801
|
Luo Y, Wei X, Wan Y, Lin X, Wang Z, Huang P. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. Acta Biomater 2019; 92:37-47. [PMID: 31108260 DOI: 10.1016/j.actbio.2019.05.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
Abstract
Surgical removal remains the main clinical approach to treat breast cancer, although risks including high local recurrence of cancer and loss of breast tissues are the threats for the survival and quality of life of patients after surgery. In this study, bifunctional scaffold based on dopamine-modified alginate and polydopamine (PDA) was fabricated using 3D printing with an aim to treat breast cancer and fill the cavity, thereby achieving tissue repair. The as-prepared alginate-polydopamine (Alg-PDA) scaffold exhibited favorable photothermal effect both in vitro and in vivo upon 808 nm laser irradiation. Further, the Alg-PDA scaffold showed great flexibility and similar modulus with normal breast tissues and facilitated the adhesion and proliferation of normal breast epithelial cells. Moreover, the in vivo performance of the Alg-PDA scaffold could be tracked by magnetic resonance and photoacoustic dual-modality imaging. The scaffold that was fabricated using simple and biocompatible materials with individual-designed structure and macropores, as well as outstanding photothermal effect and enhanced cell proliferation ability, might be a potential option for breast cancer treatment and tissue repair after surgery. STATEMENT OF SIGNIFICANCE: In this study, a three-dimensional porous scaffold was developed using 3D printing for the treatment of local recurrence of breast cancer and the following tissue repair after surgery. In this approach, easily available materials (dopamine-modified alginate and PDA) with excellent biocompatibility were selected and prepared as printing inks. The fabricated scaffold showed effective photothermal effects for cancer therapy, as well as matched mechanical properties with breast tissues. Furthermore, the scaffold supported attachment and proliferation of normal breast cells, which indicates its potential ability for adipose tissue repair. Together, the 3D-printed scaffold might be a promising option for the treatment of locally recurrent breast cancer cells and the following tissue repair after surgery.
Collapse
|
802
|
Kim S, Moon MJ, Poilil Surendran S, Jeong YY. Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy. Pharmaceutics 2019; 11:E306. [PMID: 31266194 PMCID: PMC6680516 DOI: 10.3390/pharmaceutics11070306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a non-sulfated polysaccharide polymer with the properties of biodegradability, biocompatibility, and non-toxicity. Additionally, HA specifically binds to certain receptors that are over-expressed in cancer cells. To maximize the effect of drug delivery and cancer treatment, diverse types of nanomaterials have been developed. HA-based nanomaterials, including micelles, polymersomes, hydrogels, and nanoparticles, play a critical role in efficient drug delivery and cancer treatment. Hyperthermic cancer treatment using HA-based nanomaterials has attracted attention as an efficient cancer treatment approach. In this paper, the biomedical applications of HA-based nanomaterials in hyperthermic cancer treatment and combined therapies are summarized. HA-based nanomaterials may become a representative platform in hyperthermic cancer treatment.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea.
| |
Collapse
|
803
|
|
804
|
McGarraugh HH, Liu W, Matthews BP, Smith BD. Croconaine Rotaxane Dye with 984 nm Absorption: Wavelength-Selective Photothermal Heating. European J Org Chem 2019; 2019:3489-3494. [PMID: 31579392 PMCID: PMC6774672 DOI: 10.1002/ejoc.201900082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Croconaines are an emerging class of near-infrared dyes that are useful for various sensing, photothermal, optoelectronic, and photoacoustic applications. Previous work encapsulated a dumbbell-shaped croconaine dye whose structure contains two thiophene flanking units inside a tetralactam macrocycle and produced a croconaine rotaxane 1 with a narrow 824 nm absorption band. Herein, a new rotaxane 2 is reported that encapsulates a croconaine dye with two thienothiophene flanking units. The new croconaine rotaxane 2 exhibits a narrow 984 nm absorption band that is distinct from the 824 nm absorption of rotaxane 1. Photothermal heating experiments showed that an 830 nm diode laser selectively heats a solution containing rotaxane 1, with no heating of a solution containing rotaxane 2. Conversely, a 980 nm diode laser selectively heats a solution containing rotaxane 2, with no heating of a solution containing rotaxane 1. The new croconaine rotaxane 2 shows no fatigue after four cycles of laser heating and cooling.
Collapse
Affiliation(s)
- Hannah H. McGarraugh
- Department of Chemistry and Biochemistry236 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA
| | - Wenqi Liu
- Department of Chemistry and Biochemistry236 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA
| | - Braden P. Matthews
- Department of Chemistry and Biochemistry236 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry236 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA
| |
Collapse
|
805
|
Wang H, Jiang L, Wu H, Zheng W, Kan D, Cheng R, Yan J, Yu C, Sun SK. Biocompatible Iodine-Starch-Alginate Hydrogel for Tumor Photothermal Therapy. ACS Biomater Sci Eng 2019; 5:3654-3662. [PMID: 33405746 DOI: 10.1021/acsbiomaterials.9b00280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Photothermal therapy (PTT) with the advantages of high efficiency and minimal invasiveness is a promising technique for tumor therapy, but clinical application of PTT agents has been stifled by the great safety concerns. Herein, a deep blue iodine-starch-alginate (ALG) hydrogel is elegantly fabricated based on the classic and simple "iodine-starch test" for in vivo tumor PTT in a facile and mild way. The iodine-starch-ALG hydrogel composed of clinically used agents is fabricated by dispersing blue iodine-starch complex into alginate-Ca2+ hydrogel, which guarantees the good chemical stability of iodine-starch complex via separating them from surrounding reductive environment. The iodine-starch-ALG hydrogel possesses favorable biocompatibility derived from the biosafe and degradable components and possesses good photothermal heating ability based on iodine-starch chromophore. The proposed iodine-starch-ALG hydrogel is successfully applied in tumor PTT in vitro and in vivo for the first time. This work lays down a novel way for the development of high-performance and biocompatible biomaterials via teaching old drugs new tricks.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Limei Jiang
- Department of Radiology, Tianjin First Central Hospital, No. 24, Kangfu Road, Nankai District, Tianjin 300192, China
| | - Huanhuan Wu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Weiya Zheng
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Rong, Hexi District, Tianjin 300203, China
| | - Di Kan
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Rong, Hexi District, Tianjin 300203, China
| | - Ran Cheng
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Rong, Hexi District, Tianjin 300203, China
| | - Juanjuan Yan
- School of Medical Laboratory, Tianjin Medical University, No. 1, Guangdong Rong, Hexi District, Tianjin 300203, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Rong, Hexi District, Tianjin 300203, China
| |
Collapse
|
806
|
Zhao L, Li S, Liu Y, Xing R, Yan X. Kinetically Controlled Self-Assembly of Phthalocyanine–Peptide Conjugate Nanofibrils Enabling Superlarge Redshifted Absorption. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180017] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Supramolecular assembly could in principle lead to redshifted absorption through J-aggregation of chromophores, which would be a highly promising method for achieving near-infrared materials with improved functionality and flexibility. To effectively enhance the material functionalities, one of the great challenges remaining is to achieve an aggregation state with a redshift larger than 100 nm. Conventional assemblies that are mostly thermodynamically controlled have a limited redshifted absorption of less than 30 nm. In this work, using a model phthalocyanine–peptide conjugate compound, we achieved the first fabrication of phthalocyanine-based near-infrared materials with a superlarge absorption redshift of 105 nm by a kinetically controlled self-assembly strategy. In this kinetically controlled self-assembly process, sufficient rearrangement of intermolecular aggregates to an ordered structure is revealed to be crucial to facilitate the formation of nanofibrils instead of nanoparticles, which are formed via a general rapid self-assembly pathway under thermodynamic control. The superlarge redshift in the absorbance of assembled nanofibrils originates from the orderly stacked phthalocyanine chromophores, which enable a charge transfer state through more effective intermolecular orbital overlapping. The kinetically controlled J-aggregation state of the phthalocyanine–peptide conjugate with superlarge redshifted absorption not only opens an unprecedented route toward novel near-infrared phthalocyanine materials but also holds great promise for revealing general design principles for various organic dye materials.
