801
|
Huo N, Zhu T, Altenbach S, Dong L, Wang Y, Mohr T, Liu Z, Dvorak J, Luo MC, Gu YQ. Dynamic Evolution of α-Gliadin Prolamin Gene Family in Homeologous Genomes of Hexaploid Wheat. Sci Rep 2018; 8:5181. [PMID: 29581476 PMCID: PMC5980091 DOI: 10.1038/s41598-018-23570-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Wheat Gli-2 loci encode complex groups of α-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of α-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous α-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 α-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses of α-gliadin loci and phylogenetic tree reconstruction indicate significant duplications of α-gliadin genes in the last ~2.5 million years after the divergence of the A, B and D genomes, supporting its rapid lineage-independent expansion in different Triticeae genomes. We showed that dramatic divergence in expression of α-gliadin genes could not be attributed to sequence variations in the promoter regions. The study also provided insights into the evolution of CD epitopes and identified a single indel event in the hexaploid wheat D genome that likely resulted in the generation of the highly toxic 33-mer CD epitope.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.,Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.
| |
Collapse
|
802
|
Identification and Validation of a New Source of Low Grain Cadmium Accumulation in Durum Wheat. G3-GENES GENOMES GENETICS 2018; 8:923-932. [PMID: 29352079 PMCID: PMC5844312 DOI: 10.1534/g3.117.300370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cadmium (Cd) is a heavy metal that has no known biological function and is toxic for many living organisms. The maximum level of Cd concentration allowed in the international market for wheat grain is 0.2 mg kg−1. Because phenotyping for Cd uptake is expensive and time consuming, molecular markers associated with genes conferring low Cd uptake would expedite selection and lead to the development of durum cultivars with reduced Cd concentrations. Here, we identified single nucleotide polymorphisms (SNPs) associated with a novel low Cd uptake locus in the durum experimental line D041735, which has hexaploid common wheat in its pedigree. Genetic analysis revealed a single major QTL for Cd uptake on chromosome arm 5BL within a 0.3 cM interval flanked by SNP markers. Analysis of the intervening sequence revealed a gene with homology to an aluminum-induced protein as a candidate gene. Validation and allelism tests revealed that the low Cd uptake gene identified in this study is different from the closely linked Cdu1-B gene, which also resides on 5BL. This study therefore showed that the durum experimental line D041735 contains a novel low Cd uptake gene that was likely acquired from hexaploid wheat.
Collapse
|
803
|
Parks MB, Nakov T, Ruck EC, Wickett NJ, Alverson AJ. Phylogenomics reveals an extensive history of genome duplication in diatoms (Bacillariophyta). AMERICAN JOURNAL OF BOTANY 2018; 105:330-347. [PMID: 29665021 DOI: 10.1002/ajb2.1056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/18/2017] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY Diatoms are one of the most species-rich lineages of microbial eukaryotes. Similarities in clade age, species richness, and primary productivity motivate comparisons to angiosperms, whose genomes have been inordinately shaped by whole-genome duplication (WGD). WGDs have been linked to speciation, increased rates of lineage diversification, and identified as a principal driver of angiosperm evolution. We synthesized a large but scattered body of evidence that suggests polyploidy may be common in diatoms as well. METHODS We used gene counts, gene trees, and distributions of synonymous divergence to carry out a phylogenomic analysis of WGD across a diverse set of 37 diatom species. KEY RESULTS Several methods identified WGDs of varying age across diatoms. Determining the occurrence, exact number, and placement of events was greatly impacted by uncertainty in gene trees. WGDs inferred from synonymous divergence of paralogs varied depending on how redundancy in transcriptomes was assessed, gene families were assembled, and synonymous distances (Ks) were calculated. Our results highlighted a need for systematic evaluation of key methodological aspects of Ks-based approaches to WGD inference. Gene tree reconciliations supported allopolyploidy as the predominant mode of polyploid formation, with strong evidence for ancient allopolyploid events in the thalassiosiroid and pennate diatom clades. CONCLUSIONS Our results suggest that WGD has played a major role in the evolution of diatom genomes. We outline challenges in reconstructing paleopolyploid events in diatoms that, together with these results, offer a framework for understanding the impact of genome duplication in a group that likely harbors substantial genomic diversity.
Collapse
Affiliation(s)
- Matthew B Parks
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL, 60022, USA
| | - Teofil Nakov
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Norman J Wickett
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL, 60022, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| |
Collapse
|
804
|
Qiao X, Yin H, Li L, Wang R, Wu J, Wu J, Zhang S. Different Modes of Gene Duplication Show Divergent Evolutionary Patterns and Contribute Differently to the Expansion of Gene Families Involved in Important Fruit Traits in Pear ( Pyrus bretschneideri). FRONTIERS IN PLANT SCIENCE 2018; 9:161. [PMID: 29487610 PMCID: PMC5816897 DOI: 10.3389/fpls.2018.00161] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/29/2018] [Indexed: 05/21/2023]
Abstract
Pear is an important fruit crop of the Rosaceae family and has experienced two rounds of ancient whole-genome duplications (WGDs). However, whether different types of gene duplications evolved differently after duplication remains unclear in the pear genome. In this study, we identified the different modes of gene duplication in pear. Duplicate genes derived from WGD, tandem, proximal, retrotransposed, DNA-based transposed or dispersed duplications differ in genomic distribution, gene features, selection pressure, expression divergence, regulatory divergence and biological roles. Widespread sequence, expression and regulatory divergence have occurred between duplicate genes over the 30-45 million years of evolution after the recent genome duplication in pear. The retrotransposed genes show relatively higher expression and regulatory divergence than other gene duplication modes. In contrast, WGD genes underwent a slower sequence divergence and may be influenced by abundant gene conversion events. Moreover, the different classes of duplicate genes exhibited biased functional roles. We also investigated the evolution and expansion patterns of the gene families involved in sugar and organic acid metabolism pathways, which are closely related to the fruit quality and taste in pear. Single-gene duplications largely account for the extensive expansion of gene families involved in the sorbitol metabolism pathway in pear. Gene family expansion was also detected in the sucrose metabolism pathway and tricarboxylic acid cycle pathways. Thus, this study provides insights into the evolutionary fates of duplicated genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
805
|
Li Z, Woo HR, Guo H. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:811-823. [PMID: 29309664 DOI: 10.1093/jxb/erx345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased. In this review, we focus on transcription factors that play regulatory roles in Arabidopsis leaf senescence, and describe the relationships among gene duplication, gene expression level, and senescence phenotypes. Previous findings and our re-analysis demonstrate the widespread existence of duplicate SAG pairs and a correlation between gene expression levels in duplicate genes and senescence-related phenotypic severity of the corresponding mutants. We also highlight effective and powerful tools that are available for functional analyses of redundant SAGs. We propose that the study of duplicate SAG pairs offers a unique opportunity to understand the regulation of leaf senescence and can guide the investigation of the functions of redundant SAGs via reverse genetic approaches.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
806
|
Phylogenomic analysis demonstrates a pattern of rare and long-lasting concerted evolution in prokaryotes. Commun Biol 2018; 1:12. [PMID: 30271899 PMCID: PMC6053082 DOI: 10.1038/s42003-018-0014-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022] Open
Abstract
Concerted evolution, where paralogs in the same species show higher sequence similarity to each other than to orthologs in other species, is widely found in many species. However, cases of concerted evolution that last for hundreds of millions of years are very rare. By genome-wide analysis of a broad selection of prokaryotes, we provide strong evidence of recurrent concerted evolution in 26 genes, most of which have lasted more than ~500 million years. We find that most concertedly evolving genes are key members of important pathways, and encode proteins from the same complexes and/or pathways, suggesting coevolution of genes via concerted evolution to maintain gene balance. We also present LRCE-DB, a comprehensive online repository of long-lasting concerted evolution. Collectively, our study reveals that although most duplicated genes may diverge in sequence over a long period, on rare occasions this constraint can be breached, leading to unexpected long-lasting concerted evolution in a recurrent manner. Sishuo Wang and Youhua Chen present an analysis of concerted evolution in prokaryotes using a new computational pipeline, iSeeCE. They find evidence in 26 genes for recurrent concerted evolution, most of which last more than ~500 million years, and provide a database, LRCE-DB, for data exploration.
Collapse
|
807
|
VanBuren R, Wai CM, Ou S, Pardo J, Bryant D, Jiang N, Mockler TC, Edger P, Michael TP. Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla. Nat Commun 2018; 9:13. [PMID: 29296019 PMCID: PMC5750206 DOI: 10.1038/s41467-017-02546-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/08/2017] [Indexed: 01/10/2023] Open
Abstract
Plant genome size varies by four orders of magnitude, and most of this variation stems from dynamic changes in repetitive DNA content. Here we report the small 109 Mb genome of Selaginella lepidophylla, a clubmoss with extreme desiccation tolerance. Single-molecule sequencing enables accurate haplotype assembly of a single heterozygous S. lepidophylla plant, revealing extensive structural variation. We observe numerous haplotype-specific deletions consisting of largely repetitive and heavily methylated sequences, with enrichment in young Gypsy LTR retrotransposons. Such elements are active but rapidly deleted, suggesting "bloat and purge" to maintain a small genome size. Unlike all other land plant lineages, Selaginella has no evidence of a whole-genome duplication event in its evolutionary history, but instead shows unique tandem gene duplication patterns reflecting adaptation to extreme drying. Gene expression changes during desiccation in S. lepidophylla mirror patterns observed across angiosperm resurrection plants.
