tyrosine kinase activity which, in turn, confers growth factor–independent proliferation to the interleukin-3–dependent Ba/F3 hematopoietic cell line. To elucidate the properties of TEL-JAK2 in primary cells and to create an animal model for TEL-JAK2–induced leukemia, we generated transgenic mice in which the TEL-JAK2 complementary DNA was placed under the transcriptional control of the EμSR enhancer/promoter. TEL-JAK2 founder mice and their transgenic progeny developed fatal leukemia at 4 to 22 weeks of age. Selective amplification of CD8-positive T cells was observed in blood, lymph nodes, thymus, spleen, and bone marrow. Expression of a tyrosine-phosphorylated TEL-JAK2 protein and activation of STAT1 and STAT5 (signal transducer and activator of transcription) were detected in leukemic tissues. TEL-JAK2 diseased mice also displayed invasion of nonhematopoietic organs, including liver, brain, lung, and kidney, by leukemic T cells. Leukemic organs of founder and transgenic progeny contained a monoclonal/oligoclonal T-cell population as analyzed by the rearrangement of the TCRβ locus. Transplantation of TEL-JAK2 leukemic cells in nude mice confirmed their invasive nature. We conclude that the TEL-JAK2 fusion is an oncogene in vivo and that its expression in lymphoid cells results in the preferential expansion of CD8-positive T cells.
Collapse
|
814
|
Abstract
Abstract
We previously reported a fusion between TEL and JAK2in a t(9;12)(p24;p13) chromosomal translocation in childhood acute T-cell leukemia. This fusion gene encodes a TEL-JAK2 chimeric protein in which the 336 amino-terminal residues of TEL, including its specific self-association domain, are fused to the kinase domain of JAK2. TEL-JAK2 exhibits constitutive activation of its tyrosine kinase activity which, in turn, confers growth factor–independent proliferation to the interleukin-3–dependent Ba/F3 hematopoietic cell line. To elucidate the properties of TEL-JAK2 in primary cells and to create an animal model for TEL-JAK2–induced leukemia, we generated transgenic mice in which the TEL-JAK2 complementary DNA was placed under the transcriptional control of the EμSR enhancer/promoter. TEL-JAK2 founder mice and their transgenic progeny developed fatal leukemia at 4 to 22 weeks of age. Selective amplification of CD8-positive T cells was observed in blood, lymph nodes, thymus, spleen, and bone marrow. Expression of a tyrosine-phosphorylated TEL-JAK2 protein and activation of STAT1 and STAT5 (signal transducer and activator of transcription) were detected in leukemic tissues. TEL-JAK2 diseased mice also displayed invasion of nonhematopoietic organs, including liver, brain, lung, and kidney, by leukemic T cells. Leukemic organs of founder and transgenic progeny contained a monoclonal/oligoclonal T-cell population as analyzed by the rearrangement of the TCRβ locus. Transplantation of TEL-JAK2 leukemic cells in nude mice confirmed their invasive nature. We conclude that the TEL-JAK2 fusion is an oncogene in vivo and that its expression in lymphoid cells results in the preferential expansion of CD8-positive T cells.
Collapse
|
815
|
Sakamoto H, Kinjyo I, Yoshimura A. The janus kinase inhibitor, Jab/SOCS-1, is an interferon-gamma inducible gene and determines the sensitivity to interferons. Leuk Lymphoma 2000; 38:49-58. [PMID: 10811447 DOI: 10.3109/10428190009060318] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Janus family of protein tyrosine kinases (JAKs) and STAT transcription factors regulate cellular processes involved in cell growth, differentiation, and transformation through their association with cytokine receptors. The CIS family of proteins (also referred as the SOCS or SSI family) has been implicated in the regulation of signal transduction by a variety of cytokines. Among them, we have shown that JAB/SOCS-1 is strongly induced by interferon-gamma and forced expression of JAB/SOCS-1I conferred cells interferon resistance. This resistance was caused by inhibition of JAK1 and JAK2 activation in response to IFNgamma. Moreover, recent detailed analysis of JAB/SOCS-1 knockout mice revealed that JAB/SOCS-1 is indeed a "negative feedback regulator" that determine the sensitivity of cells to IFNgamma. Using in vitro mutagensis, we defined a functional structure of JAB/SOCS-1 and proposed a mechanism for how JAB inhibits JAK kinase activity.
Collapse
Affiliation(s)
- H Sakamoto
- Institute of Life Science, Kurume University, Japan
| | | | | |
Collapse
|
816
|
Dorshkind K, Horseman ND. The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr Rev 2000; 21:292-312. [PMID: 10857555 DOI: 10.1210/edrv.21.3.0397] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An extensive literature suggesting that PRL, GH, IGF-I, and thyroid hormones play an important role in immunity has evolved. Because the use of one or more of these hormones as immunostimulants in humans is being considered, it is of critical importance to resolve their precise role in immunity. This review addresses new experimental evidence from analysis of lymphocyte development and function in mice with genetic defects in expression of these hormones or their receptors that calls into question the presumed role played by some of these hormones and reveals unexpected effects of others. These recent findings from the mutant mouse models are integrated and placed in context of the wider literature on endocrine-immune system interactions. The hypothesis that will be developed is that, with the exception of a role for thyroid hormones in B cell development, PRL, GH, and IGF-I are not obligate immunoregulators. Instead, they apparently act as anabolic and stress-modulating hormones in most cells, including those of the immune system.
Collapse
Affiliation(s)
- K Dorshkind
- Department of Pathology and Laboratory Medicine and The Jonsson Comprehensive Cancer Center, University of California at Los Angeles School of Medicine, 90095-1732, USA
| | | |
Collapse
|
817
|
Lee C, Riddick DS. Transcriptional suppression of cytochrome P450 2C11 gene expression by 3-methylcholanthrene. Biochem Pharmacol 2000; 59:1417-23. [PMID: 10751551 DOI: 10.1016/s0006-2952(00)00249-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aromatic hydrocarbon receptor-mediated transcriptional up-regulation of cytochrome P450 (CYP) enzymes of the CYP1A subfamily by polycyclic aromatic hydrocarbons (PAHs) such as 3-methylcholanthrene (MC) is accompanied by down-regulation of rat hepatic CYP2C11 expression at the catalytic activity, protein, and mRNA levels. To gain insight into the molecular mechanism of this CYP2C11 suppression response, we have used a nuclear run-on assay to assess directly the effect of MC on the hepatic transcription rate of the CYP2C11 gene following in vivo administration of MC to adult male rats. A single intraperitoneal dose of MC (40 mg/kg) caused a 179-fold increase in the rate of CYP1A gene transcription at 6 hr, and the rate of CYP2C11 gene transcription was reduced by 51% at this time point, compared with vehicle controls. By 48 hr after MC treatment, the rates of CYP1A and CYP2C11 gene transcription were no longer significantly different from the corresponding vehicle controls. These results indicate for the first time that the suppression of hepatic CYP2C11 caused by in vivo administration of PAHs to adult male rats is at least partially due to a decrease in the rate of transcription of the CYP2C11 gene.