Collapse
|
807
|
Deng L, Guo W, Li G, Hu Y, Zhang LM. Hydrophobic IR780 loaded sericin nanomicelles for phototherapy with enhanced antitumor efficiency. Int J Pharm 2019; 566:549-556. [PMID: 31158452 DOI: 10.1016/j.ijpharm.2019.05.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
The near-infrared dye, IR780 iodide, has been utilized in photodynamic therapy (PDT) and photothermal therapy (PTT). However, the hydrophobicity and photosensitivity of IR780 limit its further applications in biomedical fields. Herein, the hydrophilic sericin was modified with hydrophobic cholesterol to form an amphiphilic macromolecular conjugate (Ser-Chol). The tumor-targeting agent, folic acid (FA), was further linked to the conjugate (FA-Ser-Chol). The IR780 could be encapsulated into such amphiphilic macromolecule to form stable micelles (FA-Ser-Chol/IR780) by self-assembly, and the solubility and photo-stability of IR780 were greatly improved. The FA-Ser-Chol/IR780 micelles could be efficiently absorbed by FA-positive gastric cancer cells (BGC-823) through FA receptors, while the uptake micelles showed remarkable PDT and PTT cytotoxicity towards BGC-823 cells under laser irradiation of 808 nm. Therefore, FA-Ser-Chol micelles may serve as a promising IR780 carrier for PDT and PTT therapy.
Collapse
Affiliation(s)
- Lizhi Deng
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Weihong Guo
- Department of General Surgery, Southern Medical University, Guangzhou 510515, China
| | - Guoxin Li
- Department of General Surgery, Southern Medical University, Guangzhou 510515, China
| | - Yanfeng Hu
- Department of General Surgery, Southern Medical University, Guangzhou 510515, China.
| | - Li-Ming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
808
|
Lu G, Lv C, Bao W, Li F, Zhang F, Zhang L, Wang S, Gao X, Zhao D, Wei W, Xie HY. Antimonene with two-orders-of-magnitude improved stability for high-performance cancer theranostics. Chem Sci 2019; 10:4847-4853. [PMID: 31183034 PMCID: PMC6520929 DOI: 10.1039/c9sc00324j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Although the antimonene (AM) nanomaterial is recently emerging as a new photothermal therapy (PTT) agent, its rapid degradation in physiological medium immensely limits its direct utilization. To this end, we herein engineered AM by the cooperation of dimension optimization, size control, and cell membrane (CM) camouflage. Compared with traditional AM nanosheets, the resulting AM nanoparticles (∼55 nm) cloaked with the CM (denoted as CmNPs) exhibited significantly improved stability and increased photothermal efficacy as well as superior tumor targeting capacity. After intravenous injection, the CmNPs enabled satisfactory photoacoustic/photothermal multimodal imaging at tumor sites. Meanwhile, the PTT together with the newly explored function of photodynamic therapy (PDT) achieved a potent combination therapy with few side effects. The maximized theranostic performance thus strongly recommends CmNPs as a safe and highly reliable modality for anticancer therapy.
Collapse
Affiliation(s)
- Guihong Lu
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhong Guan Cun Street , Beijing 100081 , China . ;
| | - Chengliang Lv
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhong Guan Cun Street , Beijing 100081 , China . ;
| | - Weier Bao
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Chinese Academy of Sciences , 1 North 2nd Street, Zhong Guan Cun , Beijing 100190 , China
| | - Feng Li
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhong Guan Cun Street , Beijing 100081 , China . ;
| | - Fan Zhang
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhong Guan Cun Street , Beijing 100081 , China . ;
| | - Lijun Zhang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Chinese Academy of Sciences , 1 North 2nd Street, Zhong Guan Cun , Beijing 100190 , China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Chinese Academy of Sciences , 1 North 2nd Street, Zhong Guan Cun , Beijing 100190 , China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Chinese Academy of Sciences , 1 North 2nd Street, Zhong Guan Cun , Beijing 100190 , China
| | - Dongxu Zhao
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhong Guan Cun Street , Beijing 100081 , China . ;
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Chinese Academy of Sciences , 1 North 2nd Street, Zhong Guan Cun , Beijing 100190 , China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhong Guan Cun Street , Beijing 100081 , China . ;
| |
Collapse
|
809
|
Chang R, Zou Q, Xing R, Yan X. Peptide‐Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rui Chang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qianli Zou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
- Center for MesoscienceInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
810
|
Tian J, Huang B, Li H, Cao H, Zhang W. NIR-Activated Polymeric Nanoplatform with Upper Critical Solution Temperature for Image-Guided Synergistic Photothermal Therapy and Chemotherapy. Biomacromolecules 2019; 20:2338-2349. [DOI: 10.1021/acs.biomac.9b00321] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Haiquan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
811
|
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019; 48:2053-2108. [PMID: 30259015 PMCID: PMC6437026 DOI: 10.1039/c8cs00618k] [Citation(s) in RCA: 1622] [Impact Index Per Article: 324.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nonradiative conversion of light energy into heat (photothermal therapy, PTT) or sound energy (photoacoustic imaging, PAI) has been intensively investigated for the treatment and diagnosis of cancer, respectively. By taking advantage of nanocarriers, both imaging and therapeutic functions together with enhanced tumour accumulation have been thoroughly studied to improve the pre-clinical efficiency of PAI and PTT. In this review, we first summarize the development of inorganic and organic nano photothermal transduction agents (PTAs) and strategies for improving the PTT outcomes, including applying appropriate laser dosage, guiding the treatment via imaging techniques, developing PTAs with absorption in the second NIR window, increasing photothermal conversion efficiency (PCE), and also increasing the accumulation of PTAs in tumours. Second, we introduce the advantages of combining PTT with other therapies in cancer treatment. Third, the emerging applications of PAI in cancer-related research are exemplified. Finally, the perspectives and challenges of PTT and PAI for combating cancer, especially regarding their clinical translation, are discussed. We believe that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve our ability to combat cancers.