Collapse
Affiliation(s)
- Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Shujun Ou
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeremy Pardo
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Doug Bryant
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Patrick Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
808
|
Longo A, Miles NW, Dickstein R. Genome Mining of Plant NPFs Reveals Varying Conservation of Signature Motifs Associated With the Mechanism of Transport. FRONTIERS IN PLANT SCIENCE 2018; 9:1668. [PMID: 30564251 PMCID: PMC6288477 DOI: 10.3389/fpls.2018.01668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/26/2018] [Indexed: 05/04/2023]
Abstract
Nitrogen is essential for all living species and may be taken up from the environment in different forms like nitrate or peptides. In plants, members of a transporter family named NPFs transport nitrate and peptides across biological membranes. NPFs are phylogenetically related to a family of peptide transporters (PTRs) or proton-coupled oligopeptide transporters (POTs) that are evolutionarily conserved in all organisms except in Archaea. POTs are present in low numbers in bacteria, algae and animals. NPFs have expanded in plants and evolved to transport a wide range of substrates including phytohormones and glucosinolates. Functional studies have shown that most NPFs, like POTs, operate as symporters with simultaneous inwardly directed movement of protons. Here we focus on four structural features of NPFs/POTs/PTRs that have been shown by structural and functional studies to be essential to proton-coupled symport transport. The first two features are implicated in proton binding and transport: a conserved motif named ExxER/K, located in the first transmembrane helix (TMH1) and a D/E residue in TMH7 that has been observed in some bacterial and algal transporters. The third and fourth features are two inter-helical salt bridges between residues on TMH1 and TMH7 or TMH4 and TMH10. To understand if the mechanism of transport is conserved in NPFs with the expansion to novel substrates, we collected NPFs sequences from 42 plant genomes. Sequence alignment revealed that the ExxER/K motif is not strictly conserved and its conservation level is different in the NPF subfamilies. The proton binding site on TMH7 is missing in all NPFs with the exception of two NPFs from moss. The two moss NPFs also have a positively charged amino acid on TMH1 that can form the salt bridge with the TMH7 negative residue. None of the other NPFs we examined harbor residues that can form the TMH1-TMH7 salt bridge. In contrast, the amino acids required to form the TMH4-TMH10 salt bridge are highly conserved in NPFs, with some exceptions. These results support the need for further biochemical and structural studies of individual NPFs for a better understanding of the transport mechanism in this family of transporters.
Collapse
Affiliation(s)
- Antonella Longo
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
- *Correspondence: Antonella Longo,
| | - Nicholas W. Miles
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Rebecca Dickstein
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
809
|
Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. Duplication and Diversification of REPLUMLESS - A Case Study in the Papaveraceae. FRONTIERS IN PLANT SCIENCE 2018; 9:1833. [PMID: 30619406 PMCID: PMC6299025 DOI: 10.3389/fpls.2018.01833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/26/2018] [Indexed: 05/17/2023]
Abstract
There is a vast amount of fruit morphological diversity in terms of their texture, the number of carpels, if those carpels are fused or not and how fruits open to disperse the seeds. Arabidopsis thaliana, a model eudicot, has a dry bicarpellate silique, when the fruit matures, the two valves fall apart through the dehiscence zone leaving the seeds attached to the remaining medial tissue, called the replum. Proper replum development in A. thaliana is mediated by REPLUMLESS (RPL), a TALE Homeodomain protein. RPL represses the valve margin genetic program and the downstream dehiscence zone formation in the medial tissue of the siliques and RPL orthologs have conserved roles across the Brassicaceae eudicots. A RPL homolog, qSH1, has been studied in rice, a monocot, and plays a role in fruit shedding making it difficult to predict functional evolution of this gene lineage across angiosperms. Although RPL orthologs have been identified across all angiosperms, expression and functional analyses are scarce. In order to fill the phylogenetic gap between the Brassicaceae and monocots we have characterized the expression patterns of RPL homologs in two poppies with different fruit types, Bocconia frutescens with operculate valvate dehiscence and a persistent medial tissue, similar to a replum, and Papaver somniferum, a poppy with persistent medial tissue in between the multicarpellate gynoecia. We found that RPL homologs in Papaveraceae have broad expression patterns during plant development; in the shoot apical meristem, during flowering transition and in many floral organs, especially the carpels. These patterns are similar to those of RPL in A. thaliana. However, our results suggest that RPL does not have conserved roles in the maintenance of medial persistent tissues of fruits but may be involved with establishing the putative dehiscence zone in dry poppy fruits.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, United States
- The Graduate Center, City University of New York, New York, NY, United States
| | | | - Barbara A. Ambrose
- New York Botanical Garden, Bronx, NY, United States
- *Correspondence: Barbara A. Ambrose,
| |
Collapse
|
810
|
Huo N, Zhang S, Zhu T, Dong L, Wang Y, Mohr T, Hu T, Liu Z, Dvorak J, Luo MC, Wang D, Lee JY, Altenbach S, Gu YQ. Gene Duplication and Evolution Dynamics in the Homeologous Regions Harboring Multiple Prolamin and Resistance Gene Families in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:673. [PMID: 29875781 PMCID: PMC5974169 DOI: 10.3389/fpls.2018.00673] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 05/19/2023]
Abstract
Improving end-use quality and disease resistance are important goals in wheat breeding. The genetic loci controlling these traits are highly complex, consisting of large families of prolamin and resistance genes with members present in all three homeologous A, B, and D genomes in hexaploid bread wheat. Here, orthologous regions harboring both prolamin and resistance gene loci were reconstructed and compared to understand gene duplication and evolution in different wheat genomes. Comparison of the two orthologous D regions from the hexaploid wheat Chinese Spring and the diploid progenitor Aegilops tauschii revealed their considerable difference due to the presence of five large structural variations with sizes ranging from 100 kb to 2 Mb. As a result, 44% of the Ae. tauschii and 71% of the Chinese Spring sequences in the analyzed regions, including 79 genes, are not shared. Gene rearrangement events, including differential gene duplication and deletion in the A, B, and D regions, have resulted in considerable erosion of gene collinearity in the analyzed regions, suggesting rapid evolution of prolamin and resistance gene families after the separation of the three wheat genomes. We hypothesize that this fast evolution is attributed to the co-evolution of the two gene families dispersed within a high recombination region. The identification of a full set of prolamin genes facilitated transcriptome profiling and revealed that the A genome contributes the least to prolamin expression because of its smaller number of expressed intact genes and their low expression levels, while the B and D genomes contribute similarly.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Shengli Zhang
- Hena Institute of Science and Technology, Xinxiang, China
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Tiezhu Hu
- Hena Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jong-Yeol Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- *Correspondence: Susan Altenbach, Yong Q. Gu,
| | - Yong Q. Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- *Correspondence: Susan Altenbach, Yong Q. Gu,
| |
Collapse
|
811
|
Lopez-Nieves S, Yang Y, Timoneda A, Wang M, Feng T, Smith SA, Brockington SF, Maeda HA. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales. THE NEW PHYTOLOGIST 2018; 217:896-908. [PMID: 28990194 DOI: 10.1111/nph.14822] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/25/2017] [Indexed: 05/19/2023]
Abstract
Diverse natural products are synthesized in plants by specialized metabolic enzymes, which are often lineage-specific and derived from gene duplication followed by functional divergence. However, little is known about the contribution of primary metabolism to the evolution of specialized metabolic pathways. Betalain pigments, uniquely found in the plant order Caryophyllales, are synthesized from the aromatic amino acid l-tyrosine (Tyr) and replaced the otherwise ubiquitous phenylalanine-derived anthocyanins. This study combined biochemical, molecular and phylogenetic analyses, and uncovered coordinated evolution of Tyr and betalain biosynthetic pathways in Caryophyllales. We found that Beta vulgaris, which produces high concentrations of betalains, synthesizes Tyr via plastidic arogenate dehydrogenases (TyrAa /ADH) encoded by two ADH genes (BvADHα and BvADHβ). Unlike BvADHβ and other plant ADHs that are strongly inhibited by Tyr, BvADHα exhibited relaxed sensitivity to Tyr. Also, Tyr-insensitive BvADHα orthologs arose during the evolution of betalain pigmentation in the core Caryophyllales and later experienced relaxed selection and gene loss in lineages that reverted from betalain to anthocyanin pigmentation, such as Caryophyllaceae. These results suggest that relaxation of Tyr pathway regulation increased Tyr production and contributed to the evolution of betalain pigmentation, highlighting the significance of upstream primary metabolic regulation for the diversification of specialized plant metabolism.
