801
|
Kang JH, Lee SH, Lee JS, Nam B, Seong TW, Son J, Jang H, Hong KM, Lee C, Kim SY. Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget 2018; 7:49397-49410. [PMID: 27384481 PMCID: PMC5226516 DOI: 10.18632/oncotarget.10354] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 01/19/2023] Open
Abstract
Among ALDH isoforms, ALDH1L1 in the folate pathway showed highly increased expression in non-small-cell lung cancer cells (NSCLC). Based on the basic mechanism of ALDH converting aldehyde to carboxylic acid with by-product NADH, we suggested that ALDH1L1 may contribute to ATP production using NADH through oxidative phosphorylation. ALDH1L1 knockdown reduced ATP production by up to 60% concomitantly with decrease of NADH in NSCLC. ALDH inhibitor, gossypol, also reduced ATP production in a dose dependent manner together with decrease of NADH level in NSCLC. A combination treatment of gossypol with phenformin, mitochondrial complex I inhibitor, synergized ATP depletion, which efficiently induced cell death. Pre-clinical xenograft model using human NSCLC demonstrated a remarkable therapeutic response to the combined treatment of gossypol and phenformin.
Collapse
Affiliation(s)
- Joon Hee Kang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Seon-Hyeong Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Jae-Seon Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Boas Nam
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Tae Wha Seong
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Jaekyoung Son
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Hyonchol Jang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Kyeong Man Hong
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.,Department of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| |
Collapse
|
802
|
Li WQ, Wang Z, Hao S, Sun L, Nisic M, Cheng G, Zhu C, Wan Y, Ha L, Zheng SY. Mitochondria-based aircraft carrier enhances in vivo imaging of carbon quantum dots and delivery of anticancer drug. NANOSCALE 2018; 10:3744-3752. [PMID: 29411807 DOI: 10.1039/c7nr08816g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The application of engineered bacteria-based drug delivery vehicles to treat cancer has been practiced for more than a century. Mitochondria, evolutionarily originated from bacteria, are ubiquitous, semi-autonomous cellular organelles. In this study, we present the first exploration of using mitochondria as a delivery system of carbon quantum dots (CQDs) for in vivo imaging and administration of the anticancer drug doxorubicin (DOX). The results show that mitochondria as carriers are compatible with CQD loading and preserve the optical properties of CQDs. Moreover, the mitochondria delivery system can improve the CQD bio-distribution in organs and prolong the retention time of CQDs after intravenous injection. Furthermore, mitochondria loaded with doxorubicin hydrochloride (Mito-DOX) show an enhanced therapeutic effect compared to free DOX. The mitochondria-based "aircraft" system may be a promising novel therapeutic platform with high potential for biological imaging and drug delivery to fight cancer and other diseases.
Collapse
Affiliation(s)
- Wen-Qing Li
- Department of Biomedical Engineering, Penn State Materials Research Institute, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
803
|
Wang DD, Wu QX, Pan WJ, Hussain S, Mehmood S, Chen Y. A novel polysaccharide from the Sarcodon aspratus triggers apoptosis in Hela cells via induction of mitochondrial dysfunction. Food Nutr Res 2018; 62:1285. [PMID: 29545735 PMCID: PMC5846208 DOI: 10.29219/fnr.v62.1285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 01/19/2023] Open
Abstract
Background Polysaccharides extracted from fungus that have been used widely in the food and drugs industries due to biological activities. Objective The objective of the present study was to investigate the tumor-suppressive activity and mechanism of a novel polysaccharide (SAP) extracted from Sarcodon aspratus. Methods The SAP was extracted and purified using Sepharose CL-4B gel from S. aspratus. The cytotoxicity of SAP on cell lines was determined by MTT method. Cellular migration assays were implemented by using transwell plates. The apoptosis and mitochondrial membrane potential (Δψm) of Hela cells were analyzed by flow cytometry. The western blot was used to determine the protein expression of Hela cells. Results The results showed that SAP with a molecular weight of 9.01×105 Da could significantly inhibit the growth of Hela cells in vitro. Three-dimensional cell culture (3D) and transwell assays showed that SAP restrained the multi-cellular spheroids growth and cell migration. Flow cytometry analysis revealed that SAP induced a loss of mitochondrial membrane potential (Δψm). Western blot assays indicated that SAP promoted the release of cytochrome c, increased Bax expression, down-regulated of Bcl-2 expression and activated of caspase-3 expression. Conclusion This study suggested that SAP induced Hela cells apoptosis via mitochondrial dysfunction that are critical in events of caspase apoptotic pathways. The anti-tumor (Hela cells) activity of SAP recommended that S. aspratus could be used as a powerful medicinal mushroom against cancer.
Collapse
Affiliation(s)
- Dan-Dan Wang
- School of Life Sciences, Anhui University, Hefei, China
| | - Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei, China
| | - Wen-Juan Pan
- School of Life Sciences, Anhui University, Hefei, China
| | - Sajid Hussain
- School of Life Sciences, Anhui University, Hefei, China
| | | | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| |
Collapse
|
804
|
MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death Dis 2018; 9:220. [PMID: 29445162 PMCID: PMC5833827 DOI: 10.1038/s41419-018-0295-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Heightened aerobic glycolysis and glutaminolysis are characteristic metabolic phenotypes in cancer cells. Neuroblastoma (NBL), a devastating pediatric cancer, is featured by frequent genomic amplification of MYCN, a member of the Myc oncogene family that is primarily expressed in the early stage of embryonic development and required for neural crest development. Here we report that an enriched glutaminolysis gene signature is associated with MYCN amplification in children with NBL. The partial knockdown of MYCN suppresses glutaminolysis in NBL cells. Conversely, forced overexpression of MYCN in neural crest progenitor cells enhances glutaminolysis. Importantly, glutaminolysis induces oxidative stress by producing reactive oxygen species (ROS), rendering NBL cells sensitive to ROS augmentation. Through a small-scale metabolic-modulator screening, we have found that dimethyl fumarate (DMF), a Food and Drug Administration-approved drug for multiple sclerosis, suppresses NBL cell proliferation in vitro and tumor growth in vivo. DMF suppresses NBL cell proliferation through inducing ROS and subsequently suppressing MYCN expression, which is rescued by an ROS scavenger. Our findings suggest that the metabolic modulation and ROS augmentation could be used as novel strategies in treating NBL and other MYC-driven cancers.
Collapse
|
805
|
Celestini V, Tezil T, Russo L, Fasano C, Sanese P, Forte G, Peserico A, Lepore Signorile M, Longo G, De Rasmo D, Signorile A, Gadaleta RM, Scialpi N, Terao M, Garattini E, Cocco T, Villani G, Moschetta A, Grossi V, Simone C. Uncoupling FoxO3A mitochondrial and nuclear functions in cancer cells undergoing metabolic stress and chemotherapy. Cell Death Dis 2018; 9:231. [PMID: 29445193 PMCID: PMC5833443 DOI: 10.1038/s41419-018-0336-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/19/2023]
Abstract
While aberrant cancer cell growth is frequently associated with altered biochemical metabolism, normal mitochondrial functions are usually preserved and necessary for full malignant transformation. The transcription factor FoxO3A is a key determinant of cancer cell homeostasis, playing a dual role in survival/death response to metabolic stress and cancer therapeutics. We recently described a novel mitochondrial arm of the AMPK-FoxO3A axis in normal cells upon nutrient shortage. Here, we show that in metabolically stressed cancer cells, FoxO3A is recruited to the mitochondria through activation of MEK/ERK and AMPK, which phosphorylate serine 12 and 30, respectively, on FoxO3A N-terminal domain. Subsequently, FoxO3A is imported and cleaved to reach mitochondrial DNA, where it activates expression of the mitochondrial genome to support mitochondrial metabolism. Using FoxO3A-/- cancer cells generated with the CRISPR/Cas9 genome editing system and reconstituted with FoxO3A mutants being impaired in their nuclear or mitochondrial subcellular localization, we show that mitochondrial FoxO3A promotes survival in response to metabolic stress. In cancer cells treated with chemotherapeutic agents, accumulation of FoxO3A into the mitochondria promoted survival in a MEK/ERK-dependent manner, while mitochondrial FoxO3A was required for apoptosis induction by metformin. Elucidation of FoxO3A mitochondrial vs. nuclear functions in cancer cell homeostasis might help devise novel therapeutic strategies to selectively disable FoxO3A prosurvival activity.
Collapse
Affiliation(s)
- Valentina Celestini
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, 70124, Italy.,Department of Biochemistry and Molecular Pharmacology/Laboratory of Molecular Biology, IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, 20156, Italy
| | - Tugsan Tezil
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, 70124, Italy
| | - Luciana Russo
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Castellana Grotte (Ba), 70013, Italy
| | - Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Castellana Grotte (Ba), 70013, Italy
| | - Paola Sanese
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, 70124, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Castellana Grotte (Ba), 70013, Italy
| | - Alessia Peserico
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, 70124, Italy
| | - Martina Lepore Signorile
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, 70124, Italy.,Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Giovanna Longo
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, 70124, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes and Bioenergetics, National Research Council (CNR), Bari, 70126, Italy
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Raffaella Maria Gadaleta
- Division of Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Queen Elizabeth the Queen Mother Wing (QEQM), London, W2 1NY, UK.,Medicina Interna Universitaria Frugoni', Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Natasha Scialpi
- Medicina Interna Universitaria Frugoni', Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Mineko Terao
- Department of Biochemistry and Molecular Pharmacology/Laboratory of Molecular Biology, IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, 20156, Italy
| | - Enrico Garattini
- Department of Biochemistry and Molecular Pharmacology/Laboratory of Molecular Biology, IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, 20156, Italy
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Antonio Moschetta
- Medicina Interna Universitaria Frugoni', Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Valentina Grossi
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, 70124, Italy.
| | - Cristiano Simone
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, 70124, Italy. .,Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Castellana Grotte (Ba), 70013, Italy.