Collapse
Affiliation(s)
- Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
812
|
Xing R, Zou Q, Yuan C, Zhao L, Chang R, Yan X. Self-Assembling Endogenous Biliverdin as a Versatile Near-Infrared Photothermal Nanoagent for Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900822. [PMID: 30828877 DOI: 10.1002/adma.201900822] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/13/2019] [Indexed: 05/24/2023]
Abstract
Photothermal nanomaterials that integrate multimodal imaging and therapeutic functions provide promising opportunities for noninvasive and targeted diagnosis and treatment in precision medicine. However, the clinical translation of existing photothermal nanoagents is severely hindered by their unclear physiological metabolism, which makes them a strong concern for biosafety. Here, the utilization of biliverdin (BV), an endogenic near-infrared (NIR)-absorbing pigment with well-studied metabolic pathways, to develop photothermal nanoagents with the aim of providing efficient and metabolizable candidates for tumor diagnosis and therapy, is demonstrated. It is shown that BV nanoagents with intense NIR absorption, long-term photostability and colloidal stability, and high photothermal conversion efficiency can be readily constructed by the supramolecular multicomponent self-assembly of BV, metal-binding short peptides, and metal ions through the reciprocity and synergy of coordination and multiple noncovalent interactions. In vivo data reveal that the BV nanoagents selectively accumulate in tumors, locally elevate tumor temperature under mild NIR irradiation, and consequently induce efficient photothermal tumor ablation with promising biocompatibility. Furthermore, the BV nanoagents can serve as a multimodal contrast for tumor visualization through both photoacoustic and magnetic resonance imaging. BV has no biosafety concerns, and thereby offers a great potential in precision medicine by integrating multiple theranostic functions.
Collapse
Affiliation(s)
- Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
813
|
Zhao DH, Yang XQ, Hou XL, Xuan Y, Song XL, Zhao YD, Chen W, Wang Q, Liu B. In situ aqueous synthesis of genetically engineered polypeptide-capped Ag 2S quantum dots for second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. J Mater Chem B 2019; 7:2484-2492. [PMID: 32255125 DOI: 10.1039/c8tb03043j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ag2S quantum dots have received extensive attention as theranostic agents for second near-infrared (NIR-II) fluorescence and photoacoustic dual-mode imaging, and photothermal therapy. However, it is still greatly challenging to synthesize Ag2S quantum dots using aqueous synthesis. In this study, genetically engineered polypeptide-capped Ag2S quantum dots were successfully synthesized. Three cysteines were integrated to the C-terminal and N-terminal of RGDPC10A to enhance the stability and brightness of the synthesized Ag2S quantum dots. The RGDPC10A-capped Ag2S quantum dots exhibited excellent stability, outstanding resistance to photobleaching, and a superior quantum yield of up to 3.78% in the NIR-II biological window. The in vitro and in vivo results showed that the RGDPC10A-capped Ag2S quantum dots possessed typical NIR-II fluorescence, photoacoustic imaging, and photothermal therapeutic effectiveness against tumors. Moreover, the results of toxicity assays suggested that the RGDPC10A-capped Ag2S quantum dots have negligible long-term toxicity. These findings open up the possibility for synthesizing theranostic agents by using this aqueous method.
Collapse
Affiliation(s)
- Dong-Hui Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
814
|
Sun W, Zhang X, Jia HR, Zhu YX, Guo Y, Gao G, Li YH, Wu FG. Water-Dispersible Candle Soot-Derived Carbon Nano-Onion Clusters for Imaging-Guided Photothermal Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804575. [PMID: 30761748 DOI: 10.1002/smll.201804575] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/26/2018] [Indexed: 05/28/2023]
Abstract
Herein, water-dispersible carbon nano-onion clusters (CNOCs) with an average hydrodynamic size of ≈90 nm are prepared by simply sonicating candle soot in a mixture of oxidizing acid. The obtained CNOCs have high photothermal conversion efficiency (57.5%), excellent aqueous dispersibility (stable in water for more than a year without precipitation), and benign biocompatibility. After polyethylenimine (PEI) and poly(ethylene glycol) (PEG) modification, the resultant CNOCs-PEI-PEG have a high photothermal conversion efficiency (56.5%), and can realize after-wash photothermal cancer cell ablation due to their ultrahigh cellular uptake (21.3 pg/cell), which is highly beneficial for the selective ablation of cancer cells via light-triggered intracellular heat generation. More interestingly, the cellular uptake of CNOCs-PEI-PEG is so high that the internalized nanoagents can be directly observed under a microscope without fluorescent labeling. Besides, in vivo experiments reveal that CNOCs-PEI-PEG can be used for photothermal/photoacoustic dual-modal imaging-guided photothermal therapy after intravenous administration. Furthermore, CNOCs-PEI-PEG can be efficiently cleared from the mouse body within a week, ensuring their excellent long-term biosafety. To the best of the authors' knowledge, the first example of using candle soot as raw material to prepare water-dispersible onion-like carbon nanomaterials for cancer theranostics is represented herein.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yan-Hong Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
815
|
Chen L, Zhang J, Zhou X, Yang S, Zhang Q, Wang W, You Z, Peng C, He C. Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomater 2019; 86:406-415. [PMID: 30625415 DOI: 10.1016/j.actbio.2019.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Abstract
With great potential in nanomedicine, the integration of a metal organic framework (MOF) with a nanocarrier for smart and versatile cancer theranostics still seeks to expand. In this study, MOF was successfully merged with hollow mesoporous organosilica nanoparticles (HMONs) with a polydopamine (PDA) interlayer to form molecularly organic/inorganic hybridized nanocomposites (HMONs-PMOF). The well-defined nanostructure and favorable biocompatibility of HMONs-PMOF were demonstrated first. Doxorubicin hydrochloride (DOX) and indocyanine green (ICG) were separately loaded into the interior cavity of HMONs and the outer porous shell of MOF with high loading efficacy, respectively. The obtained dual drug-loaded nanocomposites (DI@HMONs-PMOF) displayed favorable photothermal properties and pH/NIR-triggered DOX release manner. Furthermore, in vitro cell experiments validated that HMONs-PMOF can efficiently deliver DOX into cancer cells. Upon entry into cancer cells, the photothermal effect of DI@HMONs-PMOF can induce the lysosome rupture, thereby facilitating the "lysosome escape" process and accelerating the DOX diffusion in the cytoplasm. Benefiting from the iron ion coordinated on PDA and ICG confined in MOF, magnetic resonance (MR) and photoacoustic (PA) dual-modality imaging were performed to verify the effective accumulation of DI@HMONs-PMOF at the tumor site. Interestingly, the results also suggested that the existence of ICG can cooperatively enhance the MR imaging capability of prepared nanocomposites. In addition, the significantly improved synergistic therapeutic efficacy was confirmed both in vitro and in vivo. Thus, our results indicated that the merged nanostructure of HMONs and MOF is promising for versatile cancer theranostics. STATEMENT OF SIGNIFICANCE: Metal organic framework (MOF) has recently emerged as a class of fascinating nanocarriers. The integration of MOF with other nanostructures can endow the new nanoformulation with collective functionality and synergistic performance that are not accessed from single-component nanostructure. Herein, we reported the successful merging of MOF and hollow mesoporous organosilica nanoparticles (HMONs) to form a hollow nanocontainer with a well-defined nanostructure. The large cavity of HMONs and highly porous network of MOF enable high drug loading efficacy. Moreover, the dual-modality magnetic resonance and photoacoustic imaging can be realized, which is also benefited from the merged nanostructure. Overall, we expected this paradigm could pave way for integrating MOF with other nanocarriers to achieve more diverse applications.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiulong Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, 201508, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianqian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Weizhong Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chen Peng
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, 201508, China.