Collapse
Affiliation(s)
- Samuel Lopez-Nieves
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ya Yang
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - Alfonso Timoneda
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - Minmin Wang
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tao Feng
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
812
|
Seeling JM, Farmer AA, Mansfield A, Cho H, Choudhary M. Differential Selective Pressures Experienced by the Aurora Kinase Gene Family. Int J Mol Sci 2017; 19:ijms19010072. [PMID: 29283376 PMCID: PMC5796022 DOI: 10.3390/ijms19010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/31/2022] Open
Abstract
Aurora kinases (AKs) are serine/threonine kinases that are essential for cell division. Humans have three AK genes: AKA, AKB, and AKC. AKA is required for centrosome assembly, centrosome separation, and bipolar spindle assembly, and its mutation leads to abnormal spindle morphology. AKB is required for the spindle checkpoint and proper cytokinesis, and mutations cause chromosome misalignment and cytokinesis failure. AKC is expressed in germ cells, and has a role in meiosis analogous to that of AKB in mitosis. Mutation of any of the three isoforms can lead to cancer. AK proteins possess divergent N- and C-termini and a conserved central catalytic domain. We examined the evolution of the AK gene family using an identity matrix and by building a phylogenetic tree. The data suggest that AKA is the vertebrate ancestral gene, and that AKB and AKC resulted from gene duplication in placental mammals. In a nonsynonymous/synonymous rate substitution analysis, we found that AKB experienced the strongest, and AKC the weakest, purifying selection. Both the N- and C-termini and regions within the kinase domain experienced differential selection among the AK isoforms. These differentially selected sequences may be important for species specificity and isoform specificity, and are therefore potential therapeutic targets.
Collapse
Affiliation(s)
- Joni M Seeling
- Department of Biology, Lone Star College, Woodlands, TX 77375, USA.
| | - Alexis A Farmer
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA.
| | - Adam Mansfield
- Department of Computer Science, Sam Houston State University, Huntsville, TX 77341, USA.
| | - Hyuk Cho
- Department of Computer Science, Sam Houston State University, Huntsville, TX 77341, USA.
| | - Madhusudan Choudhary
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA.
| |
Collapse
|
813
|
Shoeva OY, Glagoleva AY, Khlestkina EK. The factors affecting the evolution of the anthocyanin biosynthesis pathway genes in monocot and dicot plant species. BMC PLANT BIOLOGY 2017; 17:256. [PMID: 29297327 PMCID: PMC5751542 DOI: 10.1186/s12870-017-1190-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND The available data demonstrate that even in universal metabolic pathways, some species-specific regulatory features of structural genes are present. For instance, in the anthocyanin biosynthesis pathway (ABP), genes may be regulated by ABP-specific regulatory factors, and their expression levels may be strongly associated with anthocyanin pigmentation, or they may be expressed independently of pigmentation. A dataset of orthologous ABP genes (Chs, Chi, F3h, F3'h, Dfr, Ans) from monocot and dicot plant species that have distinct gene regulation patterns and different types of pollination was constructed to test whether these factors affect the evolution of the genes. RESULTS Using a maximum likelihood approach, we demonstrated that although the whole set of the ABP genes is under purifying selection, with greater selection acting on the upstream genes than on the downstream genes, genes from distinct groups of plant species experienced different strengths of selective pressure. The selective pressure on the genes was higher in dicots than in monocots (F3h and further downstream genes) and in pollinator-dependent plants than in pollinator-independent species (Chi and further downstream genes), suggesting an important role of pollination type in the evolution of the anthocyanin biosynthesis gene network. Contrasting effects of the regulation patterns on evolution were detected for the F3h and Dfr genes, with greater selective pressure on the F3h gene in plant species where the gene expression was not strongly associated with pigmentation and greater selective pressure on Dfr in plant species where the gene expression was associated with pigmentation. CONCLUSIONS We demonstrated the effects of pollination type and patterns of regulation on the evolution of the ABP genes, but the evolution of some of the genes could not be explained in the framework of these factors, such as the weaker selective pressure acting on Chs in species that attract pollinators or the stronger selective pressure on F3h in plant species where the gene expression was not associated with pigmentation. The observations suggest that additional factors could affect the evolution of these genes. One such factor could be an effect of gene duplication with further division of functions among gene copies and relaxed selective pressure acting on them. Additional tests with an appropriate dataset combining data on duplicated gene sequences and their functions in the flavonoid biosynthesis pathway are required to test this hypothesis.
Collapse
Affiliation(s)
- Olesya Yu. Shoeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiya Yu. Glagoleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
814
|
Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity. Nat Commun 2017; 8:2080. [PMID: 29234041 PMCID: PMC5727100 DOI: 10.1038/s41467-017-02045-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/03/2017] [Indexed: 01/29/2023] Open
Abstract
Plants produce hundreds of thousands of structurally diverse specialized metabolites via multistep biosynthetic networks, including compounds of ecological and therapeutic importance. These pathways are restricted to specific plant groups, and are excellent systems for understanding metabolic evolution. Tomato and other plants in the nightshade family synthesize protective acylated sugars in the tip cells of glandular trichomes on stems and leaves. We describe a metabolic innovation in wild tomato species that contributes to acylsucrose structural diversity. A small number of amino acid changes in two acylsucrose acyltransferases alter their acyl acceptor preferences, resulting in reversal of their order of reaction and increased product diversity. This study demonstrates how small numbers of amino acid changes in multiple pathway enzymes can lead to diversification of specialized metabolites in plants. It also highlights the power of a combined genetic, genomic and in vitro biochemical approach to identify the evolutionary mechanisms leading to metabolic novelty. Plants produce large numbers of structurally diverse metabolites through multistep pathways that often use the same precursors. Here the authors utilize the pathway leading to the production of acylated sucroses in the tomato plant to illustrate how metabolite diversity can arise through biochemical pathway evolution.
Collapse
|
815
|
Liu L, Wu Y, Liao Z, Xiong J, Wu F, Xu J, Lan H, Tang Q, Zhou S, Liu Y, Lu Y. Evolutionary conservation and functional divergence of the LFK gene family play important roles in the photoperiodic flowering pathway of land plants. Heredity (Edinb) 2017; 120:310-328. [PMID: 29225355 DOI: 10.1038/s41437-017-0006-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
ZEITLUPE (ZTL), LOV KELCH PROTEIN 2 (LKP2), and FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1)-blue-light photoreceptors-play important roles in regulating the circadian clock and photoperiodic flowering pathway in plants. In this study, phylogenetic analysis revealed that the LOV (Light, Oxygen, or Voltage) and Kelch repeat-containing F-box (LFK) gene family can be classified into two clades, ZTL/LKP2 and FKF1, with clear differentiation between monocots and dicots within each clade. The LFK family genes underwent strong purifying selection; however, signatures of positive selection to adapt to local conditions still existed in 18 specific codons. In 87 diverse maize inbred lines, significant differences were identified (P ≤ 0.01) for days to female flowering between the haplotypes consisting of eight positive selection sites at ZmFKF1b corresponding to tropical and temperate maize groups of the phylogenetic tree, indicating a key role of ZmFKF1b in maize adaptive evolution. In addition, positive coevolution was detected in the domains of the LFK family for long-term cooperation to targets. The Type-I and Type-II functional divergence analysis revealed subfunctionalization or neofunctionalization of the LFKs, and the ZTL subfamily is most likely to maintain the ancestral function of LFKs. Over 50% of critical amino acid sites involved in the functional divergence were identified in the Kelch repeat domain, resulting in the distinction of substrates for ubiquitination and degradation. These results suggest that evolutionary conservation contributes to the maintenance of critical physiological functions, whereas functional divergence after duplication helps to generate diverse molecular regulation mechanisms.
Collapse
Affiliation(s)
- Ling Liu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Yuanqi Wu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Zhengqiao Liao
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Jing Xiong
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Qiling Tang
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Shufeng Zhou
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China. .,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China.
| |
Collapse
|
816
|
Zhao M, Zhang B, Lisch D, Ma J. Patterns and Consequences of Subgenome Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants. THE PLANT CELL 2017; 29:2974-2994. [PMID: 29180596 PMCID: PMC5757279 DOI: 10.1105/tpc.17.00595] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 05/07/2023]
Abstract
Polyploidy is an important feature of plant genomes, but the nature of many polyploidization events remains to be elucidated. Here, we demonstrate that the evolutionary fates of the subgenomes in maize (Zea mays) and soybean (Glycine max) have followed different trajectories. One subgenome has been subject to relaxed selection, lower levels of gene expression, higher rates of transposable element accumulation, more small interfering RNAs and DNA methylation around genes, and higher rates of gene loss in maize, whereas none of these features were observed in soybean. Nevertheless, individual gene pairs exhibit differentiation with respect to these features in both species. In addition, we observed a higher number of chromosomal rearrangements and higher frequency of retention of duplicated genes in soybean than in maize. Furthermore, soybean "singletons" were found to be more frequently tandemly duplicated than "duplicates" in soybean, which may, to some extent, counteract the genome imbalance caused by gene loss. We propose that unlike in maize, in which two subgenomes were distinct prior to the allotetraploidization event and thus experienced global differences in selective constraints, in soybean, the two subgenomes were far less distinct prior to polyploidization, such that individual gene pairs, rather than subgenomes, experienced stochastic differences over longer periods of time, resulting in retention of the majority of duplicates.