Collapse
Affiliation(s)
- C Lee
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
818
|
Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD. Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 2000; 14:973-90. [PMID: 10865962 DOI: 10.1038/sj.leu.2401808] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of mature granulocytes from hematopoietic precursor cells is controlled by a myriad of transcription factors which regulate the expression of essential genes, including those encoding growth factors and their receptors, enzymes, adhesion molecules, and transcription factors themselves. In particular, C/EBPalpha, PU.1, CBF, and c-Myb have emerged as critical players during early granulopoiesis. These transcription factors interact with one another as well as other factors to regulate the expression of a variety of genes important in granulocytic lineage commitment. An important goal remains to understand in greater detail how these various factors act in concert with signals emanating from cytokine receptors to influence the various steps of maturation, from the pluripotent hematopoietic stem cell, to a committed myeloid progenitor, to myeloid precursors, and ultimately to mature granulocytes.
Collapse
Affiliation(s)
- A C Ward
- Institute of Hematology, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
819
|
Herrington J, Smit LS, Schwartz J, Carter-Su C. The role of STAT proteins in growth hormone signaling. Oncogene 2000; 19:2585-97. [PMID: 10851057 DOI: 10.1038/sj.onc.1203526] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth hormone (GH) has long been known to be the body's primary regulator of body growth and a regulator of metabolism, yet the mechanisms by which GH regulates the transcription of specific genes required for these processes are just now being delineated. GH binding to its receptor recruits and activates the receptor-associated JAK2 that in turn phosphorylates tyrosines within itself and the GH receptor. These tyrosines form binding sites for a number of signaling proteins, including members of the family of signal transducers and activators of transcription (STAT). Among the known signaling molecules for GH, STAT proteins play a particularly prominent role in the regulation of gene transcription. This paper will review what is currently understood about which STAT proteins are regulated by GH, how they are regulated by GH, the GH-dependent genes they regulate, and discuss current theories about how GH-activated STAT signaling is regulated. Particular attention will be given to the novel role that STAT5 plays in sexually dimorphic gene expression in the liver as determined by the secretory pattern of GH and the role of STAT5 in body growth. Oncogene (2000).
Collapse
Affiliation(s)
- J Herrington
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan, MI 48109-0622, USA
| | | | | | | |
Collapse
|
820
|
Abstract
The activation of Stat5 proteins (Stat5a and Stat5b) is one of the earliest signaling events mediated by IL-2 family cytokines, allowing the rapid delivery of signals from the membrane to the nucleus. Among STAT family proteins, Stat5a and Stat5b are the two most closely related STAT proteins. Together with other transcription factors and co-factors, they regulate the expression of the target genes in a cytokine-specific fashion. In addition to their activation by cytokines, activities of Stat5a and Stat5b, as well as other STAT proteins, are negatively controlled by CIS/SOCS/SSI family proteins. The outcome of Stat5 activation in regulating expression of target genes varies, depending upon the complexity of the promoter region of target genes and the other signaling pathways that are activated by each cytokine as well. Here, we mainly focus on the IL2-/IL-2 receptor system, as it is one of the best-studied systems that depend on Stat5-mediated signals. We will summarize what we have learned about the molecular mechanisms of how Stat5 is activated by IL-2 family cytokines from in vitro biochemical studies as well as the role that is played by Stat5 in each of the cytokine signaling pathways from in vivo gene-targeting analyses. Oncogene (2000).
Collapse
Affiliation(s)
- J X Lin
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bldg. 10/Rm. 7N252, 9000 Rockville Pike, Bethesda, Maryland MD 20892-1674, USA
| | | |
Collapse
|
821
|
Abstract
The physiological role of each individual STAT protein is now being examined through the study of 'knockout' (KO) mice, harboring a null allele for the particular gene. In contrast to other STATs deficient mice that are born alive, STAT3-deficient mice die during early embryogenesis. However, the role of STAT3 in adult tissues can be assessed by utilizing the Cre-loxP recombination system to ablate the gene in later life. Analyses of tissue-specific STAT3-deficient mice indicate that STAT3 plays a crucial role in a variety of biological functions including cell growth, suppression and induction of apoptosis, and cell motility. Oncogene (2000).
Collapse
Affiliation(s)
- S Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
822
|
Levy DE, Gilliland DG. Divergent roles of STAT1 and STAT5 in malignancy as revealed by gene disruptions in mice. Oncogene 2000; 19:2505-10. [PMID: 10851049 DOI: 10.1038/sj.onc.1203480] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stat proteins are latent transcription factors activated by tyrosine phosphorylation downstream of cytokine and growth factor receptors and have been implicated in a variety of cell growth regulatory pathways. Constitutive phosphorylation has also been observed in various transformed cell line and in primary malignant tissue, suggesting that Stat protein activation may contribute to the transformed phenotype. One method to distinguish between a causative role in malignancy as opposed to bystander phosphorylation from the increased tyrosine phosphorylation that accompanies transformation is to investigate cell growth and malignancy in the absence of particular Stat proteins using targeted gene disruptions in transgenic mice. Such studies show that Stat1 primarily mediates growth inhibitory signals and contributes to the host rejection of tumors, and that its activation in transformed cells is not necessary for malignancy. Activation of Stat5 can be both necessary and sufficient for malignant transformation, and single Stat5-target genes have been identified that are critical for heightened proliferation. Nonetheless, some malignancies that are characterized by constitutively phosphorylated Stat5 are not altered by the loss of Stat5 protein. Its role in these cases may be redundant with other transforming events that are in themselves sufficient to cause disease, rendering tyrosine phosphorylation of Stat5 unnecessary in these transformed cells. Oncogene (2000).
Collapse
Affiliation(s)
- D E Levy
- Department of Pathology and Kaplan Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
823
|
Abstract
Since their discovery as key mediators of cytokine signaling, considerable progress has been made in defining the structure-function relationships of Signal Transducers and Activators of Transcription (STATs). In addition to their central roles in normal cell signaling, recent studies have demonstrated that diverse oncoproteins can activate specific STATs (particularly Stat3 and Stat5) and that constitutively-activated STAT signaling directly contributes to oncogenesis. Furthermore, extensive surveys of primary tumors and cell lines derived from tumors indicate that inappropriate activation of specific STATs occurs with surprisingly high frequency in a wide variety of human cancers. Together, these findings provide compelling evidence that aberrant STAT activation associated with oncogenesis is not merely adventitious but instead contributes to the process of malignant transformation. These studies are beginning to reveal the molecular mechanisms leading to STAT activation in the context of oncogenesis, and candidate genes regulated by STATs that may contribute to oncogenesis are being identified. Recent studies suggest that activated STAT signaling participates in oncogenesis by stimulating cell proliferation and preventing apoptosis. This review presents the evidence for critical roles of STATs in oncogenesis and discusses the potential for development of novel cancer therapies based on mechanistic understanding of STAT signaling. Oncogene (2000).