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
816
|
Xiang H, Chen Y. Energy-Converting Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805339. [PMID: 30773837 DOI: 10.1002/smll.201805339] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/22/2019] [Indexed: 05/12/2023]
Abstract
Serious side effects to surrounding normal tissues and unsatisfactory therapeutic efficacy hamper the further clinic applications of conventional cancer-therapeutic strategies, such as chemotherapy and surgery. The fast development of nanotechnology provides unprecedented superiorities for cancer therapeutics. Externally activatable therapeutic modalities mediated by nanomaterials, relying on highly effective energy transformation to release therapeutic elements/effects (cytotoxic reactive oxygen species, thermal effect, photoelectric effect, Compton effect, cavitation effect, mechanical effect or chemotherapeutic drug) for cancer therapies, categorized and termed as "energy-converting nanomedicine," have arouse considerable concern due to their noninvasiveness, desirable tissue-penetration depth, and accurate modulation of therapeutic dose. This review summarizes the recent advances in the engineering of intelligent functional nanotherapeutics for energy-converting nanomedicine, including photo-based, radiation-based, ultrasound-based, magnetic field-based, microwave-based, electric field-based, and radiofrequency-based nanomedicines, which are enabled by external stimuli (light, radiation, ultrasound, magnetic field, microwave, electric field, and radiofrequency). Furthermore, biosafety issues of energy-converting nanomedicine related to future clinical translation are also addressed. Finally, the potential challenges and prospects of energy-converting nanomedicine for future clinical translation are discussed.
Collapse
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
817
|
Younis MR, Wang C, An R, Wang S, Younis MA, Li ZQ, Wang Y, Ihsan A, Ye D, Xia XH. Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents. ACS NANO 2019; 13:2544-2557. [PMID: 30730695 DOI: 10.1021/acsnano.8b09552] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Combination therapy, especially photodynamic/photothermal therapy (PDT/PTT), has shown promising applications in cancer therapy. However, sequential irradiation by two different laser sources and even the utilization of single high-power laser to induce either combined PDT/PTT or individual PTT will be subjected to prolonged treatment time, complicated treatment process, and potential skin burns. Thus, low power single laser activatable combined PDT/PTT is still a formidable challenge. Herein, we propose an effective strategy to achieve synergistic cancer phototherapy under low power single laser irradiation for short duration. By taking advantage of dual plasmonic PTT nanoagents (AuNRs/MoS2), a significant increase in temperature up to 60 °C with an overall photothermal conversion efficiency (PCE) of 68.8% was achieved within 5 min under very low power (0.2 W/cm2) NIR laser irradiation. The enhanced PCE and PTT performance is attributed to the synergistic plasmonic PTT effect (PPTT) of dual plasmonic nanoagents, promoting simultaneous release (85%) of electrostatically bonded indocyanine green (ICG) to induce PDT effects, offering simultaneous PDT/synergistic PPTT. Both in vitro and in vivo investigations reveal complete cell/tumor eradication, implying that simultaneous PDT/synergistic PPTT effects induced by AuNRs/MoS2-ICG are much superior over individual PDT or synergistic PPTT. Notably, synergistic PPTT induced by dual plasmonic nanoagents also demonstrates higher in vivo antitumor efficacy than either individual PDT or PTT agents. Taken together, under single laser activation with low power density, the proposed strategy of simultaneous PDT/synergistic PPTT effectively reduces the treatment time, achieves high therapeutic index, and offers safe treatment option, which may serve as a platform to develop safer and clinically translatable approaches for accelerating cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Chen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Department of Physical Chemistry, School of Science , China Pharmaceutical University , Nanjing 210009 , China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Shouju Wang
- Department of Radiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210000 , China
| | - Muhammad Adnan Younis
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310058 , China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering (NIBGE) , P.O. Box No. 577, Jhang Road , Faisalabad 38000 , Pakistan
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
818
|
Wen J, Yang K, Ding X, Li H, Xu Y, Liu F, Sun S. In Situ Formation of Homogeneous Tellurium Nanodots in Paclitaxel-Loaded MgAl Layered Double Hydroxide Gated Mesoporous Silica Nanoparticles for Synergistic Chemo/PDT/PTT Trimode Combinatorial Therapy. Inorg Chem 2019; 58:2987-2996. [DOI: 10.1021/acs.inorgchem.8b02821] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Xingcheng Ding
- Zhejiang Runtu
Co., Ltd, Shangyu, Zhejiang, People’s Republic of China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No.2 linggong Road, Ganjingzi District, Dalian 116023, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| |
Collapse
|
819
|
Li X, Wang X, Zhao C, Shao L, Lu J, Tong Y, Chen L, Cui X, Sun H, Liu J, Li M, Deng X, Wu Y. From one to all: self-assembled theranostic nanoparticles for tumor-targeted imaging and programmed photoactive therapy. J Nanobiotechnology 2019; 17:23. [PMID: 30711005 PMCID: PMC6359812 DOI: 10.1186/s12951-019-0450-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background In recent years, multifunctional theranostic nanoparticles have been fabricated by integrating imaging and therapeutic moieties into one single nano-formulations. However, Complexity of production and safety issues limits their further application. Results Herein, we demonstrated self-assembled nanoparticles with single structure as a “from one to all” theranostic platform for tumor-targeted dual-modal imaging and programmed photoactive therapy (PPAT). The nanoparticles were successfully developed through self-assembling of hyaluronic acid (HA)-cystamine-cholesterol (HSC) conjugate, in which IR780 was simultaneously incorporated (HSCI NPs). Due to the proper hydrodynamic size and intrinsic targeting ability of HA, the HSCI NPs could accumulate at the tumor site effectively after systemic administration. In the presence of incorporated IR780, in vivo biodistribution and accumulation behaviors of HSCI NPs could be monitored by photoacoustic imaging. After cellular uptake, the HSCI NPs would disintegrate resulting from cystamine reacting with over-expressed GSH. The released IR780 would induce fluorescence “turn-on” conversion, which could be used to image tumor sites effectively. Upon treatment with 808 nm laser irradiation, PPAT could be achieved in which generated reactive oxygen species (ROS) would produce photodynamic therapy (PDT), and subsequently the raised temperature would be beneficial to tumor photothermal therapy (PTT). Conclusion The self-assembled HSCI NPs could act as “from one to all” theranostic platform for high treatment efficiency via PPAT pattern, which could also real-time monitor NPs accumulation by targeted and dual-modal imaging in a non-invasive way.![]() Electronic supplementary material The online version of this article (10.1186/s12951-019-0450-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianlei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Yujia Tong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Long Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Huiling Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Junxing Liu
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154003, China
| | - Mingjun Li
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154003, China.