Collapse
Affiliation(s)
- Meixia Zhao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Biao Zhang
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
817
|
Badet T, Voisin D, Mbengue M, Barascud M, Sucher J, Sadon P, Balagué C, Roby D, Raffaele S. Parallel evolution of the POQR prolyl oligo peptidase gene conferring plant quantitative disease resistance. PLoS Genet 2017; 13:e1007143. [PMID: 29272270 PMCID: PMC5757927 DOI: 10.1371/journal.pgen.1007143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/08/2018] [Accepted: 12/04/2017] [Indexed: 12/28/2022] Open
Abstract
Plant pathogens with a broad host range are able to infect plant lineages that diverged over 100 million years ago. They exert similar and recurring constraints on the evolution of unrelated plant populations. Plants generally respond with quantitative disease resistance (QDR), a form of immunity relying on complex genetic determinants. In most cases, the molecular determinants of QDR and how they evolve is unknown. Here we identify in Arabidopsis thaliana a gene mediating QDR against Sclerotinia sclerotiorum, agent of the white mold disease, and provide evidence of its convergent evolution in multiple plant species. Using genome wide association mapping in A. thaliana, we associated the gene encoding the POQR prolyl-oligopeptidase with QDR against S. sclerotiorum. Loss of this gene compromised QDR against S. sclerotiorum but not against a bacterial pathogen. Natural diversity analysis associated POQR sequence with QDR. Remarkably, the same amino acid changes occurred after independent duplications of POQR in ancestors of multiple plant species, including A. thaliana and tomato. Genome-scale expression analyses revealed that parallel divergence in gene expression upon S. sclerotiorum infection is a frequent pattern in genes, such as POQR, that duplicated both in A. thaliana and tomato. Our study identifies a previously uncharacterized gene mediating QDR against S. sclerotiorum. It shows that some QDR determinants are conserved in distantly related plants and have emerged through the repeated use of similar genetic polymorphisms at different evolutionary time scales.
Collapse
Affiliation(s)
- Thomas Badet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Derry Voisin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Malick Mbengue
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Justine Sucher
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Pierre Sadon
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claudine Balagué
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Dominique Roby
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Sylvain Raffaele
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
818
|
Won SY, Kwon SJ, Lee TH, Jung JA, Kim JS, Kang SH, Sohn SH. Comparative transcriptome analysis reveals whole-genome duplications and gene selection patterns in cultivated and wild Chrysanthemum species. PLANT MOLECULAR BIOLOGY 2017; 95:451-461. [PMID: 29052098 PMCID: PMC5727146 DOI: 10.1007/s11103-017-0663-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/25/2017] [Indexed: 05/22/2023]
Abstract
Comparative transcriptome analysis of wild and cultivated chrysanthemums provides valuable genomic resources and helps uncover common and divergent patterns of genome and gene evolution in these species. Plants are unique in that they employ polyploidy (or whole-genome duplication, WGD) as a key process for speciation and evolution. The Chrysanthemum genus is closely associated with hybridization and polyploidization, with Chrysanthemum species exhibiting diverse ploidy levels. The commercially important species, C. morifolium is an allohexaploid plant that is thought to have originated via the hybridization of several Chrysanthemum species, but the genomic and molecular evolutionary mechanisms remain poorly understood. In the present study, we sequenced and compared the transcriptomes of C. morifolium and the wild Korean diploid species, C. boreale. De novo transcriptome assembly revealed 11,318 genes in C. morifolium and 10,961 genes in C. boreale, whose functions were annotated by homology searches. An analysis of synonymous substitution rates (Ks) of paralogous and orthologous genes suggested that the two Chrysanthemum species commonly experienced the Asteraceae paleopolyploidization and recent genome duplication or triplication before the divergence of these species. Intriguingly, C. boreale probably underwent rapid diploidization, with a reduction in chromosome number, whereas C. morifolium maintained the original chromosome number. Analysis of the ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) between orthologous gene pairs indicated that 107 genes experienced positive selection, which may have been crucial for the adaptation, domestication, and speciation of Chrysanthemum.
Collapse
Affiliation(s)
- So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Soo-Jin Kwon
- Research Policy Bureau, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Seong-Han Sohn
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
819
|
Gao J, Huang BH, Wan YT, Chang J, Li JQ, Liao PC. Functional divergence and intron variability during evolution of angiosperm TERMINAL FLOWER1 (TFL1) genes. Sci Rep 2017; 7:14830. [PMID: 29093470 PMCID: PMC5666015 DOI: 10.1038/s41598-017-13645-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022] Open
Abstract
The protein encoded by the TERMINAL FLOWER1 (TFL1) gene maintains indeterminacy in inflorescence meristem to repress flowering, and has undergone multiple duplications. However, basal angiosperms have one copy of a TFL1-like gene, which clusters with eudicot TFL1/CEN paralogs. Functional conservation has been reported in the paralogs CENTRORADIALIS (CEN) in eudicots, and ROOTS CURL IN NPA (RCNs) genes in monocots. In this study, long-term functional conservation and selective constraints were found between angiosperms, while the relaxation of selective constraints led to subfunctionalisation between paralogs. Long intron lengths of magnoliid TFL1-like gene contain more conserved motifs that potentially regulate TFL1/CEN/RCNs expression. These might be relevant to the functional flexibility of the non-duplicate TFL1-like gene in the basal angiosperms in comparison with the short, lower frequency intron lengths in eudicot and monocot TFL1/CEN/RCNs paralogs. The functionally conserved duplicates of eudicots and monocots evolved according to the duplication-degeneration-complementation model, avoiding redundancy by relaxation of selective constraints on exon 1 and exon 4. These data suggest that strong purifying selection has maintained the relevant functions of TFL1/CEN/RCNs paralogs on flowering regulation throughout the evolution of angiosperms, and the shorter introns with radical amino acid changes are important for the retention of paralogous duplicates.
Collapse
Affiliation(s)
- Jian Gao
- College of Forestry, Beijing Forestry University, No.35, Tsinghua East Rd., Haidian Dist., Beijing, 100083, People's Republic of China
| | - Bing-Hong Huang
- Department of Life Science, National Taiwan Normal University, No.88, Sec. 4, Tingjhou Rd., Wunshan Dist., Taipei, 116, Taiwan, Republic of China
| | - Yu-Ting Wan
- Department of Life Science, National Taiwan Normal University, No.88, Sec. 4, Tingjhou Rd., Wunshan Dist., Taipei, 116, Taiwan, Republic of China
| | - JenYu Chang
- Department of Horticulture, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute No. 1, Nung-Kai-Chang, Lutsao township, Chiayi, 611, Taiwan, Republic of China
| | - Jun-Qing Li
- College of Forestry, Beijing Forestry University, No.35, Tsinghua East Rd., Haidian Dist., Beijing, 100083, People's Republic of China
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, No.88, Sec. 4, Tingjhou Rd., Wunshan Dist., Taipei, 116, Taiwan, Republic of China.
| |
Collapse
|
820
|
Huo N, Dong L, Zhang S, Wang Y, Zhu T, Mohr T, Altenbach S, Liu Z, Dvorak J, Anderson OD, Luo MC, Wang D, Gu YQ. New insights into structural organization and gene duplication in a 1.75-Mb genomic region harboring the α-gliadin gene family in Aegilops tauschii, the source of wheat D genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:571-583. [PMID: 28857322 DOI: 10.1111/tpj.13675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Among the wheat prolamins important for its end-use traits, α-gliadins are the most abundant, and are also a major cause of food-related allergies and intolerances. Previous studies of various wheat species estimated that between 25 and 150 α-gliadin genes reside in the Gli-2 locus regions. To better understand the evolution of this complex gene family, the DNA sequence of a 1.75-Mb genomic region spanning the Gli-2 locus was analyzed in the diploid grass, Aegilops tauschii, the ancestral source of D genome in hexaploid bread wheat. Comparison with orthologous regions from rice, sorghum, and Brachypodium revealed rapid and dynamic changes only occurring to the Ae. tauschii Gli-2 region, including insertions of high numbers of non-syntenic genes and a high rate of tandem gene duplications, the latter of which have given rise to 12 copies of α-gliadin genes clustered within a 550-kb region. Among them, five copies have undergone pseudogenization by various mutation events. Insights into the evolutionary relationship of the duplicated α-gliadin genes were obtained from their genomic organization, transcription patterns, transposable element insertions and phylogenetic analyses. An ancestral glutamate-like receptor (GLR) gene encoding putative amino acid sensor in all four grass species has duplicated only in Ae. tauschii and generated three more copies that are interspersed with the α-gliadin genes. Phylogenetic inference and different gene expression patterns support functional divergence of the Ae. tauschii GLR copies after duplication. Our results suggest that the duplicates of α-gliadin and GLR genes have likely taken different evolutionary paths; conservation for the former and neofunctionalization for the latter.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengli Zhang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
- Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Olin D Anderson
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| |
Collapse
|
821
|
Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 2017; 18:210. [PMID: 29089032 PMCID: PMC5664825 DOI: 10.1186/s13059-017-1341-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Background Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. Results We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. Conclusions Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1341-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Shin Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Ho-Sub Shin
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju, 54896, South Korea
| | - Minkyu Park
- Department of Genetics, University of Georgia, Athens, GA, 30602-7223, USA
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Youngsill Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - JunKi Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Yunji Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Ryan W Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | | | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
822
|
Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 2017; 18:210. [PMID: 29089032 DOI: 10.1007/s13580-019-00157-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/19/2019] [Accepted: 10/06/2017] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. RESULTS We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. CONCLUSIONS Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants.