| |
Collapse
|
806
|
Lin CC, Kurashige M, Liu Y, Terabayashi T, Ishimoto Y, Wang T, Choudhary V, Hobbs R, Liu LK, Lee PH, Outeda P, Zhou F, Restifo NP, Watnick T, Kawano H, Horie S, Prinz W, Xu H, Menezes LF, Germino GG. A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Sci Rep 2018; 8:2743. [PMID: 29426897 PMCID: PMC5807443 DOI: 10.1038/s41598-018-20856-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies have reported intrinsic metabolic reprogramming in Pkd1 knock-out cells, implicating dysregulated cellular metabolism in the pathogenesis of polycystic kidney disease. However, the exact nature of the metabolic changes and their underlying cause remains controversial. We show herein that Pkd1 k o /ko renal epithelial cells have impaired fatty acid utilization, abnormal mitochondrial morphology and function, and that mitochondria in kidneys of ADPKD patients have morphological alterations. We further show that a C-terminal cleavage product of polycystin-1 (CTT) translocates to the mitochondria matrix and that expression of CTT in Pkd1 ko/ko cells rescues some of the mitochondrial phenotypes. Using Drosophila to model in vivo effects, we find that transgenic expression of mouse CTT results in decreased viability and exercise endurance but increased CO2 production, consistent with altered mitochondrial function. Our results suggest that PC1 may play a direct role in regulating mitochondrial function and cellular metabolism and provide a framework to understand how impaired mitochondrial function could be linked to the regulation of tubular diameter in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Cheng-Chao Lin
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mahiro Kurashige
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yi Liu
- Laboratory of Molecular Genetics; National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Takeshi Terabayashi
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yu Ishimoto
- Division of Nephrology and Endocrinology and the Division of CKD Pathophysiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tanchun Wang
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Vineet Choudhary
- Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Disease, NIH, Bethesda, MD, USA
| | - Ryan Hobbs
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Li-Ka Liu
- Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Disease, NIH, Bethesda, MD, USA
| | - Ping-Hsien Lee
- Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Patricia Outeda
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fang Zhou
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicholas P Restifo
- Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Terry Watnick
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - William Prinz
- Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Disease, NIH, Bethesda, MD, USA
| | - Hong Xu
- Laboratory of Molecular Genetics; National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luis F Menezes
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gregory G Germino
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
807
|
Tanwar DK, Parker DJ, Gupta P, Spurlock B, Alvarez RD, Basu MK, Mitra K. Crosstalk between the mitochondrial fission protein, Drp1, and the cell cycle is identified across various cancer types and can impact survival of epithelial ovarian cancer patients. Oncotarget 2018; 7:60021-60037. [PMID: 27509055 PMCID: PMC5312366 DOI: 10.18632/oncotarget.11047] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/30/2016] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial metabolic reprogramming is a hallmark of tumorigenesis. Although mitochondrial function can impact cell cycle regulation it has been an understudied area in cancer research. Our study highlights a specific involvement of mitochondria in cell cycle regulation across cancer types. The mitochondrial fission process, which is regulated at the core by Drp1, impacts various cellular functions. Drp1 has been implicated in various cancer types with no common mechanism reported. Our Drp1-directed large-scale analyses of the publically available cancer genomes reveal a robust correlation of Drp1 with cell-cycle genes in 29 of the 31 cancer types examined. Hypothesis driven investigation on epithelial ovarian cancer (EOC) revealed that Drp1 co-expresses specifically with the cell-cycle module responsible for mitotic transition. Repression of Drp1 in EOC cells can specifically attenuate mitotic transition, establishing a potential casual role of Drp1 in mitotic transition. Interestingly, Drp1-Cell-Cycle co-expression module is specifically detected in primary epithelial ovarian tumors that robustly responded to chemotherapy, suggesting that Drp1 driven mitosis may underlie chemo-sensitivity of the primary tumors. Analyses of matched primary and relapsed EOC samples revealed a Drp1-based-gene-expression-signature that could identify patients with poor survival probabilities from their primary tumors. Our results imply that around 60% of platinum-sensitive EOC patients undergoing relapse show poor survival, potentially due to further activation of a mitochondria driven cell-cycle regime in their recurrent disease. We speculate that this patient group could possibly benefit from mitochondria directed therapies that are being currently evaluated at various levels, thus enabling targeted or personalized therapy based cancer management.
Collapse
Affiliation(s)
- Deepak Kumar Tanwar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Danitra J Parker
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Priyanka Gupta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Spurlock
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ronald D Alvarez
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Malay Kumar Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
808
|
Dogan Turacli I, Umudum H, Pampal A, Candar T, Kavasoglu L, Sari Y. Do MCF7 cells cope with metformin treatment under energetic stress in low glucose conditions? Mol Biol Rep 2018; 45:195-201. [PMID: 29397517 DOI: 10.1007/s11033-018-4152-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
There is a growing body of evidence about metformin being effective in cancer therapy. Despite controversies about the ways of its effectiveness, several ongoing clinical trials are evaluating the drug when used as an adjuvant or a neo-adjuvant agent. We aimed to investigate metformin's effects on proliferation, metastasis, and hormone receptor expressions in breast cancer cell line MCF-7 incubated in two different glucose conditions. MCF-7 cells were incubated in high or low glucose media and treated with various doses of metformin. The cell viability was studied using MTT test. The Ki-67, estrogen and progesterone receptor expression were evaluated by ICC and galectin-3 expression was evaluated by ELISA or spectrophotometrically. The cell viability following consecutive metformin doses in either glucose condition for 24 and 48 h represented a significant decrease when compared to control. The proliferation detected in low glucose medium following metformin at doses < 20 mM was found significantly decreased when compared to high glucose medium at 48 h. In terms of galectin-3 levels, the increase in high glucose medium treated with metformin and the decrease in low glucose medium were found statistically significant when compared to control. Progesterone receptor staining demonstrated a significant increase in low glucose medium. Our findings represent better outcomes for cancer lines incubated in low glucose medium treated with metformin in terms of viability, receptor expression and metastatic activity, and highlight the potential benefit of metformin especially in restraining the cancer cell's ability to cope energetic stress in low glucose conditions.
Collapse
Affiliation(s)
| | - Haldun Umudum
- Department of Pathology, Ufuk University, Ankara, Turkey
| | - Arzu Pampal
- Department of Pediatrics Surgery, Ufuk University, Ankara, Turkey
| | - Tuba Candar
- Department of Medical Biochemistry, Ufuk University, Ankara, Turkey
| | | | - Yaren Sari
- Faculty of Medicine, Ufuk University, Ankara, Turkey
| |
Collapse
|
809
|
Chen J, Guccini I, Di Mitri D, Brina D, Revandkar A, Sarti M, Pasquini E, Alajati A, Pinton S, Losa M, Civenni G, Catapano CV, Sgrignani J, Cavalli A, D'Antuono R, Asara JM, Morandi A, Chiarugi P, Crotti S, Agostini M, Montopoli M, Masgras I, Rasola A, Garcia-Escudero R, Delaleu N, Rinaldi A, Bertoni F, Bono JD, Carracedo A, Alimonti A. Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nat Genet 2018; 50:219-228. [PMID: 29335542 PMCID: PMC5810912 DOI: 10.1038/s41588-017-0026-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/01/2017] [Indexed: 11/21/2022]
Abstract
The mechanisms by which mitochondrial metabolism supports cancer anabolism remain unclear. Here, we found that genetic and pharmacological inactivation of pyruvate dehydrogenase A1 (PDHA1), a subunit of the pyruvate dehydrogenase complex (PDC), inhibits prostate cancer development in mouse and human xenograft tumor models by affecting lipid biosynthesis. Mechanistically, we show that in prostate cancer, PDC localizes in both the mitochondria and the nucleus. Whereas nuclear PDC controls the expression of sterol regulatory element-binding transcription factor (SREBF)-target genes by mediating histone acetylation, mitochondrial PDC provides cytosolic citrate for lipid synthesis in a coordinated manner, thereby sustaining anabolism. Additionally, we found that PDHA1 and the PDC activator pyruvate dehydrogenase phosphatase 1 (PDP1) are frequently amplified and overexpressed at both the gene and protein levels in prostate tumors. Together, these findings demonstrate that both mitochondrial and nuclear PDC sustain prostate tumorigenesis by controlling lipid biosynthesis, thus suggesting this complex as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Jingjing Chen
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ilaria Guccini
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Diletta Di Mitri
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniela Brina
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ajinkya Revandkar
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Manuela Sarti
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Abdullah Alajati
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Sandra Pinton
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marco Losa
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Computational Structural Biology, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Computational Structural Biology, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Rocco D'Antuono
- Imaging Facility, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Andrea Morandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Sara Crotti
- Nano-inspired Biomedicine Lab, Institute of Paediatric Research-Città della Speranza, Padova, Italy
| | - Marco Agostini
- Nano-inspired Biomedicine Lab, Institute of Paediatric Research-Città della Speranza, Padova, Italy
- Surgical Clinic, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ionica Masgras
- CNR Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rasola
- CNR Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ramon Garcia-Escudero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
- Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Nicolas Delaleu
- Roegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andrea Rinaldi
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Johann de Bono
- Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical Studies, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | - Arkaitz Carracedo
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- CIC bioGUNE, Bizkaia Technology Park, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Andrea Alimonti
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
810
|
Cohen-Erez I, Rapaport H. Negatively charged polypeptide-peptide nanoparticles showing efficient drug delivery to the mitochondria. Colloids Surf B Biointerfaces 2018; 162:186-192. [DOI: 10.1016/j.colsurfb.2017.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/16/2017] [Accepted: 11/18/2017] [Indexed: 01/07/2023]
|
811
|
Huang Y, Zhou J, Luo S, Wang Y, He J, Luo P, Chen Z, Liu T, Tan X, Ou J, Miao H, Liang H, Shi C. Identification of a fluorescent small-molecule enhancer for therapeutic autophagy in colorectal cancer by targeting mitochondrial protein translocase TIM44. Gut 2018; 67:307-319. [PMID: 27849558 DOI: 10.1136/gutjnl-2016-311909] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE As the modulation of autophagic processes can be therapeutically beneficial to cancer treatment, the identification of novel autophagic enhancers is highly anticipated. However, current autophagy-inducing anticancer agents exert undesired side effects owing to their non-specific biodistribution in off-target tissues. This study aims to develop a multifunctional agent to integrate cancer targeting, imaging and therapy and to investigate its mechanism. DESIGN A series of mitochondria-targeting near-infrared (NIR) fluorophores were synthesised, screened and identified for their autophagy-enhancing activity. The optical properties and biological effects were tested both in vitro and in vivo. The underlying mechanism was investigated using inhibitors, small interfering RNA (siRNA), RNA sequencing, mass spectrometry and human samples. RESULTS We have screened and identified a new NIR autophagy-enhancer, IR-58, which exhibits significant tumour-selective killing effects. IR-58 preferentially accumulates in the mitochondria of colorectal cancer (CRC) cells and xenografts, a process that is glycolysis-dependent and organic anion transporter polypeptide-dependent. IR-58 kills tumour cells and induces apoptosis via inducing excessive autophagy, which is mediated through the reactive oxygen species (ROS)-Akt-mammalian target of rapamycin (mTOR) pathway. RNA sequencing, mass spectrometry and siRNA interference studies demonstrate that translocase of inner mitochondrial membrane 44 (TIM44)-superoxide dismutase 2 (SOD2) pathway inhibition is responsible for the excessive ROS, autophagy and apoptosis induced by IR-58. TIM44 expression correlates positively with CRC development and poor prognosis in patients. CONCLUSIONS A novel NIR small-molecule autophagy-enhancer, IR-58, with mitochondria-targeted imaging and therapy capabilities was developed for CRC treatment. Additionally, TIM44 was identified for the first time as a potential oncogene, which plays an important role in autophagy through the TIM44-SOD2-ROS-mTOR pathway.