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
820
|
Jin HG, Zhong W, Yin S, Zhang X, Zhao YH, Wang Y, Yuan L, Zhang XB. Lesson from Nature: Biomimetic Self-Assembling Phthalocyanines for High-Efficient Photothermal Therapy within the Biological Transparent Window. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3800-3808. [PMID: 30620178 DOI: 10.1021/acsami.8b21299] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Development of a facile but high-efficient small organic molecule-based photothermal therapy (PTT) in the in vivo transparent window (800-900 nm) has been regarded as a minimally invasive and most promising strategy for potential clinical cancer treatment. Phthalocyanine (Pc) molecules with remarkable photophysical and photochemical properties as well as high extinction coefficients in the near-infrared region are highly desirable for PTT, but as far satisfying single-component Pc-based PTT within the in vivo transparent window (800-900 nm) has very rarely been reported. Herein, inspired by the self-assembly algorithm of natural bacteriochlorophylls c, d, and e, biomimetic self-assembling tetrahexanoyl Pc Bio-ZnPc with outstanding light-harvesting capacity was demonstrated to exhibit excellent PTT efficacy evidenced by both in vitro and in vivo results, within the biological transparent window.
Collapse
Affiliation(s)
- Hong-Guang Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China
| | - Weibang Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China
| | - Shulu Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China
| | - Yun-Hui Zhao
- School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , Hunan 411201 , China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China
| |
Collapse
|
821
|
Wang H, Chang J, Shi M, Pan W, Li N, Tang B. A Dual‐Targeted Organic Photothermal Agent for Enhanced Photothermal Therapy. Angew Chem Int Ed Engl 2019; 58:1057-1061. [DOI: 10.1002/anie.201811273] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Hongyu Wang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Jinjie Chang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Mingwan Shi
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
822
|
Maar RR, Zhang R, Stephens DG, Ding Z, Gilroy JB. Near‐Infrared Photoluminescence and Electrochemiluminescence from a Remarkably Simple Boron Difluoride Formazanate Dye. Angew Chem Int Ed Engl 2019; 58:1052-1056. [DOI: 10.1002/anie.201811144] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Ruizhong Zhang
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - David G. Stephens
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Zhifeng Ding
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
823
|
Zhao L, Zou Q, Yan X. Self-Assembling Peptide-Based Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180248] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
824
|
Wang Y, Sun Z, Chen Z, Wu Y, Gu Y, Lin S, Wang Y. In Vivo Photoacoustic/Single-Photon Emission Computed Tomography Imaging for Dynamic Monitoring of Aggregation-Enhanced Photothermal Nanoagents. Anal Chem 2019; 91:2128-2134. [DOI: 10.1021/acs.analchem.8b04585] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Ziling Sun
- Department of Biochemistry and Molecular Biology, School of Biology & Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Zhizhong Chen
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Subin Lin
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
825
|
Zhang W, Lin W, Wang X, Li C, Liu S, Xie Z. Hybrid Nanomaterials of Conjugated Polymers and Albumin for Precise Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:278-287. [PMID: 30520633 DOI: 10.1021/acsami.8b17922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heretofore, conjugated polymers (CPs) attract considerable attention in photothermal therapy (PTT). Although various CPs with different structures have been reported, the suboptimal circulation persistence and biodistribution limit their efficacy in tumor treatment. Human serum albumin (HSA), an endogenous plasma protein, has been widely functioned as a carrier for therapeutic agents. Herein, we construct nanocomplex C16 pBDP@HSA nanoparticles (NPs) from hydrophobic 4,4-difluoro-4-bora-3 a,4 a-diaza- s-indacene (BODIPY)-containing CPs and HSA, which exhibit robust stability in physiological conditions and excellent photothermal activity upon irradiation. The high photothermal conversion efficiency of 37.5%, higher than that of other reported PTT agents such as gold nanorods, phosphorus quantum dots, and 2D materials, results in the potent photocytotoxicity toward cancer cells. Simultaneously, C16 pBDP@HSA NPs' capabilities of near-infrared fluorescence and photoacoustic imaging can provide guidance to the PTT. The outstanding inhibition of tumor growth results from great photothermal activity, the benefited accumulation in tumor, and optimal timing of treatment. To the best of our knowledge, this is the first study which combines the BODIPY-based CPs and HSA in one nanostructure and finds application in cancer treatment. Moreover, this article also offers a new strategy for other insoluble macromolecules to explore more biomedical applications.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Wenhai Lin
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xin Wang
- Department of Thyroid Surgery , The First Hospital of Jilin University , 71 Xinmin Street , Changchun , Jilin 130021 , P. R. China
| | - Chaonan Li
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Shi Liu
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zhigang Xie
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
826
|
Ge X, Fu Q, Bai L, Chen B, Wang R, Gao S, Song J. Photoacoustic imaging and photothermal therapy in the second near-infrared window. NEW J CHEM 2019. [DOI: 10.1039/c9nj01402k] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the recent progress of PA imaging and PTT agents in the second NIR window.
Collapse
Affiliation(s)
- Xiaoguang Ge
- Department of Nuclear Medicine
- China-Japan Union Hospital of Jilin University
- Changchun
- China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Lin Bai
- Department of Nuclear Medicine
- China-Japan Union Hospital of Jilin University
- Changchun
- China
| | - Bin Chen
- Department of Nuclear Medicine
- China-Japan Union Hospital of Jilin University
- Changchun
- China
| | - Renjie Wang
- Department of Nuclear Medicine
- China-Japan Union Hospital of Jilin University
- Changchun
- China
| | - Shi Gao
- Department of Nuclear Medicine
- China-Japan Union Hospital of Jilin University
- Changchun
- China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| |
Collapse
|
827
|
Zhang Y, Song N, Li Y, Yang Z, Chen L, Sun T, Xie Z. Comparative study of two near-infrared coumarin–BODIPY dyes for bioimaging and photothermal therapy of cancer. J Mater Chem B 2019; 7:4717-4724. [DOI: 10.1039/c9tb01165j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, two novel NIR coumarin BODIPYs with different conjugation degrees were comparatively investigated for photothermal therapy and fluorescence bioimaging.
Collapse
Affiliation(s)
- Yuandong Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Nan Song
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Yuanyuan Li
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Zhiyu Yang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
828
|
Ding Y, Du C, Qian J, Dong CM. Zwitterionic polypeptide nanomedicine with dual NIR/reduction-responsivity for synergistic cancer photothermal-chemotherapy. Polym Chem 2019. [DOI: 10.1039/c9py00986h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dual NIR/reduction-responsive and zwitterionic polypeptide nanoparticles of PMC/DOX-ICG were fabricated, which achieved in vivo NIR fluorescence imaging and synergistic cancer PTT-CT treatment, and effectively ablated the HeLa tumors without recurrence for 30 days.