Collapse
Affiliation(s)
- T Bowman
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida, FL 33612, USA
| | | | | | | |
Collapse
|
824
|
Smithgall TE, Briggs SD, Schreiner S, Lerner EC, Cheng H, Wilson MB. Control of myeloid differentiation and survival by Stats. Oncogene 2000; 19:2612-8. [PMID: 10851060 DOI: 10.1038/sj.onc.1203477] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hematopoiesis involves a complex array of growth factors that regulate the survival and proliferation of immature progenitors, influence differentiation commitment, and modulate end-stage cell functions. This mini-review is focused on the role of Stat activation in the development of myeloid cells in response to hematopoietic cytokines. Much of the evidence implicating Stats in these cellular processes comes from studies of mutant cytokine receptors selectively uncoupled from Stat activation, dominant-inhibitory Stat mutants, and mice with targeted disruptions of Stat genes. Together these approaches provide strong evidence that Stat activation, particularly of Stat3 and Stat5, plays an important role in myeloid differentiation and survival. Oncogene (2000).
Collapse
Affiliation(s)
- T E Smithgall
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, Pennsylvania, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
825
|
Abstract
Myeloid differentiation is a highly regulated process governed by various cytokines, such as EPO, TPO, G-CSF, IL-3, IL-5 and GM-CSF. These cytokines act in part through activation of the STAT transcription factor family. In particular, various isoforms of STAT3 and STAT5 are activated during myeloid differentiation in a cell-type and maturation-state dependent fashion. In vitro studies have shown that STAT proteins are essential for cytokine-regulated processes such as cellular proliferation, differentiation as well as survival. Similarly, various STAT knock-outs have highlighted the role of STATs in myeloid differentiation in vivo. STATs also appear to play an important role in various myeloid malignancies, which are characterized by arrested maturation and cytokine-independent proliferation of myeloid progenitors. Constitutive activation of STAT3 and/or STAT5 resulting in enhanced transcription of anti-apoptotic- cell-cycle progression genes is likely to contribute to the pathogenesis of various myeloid leukemia's. Oncogene (2000).
Collapse
Affiliation(s)
- P J Coffer
- Department of Pulmonary Diseases, Room G03 550, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | | | | |
Collapse
|
826
|
Zochodne B, Truong AH, Stetler K, Higgins RR, Howard J, Dumont D, Berger SA, Ben-David Y. Epo regulates erythroid proliferation and differentiation through distinct signaling pathways: implication for erythropoiesis and Friend virus-induced erythroleukemia. Oncogene 2000; 19:2296-304. [PMID: 10822380 DOI: 10.1038/sj.onc.1203590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have recently isolated the erythroleukemic cell line, HB60-5, that proliferates in the presence of erythropoietin (Epo) and stem cell factor (SCF), but undergoes terminal differentiation in the presence of Epo alone. Ectopic expression of the ets related transcription factor Fli-1 in these cells resulted in the establishment of the Epo-dependent cell line HB60-ED that proliferates in the presence of Epo. In this study, we utilized these two cell lines to examine the signal transduction pathways that are activated in response to Epo and SCF stimulation. We demonstrate that Epo, but not SCF, phosphorylates STAT-5 in both HB60-5 and HB60-ED cells. Interestingly, SCF activates the Shc/ras pathway in HB60-5 cells while Epo does not. However, both Epo and SCF are capable of activating the Shc/ras pathway in HB60ED cells. Furthermore, enforced expression of gp55 in HB60-5 cells by means of infection with the Spleen Focus Forming virus-P (SFFV-P), confers Epo independent growth, which is associated with the up-regulation of Fli-1. Activation of the Shc/ras pathway is readily detected in gp55 expressing cells in response to both Epo and SCF, and is associated with a block in STAT-5B tyrosine phosphorylation. These results suggest that STAT-5 activation, in the absence of Shc/ras activation, plays a role in erythroid differentiation. Moreover, Fli-1 is capable of switching Epo-induced differentiation to Epo-induced proliferation, suggesting that this ets factor regulated genes whose products modulate the Epo-Epo-R signal transduction pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- DNA-Binding Proteins/metabolism
- Erythropoiesis/physiology
- Erythropoietin/metabolism
- Erythropoietin/pharmacology
- Friend murine leukemia virus
- Humans
- Leukemia, Erythroblastic, Acute/drug therapy
- Leukemia, Erythroblastic, Acute/metabolism
- Mice
- Mice, Inbred BALB C
- Milk Proteins
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Proteins/metabolism
- Proto-Oncogene Protein c-fli-1
- Proto-Oncogene Proteins
- Receptors, Erythropoietin/metabolism
- STAT5 Transcription Factor
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Stem Cell Factor/metabolism
- Stem Cell Factor/pharmacology
- Trans-Activators/metabolism
- Tumor Cells, Cultured
- Viral Envelope Proteins/metabolism
- ras Proteins/metabolism
Collapse
Affiliation(s)
- B Zochodne
- Department of Medical Biophysics, University of Toronto, Sunnybrook and Women's College Health Sciences Centre, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
827
|
Rui L, Gunter DR, Herrington J, Carter-Su C. Differential binding to and regulation of JAK2 by the SH2 domain and N-terminal region of SH2-bbeta. Mol Cell Biol 2000; 20:3168-77. [PMID: 10757801 PMCID: PMC85611 DOI: 10.1128/mcb.20.9.3168-3177.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SH2-Bbeta has been shown to bind via its SH2 (Src homology 2) domain to tyrosyl-phosphorylated JAK2 and strongly activate JAK2. In this study, we demonstrate the existence of an additional binding site(s) for JAK2 within the N-terminal region of SH2-Bbeta (amino acids 1 to 555) and the ability of this region of SH2-B to inhibit JAK2. Four lines of evidence support the existence of this additional binding site(s). In a glutathione S-transferase pull-down assay, wild-type SH2-Bbeta and SH2-Bbeta(R555E) with a defective SH2 domain bind to both tyrosyl-phosphorylated JAK2 from growth hormone (GH)-treated cells and non-tyrosyl-phosphorylated JAK2 from control cells, whereas the SH2 domain of SH2-Bbeta binds only to tyrosyl-phosphorylated JAK2 from GH-treated cells. Similarly, JAK2 is present in alphaSH2-B immunoprecipitates in the absence and presence of GH, with GH substantially increasing the coprecipitation of JAK2 with SH2-B. When coexpressed in COS cells, SH2-Bbeta coimmunoprecipitates not only wild-type, tyrosyl-phosphorylated JAK2 but also kinase-inactive, non-tyrosyl-phosphorylated JAK2(K882E), although to a lesser extent. DeltaC555 (amino acids 1 to 555 of SH2-Bbeta) that lacks most of the SH2 domain binds similarly to wild-type JAK2 and kinase-inactive JAK2(K882E). Experiments using a series of N- and C-terminally truncated SH2-Bbeta constructs indicate that the pleckstrin homology (PH) domain (amino acids 269 to 410) and amino acids 410 to 555 are necessary for maximal binding of SH2-Bbeta to inactive JAK2, but neither region alone is sufficient for maximal binding. The SH2 domain of SH2-Bbeta is necessary and sufficient for the stimulatory effect of SH2-Bbeta on JAK2 and JAK2-mediated tyrosyl phosphorylation of Stat5B. In contrast, DeltaC555 lacking the SH2 domain, and to a lesser extent the PH domain alone, inhibits JAK2. DeltaC555 also blocks JAK2-mediated tyrosyl phosphorylation of Stat5B in COS cells and GH-stimulated nuclear accumulation of Stat5B in 3T3-F442A cells. These data indicate that in addition to the SH2 domain, SH2-Bbeta has one or more lower-affinity binding sites for JAK2 within amino acids 269 to 555. The interaction via this site(s) in SH2-B with inactive JAK2 seems likely to increase the local concentration of SH2-Bbeta around JAK2, thereby facilitating binding of the SH2 domain to ligand-activated JAK2. This would result in a more rapid and robust cellular response to hormones and cytokines that activate JAK2. This interaction between inactive JAK2 and SH2-B may also help prevent abnormal activation of JAK2.