Collapse
Affiliation(s)
- Yinghui Huang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jie Zhou
- Department of Oncology, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yang Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jintao He
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Peng Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zelin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Tao Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xu Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Juanjuan Ou
- Department of Oncology, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongming Miao
- Department of Oncology, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Houjie Liang
- Department of Oncology, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
812
|
Szewczyk A, Gehl J, Daczewska M, Saczko J, Frandsen SK, Kulbacka J. Calcium electroporation for treatment of sarcoma in preclinical studies. Oncotarget 2018; 9:11604-11618. [PMID: 29545923 PMCID: PMC5837766 DOI: 10.18632/oncotarget.24352] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023] Open
Abstract
Calcium electroporation (CaEP) describes the use of electric pulses (electroporation) to transiently permeabilize cells to allow supraphysiological doses of calcium to enter the cytosol. Calcium electroporation has successfully been investigated for treatment of cutaneous metastases in a clinical study. This preclinical study explores the possible use of calcium electroporation for treatment of sarcoma. A normal murine muscle cell line (C2C12), and a human rhabdomyosarcoma cell line (RD) were used in the undifferentiated and differentiated state. Electroporation was performed using 8 pulses of 100 μs at 600–1000 V/cm; with calcium (0, 0.5, 1, and 5 mM). Viability was examined by MTS assay, intracellular calcium levels were measured, and expression of plasma membrane calcium ATPase (PMCA) was investigated using western blotting. Calcium/sodium exchanger (NCX1), ryanodine receptor (RyR1) expression and cytoskeleton structure (zyxin/actin) were assessed by immunofluorescence. CaEP efficiency on RD tumors was tested in vivo in immuno-deficient mice. CaEP was significantly more efficient in RD than in normal cells. Intracellular Ca2+ levels after CaEP increased significantly in RD, whereas a lower increase was seen in normal cells. CaEP caused decreased expression of PMCA and NCX1 in malignant cells and RyR1 in both cell lines whereas normal cells exhibited increased expression of NCX1 after CaEP. Calcium electroporation also affected cytoskeleton structure in malignant cells. This study showed that calcium electroporation is tolerated significantly better in normal muscle cells than sarcoma cells and as an inexpensive and simple cancer treatment this could potentially be used in connection with sarcoma surgery for local treatment.
Collapse
Affiliation(s)
- Anna Szewczyk
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Malgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Stine Krog Frandsen
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
813
|
Macroautophagy and Chaperone-Mediated Autophagy in Heart Failure: The Known and the Unknown. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8602041. [PMID: 29576856 PMCID: PMC5822756 DOI: 10.1155/2018/8602041] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/22/2017] [Indexed: 02/04/2023]
Abstract
Cardiac diseases including hypertrophic and ischemic cardiomyopathies are increasingly being reported to accumulate misfolded proteins and damaged organelles. These findings have led to an increasing interest in protein degradation pathways, like autophagy, which are essential not only for normal protein turnover but also in the removal of misfolded and damaged proteins. Emerging evidence suggests a previously unprecedented role for autophagic processes in cardiac physiology and pathology. This review focuses on the major types of autophagic processes, the genes and protein complexes involved, and their regulation. It discusses the key similarities and differences between macroautophagy, chaperone-mediated autophagy, and selective mitophagy structures and functions. The genetic models available to study loss and gain of macroautophagy, mitophagy, and CMA are discussed. It defines the markers of autophagic processes, methods for measuring autophagic activities, and their interpretations. This review then summarizes the major studies of autophagy in the heart and their contribution to cardiac pathology. Some reports suggest macroautophagy imparts cardioprotection from heart failure pathology. Meanwhile, other studies find macroautophagy activation may be detrimental in cardiac pathology. An improved understanding of autophagic processes and their regulation may lead to a new genre of treatments for cardiac diseases.
Collapse
|
814
|
Almasi S, Kennedy BE, El-Aghil M, Sterea AM, Gujar S, Partida-Sánchez S, El Hiani Y. TRPM2 channel-mediated regulation of autophagy maintains mitochondrial function and promotes gastric cancer cell survival via the JNK-signaling pathway. J Biol Chem 2018; 293:3637-3650. [PMID: 29343514 DOI: 10.1074/jbc.m117.817635] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
A lack of effective treatment is one of the main factors contributing to gastric cancer-related death. Discovering effective targets and understanding their underlying anti-cancer mechanism are key to achieving the best response to treatment and to limiting side effects. Although recent studies have shown that the cation channel transient receptor potential melastatin-2 (TRPM2) is crucial for cancer cell survival, the exact mechanism remains unclear, limiting its therapeutic potential. Here, using molecular and functional assays, we investigated the role of TRPM2 in survival of gastric cancer cells. Our results indicated that TRPM2 knockdown in AGS and MKN-45 cells decreases cell proliferation and enhances apoptosis. We also observed that the TRPM2 knockdown impairs mitochondrial metabolism, indicated by a decrease in basal and maximal mitochondrial oxygen consumption rates and ATP production. These mitochondrial defects coincided with a decrease in autophagy and mitophagy, indicated by reduced levels of autophagy- and mitophagy-associated proteins (i.e. ATGs, LC3A/B II, and BNIP3). Moreover, we found that TRPM2 modulates autophagy through a c-Jun N-terminal kinase (JNK)-dependent and mechanistic target of rapamycin-independent pathway. We conclude that in the absence of TRPM2, down-regulation of the JNK-signaling pathway impairs autophagy, ultimately causing the accumulation of damaged mitochondria and death of gastric cancer cells. Of note, by inhibiting cell proliferation and promoting apoptosis, the TRPM2 down-regulation enhanced the efficacy of paclitaxel and doxorubicin in gastric cancer cells. Collectively, we provide compelling evidence that TRPM2 inhibition may benefit therapeutic approaches for managing gastric cancer.
Collapse
Affiliation(s)
| | | | | | - Andra M Sterea
- Physiology, Biophysics Faculty of Life Science, Dalhousie University, Halifax and
| | - Shashi Gujar
- Pathology.,Microbiology and Immunology, and.,the Centre for Innovative and Collaborative Health Services Research, Quality and System Performance, IWK Health Centre, Halifax, Nova Scotia B3H 4R2, Canada
| | - Santiago Partida-Sánchez
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital and.,the Department of Pediatrics, College of Medicine, Ohio State University, Columbus, Ohio 43205
| | - Yassine El Hiani
- Physiology, Biophysics Faculty of Life Science, Dalhousie University, Halifax and
| |
Collapse
|
815
|
Hosios AM, Vander Heiden MG. The redox requirements of proliferating mammalian cells. J Biol Chem 2018; 293:7490-7498. [PMID: 29339555 DOI: 10.1074/jbc.tm117.000239] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell growth and division require nutrients, and proliferating cells use a variety of sources to acquire the amino acids, lipids, and nucleotides that support macromolecule synthesis. Lipids are more reduced than other nutrients, whereas nucleotides and amino acids are typically more oxidized. Cells must therefore generate reducing and oxidizing (redox) equivalents to convert consumed nutrients into biosynthetic precursors. To that end, redox cofactor metabolism plays a central role in meeting cellular redox requirements. In this Minireview, we highlight the biosynthetic pathways that involve redox reactions and discuss their integration with metabolism in proliferating mammalian cells.