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang Du
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
829
|
Zhen X, Cheng P, Pu K. Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804105. [PMID: 30457701 DOI: 10.1002/smll.201804105] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/03/2018] [Indexed: 05/28/2023]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) employs phototherapeutic agents to generate heat or cytotoxic reactive oxygen species (ROS), and has therefore garnered particular interest for cancer therapy. However, the main challenges faced by conventional phototherapeutic agents include easy recognition by the immune system, rapid clearance from blood circulation, and low accumulation in target sites. Cell-membrane coating has emerged as a potential way to overcome these limitations, owing to the abundant proteins on the surface of cell membranes that can be inherited to the cell membrane-camouflaged nanoparticles. This review summarizes the recent advances in the development of biomimetic cell membrane-camouflaged nanoparticles for cancer phototherapy. Different sources of cell membranes can be used to coat nanoparticles uisng different coating approaches. After cell-membrane coating, the photophysical properties of the original phototherapeutic nanoparticles remain nearly unchanged; however, the coated nanoparticles are equipped with additional physiological features including immune escape, in vivo prolonged circulation time, or homologous targeting, depending on the cell sources. Moreover, the coated cell membrane can be ablated from phototherapeutic nanoparticles under laser irradiation, leading to drug release and thus synergetic therapy. By combining other supplementary agents to normalize tumor microenvironment, cell-membrane coating can further enhance the therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
830
|
Du C, Ding Y, Qian J, Zhang R, Dong CM. Achieving traceless ablation of solid tumors without recurrence by mild photothermal-chemotherapy of triple stimuli-responsive polymer–drug conjugate nanoparticles. J Mater Chem B 2019; 7:415-432. [DOI: 10.1039/c8tb02432d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We put forward an innovative strategy to leverage hyperthermia and a high drug-loading capacity for mild PT-CT, which achieved traceless ablation of solid MCF-7 tumors without recurrence within 50 days.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus
- Shanghai Fengxian Central Hospital
- Shanghai 201400
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
831
|
Zhao H, Zhao L, Wang Z, Xi W, Dibaba ST, Wang S, Shi L, Sun L. Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00317g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Based on the heterogeneous growth of nano-palladium on UCNPs, a new kind of nanocomposite was developed that can be used for dual-imaging guided photothermal therapy. This smart strategy provides new insights for future development of materials based on the multicomponent nanocomposites.
Collapse
Affiliation(s)
- Huijun Zhao
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Lei Zhao
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Zhuo Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Lab of Hainan Province, Hainan University
- Haikou 570228
- China
| | - Wensong Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University
- Shanghai 200444
- China
| | - Solomon Tiruneh Dibaba
- Physics Department, International Centre for Quantum and Molecular Structures, Shanghai University
- Shanghai 200444
- China
| | - Shuhan Wang
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Liyi Shi
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Lining Sun
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
832
|
Fujita H, Jing H, Krayer M, Allu S, Veeraraghavaiah G, Wu Z, Jiang J, Diers JR, Magdaong NCM, Mandal AK, Roy A, Niedzwiedzki DM, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Annulated bacteriochlorins for near-infrared photophysical studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj01113g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriochlorins with phenaleno or benzo annulation absorb at 913 or 1033 nm and exhibit excited-state lifetimes of 150 or 7 ps, suggesting applications in photoacoustic imaging.
Collapse
Affiliation(s)
- Hikaru Fujita
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Haoyu Jing
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Michael Krayer
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | | - Zhiyuan Wu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Jianbing Jiang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - James R. Diers
- Department of Chemistry
- University of California
- Riverside
- USA
| | | | - Amit K. Mandal
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | - Arpita Roy
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | - Dariusz M. Niedzwiedzki
- Department of Energy
- Environmental & Chemical Engineering and Center for Solar Energy and Energy Storage
- Washington University
- St. Louis
- USA
| | | | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | |
Collapse
|
833
|
Ke L, Zhang C, Liao X, Qiu K, Rees TW, Chen Y, Zhao Z, Ji L, Chao H. Mitochondria-targeted Ir@AuNRs as bifunctional therapeutic agents for hypoxia imaging and photothermal therapy. Chem Commun (Camb) 2019; 55:10273-10276. [DOI: 10.1039/c9cc05610f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gold nanorods with surfaces modified by iridium(iii)-azo complexes (Ir@AuNRs) were developed as mitochondria-targeted bifunctional therapeutic agents for hypoxia-imaging and photothermal therapy.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Cheng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Zizhuo Zhao
- Department of Ultrasound
- Sun Yat-Sen Memorial Hospital
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
834
|
Su C, Zhong H, Chen H, Guo Y, Guo Z, Huang D, Zhang W, Wu Q, Yang B, Liu Z. Black phosphorus–polypyrrole nanocomposites for high-performance photothermal cancer therapy. NEW J CHEM 2019. [DOI: 10.1039/c9nj01249d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Black phosphorus–polypyrrole nanosheets with superimposed NIR absorption have been fabricated as the novel nanotherapeutic agent for enhanced NIR photothermal cancer therapy in vitro and in vivo.
Collapse
|
835
|
Massiot J, Rosilio V, Makky A. Photo-triggerable liposomal drug delivery systems: from simple porphyrin insertion in the lipid bilayer towards supramolecular assemblies of lipid–porphyrin conjugates. J Mater Chem B 2019; 7:1805-1823. [DOI: 10.1039/c9tb00015a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Light-responsive liposomes are considered nowadays as one of the most promising nanoparticulate systems for the delivery and release of an active pharmaceutical ingredient (API) in a spatio-temporal manner.
Collapse
Affiliation(s)
- Julien Massiot
- Institut Galien Paris Sud
- Univ Paris-Sud
- CNRS
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Véronique Rosilio
- Institut Galien Paris Sud
- Univ Paris-Sud
- CNRS
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Ali Makky
- Institut Galien Paris Sud
- Univ Paris-Sud
- CNRS
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| |
Collapse
|
836
|
Li C, Lin W, Liu S, Zhang W, Xie Z. Self-destructive PEG–BODIPY nanomaterials for photodynamic and photothermal therapy. J Mater Chem B 2019; 7:4655-4660. [DOI: 10.1039/c9tb00752k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amphiphilic photosensitizers are made from boron dipyrromethene and poly(ethylene glycol) by using a thioketal linker, which is reactive oxygen species-responsive for photodynamic and photothermal therapy.