Collapse
Affiliation(s)
- Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Shin Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Ho-Sub Shin
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju, 54896, South Korea
| | - Minkyu Park
- Department of Genetics, University of Georgia, Athens, GA, 30602-7223, USA
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Youngsill Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - JunKi Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Yunji Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Ryan W Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | | | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
823
|
Komaki S, Schnittger A. The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off during Severe Stress. Dev Cell 2017; 43:172-185.e5. [PMID: 29065308 DOI: 10.1016/j.devcel.2017.09.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/18/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022]
Abstract
The spindle assembly checkpoint (SAC) in animals and yeast assures equal segregation of chromosomes during cell division. The prevalent occurrence of polyploidy in flowering plants together with the observation that many plants can be readily forced to double their genomes by application of microtubule drugs raises the question of whether plants have a proper SAC. Here, we provide a functional framework of the core SAC proteins in Arabidopsis. We reveal that Arabidopsis will delay mitosis in a SAC-dependent manner if the spindle is perturbed. However, we also show that the molecular architecture of the SAC is unique in plants. Moreover, the SAC is short-lived and cannot stay active for more than 2 hr, after which the cell cycle is reset. This resetting opens the possibility for genome duplications and raises the hypothesis that a rapid termination of a SAC-induced mitotic arrest provides an adaptive advantage for plants impacting plant genome evolution.
Collapse
Affiliation(s)
- Shinichiro Komaki
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Arp Schnittger
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| |
Collapse
|
824
|
Almadanim MC, Gonçalves NM, Rosa MTG, Alexandre BM, Cordeiro AM, Rodrigues M, Saibo NJM, Soares CM, Romão CV, Oliveira MM, Abreu IA. The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:231-246. [PMID: 29100789 DOI: 10.1016/j.bbamcr.2017.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/16/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022]
Abstract
Plant calcium-dependent protein kinases (CDPKs) are key proteins implicated in calcium-mediated signaling pathways of a wide range of biological events in the organism. The action of each particular CDPK is strictly regulated by many mechanisms in order to ensure an accurate signal translation and the activation of the adequate response processes. In this work, we investigated the regulation of a CDPK involved in rice cold stress response, OsCPK17, to better understand its mode of action. We identified two new alternative splicing (AS) mRNA forms of OsCPK17 encoding truncated versions of the protein, missing the CDPK activation domain. We analyzed the expression patterns of all AS variants in rice tissues and examined their subcellular localization in onion epidermal cells. The results indicate that the AS of OsCPK17 putatively originates truncated forms of the protein with distinct functions, and different subcellular and tissue distributions. Additionally, we addressed the regulation of OsCPK17 by post-translational modifications in several in vitro experiments. Our analysis indicated that OsCPK17 activity depends on its structural rearrangement induced by calcium binding, and that the protein can be autophosphorylated. The identified phosphorylation sites mostly populate the OsCPK17 N-terminal domain. Exceptions are phosphosites T107 and S136 in the kinase domain and S558 in the C-terminal domain. These phosphosites seem conserved in CDPKs and may reflect a common regulatory mechanism for this protein family.
Collapse
Affiliation(s)
- M Cecília Almadanim
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Nuno M Gonçalves
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Margarida T G Rosa
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Bruno M Alexandre
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - André M Cordeiro
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Mafalda Rodrigues
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Nelson J M Saibo
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; IBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Cláudio M Soares
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Célia V Romão
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - M Margarida Oliveira
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; IBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Isabel A Abreu
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; IBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal.
| |
Collapse
|
825
|
Sun H, Wu S, Zhang G, Jiao C, Guo S, Ren Y, Zhang J, Zhang H, Gong G, Jia Z, Zhang F, Tian J, Lucas WJ, Doyle JJ, Li H, Fei Z, Xu Y. Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. MOLECULAR PLANT 2017; 10:1293-1306. [PMID: 28917590 DOI: 10.1016/j.molp.2017.09.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 05/18/2023]
Abstract
The Cucurbita genus contains several economically important species in the Cucurbitaceae family. Here, we report high-quality genome sequences of C. maxima and C. moschata and provide evidence supporting an allotetraploidization event in Cucurbita. We are able to partition the genome into two homoeologous subgenomes based on different genetic distances to melon, cucumber, and watermelon in the Benincaseae tribe. We estimate that the two diploid progenitors successively diverged from Benincaseae around 31 and 26 million years ago (Mya), respectively, and the allotetraploidization happened at some point between 26 Mya and 3 Mya, the estimated date when C. maxima and C. moschata diverged. The subgenomes have largely maintained the chromosome structures of their diploid progenitors. Such long-term karyotype stability after polyploidization has not been commonly observed in plant polyploids. The two subgenomes have retained similar numbers of genes, and neither subgenome is globally dominant in gene expression. Allele-specific expression analysis in the C. maxima × C. moschata interspecific F1 hybrid and their two parents indicates the predominance of trans-regulatory effects underlying expression divergence of the parents, and detects transgressive gene expression changes in the hybrid correlated with heterosis in important agronomic traits. Our study provides insights into polyploid genome evolution and valuable resources for genetic improvement of cucurbit crops.
Collapse
Affiliation(s)
- Honghe Sun
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China; Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.
| | - Guoyu Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Shaogui Guo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yi Ren
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Jie Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Haiying Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Guoyi Gong
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Zhangcai Jia
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Fan Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Jiaxing Tian
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Jeff J Doyle
- Section of Plant Breeding & Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Haizhen Li
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA; USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| | - Yong Xu
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China.
| |
Collapse
|
826
|
Neu E, Featherston J, Rees J, Debener T. A draft genome sequence of the rose black spot fungus Diplocarpon rosae reveals a high degree of genome duplication. PLoS One 2017; 12:e0185310. [PMID: 28981525 PMCID: PMC5628827 DOI: 10.1371/journal.pone.0185310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Black spot is one of the most severe and damaging diseases of garden roses. We present the draft genome sequence of its causative agent Diplocarpon rosae as a working tool to generate molecular markers and to analyze functional and structural characteristics of this fungus. RESULTS The isolate DortE4 was sequenced with 191x coverage of different read types which were assembled into 2457 scaffolds. By evidence supported genome annotation with the MAKER pipeline 14,004 gene models were predicted and transcriptomic data indicated that 88.5% of them are expressed during the early stages of infection. Analyses of k-mer distributions resulted in unexpectedly large genome size estimations between 72.5 and 91.4 Mb, which cannot be attributed to its repeat structure and content of transposable elements alone, factors explaining such differences in other fungal genomes. In contrast, different lines of evidences demonstrate that a huge proportion (approximately 80%) of genes are duplicated, which might indicate a whole genome duplication event. By PCR-RFLP analysis of six paralogous gene pairs of BUSCO orthologs, which are expected to be single copy genes, we could show experimentally that the duplication is not due to technical error and that not all isolates tested possess all of the paralogs. CONCLUSIONS The presented genome sequence is still a fragmented draft but contains almost the complete gene space. Therefore, it provides a useful working tool to study the interaction of D. rosae with the host and the influence of a genome duplication outside of the model yeast in the background of a phytopathogen.
Collapse
Affiliation(s)
- Enzo Neu
- Institute for Plant Genetics, Leibniz University Hannover, Hannover, Germany
| | - Jonathan Featherston
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, Pretoria, South Africa
| | - Jasper Rees
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, Pretoria, South Africa
| | - Thomas Debener
- Institute for Plant Genetics, Leibniz University Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
827
|
Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell 2017; 171:287-304.e15. [PMID: 28985561 DOI: 10.1016/j.cell.2017.09.030] [Citation(s) in RCA: 757] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/21/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023]
Abstract
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia.
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan.