Collapse
Affiliation(s)
- L Rui
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | |
Collapse
|
828
|
Wilbanks AM, Mahajan S, Frank DA, Druker BJ, Gilliland DG, Carroll M. TEL/PDGFbetaR fusion protein activates STAT1 and STAT5: a common mechanism for transformation by tyrosine kinase fusion proteins. Exp Hematol 2000; 28:584-93. [PMID: 10812249 DOI: 10.1016/s0301-472x(00)00138-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE TEL/PDGFbetaR is a tyrosine kinase fusion protein associated with the pathogenesis of chronic myelomonocytic leukemia. The following experiments were undertaken to understand the mechanisms whereby TEL/PDGFbetaR transforms cells. MATERIALS AND METHODS Activation of JAK and STAT proteins was studied in an interleukin 3 (IL-3)-dependent cell line, Ba/F3, transformed to IL-3 independence by TEL/PDGFbetaR. RESULTS TEL/PDGFbetaR activates STAT1 and STAT5 in transformed Ba/F3 cells through a JAK-independent pathway. Activation of STAT proteins requires the kinase activity of TEL/PDGFbetaR. JAK1, JAK2, JAK3, and TYK2 are not phosphorylated by TEL/PDGFbetaR. However, TEL/PDGFbetaR can phosphorylate STAT5 in transiently transfected COS cells, suggesting that TEL/PDGFbetaR may itself be the kinase involved in tyrosine phosphorylation of STAT proteins. In contrast, native PDGFbetaR stimulated by PDGF ligand does not activate STAT proteins to a significant degree in this hematopoietic context. STAT1 and STAT5 also are activated by TEL/ABL and TEL/JAK2 fusion proteins associated with human leukemia. CONCLUSIONS STAT activation may be a common mechanism of transformation by leukemogenic tyrosine kinase fusion proteins.
Collapse
Affiliation(s)
- A M Wilbanks
- Department of Hematology and Oncology, Howard Hughes Medical Institute,Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
829
|
Molenaar AJ, Wheeler TT, Grigor MR. Nuclear localisation of the transcription factor Stat5b is associated with ovine milk protein gene expression during lactation but not during late pregnancy or forced weaning. THE HISTOCHEMICAL JOURNAL 2000; 32:265-74. [PMID: 10939513 DOI: 10.1023/a:1004002611259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Localisation patterns of the transcription factor Stat5b in the udders from pregnant, lactating and involuting ewes were compared with the expression patterns of two major milk protein genes alpha-lactalbumin and alphaS1 casein. Stat5b was detected in the cytoplasm and nuclei of epithelial cells at all stages of mammary gland development. A consistent positive relationship between the nuclear localisation of Stat5b in lactating mammary alveolar epithelial cells, and the presence of milk protein gene mRNA was apparent during lactation and early involution. Conversely, there was little evidence of nuclear localisation of Stat5b in non-lactating mammary alveolar epithelial cells during lactation and early involution. This supports the observation that during lactation, Stat5b may play a role in milk protein gene expression. However, during pregnancy and later involution, while Stat5b was observed to be present in mammary epithelial cell nuclei and cytoplasm, no relationship between this and the presence of milk protein gene mRNA was apparent. This suggests that during late pregnancy and in later involution, Stat5b may be involved in processes other than initiation of milk protein gene transcription.
Collapse
Affiliation(s)
- A J Molenaar
- Food Science Platform, AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | | | |
Collapse
|
830
|
Herrington J, Diakonova M, Rui L, Gunter DR, Carter-Su C. SH2-B is required for growth hormone-induced actin reorganization. J Biol Chem 2000; 275:13126-33. [PMID: 10777618 DOI: 10.1074/jbc.275.17.13126] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Src homology-2 (SH2) domain-containing protein SH2-Bbeta is a substrate of the growth hormone (GH) receptor-associated tyrosine kinase JAK2. Here we tested whether SH2-Bbeta is involved in GH regulation of the actin cytoskeleton. Based on cell fractionation and confocal microscopy, we find SH2-Bbeta present at the plasma membrane and in the cytosol. SH2-Bbeta colocalized with filamentous actin in GH and platelet-derived growth factor (PDGF)-induced membrane ruffles. To test if SH2-Bbeta is required for actin reorganization, we transiently overexpressed wild-type or mutant SH2-Bbeta in 3T3-F442A cells and assayed for GH- and PDGF-induced membrane ruffling and fluid phase pinocytosis. Overexpression of wild-type SH2-Bbeta enhanced ruffling and pinocytosis produced by submaximal GH but not submaximal PDGF. Point mutant SH2-Bbeta (R555E) and truncation mutant DeltaC555, both lacking a functional SH2 domain, inhibited membrane ruffling and pinocytosis induced by GH and PDGF. Mutant DeltaN504, which possesses a functional SH2 domain and enhances JAK2 kinase activity in overexpression systems, also inhibited GH-stimulated membrane ruffling. DeltaN504 failed to inhibit GH-induced nuclear localization of Stat5B, indicating JAK2 is active in these cells. Taken together, these results show that SH2-Bbeta is required for GH-induced actin reorganization by a mechanism discrete from the action of SH2-Bbeta as a stimulator of JAK2 kinase activity.
Collapse
Affiliation(s)
- J Herrington
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | | | |
Collapse
|
831
|
Rameil P, Lécine P, Ghysdael J, Gouilleux F, Kahn-Perlès B, Imbert J. IL-2 and long-term T cell activation induce physical and functional interaction between STAT5 and ETS transcription factors in human T cells. Oncogene 2000; 19:2086-97. [PMID: 10815800 DOI: 10.1038/sj.onc.1203542] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activation of Stat5 by many cytokines implies that it cannot alone insure the specificity of the regulation of its target genes. We have evidenced a physical and functional interaction between members of two unrelated transcription factor families, Ets-1, Ets-2 and Stat5, which could contribute to the proliferative response to interleukin 2. Competition with GAS- and EBS-specific oligonucleotides and immunoassays with a set of anti-Stat and anti-Ets families revealed that the IL-2-induced Stat5-Ets complex recognizes several GAS motifs identified as target sites for activated Stat5 dimers. Coimmunoprecipitation experiments evidenced that a Stat5/Ets-1/2 complex is formed in vivo in absence of DNA. GST-pull down experiments demonstrated that the C-terminal domain of Ets-1 is sufficient for this interaction in vitro. Cotransfection experiments in Kit225 T cells resulted in cooperative transcriptional activity between both transcription factors in response to a combination of IL-2, PMA and ionomycin. A Stat5-Ets protein complex was the major inducible DNA-binding complex bound to the human IL-2rE GASd/EBSd motif in long-term proliferating normal human T cells activated by CD2 and CD28. These results suggest that the inducible Stat5-Ets protein interaction plays a role in the regulation of gene expression in response to IL-2 in human T lymphocytes.