Collapse
Affiliation(s)
- Aaron M Hosios
- From the Koch Institute for Integrative Cancer Research and.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Matthew G Vander Heiden
- From the Koch Institute for Integrative Cancer Research and .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and.,the Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| |
Collapse
|
816
|
Yu CY, Li XX, Yang H, Li YH, Xue WW, Chen YZ, Tao L, Zhu F. Assessing the Performances of Protein Function Prediction Algorithms from the Perspectives of Identification Accuracy and False Discovery Rate. Int J Mol Sci 2018; 19:E183. [PMID: 29316706 PMCID: PMC5796132 DOI: 10.3390/ijms19010183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/09/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
The function of a protein is of great interest in the cutting-edge research of biological mechanisms, disease development and drug/target discovery. Besides experimental explorations, a variety of computational methods have been designed to predict protein function. Among these in silico methods, the prediction of BLAST is based on protein sequence similarity, while that of machine learning is also based on the sequence, but without the consideration of their similarity. This unique characteristic of machine learning makes it a good complement to BLAST and many other approaches in predicting the function of remotely relevant proteins and the homologous proteins of distinct function. However, the identification accuracies of these in silico methods and their false discovery rate have not yet been assessed so far, which greatly limits the usage of these algorithms. Herein, a comprehensive comparison of the performances among four popular prediction algorithms (BLAST, SVM, PNN and KNN) was conducted. In particular, the performance of these methods was systematically assessed by four standard statistical indexes based on the independent test datasets of 93 functional protein families defined by UniProtKB keywords. Moreover, the false discovery rates of these algorithms were evaluated by scanning the genomes of four representative model organisms (Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and Mycobacterium tuberculosis). As a result, the substantially higher sensitivity of SVM and BLAST was observed compared with that of PNN and KNN. However, the machine learning algorithms (PNN, KNN and SVM) were found capable of substantially reducing the false discovery rate (SVM < PNN < KNN). In sum, this study comprehensively assessed the performance of four popular algorithms applied to protein function prediction, which could facilitate the selection of the most appropriate method in the related biomedical research.
Collapse
Affiliation(s)
- Chun Yan Yu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiao Xu Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hong Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ying Hong Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Wei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore.
| | - Lin Tao
- School of Medicine, Hangzhou Normal University, Hangzhou 310012, China.
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
817
|
Zhang C, Liu Z, Zheng Y, Geng Y, Han C, Shi Y, Sun H, Zhang C, Chen Y, Zhang L, Guo Q, Yang L, Zhou X, Kong L. Glycyrrhetinic Acid Functionalized Graphene Oxide for Mitochondria Targeting and Cancer Treatment In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703306. [PMID: 29205852 DOI: 10.1002/smll.201703306] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Mitochondria-mediated apoptosis (MMA) is a preferential option for cancer therapy due to the presence of cell-suicide factors in mitochondria, however, low permeability of mitochondria is a bottleneck for targeting drug delivery. In this paper, glycyrrhetinic acid (GA), a natural product from Glycyrrhiza glabra, is found to be a novel mitochondria targeting ligand, which can improve mitochondrial permeability and enhance the drug uptake of mitochondria. GA-functionalized graphene oxide (GO) is prepared and used as an effective carrier for targeted delivery of doxorubicin into mitochondria. The detailed in vitro and in vivo mechanism study shows that GA-functionalized GO causes a decrease in mitochondrial membrane potential and activates the MMA pathway. The GA-functionalized drug delivery system demonstrates highly improved apoptosis induction ability and anticancer efficacy compared to the non-GA-functionalized nanocarrier delivery system. The GA-functionalized nanocarrier also shows low toxicity, suggesting that it can be a useful tool for drug delivery.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Ying Zheng
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yadi Geng
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yamin Shi
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Hongbin Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
818
|
Liu PF, Tsai KL, Hsu CJ, Tsai WL, Cheng JS, Chang HW, Shiau CW, Goan YG, Tseng HH, Wu CH, Reed JC, Yang LW, Shu CW. Drug Repurposing Screening Identifies Tioconazole as an ATG4 Inhibitor that Suppresses Autophagy and Sensitizes Cancer Cells to Chemotherapy. Am J Cancer Res 2018; 8:830-845. [PMID: 29344310 PMCID: PMC5771097 DOI: 10.7150/thno.22012] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 11/12/2022] Open
Abstract
Background: Tumor cells require proficient autophagy to meet high metabolic demands and resist chemotherapy, which suggests that reducing autophagic flux might be an attractive route for cancer therapy. However, this theory in clinical cancer research remains controversial due to the limited number of drugs that specifically inhibit autophagy-related (ATG) proteins. Methods: We screened FDA-approved drugs using a novel platform that integrates computational docking and simulations as well as biochemical and cellular reporter assays to identify potential drugs that inhibit autophagy-required cysteine proteases of the ATG4 family. The effects of ATG4 inhibitors on autophagy and tumor suppression were examined using cell culture and a tumor xenograft mouse model. Results: Tioconazole was found to inhibit activities of ATG4A and ATG4B with an IC50 of 1.3 µM and 1.8 µM, respectively. Further studies based on docking and molecular dynamics (MD) simulations supported that tioconazole can stably occupy the active site of ATG4 in its open form and transiently interact with the allosteric regulation site in LC3, which explained the experimentally observed obstruction of substrate binding and reduced autophagic flux in cells in the presence of tioconazole. Moreover, tioconazole diminished tumor cell viability and sensitized cancer cells to autophagy-inducing conditions, including starvation and treatment with chemotherapeutic agents. Conclusion: Tioconazole inhibited ATG4 and autophagy to enhance chemotherapeutic drug-induced cytotoxicity in cancer cell culture and tumor xenografts. These results suggest that the antifungal drug tioconazole might be repositioned as an anticancer drug or chemosensitizer.
Collapse
|
819
|
Alshishani A, Salhimi SM, Saad B. Salting-out assisted liquid-liquid extraction coupled with hydrophilic interaction chromatography for the determination of biguanides in biological and environmental samples. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:51-59. [DOI: 10.1016/j.jchromb.2017.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/21/2017] [Accepted: 12/08/2017] [Indexed: 12/19/2022]
|
820
|
The Intricate Metabolism of Pancreatic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1063:73-81. [DOI: 10.1007/978-3-319-77736-8_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
821
|
McCann BJ, Cox A, Gammage PA, Stewart JB, Zernicka-Goetz M, Minczuk M. Delivery of mtZFNs into Early Mouse Embryos. Methods Mol Biol 2018; 1867:215-228. [PMID: 30155826 DOI: 10.1007/978-1-4939-8799-3_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitochondrial diseases often result from mutations in the mitochondrial genome (mtDNA). In most cases, mutant mtDNA coexists with wild-type mtDNA, resulting in heteroplasmy. One potential future approach to treat heteroplasmic mtDNA diseases is the specific elimination of pathogenic mtDNA mutations, lowering the level of mutant mtDNA below pathogenic thresholds. Mitochondrially targeted zinc-finger nucleases (mtZFNs) have been demonstrated to specifically target and introduce double-strand breaks in mutant mtDNA, facilitating substantial shifts in heteroplasmy. One application of mtZFN technology, in the context of heteroplasmic mtDNA disease, is delivery into the heteroplasmic oocyte or early embryo to eliminate mutant mtDNA, preventing transmission of mitochondrial diseases through the germline. Here we describe a protocol for efficient production of mtZFN mRNA in vitro, and delivery of these into 0.5 dpc mouse embryos to elicit shifts of mtDNA heteroplasmy.
Collapse
Affiliation(s)
- Beverly J McCann
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Andy Cox
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Payam A Gammage
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - James B Stewart
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
822
|
Fischer GM, Gopal YV, McQuade JL, Peng W, DeBerardinis RJ, Davies MA. Metabolic strategies of melanoma cells: Mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 2018; 31:11-30. [PMID: 29049843 PMCID: PMC5742019 DOI: 10.1111/pcmr.12661] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Melanomas are metabolically heterogeneous, and they are able to adapt in order to utilize a variety of fuels that facilitate tumor progression and metastasis. The significance of metabolism in melanoma is supported by growing evidence of impact on the efficacy of contemporary therapies for this disease. There are also data to support that the metabolic phenotypes of melanoma cells depend upon contributions from both intrinsic oncogenic pathways and extrinsic factors in the tumor microenvironment. This review summarizes current understanding of the metabolic processes that promote cutaneous melanoma tumorigenesis and progression, the regulation of cancer cell metabolism by the tumor microenvironment, and the impact of metabolic pathways on targeted and immune therapies.
Collapse
Affiliation(s)
- Grant M. Fischer
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Y.N. Vashisht Gopal
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Jennifer L. McQuade
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Weiyi Peng
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Ralph J. DeBerardinis
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390
| | - Michael A. Davies
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| |
Collapse
|
823
|
Gaudio E, Paduano F, Ngankeu A, Ortuso F, Lovat F, Pinton S, D'Agostino S, Zanesi N, Aqeilan RI, Campiglia P, Novellino E, Alcaro S, Croce CM, Trapasso F. A Fhit-mimetic peptide suppresses annexin A4-mediated chemoresistance to paclitaxel in lung cancer cells. Oncotarget 2017; 7:29927-36. [PMID: 27166255 PMCID: PMC5058653 DOI: 10.18632/oncotarget.9179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023] Open
Abstract
We recently reported that Fhit is in a molecular complex with annexin A4 (ANXA4); following to their binding, Fhit delocalizes ANXA4 from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. Here, we demonstrate that Fhit physically interacts with A4 through its N-terminus; molecular dynamics simulations were performed on a 3D Fhit model to rationalize its mechanism of action. This approach allowed for the identification of the QHLIKPS heptapeptide (position 7 to 13 of the wild-type Fhit protein) as the smallest Fhit sequence still able to preserve its ability to bind ANXA4. Interestingly, Fhit peptide also recapitulates the property of the native protein in inhibiting Annexin A4 translocation from cytosol to plasma membrane in A549 and Calu-2 lung cancer cells treated with paclitaxel. Finally, the combination of Tat-Fhit peptide and paclitaxel synergistically increases the apoptotic rate of cultured lung cancer cells and blocks in vivo tumor formation. Our findings address to the identification of chemically simplified Fhit derivatives that mimic Fhit tumor suppressor functions; intriguingly, this approach might lead to the generation of novel anticancer drugs to be used in combination with conventional therapies in Fhit-negative tumors to prevent or delay chemoresistance.