| | - Jerry Jenkins
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Catherine Adam
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Shiori Sugamata Aki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Felix Althoff
- Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mario A Arteaga-Vazquez
- Universidad Veracruzana, INBIOTECA - Instituto de Biotecnología y Ecología Aplicada, Av. de las Culturas Veracruzanas No.101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, México
| | | | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Diane Bauer
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Christian R Boehm
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Liam Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Juan Caballero-Perez
- National Laboratory of Genomics for Biodiversity, CINVESTAV-IPN, Km 9.6 Lib. Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México
| | - Bruno Catarino
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Shota Chiyoda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mansi Chovatia
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Kevin M Davies
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| | - Mihails Delmans
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia; Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ana E Dorantes-Acosta
- Universidad Veracruzana, INBIOTECA - Instituto de Biotecnología y Ecología Aplicada, Av. de las Culturas Veracruzanas No.101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, México
| | - D Magnus Eklund
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia; Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Stevie N Florent
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | | | - Asao Fujiyama
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Bence Galik
- Bioinformatics & Scientific Computing, Vienna Biocenter Core Facilities (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement (IRD), UMR232, Université de Montpellier, Montpellier 34394, France
| | - Jane Grimwood
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902 Japan
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | | | - Asuka Higo
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Hirakawa
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Hope N Hundley
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Qidong Jia
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitsuru Kakita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takehiko Kanazawa
- National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki 444-8585, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Bank Organization, Tohoku University, Aoba, Sendai 980-8573, Japan
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Plant and Soil Sciences, University of Kentucky, 321 Plant Science Building, 1405 Veterans Dr., Lexington, KY 40546, USA
| | - Megan Kennedy
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Keita Kinose
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yuji Kohara
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan
| | - Eri Koide
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kenji Komatsu
- Department of Bioproduction Technology, Junior College of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Sarah Kopischke
- Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Minoru Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Ulf Lagercrantz
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Erika Lindquist
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Anna M Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Efraín De Luna
- Instituto de Ecología, AC., Red de Biodiversidad y Sistemática, Xalapa, Veracruz, 91000, México
| | | | - Naoki Minamino
- National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki 444-8585, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
| | - Miya Mizutani
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Isabel Monte
- Department Genética Molecular de Plantas, Centro Nacional de Biotecnologia-CSIC, Universidad Autónoma de Madrid 28049 Madrid. Spain
| | - Rebecca Mosher
- The School of Plant Sciences, The University of Arizona, Tuscon, AZ, USA
| | - Hideki Nagasaki
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan; Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kazuhiko Nishitani
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masaki Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Jeremy Phillips
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bernardo Pollak
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Anke Reinders
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Moritz Rövekamp
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - Ryosuke Sano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Shinichiro Sawa
- Graduate school of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan
| | - Marc W Schmid
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - Makoto Shirakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Roberto Solano
- Department Genética Molecular de Plantas, Centro Nacional de Biotecnologia-CSIC, Universidad Autónoma de Madrid 28049 Madrid. Spain
| | - Alexander Spunde
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Rui Sun
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | | | - Daisuke Takezawa
- Graduate School of Science and Engineering and Institute for Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan
| | - Hirokazu Tomogane
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902 Japan
| | - Takashi Ueda
- National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki 444-8585, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902 Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Ryusuke Yokoyama
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | - Izumi Yotsui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Sabine Zachgo
- Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| |
Collapse
|
828
|
Barlow LD, Dacks JB. Seeing the endomembrane system for the trees: Evolutionary analysis highlights the importance of plants as models for eukaryotic membrane-trafficking. Semin Cell Dev Biol 2017; 80:142-152. [PMID: 28939036 DOI: 10.1016/j.semcdb.2017.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/22/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Plant cells show many signs of a unique evolutionary history. This is seen in the system of intracellular organelles and vesicle transport pathways plants use to traffic molecular cargo. Bioinformatic and cell biological work in this area is beginning to tackle the question of how plant cells have evolved, and what this tells us about the evolution of other eukaryotes. Key protein families with membrane trafficking function, including Rabs, SNAREs, vesicle coat proteins, and ArfGAPs, show patterns of evolution that indicate both specialization and conservation in plants. These changes are accompanied by changes at the level of organelles and trafficking pathways between them. Major specializations include losses of several ancient Rabs, novel functions of many proteins, and apparent modification of trafficking in endocytosis and cytokinesis. Nevertheless, plants show extensive conservation of ancestral membrane trafficking genes, and conservation of their ancestral function in most duplicates. Moreover, plants have retained several ancient membrane trafficking genes lost in the evolution of animals and fungi. Considering this, plants such as Arabidopsis are highly valuable for investigating not only plant-specific aspects of membrane trafficking, but also general eukaryotic mechanisms.
Collapse
Affiliation(s)
- L D Barlow
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta,5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada
| | - J B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta,5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
829
|
Roy Choudhury S, Pandey S. Recently duplicated plant heterotrimeric Gα proteins with subtle biochemical differences influence specific outcomes of signal-response coupling. J Biol Chem 2017; 292:16188-16198. [PMID: 28827312 PMCID: PMC5625049 DOI: 10.1074/jbc.m117.793380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/10/2017] [Indexed: 12/31/2022] Open
Abstract
Heterotrimeric G-proteins, comprising Gα, Gβ, and Gγ subunits, regulate key signaling processes in eukaryotes. The Gα subunit determines the status of signaling by switching between inactive GDP-bound and active GTP-bound forms. Unlike animal systems, in which multiple Gα proteins with variable biochemical properties exist, plants have fewer, highly similar Gα subunits that have resulted from recent genome duplications. These proteins exhibit subtle differences in their GTP-binding, GDP/GTP-exchange, and GTP-hydrolysis activities, but the extent to which these differences contribute to affect plant signaling and development remains unknown. To evaluate this, we expressed native and engineered Gα proteins from soybean in an Arabidopsis Gα-null background and studied their effects on modulating a range of developmental and hormonal signaling phenotypes. Our results indicated that inherent biochemical differences in these highly similar Gα proteins are biologically relevant, and some proteins are more flexible than others in influencing the outcomes of specific signals. These observations suggest that alterations in the rate of the G-protein cycle itself may contribute to the specificity of response regulation in plants by affecting the duration of active signaling and/or by the formation of distinct protein-protein complexes. In species such as Arabidopsis having a single canonical Gα, this rate could be affected by regulatory proteins in the presence of specific signals, whereas in plants with multiple Gα proteins, an even more complex regulation may exist, which likely contributes to the specificity of signal-response coupling.
Collapse
Affiliation(s)
| | - Sona Pandey
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
830
|
Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, Lu H, Ma M, Liu L, Zhou J, Nan C, Qin Y, Wang J, Cui L, Liu H, Liang C, Qiao Z. The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. MOLECULAR PLANT 2017; 10:1224-1237. [PMID: 28866080 DOI: 10.1016/j.molp.2017.08.013] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 05/20/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.
Collapse
Affiliation(s)
- Lijun Zhang
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Xiuxiu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanhuai Han
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China; College of Agronomy, Shanxi Agricultural University, Taiyuan 030801, China
| | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingchuan Ma
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Longlong Liu
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Jianping Zhou
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Chenghu Nan
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Yongjun Qin
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Lin Cui
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China.
| | - Huimin Liu
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China.
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhijun Qiao
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China.
| |
Collapse
|
831
|
Lightfoot DJ, Jarvis DE, Ramaraj T, Lee R, Jellen EN, Maughan PJ. Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biol 2017; 15:74. [PMID: 28854926 PMCID: PMC5577786 DOI: 10.1186/s12915-017-0412-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Amaranth (Amaranthus hypochondriacus) was a food staple among the ancient civilizations of Central and South America that has recently received increased attention due to the high nutritional value of the seeds, with the potential to help alleviate malnutrition and food security concerns, particularly in arid and semiarid regions of the developing world. Here, we present a reference-quality assembly of the amaranth genome which will assist the agronomic development of the species. Results Utilizing single-molecule, real-time sequencing (Pacific Biosciences) and chromatin interaction mapping (Hi-C) to close assembly gaps and scaffold contigs, respectively, we improved our previously reported Illumina-based assembly to produce a chromosome-scale assembly with a scaffold N50 of 24.4 Mb. The 16 largest scaffolds contain 98% of the assembly and likely represent the haploid chromosomes (n = 16). To demonstrate the accuracy and utility of this approach, we produced physical and genetic maps and identified candidate genes for the betalain pigmentation pathway. The chromosome-scale assembly facilitated a genome-wide syntenic comparison of amaranth with other Amaranthaceae species, revealing chromosome loss and fusion events in amaranth that explain the reduction from the ancestral haploid chromosome number (n = 18) for a tetraploid member of the Amaranthaceae. Conclusions The assembly method reported here minimizes cost by relying primarily on short-read technology and is one of the first reported uses of in vivo Hi-C for assembly of a plant genome. Our analyses implicate chromosome loss and fusion as major evolutionary events in the 2n = 32 amaranths and clearly establish the homoeologous relationship among most of the subgenome chromosomes, which will facilitate future investigations of intragenomic changes that occurred post polyploidization. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0412-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D J Lightfoot
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), KAUST Environmental Epigenetic Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - D E Jarvis
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - T Ramaraj
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - R Lee
- Department of Plant & Wildlife Sciences, Brigham Young University, 5144 LSB, Provo, UT, 84602, USA
| | - E N Jellen
- Department of Plant & Wildlife Sciences, Brigham Young University, 5144 LSB, Provo, UT, 84602, USA
| | - P J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, 5144 LSB, Provo, UT, 84602, USA.
| |
Collapse
|
832
|
Brophy JAN, LaRue T, Dinneny JR. Understanding and engineering plant form. Semin Cell Dev Biol 2017; 79:68-77. [PMID: 28864344 DOI: 10.1016/j.semcdb.2017.08.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
Abstract
A plant's form is an important determinant of its fitness and economic value. Here, we review strategies for producing plants with altered forms. Historically, the process of changing a plant's form has been slow in agriculture, requiring iterative rounds of growth and selection. We discuss modern techniques for identifying genes involved in the development of plant form and tools that will be needed to effectively design and engineer plants with altered forms. Synthetic genetic circuits are highlighted for their potential to generate novel plant forms. We emphasize understanding development as a prerequisite to engineering and discuss the potential role of computer models in translating knowledge about single genes or pathways into a more comprehensive understanding of development.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Therese LaRue
- Stanford University, Department of Biology, Stanford, CA 94305, USA
| | - José R Dinneny
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA.