Collapse
|
832
|
Beuvink I, Hess D, Flotow H, Hofsteenge J, Groner B, Hynes NE. Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity. J Biol Chem 2000; 275:10247-55. [PMID: 10744710 DOI: 10.1074/jbc.275.14.10247] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of transcription factors of the Stat family is controlled by phosphorylation of a conserved, carboxyl-terminal tyrosine residue. Tyrosine phosphorylation is essential for Stat dimerization, nuclear translocation, DNA binding, and transcriptional activation. Phosphorylation of Stats on specific serine residues has also been described. We have previously shown that in HC11 mammary epithelial cells Stat5a is phosphorylated on Tyr(694) in a prolactin-sensitive manner, whereas serine phosphorylation is constitutive (Wartmann, M., Cella, N., Hofer, P., Groner, B., Xiuwen, L., Hennighausen, L., and Hynes, N. E. (1996) J. Biol. Chem. 271, 31863-31868). By using mass spectrometry and site-directed mutagenesis, we have now identified Ser(779), located in a unique Stat5a SP motif, as the site of serine phosphorylation. By using phospho-Ser(779)-specific antiserum, we have determined that Ser(779) is constitutively phosphorylated in mammary glands taken from different developmental stages. Stat5a isolated from spleen, heart, brain, and lung was also found to be phosphorylated on Ser(779). Ser(725) in Stat5a has also been identified as a phosphorylation site (Yamashita, H., Xu, J., Erwin, R. A., Farrar, W. L., Kirken, R. A., and Rui, H. (1998) J. Biol. Chem. 273, 30218-30224). Here we show that mutagenesis of Ser(725), Ser(779), or a combination of Ser(725/779) to an Ala had no effect on prolactin-induced transcriptional activation of a beta-casein reporter construct. However, following prolactin induction the Ser(725) mutant displayed sustained DNA binding activity compared with that of wild type Stat5a. The results suggest that Ser(725) phosphorylation has an impact on signal duration.
Collapse
Affiliation(s)
- I Beuvink
- Friedrich Miescher Institute, P. O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
833
|
Affiliation(s)
- L O'Connor
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| | | | | | | |
Collapse
|
834
|
Groner B, Fritsche M, Stöcklin E, Berchtold S, Merkle C, Moriggl R, Pfitzner E. Regulation of the trans-activation potential of STAT5 through its DNA-binding activity and interactions with heterologous transcription factors. Growth Horm IGF Res 2000; 10 Suppl B:S15-S20. [PMID: 10984248 DOI: 10.1016/s1096-6374(00)80004-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Extracellular hormones, growth factors and cytokines relay their effects on the transcription of genes through the recognition of specific receptors and intracellular signalling molecules. Signal transducers and activators of transcription (STATs) have been recognized as crucial intracellular signalling molecules. The cytokine receptor-associated Janus kinases (JAKs) convert the latent monomeric form of the STAT molecules to the activated dimeric form through tyrosine phosphorylation. The dimers bind to specific DNA response elements and are able to induce transcription. This induction requires the full-length form of the STAT molecules. Negative regulatory potential is exerted by the short form of the molecule, which lacks the trans-activation domain. This short form is activated and dimerized, but dephosphorylation is impaired. The short form of STAT occupies the DNA-binding sites in a stable fashion and acts as a strong suppressor of wild-type action. Positive enhancement of STAT5 trans-activation potential is provided by the glucocorticoid receptor. Ligand activation of this receptor causes the formation of a complex with STAT5 and deviation to the STAT5 DNA-binding site. An additional regulatory loop is provided by the reactivation of the short form of STAT5 through glucocorticoid receptor association. Conversely, classical glucocorticoid-responsive genes are negatively affected by STAT5 activation.
Collapse
Affiliation(s)
- B Groner
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
835
|
Abstract
Resistance to growth hormone (GH)-mediated induction of insulin-like growth factor I (IGF-I) is a common complication of catabolic diseases, including critical illness and post-surgical conditions. This resistance to GH is believed to be permissive to the development of protein catabolism, cachexia and wasting, which are associated with an increased mortality rate. Data from in vitro studies and animal models suggest that increased levels of inflammatory cytokines can induce cachexia and might inhibit the effects of GH on target tissues. The molecular mechanisms involved are unclear, although an effect of cytokines on GH receptor signalling has been suggested. The GH-activated pathways that mediate the increase in IGF-I levels are not well understood, thereby impeding the elucidation of the effect of inflammatory cytokines. Several signalling cascades, like the JAK-STAT and MAP kinase pathways, have been shown to be activated by GH and some inflammatory cytokines, hence raising the possibility of crosstalk on this level. Our data, however, indicate that inflammatory cytokines have little or no effect on GH-mediated JAK-STAT signalling. In this review, we discuss these results and the possibility that secondary changes in the structure of chromatin are likely to be involved in the induction of IGF-I gene transcription by GH.
Collapse
Affiliation(s)
- S von Laue
- Division of Clinical Sciences, University of Sheffield, UK.
| | | |
Collapse
|
836
|
Prejean C, Colamonici OR. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling. Semin Cancer Biol 2000; 10:83-92. [PMID: 10936059 DOI: 10.1006/scbi.2000.0311] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type I interferons are imperative in maintaining a defense against viral infection. These cytokines also play an important role in the control of cell proliferation. These effects are triggered by ligand binding to a specific cell surface receptor. In the present article, we attempt to analyze the advances made in the last four years on type I interferon signaling. This review will focus on the contribution of the cytoplasmic domain of the alpha and betaL chains of the receptor to the activation of the Jak-Stat pathway. We also analyze the possible role of other pathways in interferon signaling.
Collapse
Affiliation(s)
- C Prejean
- Department of Pharmacology, University of Illinois, Chicago 60612, USA
| | | |
Collapse
|
837
|
Abstract
More than 4 decades after their discovery, interferons are used now in daily clinical practice for the treatment of chronic viral hepatitis, multiple sclerosis, chronic granulomatous disease, and malignant disease such as hairy cell leukaemia, chronic myeloid leukaemia, Kaposi's sarcoma, multiple myeloma and malignant melanoma. In general, treatment with interferons is successful in only a fraction of the patients suffering from these diseases. The reasons for treatment failures in many patients are not understood a present. The discovery of the Jak-Stat pathway as the principal signalling pathway for interferons opens new research options for a better understanding of interferon resistance in various diseases. Defective Jak-Stat signal transduction has now been described in cells expressing HBV proteins, in cells expressing HCV proteins, and in cell lines derived from malignant melanomas. A better understanding of these signalling defects might lead to new therapeutic strategies making interferons more effective in a larger percentage of patients.