Collapse
Affiliation(s)
- Eugenio Gaudio
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.,Lymphoma & Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland.,Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Francesco Paduano
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Apollinaire Ngankeu
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Francesca Lovat
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Sandra Pinton
- Lymphoma & Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | - Sabrina D'Agostino
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Nicola Zanesi
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Rami I Aqeilan
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.,The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, The Hebrew University, Jerusalem, Israel
| | - Pietro Campiglia
- Dipartimento di Farmacia, Università di Salerno, Fisciano, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Carlo M Croce
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| |
Collapse
|
824
|
Gu Z, Zhang H, Li Y, Shen S, Yin X, Zhang W, Cheng R, Zhang Y, Zhang X, Chen H, Huang B, Cao Y. CDC5L drives FAH expression to promote metabolic reprogramming in melanoma. Oncotarget 2017; 8:114328-114343. [PMID: 29371990 PMCID: PMC5768407 DOI: 10.18632/oncotarget.23107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022] Open
Abstract
Metabolic reprogramming allows tumor cells to thrive in the typically hypoxic tumor microenvironment. Using immunodetection and clinical data analyses, we demonstrate here that fumarylacetoacetate hydrolase (FAH) is highly expressed in melanoma and correlates with poor survival. FAH knockdown inhibits proliferation and migration, while promoting apoptosis in melanoma cells, result in prolonged survival in tumor-bearing mice. Molecular analyses using real time RT-PCR, western blot, and 13C tracing showed that these changes are driven by strong stimulation of anaplerotic reactions through the TCA cycle and the pentose-phosphate pathway, resulting in increased fatty acid and nucleotide synthesis. Using bioinformatic, ChIP-PCR, and gene silencing analyses, we determined that cell division cycle 5-like protein (CDC5L) is an important transcription factor regulating FAH expression in melanoma cells. These findings reveal that FAH induces metabolic reprogramming in melanoma and so emerges as both a potentially useful independent prognostic indicator and an attractive therapeutic target.
Collapse
Affiliation(s)
- Zhichao Gu
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huafeng Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Susu Shen
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Yin
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Wei Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruimin Cheng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Chen
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Huang
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
825
|
Wang L, Zhang X, Cui G, Chan JYW, Wang L, Li C, Shan L, Xu C, Zhang Q, Wang Y, Di L, Lee SMY. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II. Oncotarget 2017; 7:32054-64. [PMID: 27081033 PMCID: PMC5077996 DOI: 10.18632/oncotarget.8410] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/02/2016] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial respiratory chain, including mitochondrial complex II, has emerged as a potential target for cancer therapy. In the present study, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), DT-010, was synthesized. Our results showed that DT-010 is more potent than its parental compounds separately or in combination, in inhibiting the proliferation of MCF-7 and MDA-MB-231 cells by inducing cytotoxicity and promoting cell cycle arrest. It also inhibited the growth of 4T1 breast cancer cells in vivo. DT-010 suppressed the fundamental parameters of mitochondrial function in MCF-7 cells, including basal respiration, ATP turnover, maximal respiration. Treatment with DT-010 in MCF-7 and MDA-MB-231 cells resulted in the loss of mitochondrial membrane potential and decreased ATP production. DT-010 also promoted ROS generation, while treatment with ROS scavenger, NAC (N-acetyl-L-cysteine), reversed DT-010-induced cytotoxicity. Further study showed that DT-010 suppressed succinate-induced mitochondrial respiration and impaired mitochondrial complex II enzyme activity indicating that DT-010 may inhibit mitochondrial complex II. Overall, our results suggested that the antitumor activity of DT-010 is associated with inhibition of mitochondrial complex II, which triggers ROS generation and mitochondrial dysfunction in breast cancer cells.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaojing Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guozhen Cui
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Judy Yuet-Wa Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Changjiang Xu
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lijun Di
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
826
|
Cioloboc D, Kennedy C, Boice EN, Clark ER, Kurtz DM. Trojan Horse for Light-Triggered Bifurcated Production of Singlet Oxygen and Fenton-Reactive Iron within Cancer Cells. Biomacromolecules 2017; 19:178-187. [DOI: 10.1021/acs.biomac.7b01433] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniela Cioloboc
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Christopher Kennedy
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Emily N. Boice
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Emily R. Clark
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Donald M. Kurtz
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
827
|
More than a powerplant: the influence of mitochondrial transfer on the epigenome. CURRENT OPINION IN PHYSIOLOGY 2017; 3:16-24. [PMID: 29750205 DOI: 10.1016/j.cophys.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Each cell in the human body, with the exception of red blood cells, contains multiple copies of mitochondria that house their own genetic material, the maternally inherited mitochondrial DNA. Mitochondria are the cell's powerplant due to their massive ATP generation. However, the mitochondrion is also a hub for metabolite production from the TCA cycle, fatty acid beta-oxidation, and ketogenesis. In addition to producing macromolecules for biosynthetic reactions and cell replication, several mitochondrial intermediate metabolites serve as cofactors or substrates for epigenome modifying enzymes that regulate chromatin structure and impact gene expression. Here, we discuss connections between mitochondrial metabolites and enzymatic writers and erasers of chromatin modifications. We do this from the unique perspective of cell-to-cell mitochondrial transfer and its potential impact on mitochondrial replacement therapies.
Collapse
|
828
|
Biel TG, Rao VA. Mitochondrial dysfunction activates lysosomal-dependent mitophagy selectively in cancer cells. Oncotarget 2017; 9:995-1011. [PMID: 29416672 PMCID: PMC5787530 DOI: 10.18632/oncotarget.23171] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/26/2017] [Indexed: 01/13/2023] Open
Abstract
Molecules designed to target and accumulate in the mitochondria are an emerging therapeutic approach for cancer and other indications. Mitochondria-targeted redox agents (MTAs) induce mitochondrial damage and autophagy in cancer cells. However, the mechanisms for these molecules to induce mitophagy, the clearance of damaged mitochondria, are largely unknown. Using breast derived cell lines and a series of targeted molecules, mitochondrial dysfunction and autophagy was established to be selective for MDA-MB-231 cancer cells as compared to the non-cancerous MCF-12A cells. Kinetic analyses revealed that mitochondrial dysfunction precedes the activation of autophagy in these cancer cells. To determine the onset of mitophagy, stably expressing mitochondrial mKeima, a mitochondrial pH sensor, cell lines were generated and revealed that these drugs activate lysosomal dependent mitochondrial degradation in MDA-MB-231 cells. Mitophagy was confirmed by identifying the accumulation of a PINK1, mitochondria located in autophagosomes, and the formation of an autophagosome-mitochondria protein (MFN2-LC3-II) complex. These results are the first to demonstrate that mitochondrial redox agents selectively induce mitophagy in a breast cancer cell line and their potential application both as tools for investigating mitochondrial biomechanics and as therapeutic strategies that target mitochondrial metabolism.
Collapse
Affiliation(s)
- Thomas G Biel
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| |
Collapse
|
829
|
Albayrak G, Konac E, Dikmen AU, Bilen CY. Memantine induces apoptosis and inhibits cell cycle progression in LNCaP prostate cancer cells. Hum Exp Toxicol 2017; 37:953-958. [PMID: 29226720 DOI: 10.1177/0960327117747025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deregulated cancer cell metabolism plays an important role in cancer progression. Cancer cell metabolism has been in the centre of attention in therapeutical cancer cell targeting. Repurposed chemical agents, such as metformin and aspirin, have been studied extensively as preventive and therapeutic agents. Metformin is Food and Drug administration (FDA)-approved antidiabetic drug cheaper than other chemotherapeutic agents that were shown to have anticancer effects. Memantine is an FDA-approved Alzheimer's drug. Drug repositioning studies offer wide range of benefits, such as reduced time, cost and risk over de novo drug discovery. Therefore, we aimed to target glucose and glutamine metabolism in androgen-dependent LNCaP cells by using metformin and memantine and investigate these agents' effects on prostate cancer cell proliferation in vitro. We evaluated the effects of metformin and memantine on the protein expression levels of genes that play significant roles in apoptosis and cell cycle progression (Casp3, Casp9, Bcl-2, Survivin, Bax, c-Myc, HIF1A, CCND1, CDK4 and GAPDH) by Western blotting. Alzheimer's drug memantine exerted cytotoxic effects at 0.25 mM and metformin at 2.5 mM. We identified for the first time that memantine exerts antineoplastic activity (0.25 mM) by triggering Bax-dependent pathway of apoptosis. In addition to that both molecules have shown similar patterns on pro- and anti-apoptotic protein expression levels, such as Bcl-2, Casp3, Survivin and Bax. Our preclinic results indicate that memantine might be used as a new repositioned drug in cancer treatment. Beyond targeting glucose metabolism, glutamine metabolism also holds great promise for a potential treatment option.
Collapse
Affiliation(s)
- G Albayrak
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - E Konac
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - A U Dikmen
- 2 Department of Public Health, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - C Y Bilen
- 3 Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, Turkey
| |
Collapse
|
830
|
Ribeiro T, Lemos F, Preto M, Azevedo J, Sousa ML, Leão PN, Campos A, Linder S, Vitorino R, Vasconcelos V, Urbatzka R. Cytotoxicity of portoamides in human cancer cells and analysis of the molecular mechanisms of action. PLoS One 2017; 12:e0188817. [PMID: 29216224 PMCID: PMC5720714 DOI: 10.1371/journal.pone.0188817] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Portoamides are cyclic peptides produced and released by the cyanobacterial strain Phormidium sp. presumably to interfere with other organisms in their ecosystems ("allelopathy"). Portoamides were previously demonstrated to have an antiproliferative effect on human lung carcinoma cells, but the underlying mechanism of this activity has not been described. In the present work, the effects of portoamides on proliferation were examined in eight human cancer cell lines and two non-carcinogenic cell lines, and major differences in sensitivities were observed. To generate hypotheses with regard to molecular mechanisms of action, quantitative proteomics using 2D gel electrophoresis and MALDI-TOF/TOF were performed on the colon carcinoma cell line HT-29. The expression of proteins involved in energy metabolism (mitochondrial respiratory chain and pentose phosphate pathway) was found to be affected. The hypothesis of altered energy metabolism was tested in further experiments. Exposure to portoamides resulted in reduced cellular ATP content, likely due to decreased mitochondrial energy production. Mitochondrial hyperpolarization and reduced mitochondrial reductive capacity was observed in treated cells. Furthermore, alterations in the expression of peroxiredoxins (PRDX4, PRDX6) and components of proteasome subunits (PSB4, PSA6) were observed in portoamide-treated cells, but these alterations were not associated with detectable increases in oxidative stress. We conclude that the cytotoxic activity of portoamides is associated with disturbance of energy metabolism, and alterations in mitochondrial structure and function.
