801
|
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. HYPOXIA 2015; 3:83-92. [PMID: 27774485 PMCID: PMC5045092 DOI: 10.2147/hp.s93413] [Citation(s) in RCA: 1313] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a non-physiological level of oxygen tension, a phenomenon common in a majority of malignant tumors. Tumor-hypoxia leads to advanced but dysfunctional vascularization and acquisition of epithelial-to-mesenchymal transition phenotype resulting in cell mobility and metastasis. Hypoxia alters cancer cell metabolism and contributes to therapy resistance by inducing cell quiescence. Hypoxia stimulates a complex cell signaling network in cancer cells, including the HIF, PI3K, MAPK, and NFĸB pathways, which interact with each other causing positive and negative feedback loops and enhancing or diminishing hypoxic effects. This review provides background knowledge on the role of tumor hypoxia and the role of the HIF cell signaling involved in tumor blood vessel formation, metastasis, and development of the resistance to therapy. Better understanding of the role of hypoxia in cancer progression will open new windows for the discovery of new therapeutics targeting hypoxic tumor cells and hypoxic microenvironment.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| |
Collapse
|
802
|
Kim JH, Lim IR, Joo HJ, Choi SC, Choi JH, Cui LH, Im L, Hong SJ, Lim DS. Sphere formation of adipose stem cell engineered by poly-2-hydroxyethyl methacrylate induces in vitro angiogenesis through fibroblast growth factor 2. Biochem Biophys Res Commun 2015; 468:372-9. [DOI: 10.1016/j.bbrc.2015.10.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 02/02/2023]
|
803
|
Danhier P, Krishnamachary B, Bharti S, Kakkad S, Mironchik Y, Bhujwalla ZM. Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors. Neoplasia 2015; 17:871-881. [PMID: 26696369 PMCID: PMC4688563 DOI: 10.1016/j.neo.2015.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023]
Abstract
Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE). The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2) for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies.
Collapse
Affiliation(s)
- Pierre Danhier
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Santosh Bharti
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
804
|
Senft D, Ronai ZA. Immunogenic, cellular, and angiogenic drivers of tumor dormancy--a melanoma view. Pigment Cell Melanoma Res 2015; 29:27-42. [PMID: 26514653 DOI: 10.1111/pcmr.12432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/27/2015] [Indexed: 12/27/2022]
Abstract
In tumor cells, the ability to maintain viability over long time periods without proliferation is referred to as a state of dormancy. Maintenance of dormancy is controlled by numerous cellular and environmental factors, from immune surveillance and tumor-stroma interaction to intracellular signaling. Interference of dormancy (to an 'awaken' state) is associated with reduced response to therapy, resulting in relapse or in metastatic burst. Thus, maintaining a dormant state should prolong therapeutic responses and delay metastasis. Technical obstacles in studying tumor dormancy have limited our understanding of underlying mechanisms and hampered our ability to target dormant cells. In this review, we summarize the progress of research in the field of immunogenic, angiogenic, and cellular dormancy in diverse malignancies with particular attention to our current understanding in melanoma.
Collapse
Affiliation(s)
- Daniela Senft
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
805
|
Mehrabani M, Najafi M, Kamarul T, Mansouri K, Iranpour M, Nematollahi MH, Ghazi-Khansari M, Sharifi AM. Deferoxamine preconditioning to restore impaired HIF-1α-mediated angiogenic mechanisms in adipose-derived stem cells from STZ-induced type 1 diabetic rats. Cell Prolif 2015; 48:532-49. [PMID: 26332145 DOI: 10.1111/cpr.12209] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Both excessive and insufficient angiogenesis are associated with progression of diabetic complications, of which poor angiogenesis is an important feature. Currently, adipose-derived stem cells (ADSCs) are considered to be a promising source to aid therapeutic neovascularization. However, functionality of these cells is impaired by diabetes which can result from a defect in hypoxia-inducible factor-1 (HIF-1), a key mediator involved in neovascularization. In the current study, we sought to explore effectiveness of pharmacological priming with deferoxamine (DFO) as a hypoxia mimetic agent, to restore the compromised angiogenic pathway, with the aid of ADSCs derived from streptozotocin (STZ)-induced type 1 diabetic rats ('diabetic ADSCs'). MATERIALS AND METHODS Diabetic ADSCs were treated with DFO and compared to normal and non-treated diabetic ADSCs for expression of HIF-1α, VEGF, FGF-2 and SDF-1, at mRNA and protein levels, using qRT-PCR, western blotting and ELISA assay. Activity of matrix metalloproteinases -2 and -9 were measured using a gelatin zymography assay. Angiogenic potential of conditioned media derived from normal, DFO-treated and non-treated diabetic ADSCs were determined by in vitro (in HUVECs) and in vivo experiments including scratch assay, three-dimensional tube formation testing and surgical wound healing models. RESULTS DFO remarkably enhanced expression of noted genes by mRNA and protein levels and restored activity of matrix metalloproteinases -2 and -9. Compromised angiogenic potential of conditioned medium derived from diabetic ADSCs was restored by DFO both in vitro and in vivo experiments. CONCLUSION DFO preconditioning restored neovascularization potential of ADSCs derived from diabetic rats by affecting the HIF-1α pathway.