Collapse
Affiliation(s)
- Chaonan Li
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of Science and Technology of China
| | - Wenhai Lin
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Shi Liu
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Wei Zhang
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Zhigang Xie
- Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of Science and Technology of China
| |
Collapse
|
837
|
Wang Y, Zhang W, Sun P, Cai Y, Xu W, Fan Q, Hu Q, Han W. A Novel Multimodal NIR-II Nanoprobe for the Detection of Metastatic Lymph Nodes and Targeting Chemo-Photothermal Therapy in Oral Squamous Cell Carcinoma. Theranostics 2019; 9:391-404. [PMID: 30809282 PMCID: PMC6376191 DOI: 10.7150/thno.30268] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022] Open
Abstract
Current surgical treatment for oral squamous cell carcinoma (OSCC) must be as precise as possible to fully resect tumors and preserve functional tissues. Thus, it is urgent to develop efficient fluorescent probes to clearly identify tumor delineation, as well as metastatic lymph nodes. Chemo-photothermal therapy combination attracted a growing attention to increase anti-tumor effect in various types of cancer, including OSCC. In the present study, we designed a multimodal NIR-II probe that involves combining photothermal therapy with chemotherapy, imaging OSCC tumors and detecting metastatic lymph nodes. Methods: In this study, we synthesized a novel near infrared (NIR)-II probe named TQTPA [4,4'-((6,7-bis(4-(hexyloxy)phenyl)-[1,2,5]thiadiazolo [3,4-g]quinoxaline-4,9-diyl)bis(thiophene-5,2-diyl))bis(N,N-diphenylaniline)] via the Suzuki reaction and prepared multimodal nanoparticles (NPs) loading TQTPA and cis-dichlorodiammine platinum (CDDP) (HT@CDDP) by hyaluronic acid. The characteristics of the NPs, including their photothermal and imaging capabilities were investigated in vitro and in vivo. Their anti-tumor efficacy was evaluated using orthotopic, tongue tumor-bearing, nude mice. Results: The NPs possessed good stability and water solubility and were pH/hyaluronidase sensitive. The good tissue penetration quality and active targeting ability enabled the NPs to draw the outline of orthotopic tongue tumors and metastatic lymph nodes as small as 1 mm in nude mice by IR-808 under NIR exposure. In vitro and in vivo experiments validated the biocompatibility and low systematic toxicity of the NPs. At the same time, the NPs acted as multimodal therapy agents, combining photothermal therapy with chemotherapy. Conclusion: With a good imaging capability and anti-tumor efficacy, our NPs successfully outlined orthotopic tongue tumors and metastatic lymph nodes as well as enabled chemo-photothermal therapy combination. Our study established a solid foundation for the application of new clinical diagnosis and treatment patterns in the future.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| | - Wansu Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, No 9 Wenyuan Road, Nanjing 210023, China
| | - Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, No 9 Wenyuan Road, Nanjing 210023, China
| | - Yu Cai
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| | - Wenguang Xu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, No 9 Wenyuan Road, Nanjing 210023, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|
838
|
Yang D, Chen F, He S, Shen H, Hu Y, Feng N, Wang S, Weng L, Luo Z, Wang L. One-pot growth of triangular SnS nanopyramids for photoacoustic imaging and photothermal ablation of tumors. NEW J CHEM 2019. [DOI: 10.1039/c9nj03045j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triangular SnS nanopyramids act as an efficient theranostic nanoagent for photoacoustic imaging and photothermal therapy.
Collapse
|
839
|
Xu Y, Zhao M, Zou L, Wu L, Xie M, Yang T, Liu S, Huang W, Zhao Q. Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44324-44335. [PMID: 30508480 DOI: 10.1021/acsami.8b18669] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phototherapy, as an important class of noninvasive tumor treatment methods, has attracted extensive research interest. Although a large amount of the near-infrared (NIR) phototherapeutic agents have been reported, the low efficiency, complicated structures, tedious synthetic procedures, and poor photostability limit their practical applications. To solve these problems, herein, a donor-acceptor-donor (D-A-D) type organic phototherapeutic agent (B-3) based on NIR aza-boron-dipyrromethene (aza-BODIPY) dye has been constructed, which shows the enhanced photothermal conversion efficiency and high singlet oxygen generation ability by simultaneously utilizing intramolecular photoinduced electron transfer (IPET) mechanism and heavy atom effects. After facile encapsulation of B-3 by amphiphilic DSPE-mPEG5000 and F108, the formed nanoparticles (B-3 NPs) exhibit the excellent photothermal stabilities and reactive oxygen and nitrogen species (RONS) resistance compared with indocyanine green (ICG) proved for theranostic application. Noteworthily, the B-3 NPs can remain outstanding photothermal conversion efficiency (η = 43.0%) as well as continuous singlet oxygen generation ability upon irradiation under a single-wavelength light. Importantly, B-3 NPs can effectively eliminate the tumors with no recurrence via synergistic photothermal/photodynamic therapy under mild condition. The exploration elaborates the photothermal conversion mechanism of small organic compounds and provides a guidance to develop excellent multifunctional NIR phototherapeutic agents for the promising clinical applications.
Collapse
Affiliation(s)
- Yunjian Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Liang Zou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Licai Wu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Mingjuan Xie
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Tianshe Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710072 , P.R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) , Nanjing University of Posts & Telecommunications , 9 Wen yuan Road , Nanjing 210023 , China
| |
Collapse
|
840
|
Wang H, Chang J, Shi M, Pan W, Li N, Tang B. A Dual‐Targeted Organic Photothermal Agent for Enhanced Photothermal Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811273] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hongyu Wang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Jinjie Chang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Mingwan Shi
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of ShandongInstitute of, Molecular and Nano ScienceShandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
841
|
Maar RR, Zhang R, Stephens DG, Ding Z, Gilroy JB. Near‐Infrared Photoluminescence and Electrochemiluminescence from a Remarkably Simple Boron Difluoride Formazanate Dye. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Ruizhong Zhang
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - David G. Stephens
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Zhifeng Ding
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
842
|
Hu JJ, Cheng YJ, Zhang XZ. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. NANOSCALE 2018; 10:22657-22672. [PMID: 30500042 DOI: 10.1039/c8nr07627h] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nowadays, photothermal therapy (PTT) utilizing photothermal conversion agents (PTAs) to generate sufficient heat under near-infrared (NIR) light irradiation for tumor ablation has attracted extensive research attention. Despite the great advancement, the therapeutic efficacy of PTT in tumor treatment is still compromised by several obstacles, such as low photothermal conversion efficiency, poor stability of PTAs, inadequate tumor accumulation and cellular uptake, and thermal-resistance of tumors, as well as tumor recurrence and metastasis. In this review, we highlight recent advances in nanomaterials that focus on overcoming the above obstacles and thus enhancing the therapeutic outcome of PTT. PTAs with improved photothermal performance and modification strategies for efficient PTT are summarized, which are further classified into three main types, utilizing activatable PTAs, improving the local concentration of PTAs, and overcoming intrinsic drawbacks of PTT (e.g., heat shock responses). Furthermore, the limitations and challenges of nanomaterials for enhanced PTT are also discussed.