Collapse
Affiliation(s)
- M H Heim
- Department of Gastroenterology, University Hospital Basel, Switzerland.
| |
Collapse
|
838
|
Abstract
AbstractThe transcription factor STAT5 is constitutively tyrosine phosphorylated and activated after transformation of hematopoietic cells by p210Bcr/Abl. A truncated form of STAT5B (▵STAT5; aa, 1-683) that lacks tyrosine 699 and the transcriptional activation domain was introduced into Ba/F3p210 cells under the control of a tetracycline-inducible promoter. Treatment of these cells with doxycycline, a tetracycline analogue, induced expression of ▵STAT5 and inhibited STAT5-dependent transcription. ▵STAT5 coprecipitated with STAT5 and decreased Bcr/Abl-dependent tyrosine phosphorylation of endogenous STAT5. Induction of ▵STAT5 inhibited growth of Ba/F3p210 cells (26%-52% of control levels at 4 days) but did not cause cell-cycle arrest. ▵STAT5 reduced viability of Ba/F3p210 cells and increased sensitivity of the cells to the cytotoxic drugs hydroxyurea and cytarabine. These results indicate that high-level expression of ▵STAT5, as achieved here by using a tetracycline-inducible promoter, inhibits STAT5 activity, reduces the growth rate of Ba/F3p210 cells by inhibiting viability, and results in increased sensitivity to chemotherapeutic drugs. It is therefore likely that STAT5 activation plays a role in the transformation of hematopoietic cell lines by p210Bcr/Abl.
Collapse
|
839
|
Abstract
Abstract
The involvement of the cytokine signaling pathway in oncogenesis has long been postulated. Recently, rearrangements of the gene encoding the tyrosine Janus kinase 2 (JAK2) have been reported in human leukemias indicating a direct JAK-signal transduction and activator of transcription (STAT)-mediated leukemic process. The leukemia-associated TEL-JAK2 fusion protein is formed by the oligomerization domain of the translocated ets leukemia (TEL) protein fused to the catalytic domain of JAK2. TEL-mediated oligomerization results in a constitutive tyrosine kinase activity that, in turn, is able to confer growth factor independence to the murine hematopoietic interleukin-3 (IL-3)-dependent Ba/F3 cell line. Results of the present study indicate that fusion proteins containing the oligomerization domain of TEL and the tyrosine kinase domains of Jak1, Jak2, JAK3, or TYK2 share similar properties and are able to efficiently substitute for the survival and mitogenic signals controlled by IL-3, without concomitant activation of the IL-3 receptor. Electrophoretic mobility shift assays demonstrated Stat5 as the only activated Stat factor in TEL-Jak2- and TEL-Jak1-expressing cells, whereas other Stats, namely Stat1 and Stat3, could be detected in TEL-JAK3-, TEL-TYK2-, and also in TEL-ABL-expressing Ba/F3 cells. High levels of expression of the Stat5-target genes pim-1, osm, and Cis were observed in all the cytokine-independent cell lines. Furthermore, the expression of a dominant negative form of Stat5A markedly interfered with the growth factor independence process mediated by TEL-Jak2 in Ba/F3 cells. Because the BCR-ABL and TEL-PDGFβR oncoproteins also activate Stat5, activation of this factor should be a crucial step in activated tyrosine kinase-mediated leukemogenesis.
Collapse
|
840
|
Benbernou N, Muegge K, Durum SK. Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Ralpha. J Biol Chem 2000; 275:7060-5. [PMID: 10702271 DOI: 10.1074/jbc.275.10.7060] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-7 (IL-7) receptor signaling begins with activation of the Janus tyrosine kinases Jak1 and Jak3, which are associated with the receptor complex. To identify potential targets of these kinases, we examined Pyk2 (a member of the focal adhesion kinase family) using an IL-7-dependent murine thymocyte line, D1. We demonstrate that stimulation of D1 (or normal pro-T) cells by IL-7 rapidly increased tyrosine phosphorylation and enzymatic activity of Pyk2, with kinetics slightly lagging that of Jak1 and Jak3 phosphorylation. Conversely, IL-7 withdrawal resulted in a marked decrease of Pyk2 phosphorylation. Pyk2 was found to be physically associated with Jak1 prior to IL-7 stimulation and to increase its association with IL-7Ralpha chain following IL-7 stimulation. Pyk2 appeared to be involved in cell survival, because antisense Pyk2 accelerated the cell death process. Activation of Pyk2 via the muscarinic and nicotinic receptors using carbachol or via intracellular Ca(2+) rise using ionomycin/phorbol myristate acetate promoted survival in the absence of IL-7. These data support a role for Pyk2 in coupling Jak signaling to the trophic response.
Collapse
Affiliation(s)
- N Benbernou
- Intramural Research Support Program, SAIC Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
841
|
Schulze H, Ballmaier M, Welte K, Germeshausen M. Thrombopoietin induces the generation of distinct Stat1, Stat3, Stat5a and Stat5b homo- and heterodimeric complexes with different kinetics in human platelets. Exp Hematol 2000; 28:294-304. [PMID: 10720694 DOI: 10.1016/s0301-472x(99)00154-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Thrombopoietin (TPO) is the pivotal regulator of thrombocytopoiesis and megakaryocytopoiesis, and binding to its receptor c-Mpl leads to activation of at least two different signaling pathways: the Jak-Stat pathway and the Ras-MAPK pathway. Our aim was to elucidate which Stat-complexes are formed in TPO signal transduction in human blood platelets. MATERIALS AND METHODS We used electrophoretic mobility shift assays (EMSA) in order to analyze the formation of distinct Stat complexes on two distinct oligonucleotide probes. Furthermore, we used immunoprecipitation and Western blotting of protein lysates from TPO-stimulated platelets. RESULTS We found homodimers of Stat1alpha, Stat3, Stat5a, and Stat5b, as well as heterodimers of Stat1/Stat3 and Stat5a/Stat5b, but no Stat1/Stat5 or Stat3/Stat5 heterodimers are formed in platelets in response to TPO. Stat5 complexes bound to labeled DNA with a fast kinetic followed by Stat3 and Stat1. The adapter protein CrkL is present in DNA-bound Stat5 complexes and predominantly bound to Stat5b. The kinase ERK2 is also tyrosine phosphorylated after TPO-stimulation of platelets but this activation does not modulate the phosphorylation of the serine residues in the PXSP motif present in Stat1 and Stat3. CONCLUSION Our findings thus emphasize the differential regulation of Stat1, Stat3, Stat5a, and Stat5b in platelets and may be an appropriate model of c-Mpl signaling in mega-karyopoiesis.