Collapse
Affiliation(s)
- M Mehrabani
- Razi Drug Research Center, Department of pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - M Najafi
- Department of Biochemistry, Iran University of Medical Sciences, Tehran, Iran
| | - T Kamarul
- Tissue Engineering Group (TEG) & Research, National Orthopedic Centre of Excellence in Research & Learning (NOCERAL), Department of Orthopedics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - K Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - M Iranpour
- Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - M H Nematollahi
- Department of Biochemistry, Kerman University of Medical Sciences, Kerman, Iran
| | - M Ghazi-Khansari
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - A M Sharifi
- Razi Drug Research Center, Department of pharmacology, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
806
|
England CG, Gobin AM, Frieboes HB. Evaluation of uptake and distribution of gold nanoparticles in solid tumors. EUROPEAN PHYSICAL JOURNAL PLUS 2015; 130:231. [PMID: 27014559 PMCID: PMC4800753 DOI: 10.1140/epjp/i2015-15231-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although nanotherapeutics offer a targeted and potentially less toxic alternative to systemic chemotherapy in cancer treatment, nanotherapeutic transport is typically hindered by abnormal characteristics of tumor tissue. Once nanoparticles targeted to tumor cells arrive in the circulation of tumor vasculature, they must extravasate from irregular vessels and diffuse through the tissue to ideally reach all malignant cells in cytotoxic concentrations. The enhanced permeability and retention effect can be leveraged to promote extravasation of appropriately sized particles from tumor vasculature; however, therapeutic success remains elusive partly due to inadequate intra-tumoral transport promoting heterogeneous nanoparticle uptake and distribution. Irregular tumor vasculature not only hinders particle transport but also sustains hypoxic tissue kregions with quiescent cells, which may be unaffected by cycle-dependent chemotherapeutics released from nanoparticles and thus regrow tumor tissue following nanotherapy. Furthermore, a large proportion of systemically injected nanoparticles may become sequestered by the reticuloendothelial system, resulting in overall diminished efficacy. We review recent work evaluating the uptake and distribution of gold nanoparticles in pre-clinical tumor models, with the goal to help improve nanotherapy outcomes. We also examine the potential role of novel layered gold nanoparticles designed to address some of these critical issues, assessing their uptake and transport in cancerous tissue.
Collapse
Affiliation(s)
- Christopher G England
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
| | - André M Gobin
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Hermann B Frieboes
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA; Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
807
|
Neary R, Watson CJ, Baugh JA. Epigenetics and the overhealing wound: the role of DNA methylation in fibrosis. FIBROGENESIS & TISSUE REPAIR 2015; 8:18. [PMID: 26435749 PMCID: PMC4591063 DOI: 10.1186/s13069-015-0035-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022]
Abstract
Fibrosis is a progressive and potentially fatal process that can occur in numerous organ systems. Characterised by the excessive deposition of extracellular matrix proteins such as collagens and fibronectin, fibrosis affects normal tissue architecture and impedes organ function. Although a considerable amount of research has focused on the mechanisms underlying disease pathogenesis, current therapeutic options do not directly target the pro-fibrotic process. As a result, there is a clear unmet clinical need to develop new agents. Novel findings implicate a role for epigenetic modifications contributing to the progression of fibrosis by alteration of gene expression profiles. This review will focus on DNA methylation; its association with fibroblast differentiation and activation and the consequent buildup of fibrotic scar tissue. The potential use of therapies that modulate this epigenetic pathway for the treatment of fibrosis in several organ systems is also discussed.