Collapse
Affiliation(s)
- Jing-Jing Hu
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ying-Jia Cheng
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
843
|
Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2193-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
844
|
Zhang Y, Jiang G, Hong W, Gao M, Xu B, Zhu J, Song G, Liu T. Polymeric Microneedles Integrated with Metformin-Loaded and PDA/LA-Coated Hollow Mesoporous SiO2 for NIR-Triggered Transdermal Delivery on Diabetic Rats. ACS APPLIED BIO MATERIALS 2018; 1:1906-1917. [DOI: 10.1021/acsabm.8b00470] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yang Zhang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, Zhejiang 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, Zhejiang 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Wenjie Hong
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mengyue Gao
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bin Xu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, Zhejiang 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jiangying Zhu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, Zhejiang 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Gao Song
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, Zhejiang 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Tianqi Liu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, Zhejiang 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
845
|
Sun J, Birnbaum W, Anderski J, Picker MT, Mulac D, Langer K, Kuckling D. Use of Light-Degradable Aliphatic Polycarbonate Nanoparticles As Drug Carrier for Photosensitizer. Biomacromolecules 2018; 19:4677-4690. [DOI: 10.1021/acs.biomac.8b01446] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jingjiang Sun
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Wolfgang Birnbaum
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Juliane Anderski
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Marie-Theres Picker
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Dirk Kuckling
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| |
Collapse
|
846
|
Huang XW, Wei JJ, Zhang MY, Zhang XL, Yin XF, Lu CH, Song JB, Bai SM, Yang HH. Water-Based Black Phosphorus Hybrid Nanosheets as a Moldable Platform for Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35495-35502. [PMID: 30251823 DOI: 10.1021/acsami.8b12523] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Black phosphorus (BP) nanosheets with unique biocompatibility and superior optical performance have attracted enormous attention in material science. However, their instability and poor solution-processability severely limit their clinical applications. In this work, we demonstrate the use of silk fibroin (SF) as an exfoliating agent to produce thin-layer BP nanosheets with long-term stability and facile solution-processability. Presence of SF prevents rapid oxidation and degradation of the resultant BP nanosheets, enhancing their performance in physiological environment. The SF-modified BP nanosheets exhibit subtle solution-processability and are fabricated into various BP-based material formats. As superior photothermal agents, BP-based wound dressings effectively prevent bacterial infection and promote wound repair. Therefore, this work opens new avenues for unlocking current challenges of BP nanosheet applications for practical biomedical purposes.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Fei Yin
- The First Institute of Oceanography , State Oceanic Administration , Qingdao 266061 , People's Republic of China
| | | | | | | | | |
Collapse
|
847
|
Li H, Yao Q, Xu F, Xu N, Sun W, Long S, Du J, Fan J, Wang J, Peng X. Lighting-Up Tumor for Assisting Resection via Spraying NIR Fluorescent Probe of γ-Glutamyltranspeptidas. Front Chem 2018; 6:485. [PMID: 30370267 PMCID: PMC6194167 DOI: 10.3389/fchem.2018.00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
For the precision resection, development of near-infrared (NIR) fluorescent probe based on specificity identification tumor-associated enzyme for lighting-up the tumor area, is urgent in the field of diagnosis and treatment. Overexpression of γ-glutamyltranspeptidase, one of the cell-membrane enzymes, known as a biomarker is concerned with the growth and progression of ovarian, liver, colon and breast cancer compared to normal tissue. In this work, a remarkable enzyme-activated NIR fluorescent probe NIR-SN-GGT was proposed and synthesized including two moieties: a NIR dicyanoisophorone core as signal reporter unit; γ-glutamyl group as the specificity identification site. In the presence of γ-GGT, probe NIR-SN-GGT was transformed into NIR-SN-NH2, the recovery of Intramolecular Charge Transfer (ICT), liberating the NIR fluorescence signal, which was firstly employed to distinguish tumor tissue and normal tissues via simple “spraying” manner, greatly promoting the possibility of precise excision. Furthermore, combined with magnetic resonance imaging by T2 weight mode, tumor transplanted BABL/c mice could be also lit up for first time by NIR fluorescence probe having a large stokes, which demonstrated that probe NIR-SN-GGT would be a useful tool for assisting surgeon to diagnose and remove tumor in clinical practice.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
848
|
Guan Q, Li YA, Li WY, Dong YB. Photodynamic Therapy Based on Nanoscale Metal-Organic Frameworks: From Material Design to Cancer Nanotherapeutics. Chem Asian J 2018; 13:3122-3149. [DOI: 10.1002/asia.201801221] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong; Key Laboratory of Molecular and Nano Probes; Ministry of Education; Shandong Normal University; Jinan 250014 P. R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong; Key Laboratory of Molecular and Nano Probes; Ministry of Education; Shandong Normal University; Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong; Key Laboratory of Molecular and Nano Probes; Ministry of Education; Shandong Normal University; Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong; Key Laboratory of Molecular and Nano Probes; Ministry of Education; Shandong Normal University; Jinan 250014 P. R. China
| |
Collapse
|
849
|
Liu Y, Zhao L, Xing R, Jiao T, Song W, Yan X. Covalent Assembly of Amphiphilic Bola-Amino Acids into Robust and Biodegradable Nanoparticles for In Vitro Photothermal Therapy. Chem Asian J 2018; 13:3526-3532. [DOI: 10.1002/asia.201800825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/05/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 China
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
- Hebei Key Laboratory of Applied Chemistry; School of Environmental and Chemical Engineering; Yanshan University; Qinhuangdao 066004 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 China
- Hebei Key Laboratory of Applied Chemistry; School of Environmental and Chemical Engineering; Yanshan University; Qinhuangdao 066004 China
| | - Weixing Song
- Department of Chemistry; Capital Normal University; Beijing 100048 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
850
|
Guo B, Sheng Z, Hu D, Liu C, Zheng H, Liu B. Through Scalp and Skull NIR-II Photothermal Therapy of Deep Orthotopic Brain Tumors with Precise Photoacoustic Imaging Guidance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802591. [PMID: 30129690 DOI: 10.1002/adma.201802591] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/09/2018] [Indexed: 05/21/2023]
Abstract
Brain tumor is one of the most lethal cancers owing to the existence of blood-brain barrier and blood-brain tumor barrier as well as the lack of highly effective brain tumor treatment paradigms. Herein, cyclo(Arg-Gly-Asp-D-Phe-Lys(mpa)) decorated biocompatible and photostable conjugated polymer nanoparticles with strong absorption in the second near-infrared (NIR-II) window are developed for precise photoacoustic imaging and spatiotemporal photothermal therapy of brain tumor through scalp and skull. Evidenced by the higher efficiency to penetrate scalp and skull for 1064 nm laser as compared to common 808 nm laser, NIR-II brain-tumor photothermal therapy is highly effective. In addition, via a real-time photoacoustic imaging system, the nanoparticles assist clear pinpointing of glioma at a depth of almost 3 mm through scalp and skull with an ultrahigh signal-to-background ratio of 90. After spatiotemporal photothermal treatment, the tumor progression is effectively inhibited and the survival spans of mice are significantly extended. This study demonstrates that NIR-II conjugated polymer nanoparticles are promising for precise imaging and treatment of brain tumors.
Collapse
Affiliation(s)
- Bing Guo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|