Collapse
Affiliation(s)
- H Schulze
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
842
|
Lord JD, McIntosh BC, Greenberg PD, Nelson BH. The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2533-41. [PMID: 10679091 DOI: 10.4049/jimmunol.164.5.2533] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies assessing the role of Stat5 in the IL-2 proliferative signal have produced contradictory, and thus inconclusive, results. One factor confounding many of these studies is the ability of IL-2R to deliver redundant mitogenic signals from different cytoplasmic tyrosines on the IL-2R beta-chain (IL-2Rbeta). Therefore, to assess the role of Stat5 in mitogenic signaling independent of any redundant signals, all cytoplasmic tyrosines were deleted from IL-2Rbeta except for Tyr510, the most potent Stat5-activating site. This deletion mutant retained the ability to induce Stat5 activation and proliferation in the T cell line CTLL-2 and the pro-B cell line BA/F3. A set of point mutations at or near Tyr510 that variably compromised Stat5 activation also compromised the proliferative signal and revealed a quantitative correlation between the magnitude of Stat5 activation and proliferation. Proliferative signaling by a receptor mutant with a weak Stat5 activating site could be rescued by overexpression of wt Stat5a or b. Additionally, the ability of this receptor mutant to induce c-myc, bcl-x, and bcl-2 was enhanced by overexpression of wt Stat5. By contrast, overexpression of a version of Stat5a lacking the C-terminal trans-activation domain inhibited the induction of these genes and cell proliferation. Thus, Stat5 is a critical component of the proliferative signal from Tyr510 of the IL-2R and regulates expression of both mitogenic and survival genes through its trans-activation domain.
Collapse
Affiliation(s)
- J D Lord
- Virginia Mason Research Center, Seattle, WA 98101, USA
| | | | | | | |
Collapse
|
843
|
Timsit YE, Riddick DS. Interference with growth hormone stimulation of hepatic cytochrome P4502C11 expression in hypophysectomized male rats by 3-methylcholanthrene. Toxicol Appl Pharmacol 2000; 163:105-14. [PMID: 10698668 DOI: 10.1006/taap.1999.8862] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 2C11 (CYP2C11) is a sexually dimorphic liver enzyme whose expression is regulated by the male pulsatile pattern of growth hormone (GH) secretion. Hepatic CYP2C11 expression is down-regulated by polycyclic aromatic hydrocarbons such as 3-methylcholanthrene (MC). An attractive hypothesis as to the mechanism of CYP2C11 down-regulation by aromatic hydrocarbons is the disruption of normal GH signaling by exposure to these compounds. To evaluate the effects of MC on the ability of GH to stimulate hepatic CYP2C11 expression, our approach was to employ GH replacement in male Fischer 344 rats made GH-deficient by hypophysectomy (hypx). Groups of hypx rats received the following treatments: vehicle; GH alone (twice daily, 125 microg/kg sc, days 1-6); MC alone (20 mg/kg gavage, days 1, 3, and 5); and both GH and MC. Rats were euthanized on day 7. As a positive control response, pronounced induction of hepatic CYP1A1 apoprotein was observed in all MC-treated rats. CYP2C11 expression in hypx rats receiving GH alone was increased at the mRNA, apoprotein, and catalytic activity (testosterone 16alpha-hydroxylation) levels, with mRNA and apoprotein levels approaching that of intact male rats. The inability of GH to fully restore CYP2C11 catalytic activity was attributed to the lowered NADPH-cytochrome P450 reductase apoprotein and catalytic activity observed in all hypx rats. CYP2C11 expression in hypx rats receiving both GH and MC was significantly lower at the mRNA, apoprotein, and catalytic activity levels than that observed in hypx rats treated with GH alone, but significantly higher at the mRNA, apoprotein, and catalytic activity levels than that observed in vehicle-treated hypx rats and in hypx rats treated with MC alone. These data suggest that MC interferes with the ability of GH to stimulate CYP2C11 expression. Thus, disruption of GH signaling by aromatic hydrocarbons may represent a mechanism contributing to the suppression of CYP2C11 gene expression.
Collapse
Affiliation(s)
- Y E Timsit
- Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | |
Collapse
|
844
|
Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from the janus kinases. Blood 2000. [DOI: 10.1182/blood.v95.5.1656.005k29_1656_1662] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the serine/threonine kinase Akt has been shown to be a critical component for growth factor and cytokine stimulation of cell survival. Although some of the immediate upstream activators of Akt have been defined, the roles of tyrosine kinases in the activation of Akt are not well delineated. Granulocyte colony-stimulating factor (G-CSF) regulates the proliferation, differentiation, and survival of neutrophilic granulocytes. G-CSF exerts its actions by stimulating several signaling cascades after binding its cell surface receptor. Both Jak (Janus) and Src families of tyrosine kinases are stimulated by incubation of cells with G-CSF. In this report, we show that G-CSF stimulation of cells leads to activation of Akt. The membrane-proximal 55 amino acids of the G-CSF receptor cytoplasmic domain are sufficient for mediating Akt activation. However, activation of Akt appears to be downregulated by the receptor's carboxy-terminal region of 98 amino acids, a region that has been shown to be truncated in some patients with acute myeloid leukemia associated with severe congenital neutropenia. Furthermore, we demonstrate that G-CSF–induced activation of Akt requires the activities of Src family kinases but can be clearly dissociated from G-CSF–stimulated activation of Stats (signal transducers and activators of transcripton) by the Jak kinases. Thus, cytokine activation of the Jak/Stat and other signaling cascades can be functionally separated.
Collapse
|
845
|
Touw IP, De Koning JP, Ward AC, Hermans MH. Signaling mechanisms of cytokine receptors and their perturbances in disease. Mol Cell Endocrinol 2000; 160:1-9. [PMID: 10715533 DOI: 10.1016/s0303-7207(99)00206-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokines regulate the proliferation and differentiation of cells through their interaction with specific receptors on the surface of target cells which are coupled to intracellular signal transduction pathways. The cytokine receptor class I superfamily, characterized by structural homology in the extracellular domain, includes receptors for many interleukins and hematopoietic growth factors, but also those of growth hormone, leptin, ciliary neurotrophic factor (CNTF), oncostatin M (OSM), leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1). The receptors for interferons are structurally distinct and have therefore been categorized separately (class II cytokine receptors). The discovery of the JAK/STAT pathway in the early 1990s has been an important step forward in deciphering cytokine mediated signaling. This pathway connects activation of the receptor complexes directly to transcription of genes. Studies of humans and mice, deficient for one of the JAKs or STATs, have revealed crucial roles of these molecules in embryonic development, blood cell formation and immune responses. In addition, recent studies have revealed some of the mechanisms that control the activation of the JAKs and STATs, which contribute to signal intensity and specificity. In this review we will summarize these recent insights and discuss their implications for a variety of pathological conditions.