Collapse
Affiliation(s)
- Roisin Neary
- UCD School of Medicine and Medical Science, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 Ireland
| | - Chris J Watson
- UCD School of Medicine and Medical Science, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 Ireland
| | - John A Baugh
- UCD School of Medicine and Medical Science, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 Ireland
| |
Collapse
|
808
|
Clanton R, Saucier D, Ford J, Akabani G. Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature. ENVIRONMENTAL RESEARCH 2015; 142:239-256. [PMID: 26183884 DOI: 10.1016/j.envres.2015.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Utilization of environmental stimuli for growth is the main factor contributing to the evolution of prokaryotes and eukaryotes, independently and mutualistically. Epigenetics describes an organism's ability to vary expression of certain genes based on their environmental stimuli. The diverse degree of dose-dependent responses based on their variances in expressed genetic profiles makes it difficult to ascertain whether hormesis or oncogenesis has or is occurring. In the medical field this is shown where survival curves used in determining radiotherapeutic doses have substantial uncertainties, some as large as 50% (Barendsen, 1990). Many in-vitro radiobiological studies have been limited by not taking into consideration the innate presence of microbes in biological systems, which have either grown symbiotically or pathogenically. Present in-vitro studies neglect to take into consideration the varied responses that commensal and opportunistic pathogens will have when exposed to the same stimuli and how such responses could act as stimuli for their macro/microenvironment. As a result many theories such as radiation carcinogenesis explain microscopic events but fail to describe macroscopic events (Cohen, 1995). As such, this review shows how microorganisms have the ability to perturb risks of cancer and enhance hormesis after irradiation. It will also look at bacterial significance in the microenvironment of the tumor before and during treatment. In addition, bacterial systemic communication after irradiation and the host's immune responses to infection could explain many of the phenomena associated with bystander effects. Therefore, the present literature review considers the paradigms of hormesis and oncogenesis in order to find a rationale that ties them all together. This relationship was thus characterized to be the microbiome.
Collapse
Affiliation(s)
- Ryan Clanton
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843, USA
| | - David Saucier
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA
| | - John Ford
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Gamal Akabani
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
809
|
Mirzaei Bavil F, Alipour MR, Keyhanmanesh R, Alihemmati A, Ghiyasi R, Mohaddes G. Ghrelin Decreases Angiogenesis, HIF-1α and VEGF Protein Levels in Chronic Hypoxia in Lung Tissue of Male Rats. Adv Pharm Bull 2015; 5:315-20. [PMID: 26504752 DOI: 10.15171/apb.2015.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Hypoxia is a condition of decreased availability of oxygen. When cells are exposed to a low oxygen environment, they impel the hypoxia responses to adapt to new situation. The hypoxia response leads to the activation of various cellular signaling pathways. The aim of this study was to evaluate the effect of ghrelin on angiogenesis, Hypoxia-Inducible-Factor-1α (HIF-1) and Vascular endothelial growth factor (VEGF) levels in normobaric hypoxia situation. METHODS Twenty four animals were divided into 4 groups (n=6): control (C), ghrelin (Gh), hypoxia (H), and hypoxic animals that received ghrelin (H+Gh). Hypoxia (11%) was induced by an Environmental Chamber System GO2 Altitude. Animals in ghrelin groups received a subcutaneous injection of ghrelin (150 μg/kg/day) for 14 days. RESULTS Our results showed that hypoxia significantly (p<0.05) increased angiogenesis without any significant changes on HIF-1 and VEGF levels, whereas ghrelin significantly (p<0.05) decreased angiogenesis, expression of HIF-1 and VEGF in this condition. Ghrelin administration did not show any significant changes in normal conditions. CONCLUSION Ghrelin had no effect on angiogenesis, expression of HIF-1 and VEGF in normal oxygen conditions but it reduced angiogenesis process in lung tissue with reducing the level of HIF and VEGF in hypoxic condition. Therefore, effect of ghrelin on angiogenesis could be related to blood oxygen level.