Collapse
Affiliation(s)
- Tiago Ribeiro
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Filipa Lemos
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Marco Preto
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Maria Lígia Sousa
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Pedro N. Leão
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
- FCUP, Faculty of Science, Department of Biology, University of Porto, Porto, Portugal
| | - Ralph Urbatzka
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
- * E-mail:
| |
Collapse
|
831
|
Idelchik MDPS, Begley U, Begley TJ, Melendez JA. Mitochondrial ROS control of cancer. Semin Cancer Biol 2017; 47:57-66. [PMID: 28445781 PMCID: PMC5653465 DOI: 10.1016/j.semcancer.2017.04.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
Mitochondria serves a primary role in energy maintenance but also function to govern levels of mitochondria-derived reactive oxygen species (mROS). ROS have long been established to play a critical role in tumorigenesis and are now considered to be integral to the regulation of diverse signaling networks that drive proliferation, tumor cell survival and malignant progression. mROS can damage DNA, activate oncogenes, block the function of tumor suppressors and drive migratory signaling. The mitochondrion's oxidant scavenging systems including SOD2, Grx2, GPrx, Trx and TrxR are key of the cellular redox tone. These mitochondrial antioxidant systems serve to tightly control the levels of the primary ROS signaling species, H2O2. The coordinated control of mROS levels is also coupled to the activity of the primary H2O2 consuming enzymes of the mitochondria which are reliant on the epitranscriptomic control of selenocysteine incorporation. This review highlights the interplay between these many oncogenic signaling networks, mROS and the H2O2 emitting and consuming capacity of the mitochondria.
Collapse
Affiliation(s)
- María Del Pilar Sosa Idelchik
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - Ulrike Begley
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - Thomas J Begley
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States.
| |
Collapse
|
832
|
Thomas AP, Palanikumar L, Jeena MT, Kim K, Ryu JH. Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye. Chem Sci 2017; 8:8351-8356. [PMID: 29619181 PMCID: PMC5858757 DOI: 10.1039/c7sc03169f] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
Mitochondria-targeted cancer therapies have proven to be more effective than other similar non-targeting techniques, especially in photodynamic therapy (PDT). Indocyanine dye derivatives, particularly IR-780, are widely known for their PDT utility. However, poor water solubility, dark toxicity, and photobleaching are limiting factors for these dyes, which otherwise show promise based on their good absorption in the near-infrared (NIR) region and mitochondria targeting ability. Herein, we introduce an indocyanine derivative (IR-Pyr) that is highly water soluble, exhibiting higher mitochondrial targetability and better photostability than IR-780. Furthermore, electrostatic interactions between the positively charged IR-Pyr and negatively charged hyaluronic acid (HA) were utilized to construct a micellar aggregate that is selective towards cancer cells. The cancer mitochondria-targeted strategy confirms high PDT efficacy as proved by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Ajesh P Thomas
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| | - L Palanikumar
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| | - M T Jeena
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| | - Kibeom Kim
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| | - Ja-Hyoung Ryu
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| |
Collapse
|
833
|
Radenkovic F, Holland O, Vanderlelie JJ, Perkins AV. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation. Biochem Pharmacol 2017; 146:42-52. [DOI: 10.1016/j.bcp.2017.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023]
|
834
|
Fu X, Liu W, Huang Q, Wang Y, Li H, Xiong Y. Targeting mitochondrial respiration selectively sensitizes pediatric acute lymphoblastic leukemia cell lines and patient samples to standard chemotherapy. Am J Cancer Res 2017; 7:2395-2405. [PMID: 29312795 PMCID: PMC5752682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023] Open
Abstract
The clinical management of pediatric acute lymphoblastic leukemia (ALL) is still changeling and identification of agents that can sensitize standard chemotherapy is needed for its better management. In this work, we demonstrate that tigecycline, a FDA-approved antibiotic, is an attractive candidate for ALL treatment. Tigecycline inhibits growth and induces apoptosis of multiple ALL cell lines. Compared to normal hematopoietic cells, tigecycline is more active against primary lymphocytes and CD34 progenitors from ALL patients through decreasing survival and clonogenic growth. Notably, tigecycline significantly augments the efficacy of chemotherapeutic drugs, such as doxorubicin and vincristine, in ALL cell lines, primary samples and xenograft mouse model. Tigecycline acts on ALL via inhibiting mitochondrial respiration, leading to energy crisis and oxidative stress and damage. We show that the enhanced mitochondrial biogenesis and increased oxygen consumption rate in ALL versus normal hematopoietic cells are important for their different sensitivity to tigecycline. We further show that ATP production and growth rate are largely affected in mitochondrial respiration-deficient ρ0 ALL cells. Our work provides pre-clinical evidence for repurposing tigecycline for ALL treatment and highlights the therapeutic value of targeting mitochondrial metabolism in sensitizing ALL to chemotherapy.
Collapse
Affiliation(s)
- Xuedong Fu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Wei Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Qian Huang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Yanjun Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Huijuan Li
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Ying Xiong
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| |
Collapse
|
835
|
Kitayama K, Yashiro M, Morisaki T, Miki Y, Okuno T, Kinoshita H, Fukuoka T, Kasashima H, Masuda G, Hasegawa T, Sakurai K, Kubo N, Hirakawa K, Ohira M. Pyruvate kinase isozyme M2 and glutaminase might be promising molecular targets for the treatment of gastric cancer. Cancer Sci 2017; 108:2462-2469. [PMID: 29032577 PMCID: PMC5715358 DOI: 10.1111/cas.13421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to analyze the significance of glucose metabolism-related enzymes in the proliferation of gastric cancer under hypoxia. Four hypoxia-resistant gastric cancer cell lines and four parent cell lines were used. Reverse transcription-PCR was used to evaluate the mRNA expression levels of the following metabolism-related enzymes: pyruvate kinase isozyme M2 (PKM2), glutaminase (GLS), enolase 1 (ENO1), glucose-6-phosphate dehydrogenase (G6PDH), and PKM1. The effects of these enzymes on the proliferation of gastric cancer cells were examined using siRNAs, shikonin as a PKM2 inhibitor, or BPTES as a GLS inhibitor, in vitro and in vivo. Levels of both PKM2 and GLS mRNA were significantly high in all hypoxia-resistant cell lines, compared with those of their parent cells. Knockdown of PKM2 and GLS significantly decreased the proliferation of all hypoxia-resistant cells. The combination of siPKM2 and siGLS significantly decreased proliferation compared with treatment by siPKM2 or siGLS alone. The knockdown of ENO1, G6PDH, or PKM1 did not decrease the proliferation of all hypoxia-resistant cells. Combination treatment using shikonin and BPTES inhibited the proliferation of all hypoxia-resistant cancer cells more than that by either agent alone. The in vivo study indicated that the tumor size treated by the combination of shikonin and BPTES was significantly smaller than that of vehicle-treated group. These findings suggested that PKM2 and GLS might play important roles in the proliferation of hypoxic gastric cancer cells. A combination of PKM2 and GLS inhibitors could be therapeutically promising for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Kishu Kitayama
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
- Molecular Oncology and TherapeuticsOsaka City University Graduate School of MedicineOsakaJapan
| | - Masakazu Yashiro
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
- Molecular Oncology and TherapeuticsOsaka City University Graduate School of MedicineOsakaJapan
- Cancer Center for Translational ResearchOsaka City University Graduate School of MedicineOsakaJapan
| | - Tamami Morisaki
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Yuichiro Miki
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
- Molecular Oncology and TherapeuticsOsaka City University Graduate School of MedicineOsakaJapan
| | - Tomohisa Okuno
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
- Molecular Oncology and TherapeuticsOsaka City University Graduate School of MedicineOsakaJapan
| | - Haruhito Kinoshita
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Tatsunari Fukuoka
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Hiroaki Kasashima
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Go Masuda
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Tsuyoshi Hasegawa
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Katsunobu Sakurai
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Naoshi Kubo
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Kosei Hirakawa
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Masaichi Ohira
- Department of Surgical OncologyOsaka City University Graduate School of MedicineOsakaJapan
| |
Collapse
|
836
|
Friend or foe? Mitochondria as a pharmacological target in cancer treatment. Future Med Chem 2017; 9:2197-2210. [PMID: 29182013 DOI: 10.4155/fmc-2017-0110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondria have acquired numerous functions over the course of evolution, such as those involved in controlling energy production, cellular metabolism, cell survival, apoptosis and autophagy within host cells. Tumor cells can develop defects in mitochondrial function, presenting a potential strategy for designing selective anticancer therapies. Therefore, cancer has been the main focus of recent research to uncover possible mitochondrial targets for therapeutic benefit. This comprehensive review covers not only the recent discoveries of the roles of mitochondria in cancer development, progression and therapeutic implications but also the findings regarding emerging mitochondrial therapeutic targets and mitochondria-targeted agents. Current challenges and future directions for developments and applications of mitochondrial-targeted therapeutics are also discussed.
Collapse
|
837
|
Sreedhar A, Zhao Y. Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells. Biomed Rep 2017; 8:3-10. [PMID: 29399334 PMCID: PMC5772474 DOI: 10.3892/br.2017.1022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor cells carry various genetic and metabolic alterations, which directly contribute to their growth and malignancy. Links between metabolism and cancer are multifaceted. Metabolic reprogramming, such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid (TCA) cycle metabolic enzymes, and dependence on lipid and glutamine metabolism are key characteristics of cancer cells. Understanding these metabolic alterations is crucial for development of novel anti-cancer therapeutic strategies. In the present review, the broad importance of metabolism in tumor biology is discussed, and the current knowledge on dysregulated metabolic enzymes involved in the vital regulatory steps of glycolysis, the TCA cycle, the pentose phosphate pathway, and lipid, amino acid, and mitochondrial metabolism pathways are reviewed.