Collapse
Affiliation(s)
- I P Touw
- Institute of Hematology, Erasmus University Rotterdam (Room 1314), PO Box 1738, 3000DR, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
846
|
Vomachka AJ, Pratt SL, Lockefeer JA, Horseman ND. Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene 2000; 19:1077-84. [PMID: 10713693 DOI: 10.1038/sj.onc.1203348] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prolactin (PRL), interacting with other hormones from the pituitary, gonad, and placenta, activates specific signals that drive the appropriately timed morphological and functional development of the mammary gland. A mouse model of isolated PRL deficiency (PRL-/-) was created by gene disruption in an effort to further understand the molecular basis of mammary gland development and breast cancer. Whereas primary ductal growth was normal in PRL-/- mice, ductal arborization was minimal (branches/mm2=1.5+/-0.5), and lobular budding was absent. Replacement therapy with PRL injections stimulated a modest degree of lobular budding and ductal arborization (3.75+/-0.9). Pituitary transplants to the kidney capsule of PRL-/- mice restored lobular budding and ductal arborization, to the full extent of that seen in control animals (20. 3+/-5.5). Pregnancy, established by mating progesterone-treated PRL-/- females with PRL-/- males, led to complete morphological development of the mammary gland, appropriate to the gestational stage. PRL treatment stimulated tyrosine phosphorylation and DNA binding activity of Stat5a, but not Stat1 in PRL-/- or PRL+/- females, and Stat5a, but not Stat1, was elevated by estradiol within 24 h. PRL-deficient mice were crossed with mice expressing a dominant oncogene (polyoma middle-T antigen driven by the MMTV promoter, PyVT mice). Palpable (1 mm3) tumors were detected an average of 9 days earlier in hormonally normal females (PRL+/-:PyVT) compared with littermates that were PRL-deficient (PRL-/-:PyVT). The growth rate of PyVT-induced tumors was 30% faster in PRL+/-, than in PRL-/- females.
Collapse
Affiliation(s)
- A J Vomachka
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, OH 45267-0576, USA
| | | | | | | |
Collapse
|
847
|
Duarte RF, Frank DA. [The JAK-STAT signaling pathway and its role in oncogenesis, immunomodulation and development]. Med Clin (Barc) 2000; 114:227-34. [PMID: 10757107 DOI: 10.1016/s0025-7753(00)71252-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- R F Duarte
- Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
848
|
Abstract
Antigen-induced eosinophil recruitment into the airways of sensitized mice is mediated by CD4+ T cells and their cytokines, especially IL-5. In this study, we found that the antigen-induced airway eosinophilia was diminished in Stat5a-deficient (Stat5a−/−) mice and Stat5b-deficient (Stat5b−/−) mice. We also found that antigen-induced CD4+ T-cell infiltration and IL-5 production in the airways were diminished in Stat5a−/− mice and Stat5b−/− mice. Moreover, antigen-induced proliferation of splenocytes was diminished in Stat5a−/− mice and Stat5b−/− mice, suggesting that the generation of antigen-primed T cells may be compromised in Stat5a−/−mice and Stat5b−/− mice and this defect may account for the diminished antigen-induced T-cell infiltration into the airways. Interestingly, IL-4 and IL-5 production from anti-CD3–stimulated splenocytes was diminished in Stat5a−/− mice and Stat5b−/− mice. However, antigen-specific IgE and IgG1 production was diminished in Stat5a−/− mice but not in Stat5b−/− mice, whereas antigen-specific IgG2a production was increased in Stat5a−/− mice, suggesting the enhanced Th1 responses in Stat5a−/− mice. Finally, we found that eosinophilopoiesis induced by the administration of recombinant IL-5 was also diminished in Stat5a−/− mice and Stat5b−/− mice. Together, these results indicate that both Stat5a and Stat5b are essential for induction of antigen-induced eosinophil recruitment into the airways and that the defects in antigen-induced eosinophil recruitment in Stat5a−/− mice and Stat5b−/− mice result from both impaired IL-5 production in the airways and diminished IL-5 responsiveness of eosinophils.
Collapse
|
849
|
Sawyer ST, Jacobs-Helber SM. Unraveling distinct intracellular signals that promote survival and proliferation: study of erythropoietin, stem cell factor, and constitutive signaling in leukemic cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:21-9. [PMID: 10738968 DOI: 10.1089/152581600319586] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review summarizes selected recent studies of the intracellular signals that allow erythroid cells to survive and proliferate under the control of erythropoietin (EPO) and alteration in signals that contribute to EPO-independent survival and proliferation. The hypothesis explored is that the proliferation and survival signals are distinct and can be separately studied with the proper cell lines and growth factor stimulation. The anti- and pro-apoptotic proteins Bcl-XL and BAD are highly implicated in EPO-dependent survival of erythroid cells. Stat5 activity appears to be upstream of Bcl-XL expression such that pathologic, constitutive activation of Stat5 may be a common event in leukemic cells that become resistant to apoptosis by constitutive expression of Bcl-XL. Other signals apparently also control the expression of Bcl-XL, such as the expression of JunB which seem to be required to suppress Bcl-XL expression when EPO is withdrawn. Apoptosis may also be triggered by inactivation of Bcl-XL by BAD. Dephosphorylation of BAD as a result of withdrawal of survival factors converts prosurvival BAD to proapoptotic BAD. Phosphorylation of BAD at the serine 112 residue seems critical to promoting survival. Constitutive activation of a kinase that phosphorylates BAD serine 112 may, therefore, contribute to resistance to apoptosis in leukemic cells. We describe the resistance of erythroleukemic cells to apoptosis induced by EPO withdrawal apparently caused by constitutive BAD phosphorylation. The resistance to apoptosis in these cells is reversed by treatment with the PI3-kinase inhibitor, LY294002, suggesting that resistance to apoptosis in these cells likely results from constitutive P13-kinase that is an upstream activator of an S-112 BAD kinase. The MAP kinase cascade is apparently active in EPO-dependent and stem cell factor (SCF)-dependent proliferation but not survival. In addition, autocrine tumor necrosis factor-a! (TNF-alpha) may also be a proliferation factor not affecting survival. P13-kinase seems to be required for full EPO-dependent proliferation but is not required for EPO-dependent survival (but it can promote survival when activated).
Collapse
Affiliation(s)
- S T Sawyer
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0613, USA
| | | |
Collapse
|
850
|
Wang D, Moriggl R, Stravopodis D, Carpino N, Marine JC, Teglund S, Feng J, Ihle JN. A small amphipathic alpha-helical region is required for transcriptional activities and proteasome-dependent turnover of the tyrosine-phosphorylated Stat5. EMBO J 2000; 19:392-9. [PMID: 10654938 PMCID: PMC305576 DOI: 10.1093/emboj/19.3.392] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cytokines induce the tyrosine phosphorylation and associated activation of signal transducers and activators of transcription (Stat). The mechanisms by which this response is terminated are largely unknown. Among a variety of inhibitors examined, the proteasome inhibitors MG132 and lactacystin affected Stat4, Stat5 and Stat6 turnover by significantly stabilizing the tyrosine-phosphorylated form. However, these proteasome inhibitors did not affect downregulation of the tyrosine-phosphorylated Stat1, Stat2 and Stat3. With Stat5 isoforms, we have observed that tyrosine-phosphorylated carboxyl-truncated forms of Stat5 proteins were considerably more stable than phosphorylated wild-type forms of the protein. Also, the C-terminal region of Stat5 could confer proteasome-dependent downregulation to Stat1. With a series of C-terminal deletion mutants, we have defined a relatively small, potentially amphipathic alpha-helical region that is required for the rapid turnover of the phosphorylated Stat5 proteins. The region is also required for transcriptional activation, suggesting that the functions are linked. The results are consistent with a model in which the transcriptional activation domain of activated Stat5 is required for its transcriptional activity and downregulation through a proteasome-dependent pathway.
Collapse
Affiliation(s)
- D Wang
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|