| |
Collapse
|
833
|
Milesi P, Weill M, Lenormand T, Labbé P. Heterogeneous gene duplications can be adaptive because they permanently associate overdominant alleles. Evol Lett 2017; 1:169-180. [PMID: 30283647 PMCID: PMC6121789 DOI: 10.1002/evl3.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/23/2017] [Indexed: 01/04/2023] Open
Abstract
Gene duplications are widespread in genomes, but their role in contemporary adaptation is not fully understood. Although mostly deleterious, homogeneous duplications that associate identical repeats of a locus often increase the quantity of protein produced, which can be selected in certain environments. However, another type exists: heterogeneous gene duplications, which permanently associate two (or more) alleles of a single locus on the same chromosome. They are far less studied, as only few examples of contemporary heterogeneous duplications are known. Haldane proposed in 1954 that they could be adaptive in situations of heterozygote advantage, or overdominance, but this hypothesis was never tested. To assess its validity, we took advantage of the well-known model of insecticide resistance in mosquitoes. We used experimental evolution to estimate the fitnesses associated with homozygous and heterozygous genotypes in different selection regimes. It first showed that balanced antagonist selective pressures frequently induce overdominance, generating stable polymorphic equilibriums. The frequency of equilibrium moreover depends on the magnitude of two antagonistic selective pressures, the survival advantage conferred by the resistant allele versus the selective costs it induces. We then showed that heterogeneous duplications are selected over single-copy alleles in such contexts. They allow the fixation of the heterozygote phenotype, providing an alternative and stable intermediate fitness trade-off. By allowing the rapid fixation of divergent alleles, this immediate advantage could contribute to the rarity of overdominance. More importantly, it also creates new material for long-term genetic innovation, making a crucial but underestimated contribution to the evolution of new genes and gene families.
Collapse
Affiliation(s)
- Pascal Milesi
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐Université de Montpellier‐IRD‐EPHE)Campus Université de MontpellierPlace Eugène Bataillon34095MontpellierCEDEX 05France
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐Université de Montpellier‐IRD‐EPHE)Campus Université de MontpellierPlace Eugène Bataillon34095MontpellierCEDEX 05France
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175, CNRS‐Université de Montpellier‐Université Paul‐Valéry Montpellier‐EPHE) 1919 route de MendeF‐34293MontpellierCEDEX 05France
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐Université de Montpellier‐IRD‐EPHE)Campus Université de MontpellierPlace Eugène Bataillon34095MontpellierCEDEX 05France
| |
Collapse
|
834
|
Wang W, Jiang W, Liu J, Li Y, Gai J, Li Y. Genome-wide characterization of the aldehyde dehydrogenase gene superfamily in soybean and its potential role in drought stress response. BMC Genomics 2017; 18:518. [PMID: 28687067 PMCID: PMC5501352 DOI: 10.1186/s12864-017-3908-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) represent a group of enzymes that detoxify aldehydes by facilitating their oxidation to carboxylic acids, and have been shown to play roles in plant response to abiotic stresses. However, the comprehensive analysis of ALDH superfamily in soybean (Glycine max) has been limited. RESULTS In present study, a total of 53 GmALDHs were identified in soybean, and grouped into 10 ALDH families according to the ALDH Gene Nomenclature Committee and phylogenetic analysis. These groupings were supported by their gene structures and conserved motifs. Soybean ALDH superfamily expanded mainly by whole genome duplication/segmental duplications. Gene network analysis identified 1146 putative co-functional genes of 51 GmALDHs. Gene Ontology (GO) enrichment analysis suggested the co-functional genes of these 51 GmALDHs were enriched (FDR < 1e-3) in the process of lipid metabolism, photosynthesis, proline catabolism, and small molecule catabolism. In addition, 22 co-functional genes of GmALDHs are related to plant response to water deprivation/water transport. GmALDHs exhibited various expression patterns in different soybean tissues. The expression levels of 13 GmALDHs were significantly up-regulated and 14 down-regulated in response to water deficit. The occurrence frequencies of three drought-responsive cis-elements (ABRE, CRT/DRE, and GTGCnTGC/G) were compared in GmALDH genes that were up-, down-, or non-regulated by water deficit. Higher frequency of these three cis-elements was observed for the group of up-regulated GmALDH genes as compared to the group of down- or non- regulated GmALDHs by drought stress, implying their potential roles in the regulation of soybean response to drought stress. CONCLUSIONS A total of 53 ALDH genes were identified in soybean genome and their phylogenetic relationships and duplication patterns were analyzed. The potential functions of GmALDHs were predicted by analyses of their co-functional gene networks, gene expression profiles, and cis-regulatory elements. Three GmALDH genes, including GmALDH3H2, GmALDH12A2 and GmALDH18B3, were highly induced by drought stress in soybean leaves. Our study provides a foundation for future investigations of GmALDH gene function in soybean.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Wei Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Juge Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Yang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
835
|
Liu Y, Wei H. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max. Genome 2017; 60:564-571. [PMID: 28314115 DOI: 10.1139/gen-2016-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (Ka/Ks < 1) to prevent accumulation of non-synonymous mutations and thus remained more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPIN genes were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Haichao Wei
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
836
|
Solís-Guzmán MG, Argüello-Astorga G, López-Bucio J, Ruiz-Herrera LF, López-Meza JE, Sánchez-Calderón L, Carreón-Abud Y, Martínez-Trujillo M. Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress. Gene Expr Patterns 2017. [PMID: 28642207 DOI: 10.1016/j.gep.2017.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sucrose is synthesized from UDP-Glc and Fru-6-phosphate via the activity of sucrose-phosphate synthase (SPS) enzymes, which produce Suc-6-phosphate. Suc-6-phosphate is rapidly dephosphorylated by phosphatases to produce Suc and inorganic phosphate. Arabidopsis has four sps genes encoding SPS enzymes. Of these enzymes, AtSPS1F and AtSPS2F have been grouped with other dicotyledonous SPS enzymes, while AtSPS3F and AtSPS4F are included in groups with both dicotyledonous and monocotyledonous SPS enzymes. In this work, we generated Arabidopsis thaliana transformants containing the promoter region of each sps gene fused to gfp::uidA reporter genes. A detailed characterization of expression conferred by the sps promoters in organs and tissues was performed. We observed expression of AtSPS1F, AtSPS2F and AtSPS3F in the columella roots of the plants that support sucrose synthesis. Hence, these findings support the idea that sucrose synthesis occurs in the columella cells, and suggests that sucrose has a role in this tissue. In addition, the expression of AtSPS4F was identified in embryos and suggests its participation in this developmental stage. Quantitative transcriptional analysis of A. thaliana plants grown in media with different osmotic potential showed that AtSPS2F and AtSPS4F respond to osmotic stress.
Collapse
Affiliation(s)
| | - Gerardo Argüello-Astorga
- Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P. C.P. 78216, Mexico
| | - José López-Bucio
- Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán CP 58000, Mexico
| | | | | | | | - Yazmín Carreón-Abud
- Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán CP 58000, Mexico
| | | |
Collapse
|
837
|
Castro PH, Lilay GH, Muñoz-Mérida A, Schjoerring JK, Azevedo H, Assunção AGL. Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Sci Rep 2017. [PMID: 28630437 PMCID: PMC5476651 DOI: 10.1038/s41598-017-03903-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors control important developmental and physiological processes in plants. In Arabidopsis thaliana, the three gene F-bZIP subfamily has been associated with zinc deficiency and salt stress response. Benefiting from the present abundance of plant genomic data, we performed an evolutionary and structural characterization of plant F-bZIPs. We observed divergence during seed plant evolution, into two groups and inferred different selective pressures for each. Group 1 contains AtbZIP19 and AtbZIP23 and appears more conserved, whereas Group 2, containing AtbZIP24, is more prone to gene loss and expansion events. Transcriptomic and experimental data reinforced AtbZIP19/23 as pivotal regulators of the zinc deficiency response, mostly via the activation of genes from the ZIP metal transporter family, and revealed that they are the main regulatory switch of AtZIP4. A survey of AtZIP4 orthologs promoters across different plant taxa revealed an enrichment of the Zinc Deficiency Response Element (ZDRE) to which both AtbZIP19/23 bind. Overall, our results indicate that while the AtbZIP24 function in the regulation of the salt stress response may be the result of neo-functionalization, the AtbZIP19/23 function in the regulation of the zinc deficiency response may be conserved in land plants (Embryophytes).