Collapse
Affiliation(s)
- Annapoorna Sreedhar
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center Shreveport, LA 71130-3932, USA
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center Shreveport, LA 71130-3932, USA
| |
Collapse
|
838
|
Cao C, Yu H, Wu F, Qi H, He J. Antibiotic anisomycin induces cell cycle arrest and apoptosis through inhibiting mitochondrial biogenesis in osteosarcoma. J Bioenerg Biomembr 2017; 49:437-443. [PMID: 29164469 DOI: 10.1007/s10863-017-9734-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
The anti-cancer activities of antibiotic anisomycin have been demonstrated in kidney, colon and ovarian cancers whereas its underlying mechanisms are not well elucidated. In this work, we investigated whether anisomycin is effective in sensitizes osteosarcoma cell response to chemotherapy. We show that anisomycin inhibits proliferation via inducing osteosarcoma cell arrest at G2/M phase, accompanied by the increased levels of mitotic marker cyclin B and the decreased levels of Rb and E2F-1. Anisomycin also induces apoptosis in a caspase-dependent manner in osteosarcoma cells. Importantly, anisomycin is less effective in normal control NIH3T3 cells compared to osteosarcoma cells. In addition, anisomycin inhibits osteosarcoma growth in xenograft mouse model and enhances the inhibitory effects of doxorubicin in osteosarcoma in vitro and in vivo. Mechanistically, anisomycin targets mitochondrial biogenesis in osteosarcoma as shown by the decreased mitochondrial membrane potential, suppressed mitochondrial respiration via decreasing complex I activity, reduced ATP production. Furthermore, mitochondrial biogenesis stimulator acetyl-L-Carnitine (ALCAR) significantly rescues the inhibitory effects of anisomycin in osteosarcoma cells. Our work demonstrates that anisomycin is active against osteosarcoma cells and the molecular mechanism of its action is the inhibition of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Chuanhua Cao
- Department of Oncology, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, 136 Jingzhou Road, Xiangyang, Hubei, 441021, People's Republic of China
| | - Haiying Yu
- Department of Oncology, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, 136 Jingzhou Road, Xiangyang, Hubei, 441021, People's Republic of China
| | - Feng Wu
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Huixiong Qi
- Department of Oncology, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, 136 Jingzhou Road, Xiangyang, Hubei, 441021, People's Republic of China.
| | - Jingbo He
- Department of Oncology, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, 136 Jingzhou Road, Xiangyang, Hubei, 441021, People's Republic of China.
| |
Collapse
|
839
|
Robertsen HL, Weber T, Kim HU, Lee SY. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Helene Lunde Robertsen
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| |
Collapse
|
840
|
Teixeira J, Amorim R, Santos K, Soares P, Datta S, Cortopassi GA, Serafim TL, Sardão VA, Garrido J, Borges F, Oliveira PJ. Disruption of mitochondrial function as mechanism for anti-cancer activity of a novel mitochondriotropic menadione derivative. Toxicology 2017; 393:123-139. [PMID: 29141199 DOI: 10.1016/j.tox.2017.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
Abstract
Menadione, also known as vitamin K3, is a 2-methyl-1,4 naphthoquinone with a potent cytotoxic activity mainly resulting from its quinone redox-cycling with production of reactive oxygen species (ROS). Although increased ROS generation is considered a relevant mechanism in cancer cell death, it may not be sufficiently effective to kill cancer cells due to phenotypic adaptations. Therefore, combining ROS-generating agents with other molecules targeting important cancer cell phenotypes can be an effective therapeutic strategy. As mitochondrial dysfunction has been implicated in many human diseases, including cancer, we describe here the discovery of a mitochondrial-directed agent (MitoK3), which was developed by conjugating a TPP cation to the C3 position of the menadione's naphthoquinone ring, increasing its selective accumulation in mitochondria, as well as led to alterations of its redox properties and consequent biological outcome. MitoK3 disturbed the mitochondrial bioenergetic apparatus, with subsequent loss of mitochondrial ATP production. The combinatory strategy of MitoK3 with anticancer agent doxorubicin (DOX) resulted in a degree of cytotoxicity higher than those of the individual molecules, as the combination triggered tumour apoptotic cell death evident by caspase 3/9 activities, probably through mitochondrial destabilization or by interference with mitochondrial redox processes. The results of this investigation support the importance of drug discovery process in developing molecules that can be use as adjuvant therapy in patients with specific cancer subtypes.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park - Cantanhede, Portugal
| | - Ricardo Amorim
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Katia Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park - Cantanhede, Portugal
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sandipan Datta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| | - Gino A Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| | - Teresa L Serafim
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park - Cantanhede, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park - Cantanhede, Portugal
| | - Jorge Garrido
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal; Department of Chemical Engineering, School of Engineering (ISEP), Polytechnic Institute of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park - Cantanhede, Portugal.
| |
Collapse
|
841
|
Jones N, Cronin JG, Dolton G, Panetti S, Schauenburg AJ, Galloway SAE, Sewell AK, Cole DK, Thornton CA, Francis NJ. Metabolic Adaptation of Human CD4 + and CD8 + T-Cells to T-Cell Receptor-Mediated Stimulation. Front Immunol 2017; 8:1516. [PMID: 29170670 PMCID: PMC5684100 DOI: 10.3389/fimmu.2017.01516] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/26/2017] [Indexed: 02/02/2023] Open
Abstract
Linking immunometabolic adaptation to T-cell function provides insight for the development of new therapeutic approaches in multiple disease settings. T-cell activation and downstream effector functions of CD4+ and CD8+ T-cells are controlled by the strength of interaction between the T-cell receptor (TCR) and peptides presented by human leukocyte antigens (pHLA). The role of TCR–pHLA interactions in modulating T-cell metabolism is unknown. Here, for the first time, we explore the relative contributions of the main metabolic pathways to functional responses in human CD4+ and CD8+ T-cells. Increased expression of hexokinase II accompanied by higher basal glycolysis is demonstrated in CD4+ T-cells; cytokine production in CD8+ T-cells is more reliant on oxidative phosphorylation. Using antigen-specific CD4+ and CD8+ T-cell clones and altered peptide ligands, we demonstrate that binding affinity tunes the underlying metabolic shift. Overall, this study provides important new insight into how metabolic pathways are controlled during antigen-specific activation of human T-cells.
Collapse
Affiliation(s)
- Nicholas Jones
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| | - Garry Dolton
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Silvia Panetti
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| | | | | | - Andrew K Sewell
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David K Cole
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Catherine A Thornton
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| | - Nigel J Francis
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
842
|
Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, Wang Y, Liu P, Ong IM, Li B, Chen G, Jiang J, Gong S, Li L, Xu W. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol 2017; 19:1358-1370. [PMID: 29058718 PMCID: PMC5683091 DOI: 10.1038/ncb3630] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer. Herein we discover that the key glycolytic enzyme pyruvate kinase M2 isoform (PKM2), but not the related isoform PKM1, is methylated by co-activator-associated arginine methyltransferase 1 (CARM1). PKM2 methylation reversibly shifts the balance of metabolism from oxidative phosphorylation to aerobic glycolysis in breast cancer cells. Oxidative phosphorylation depends on mitochondrial calcium concentration, which becomes critical for cancer cell survival when PKM2 methylation is blocked. By interacting with and suppressing the expression of inositol-1,4,5-trisphosphate receptors (InsP3Rs), methylated PKM2 inhibits the influx of calcium from the endoplasmic reticulum to mitochondria. Inhibiting PKM2 methylation with a competitive peptide delivered by nanoparticles perturbs the metabolic energy balance in cancer cells, leading to a decrease in cell proliferation, migration and metastasis. Collectively, the CARM1-PKM2 axis serves as a metabolic reprogramming mechanism in tumorigenesis, and inhibiting PKM2 methylation generates metabolic vulnerability to InsP3R-dependent mitochondrial functions.
Collapse
Affiliation(s)
- Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ling Hao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hao Zeng
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chenxi Jia
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Baobin Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Guojun Chen
- Department of Materials Science and Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jiaoyang Jiang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
843
|
Huang J, Yang X, Peng X, Huang W. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis. Biochem Biophys Res Commun 2017; 493:921-927. [DOI: 10.1016/j.bbrc.2017.09.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
|
844
|
Ye RR, Cao JJ, Tan CP, Ji LN, Mao ZW. Valproic Acid-Functionalized Cyclometalated Iridium(III) Complexes as Mitochondria-Targeting Anticancer Agents. Chemistry 2017; 23:15166-15176. [DOI: 10.1002/chem.201703157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/14/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Rui-Rong Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Jian-Jun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| |
Collapse
|
845
|
Liberti MV, Dai Z, Wardell SE, Baccile JA, Liu X, Gao X, Baldi R, Mehrmohamadi M, Johnson MO, Madhukar NS, Shestov AA, Chio IIC, Elemento O, Rathmell JC, Schroeder FC, McDonnell DP, Locasale JW. A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product. Cell Metab 2017; 26:648-659.e8. [PMID: 28918937 PMCID: PMC5629112 DOI: 10.1016/j.cmet.2017.08.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/25/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Targeted cancer therapies that use genetics are successful, but principles for selectively targeting tumor metabolism that is also dependent on the environment remain unknown. We now show that differences in rate-controlling enzymes during the Warburg effect (WE), the most prominent hallmark of cancer cell metabolism, can be used to predict a response to targeting glucose metabolism. We establish a natural product, koningic acid (KA), to be a selective inhibitor of GAPDH, an enzyme we characterize to have differential control properties over metabolism during the WE. With machine learning and integrated pharmacogenomics and metabolomics, we demonstrate that KA efficacy is not determined by the status of individual genes, but by the quantitative extent of the WE, leading to a therapeutic window in vivo. Thus, the basis of targeting the WE can be encoded by molecular principles that extend beyond the status of individual genes.
Collapse
Affiliation(s)
- Maria V Liberti
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ziwei Dai
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua A Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Baldi
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mahya Mehrmohamadi
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Marc O Johnson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Neel S Madhukar
- Department of Physiology and Biophysics, Meyer Cancer Center, Institute for Precision Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander A Shestov
- Molecular Imaging and Metabolomics Lab, Radiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iok I Christine Chio
- Cold Spring Harbor Laboratory, Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Meyer Cancer Center, Institute for Precision Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
846
|
Heerma van Voss MR, van Diest PJ, Raman V. Targeting RNA helicases in cancer: The translation trap. Biochim Biophys Acta Rev Cancer 2017; 1868:510-520. [PMID: 28965870 DOI: 10.1016/j.bbcan.2017.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells are reliant on the cellular translational machinery for both global elevation of protein synthesis and the translation of specific mRNAs that promote tumor cell survival. Targeting translational control in cancer is therefore increasingly recognized as a promising therapeutic strategy. In this regard, DEAD/H box RNA helicases are a very interesting group of proteins, with several family members regulating mRNA translation in cancer cells. In this review, we delineate the mechanisms by which DEAD/H box proteins modulate oncogenic translation and how inhibition of these RNA helicases can be exploited for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Marise R Heerma van Voss
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University, School of Medicine, MD, USA
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Oncology, Johns Hopkins University, School of Medicine, MD, USA.
| |
Collapse
|
847
|
Koido M, Haga N, Furuno A, Tsukahara S, Sakurai J, Tani Y, Sato S, Tomida A. Mitochondrial deficiency impairs hypoxic induction of HIF-1 transcriptional activity and retards tumor growth. Oncotarget 2017; 8:11841-11854. [PMID: 28060746 PMCID: PMC5355308 DOI: 10.18632/oncotarget.14415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Mitochondria can be involved in regulating cellular stress response to hypoxia and tumor growth, but little is known about that mechanistic relationship. Here, we show that mitochondrial deficiency severely retards tumor xenograft growth with impairing hypoxic induction of HIF-1 transcriptional activity. Using mtDNA-deficient ρ0 cells, we found that HIF-1 pathway activation was comparable in slow-growing ρ0 xenografts and rapid-growing parental xenografts. Interestingly, we found that ex vivo ρ0 cells derived from ρ0 xenografts exhibited slightly increased HIF-1α expression and modest HIF-1 pathway activation regardless of oxygen concentration. Surprisingly, ρ0 cells, as well as parental cells treated with oxidative phosphorylation inhibitors, were unable to boost HIF-1 transcriptional activity during hypoxia, although HIF-1α protein levels were ordinarily increased in these cells under hypoxic conditions. These findings indicate that mitochondrial deficiency causes loss of hypoxia-induced HIF-1 transcriptional activity and thereby might lead to a constitutive HIF-1 pathway activation as a cellular adaptation mechanism in tumor microenvironment.
Collapse
Affiliation(s)
- Masaru Koido
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Naomi Haga
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Aki Furuno
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Satomi Tsukahara
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Junko Sakurai
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yuri Tani
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Shigeo Sato
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Akihiro Tomida
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
848
|
Rajeshkumar NV, Yabuuchi S, Pai SG, De Oliveira E, Kamphorst JJ, Rabinowitz JD, Tejero H, Al-Shahrour F, Hidalgo M, Maitra A, Dang CV. Treatment of Pancreatic Cancer Patient-Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin. Clin Cancer Res 2017; 23:5639-5647. [PMID: 28611197 PMCID: PMC6540110 DOI: 10.1158/1078-0432.ccr-17-1115] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Purpose: To identify effective metabolic inhibitors to suppress the aggressive growth of pancreatic ductal adenocarcinoma (PDAC), we explored the in vivo antitumor efficacy of metabolic inhibitors, as single agents, in a panel of patient-derived PDAC xenograft models (PDX) and investigated whether genomic alterations of tumors correlate with the sensitivity to metabolic inhibitors.Experimental Design: Mice with established PDAC tumors from 6 to 13 individual PDXs were randomized and treated, once daily for 4 weeks, with either sterile PBS (vehicle) or the glutaminase inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), transaminase inhibitor aminooxyacetate (AOA), pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA), autophagy inhibitor chloroquine (CQ), and mitochondrial complex I inhibitor phenformin/metformin.Results: Among the agents tested, phenformin showed significant tumor growth inhibition (>30% compared with vehicle) in 5 of 12 individual PDXs. Metformin, at a fivefold higher dose, displayed significant tumor growth inhibition in 3 of 12 PDXs similar to BPTES (2/8 PDXs) and DCA (2/6 PDXs). AOA and CQ had the lowest response rates. Gene set enrichment analysis conducted using the baseline gene expression profile of pancreatic tumors identified a gene expression signature that inversely correlated with phenformin sensitivity, which is in agreement with the phenformin gene expression signature of NIH Library of Integrated Network-based Cellular Signatures (LINCS). The PDXs that were more sensitive to phenformin showed a baseline reduction in amino acids and elevation in oxidized glutathione. There was no correlation between phenformin response and genetic alterations in KRAS, TP53, SMAD4, or PTENConclusions: Phenformin treatment showed relatively higher antitumor efficacy against established PDAC tumors, compared with the efficacy of other metabolic inhibitors and metformin. Phenformin treatment significantly diminished PDAC tumor progression and prolonged tumor doubling time. Overall, our results serve as a foundation for further evaluation of phenformin as a therapeutic agent in pancreatic cancer. Clin Cancer Res; 23(18); 5639-47. ©2017 AACR.
Collapse
Affiliation(s)
- N V Rajeshkumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shinichi Yabuuchi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shweta G Pai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth De Oliveira
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Héctor Tejero
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Manuel Hidalgo
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Hematology-Oncology, Rosenberg Clinical Cancer Center, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, Sheikh Ahmad Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chi V Dang
- Abramson Cancer Center, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
849
|
Quayle LA, Pereira MG, Scheper G, Wiltshire T, Peake RE, Hussain I, Rea CA, Bates TE. Anti-angiogenic drugs: direct anti-cancer agents with mitochondrial mechanisms of action. Oncotarget 2017; 8:88670-88688. [PMID: 29179466 PMCID: PMC5687636 DOI: 10.18632/oncotarget.20858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/17/2017] [Indexed: 12/15/2022] Open
Abstract
Components of the mitochondrial electron transport chain have recently gained much interest as potential therapeutic targets. Since mitochondria are essential for the supply of energy that is required for both angiogenic and tumourigenic activity, targeting the mitochondria represents a promising potential therapeutic approach for treating cancer. Here we investigate the established anti-angiogenesis drugs combretastatin A4, thalidomide, OGT 2115 and tranilast that we hypothesise are able to exert a direct anti-cancer effect in the absence of vasculature by targeting the mitochondria. Drug cytotoxicity was measured using the MTT assay. Mitochondrial function was measured in intact isolated mitochondria using polarography, fluorimetry and enzymatic assays to measure mitochondrial oxygen consumption, membrane potential and complex I-IV activities respectively. Combretastatin A4, OGT 2115 and tranilast were both shown to decrease mitochondrial oxygen consumption. OGT 2115 and tranilast decreased mitochondrial membrane potential and reduced complex I activity while combretastatin A4 and thalidomide did not. OGT 2115 inhibited mitochondrial complex II-III activity while combretastatin A4, thalidomide and tranilast did not. Combretastatin A4, thalidomide and OGT 2115 induced bi-phasic concentration-dependent increases and decreases in mitochondrial complex IV activity while tranilast had no evident effect. These data demonstrate that combretastatin A4, thalidomide, OGT 2115 and tranilast are all mitochondrial modulators. OGT 2115 and tranilast are both mitochondrial inhibitors capable of eliciting concentration-dependent reductions in cell viability by decreasing mitochondrial membrane potential and oxygen consumption.
Collapse
Affiliation(s)
- Lewis A Quayle
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, S10 2RX, U.K
| | - Maria G Pereira
- School of Pharmacy, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Gerjan Scheper
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Tammy Wiltshire
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Ria E Peake
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Issam Hussain
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Carol A Rea
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Timothy E Bates
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Drugs With A Difference Limited, BioCity Nottingham, Nottingham, NG1 1GF, U.K.,Marlin Therapeutics Limited, Nottingham Science Park, Nottingham, NG7 2RF, U.K
| |
Collapse
|
850
|
Panisova E, Kery M, Sedlakova O, Brisson L, Debreova M, Sboarina M, Sonveaux P, Pastorekova S, Svastova E. Lactate stimulates CA IX expression in normoxic cancer cells. Oncotarget 2017; 8:77819-77835. [PMID: 29100428 PMCID: PMC5652817 DOI: 10.18632/oncotarget.20836] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
Besides hypoxia, other factors and molecules such as lactate, succinate, and reactive oxygen species activate transcription factor hypoxia-inducible factor-1 (HIF-1) even in normoxia. One of the main target gene products of HIF-1 is carbonic anhydrase IX (CA IX). CA IX is overexpressed in many tumors and serves as prognostic factor for hypoxic, aggressive and malignant cancers. CA IX is also induced in normoxia in high cell density. In this study, we observed that lactate induces CA IX expression in normoxic cancer cells in vitro and in vivo. We further evidenced that participation of both HIF-1 and specificity protein 1 (SP1) transcription factors is crucial for lactate-driven normoxic induction of the CA9 gene. By inducing CA IX, lactate can facilitate the maintenance of cancer cell aggressive behavior in normoxia.
Collapse
Affiliation(s)
- Elena Panisova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Kery
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Sedlakova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucie Brisson
- Unit of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.,Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais, Tours, France
| | - Michaela Debreova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Sboarina
- Unit of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Unit of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Silvia Pastorekova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliska Svastova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|