Collapse
Affiliation(s)
- Pedro Humberto Castro
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark
| | - Grmay H Lilay
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark
| | - Antonio Muñoz-Mérida
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Jan K Schjoerring
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark
| | - Herlânder Azevedo
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
| | - Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark. .,CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
838
|
Xing A, Last RL. A Regulatory Hierarchy of the Arabidopsis Branched-Chain Amino Acid Metabolic Network. THE PLANT CELL 2017; 29:1480-1499. [PMID: 28522547 PMCID: PMC5502462 DOI: 10.1105/tpc.17.00186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 05/18/2023]
Abstract
The branched-chain amino acids (BCAAs) Ile, Val, and Leu are essential nutrients that humans and other animals obtain from plants. However, total and relative amounts of plant BCAAs rarely match animal nutritional needs, and improvement requires a better understanding of the mechanistic basis for BCAA homeostasis. We present an in vivo regulatory model of BCAA homeostasis derived from analysis of feedback-resistant Arabidopsis thaliana mutants for the three allosteric committed enzymes in the biosynthetic network: threonine deaminase (also named l-O-methylthreonine resistant 1 [OMR1]), acetohydroxyacid synthase small subunit 2 (AHASS2), and isopropylmalate synthase 1 (IPMS1). In this model, OMR1 exerts primary control on Ile accumulation and functions independently of AHAS and IPMS AHAS and IPMS regulate Val and Leu homeostasis, where AHAS affects total Val+Leu and IPMS controls partitioning between these amino acids. In addition, analysis of feedback-resistant and loss-of-function single and double mutants revealed that each AHAS and IPMS isoenzyme contributes to homeostasis rather than being functionally redundant. The characterized feedback resistance mutations caused increased free BCAA levels in both seedlings and seeds. These results add to our understanding of the basis of in vivo BCAA homeostasis and inform approaches to improve the amount and balance of these essential nutrients in crops.
Collapse
Affiliation(s)
- Anqi Xing
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
839
|
Casola C, Betrán E. The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses? Genome Biol Evol 2017; 9:1351-1373. [PMID: 28605529 PMCID: PMC5470649 DOI: 10.1093/gbe/evx081] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. Gene retroposition is a mechanism of gene duplication whereby a gene's transcript is used as a template to generate retroposed gene copies, or retrocopies. Intriguingly, the formation of retrocopies depends upon the enzymatic machinery encoded by retrotransposable elements, genomic parasites occurring in the majority of eukaryotes. Most retrocopies are depleted of the regulatory regions found upstream of their parental genes; therefore, they were initially considered transcriptionally incompetent gene copies, or retropseudogenes. However, examples of functional retrocopies, or retrogenes, have accumulated since the 1980s. Here, we review what we have learned about retrocopies in animals, plants and other eukaryotic organisms, with a particular emphasis on comparative and population genomic analyses complemented with transcriptomic datasets. In addition, these data have provided information about the dynamics of the different "life cycle" stages of retrocopies (i.e., polymorphic retrocopy number variants, fixed retropseudogenes and retrogenes) and have provided key insights into the retroduplication mechanisms, the patterns and evolutionary forces at work during the fixation process and the biological function of retrogenes. Functional genomic and transcriptomic data have also revealed that many retropseudogenes are transcriptionally active and a biological role has been experimentally determined for many. Finally, we have learned that not only non-long terminal repeat retroelements but also long terminal repeat retroelements play a role in the emergence of retrocopies across eukaryotes. This body of work has shown that mRNA-mediated duplication represents a widespread phenomenon that produces an array of new genes that contribute to organismal diversity and adaptation.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, TX
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
840
|
Zhao T, Schranz ME. Network approaches for plant phylogenomic synteny analysis. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:129-134. [PMID: 28327435 DOI: 10.1016/j.pbi.2017.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 05/07/2023]
Abstract
Network analysis approaches have been widely applied across disciplines. In biology, network analysis is now frequently adopted to organize protein-protein interactions, organize pathways and/or to interpret gene co-expression patterns. However, comparative genomic analyses still largely rely on pairwise comparisons and linear visualizations between genomes. In this article, we discuss the challenges and prospects for establishing a generalized plant phylogenomic synteny network approach needed to interpret the wealth of new and emerging genomic data. We illustrate our approach with an example synteny network of B-class floral MADS-box genes. A broad synteny network approach holds great promise for understanding the evolutionary history of genes and genomes across broad phylogenetic groups and divergence times.
Collapse
Affiliation(s)
- Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
841
|
Iñiguez LP, Hernández G. The Evolutionary Relationship between Alternative Splicing and Gene Duplication. Front Genet 2017; 8:14. [PMID: 28261262 PMCID: PMC5306129 DOI: 10.3389/fgene.2017.00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/02/2017] [Indexed: 01/23/2023] Open
Abstract
The protein diversity that exists today has resulted from various evolutionary processes. It is well known that gene duplication (GD) along with the accumulation of mutations are responsible, among other factors, for an increase in the number of different proteins. The gene structure in eukaryotes requires the removal of non-coding sequences, introns, to produce mature mRNAs. This process, known as cis-splicing, referred to here as splicing, is regulated by several factors which can lead to numerous splicing arrangements, commonly designated as alternative splicing (AS). AS, producing several transcripts isoforms form a single gene, also increases the protein diversity. However, the evolution and manner for increasing protein variation differs between AS and GD. An important question is how are patterns of AS affected after a GD event. Here, we review the current knowledge of AS and GD, focusing on their evolutionary relationship. These two processes are now considered the main contributors to the increasing protein diversity and therefore their relationship is a relevant, yet understudied, area of evolutionary study.
Collapse
Affiliation(s)
- Luis P Iñiguez
- Programa de Genómica Funcional de Eucariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, México
| | - Georgina Hernández
- Programa de Genómica Funcional de Eucariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, México
| |
Collapse
|
842
|
Booker MA, DeLong A. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization. PLANT PHYSIOLOGY 2017; 173:1283-1300. [PMID: 28034953 PMCID: PMC5291013 DOI: 10.1104/pp.16.01768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/23/2016] [Indexed: 05/22/2023]
Abstract
Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events.
Collapse
Affiliation(s)
- Matthew A Booker
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
843
|
Abstract
Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.
Collapse
Affiliation(s)
- Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
844
|
Zhang YM, Xue JY, Liu LW, Sun XQ, Zhou GC, Chen M, Shao ZQ, Hang YY. Divergence and Conservative Evolution of XTNX Genes in Land Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1844. [PMID: 29123540 PMCID: PMC5662649 DOI: 10.3389/fpls.2017.01844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/10/2017] [Indexed: 05/06/2023]
Abstract
The Toll-interleukin-1 receptor (TIR) and Nucleotide-binding site (NBS) domains are two major components of the TIR-NBS-leucine-rich repeat family plant disease resistance genes. Extensive functional and evolutionary studies have been performed on these genes; however, the characterization of a small group of genes that are composed of atypical TIR and NBS domains, namely XTNX genes, is limited. The present study investigated this specific gene family by conducting genome-wide analyses of 59 green plant genomes. A total of 143 XTNX genes were identified in 51 of the 52 land plant genomes, whereas no XTNX gene was detected in any green algae genomes, which indicated that XTNX genes originated upon emergence of land plants. Phylogenetic analysis revealed that the ancestral XTNX gene underwent two rounds of ancient duplications in land plants, which resulted in the formation of clades I/II and clades IIa/IIb successively. Although clades I and IIb have evolved conservatively in angiosperms, the motif composition difference and sequence divergence at the amino acid level suggest that functional divergence may have occurred since the separation of the two clades. In contrast, several features of the clade IIa genes, including the absence in the majority of dicots, the long branches in the tree, the frequent loss of ancestral motifs, and the loss of expression in all detected tissues of Zea mays, all suggest that the genes in this lineage might have undergone pseudogenization. This study highlights that XTNX genes are a gene family originated anciently in land plants and underwent specific conservative pattern in evolution.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jia-Yu Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Li-Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Guang-Can Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Zhu-Qing Shao, Yue-Yu Hang,
| | - Yue-Yu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Zhu-Qing Shao, Yue-Yu Hang,
| |
Collapse
|
845
|
Mishra BS, Jamsheer K M, Singh D, Sharma M, Laxmi A. Genome-Wide Identification and Expression, Protein-Protein Interaction and Evolutionary Analysis of the Seed Plant-Specific BIG GRAIN and BIG GRAIN LIKE Gene Family. FRONTIERS IN PLANT SCIENCE 2017; 8:1812. [PMID: 29118774 PMCID: PMC5660992 DOI: 10.3389/fpls.2017.01812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 05/10/2023]
Abstract
BIG GRAIN1 (BG1) is an auxin-regulated gene which functions in auxin pathway and positively regulates biomass, grain size and yield in rice. However, the evolutionary origin and divergence of these genes are still unknown. In this study, we found that BG genes are probably originated in seed plants. We also identified that seed plants evolved a class of BIG GRAIN LIKE (BGL) genes which share conserved middle and C-terminal motifs with BG. The BG genes were present in all monocot and eudicot species analyzed; however, the BGL genes were absent in few monocot lineages. Both BG and BGL were found to be serine-rich proteins; however, differences in expansion and rates of retention after whole genome duplication events were observed. Promoters of BG and BGL genes were found to be enriched with auxin-responsive elements and the Arabidopsis thaliana BG and BGL genes were found to be auxin-regulated. The auxin-induced expression of AthBG2 was found to be dependent on the conserved ARF17/19 module. Protein-protein interaction analysis identified that AthBG2 interact with regulators of splicing, transcription and chromatin remodeling. Taken together, this study provides interesting insights about BG and BGL genes and incentivizes future work in this gene family which has the potential to be used for crop manipulation.
Collapse
|
846
|
Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress. Int J Mol Sci 2016; 17:ijms17122061. [PMID: 27941652 PMCID: PMC5187861 DOI: 10.3390/ijms17122061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 11/29/2022] Open
Abstract
Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.
Collapse
|