Collapse
Affiliation(s)
- Fariba Mirzaei Bavil
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafigheh Ghiyasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
810
|
Cattin AL, Burden JJ, Van Emmenis L, Mackenzie FE, Hoving JJA, Garcia Calavia N, Guo Y, McLaughlin M, Rosenberg LH, Quereda V, Jamecna D, Napoli I, Parrinello S, Enver T, Ruhrberg C, Lloyd AC. Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell 2015; 162:1127-39. [PMID: 26279190 PMCID: PMC4553238 DOI: 10.1016/j.cell.2015.07.021] [Citation(s) in RCA: 622] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/11/2015] [Accepted: 06/30/2015] [Indexed: 12/22/2022]
Abstract
The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue.
Collapse
Affiliation(s)
- Anne-Laure Cattin
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Lucie Van Emmenis
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Francesca E Mackenzie
- Department of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Julian J A Hoving
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | | | - Yanping Guo
- UCL Cancer Institute, UCL, 72 Huntley Street, London WC1E 6DD, UK
| | - Maeve McLaughlin
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Laura H Rosenberg
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Victor Quereda
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Denisa Jamecna
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Ilaria Napoli
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Simona Parrinello
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Tariq Enver
- UCL Cancer Institute, UCL, 72 Huntley Street, London WC1E 6DD, UK
| | - Christiana Ruhrberg
- Department of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK; UCL Cancer Institute, UCL, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
811
|
GUO SHIBING, BAI RUI, LIU WANLIN, ZHAO AIQING, ZHAO ZHENQUN, WANG YUXIN, WANG YONG, ZHAO WEI, WANG WENXUAN. MicroRNA-210 is upregulated by hypoxia-inducible factor-1α in the stromal cells of giant cell tumors of bone. Mol Med Rep 2015; 12:6185-92. [DOI: 10.3892/mmr.2015.4170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 03/20/2015] [Indexed: 11/05/2022] Open
|
812
|
Espinoza I, Peschke P, Karger CP. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors. Med Phys 2015; 42:90-102. [PMID: 25563250 DOI: 10.1118/1.4903298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. METHODS A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. RESULTS The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the model, tumor shrinkage was found to be significantly more important for reoxygenation than angiogenesis or decreased oxygen consumption due to an increased fraction of dead cells. In the studied HNSSC-case, the TCD50 values (dose at 50% TCP) decreased from 71.0 Gy under hypoxic to 53.6 Gy under the oxic condition. CONCLUSIONS The results obtained with the developed multiscale model are in accordance with expectations based on radiobiological principles and clinical experience. As the model is voxel-based, radiological imaging methods may help to provide the required 3D-characterization of the tumor prior to irradiation. For clinical application, the model has to be further validated with experimental and clinical data. If this is achieved, the model may be used to optimize fractionation schedules and dose distributions for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- I Espinoza
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile and Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - P Peschke
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - C P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
813
|
Kruse CR, Nuutila K, Lee CCY, Kiwanuka E, Singh M, Caterson EJ, Eriksson E, Sørensen JA. The external microenvironment of healing skin wounds. Wound Repair Regen 2015; 23:456-64. [PMID: 25857996 DOI: 10.1111/wrr.12303] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
Abstract
The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment methods that directly alter the features of the external wound microenvironment indirectly affect the internal wound microenvironment due to the exchange between the two compartments. In this review, we focus on the effects of temperature, pressure (positive and negative), hydration, gases (oxygen and carbon dioxide), pH, and anti-microbial treatment on the wound. These factors are well described in the literature and can be modified with treatment methods available in the clinic. Understanding the roles of these factors in wound pathophysiology is of central importance in wound treatment.
Collapse
Affiliation(s)
- Carla R Kruse
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cameron C Y Lee
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mansher Singh
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward J Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens A Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
814
|
Regulation of mTOR Signaling by Semaphorin 3F-Neuropilin 2 Interactions In Vitro and In Vivo. Sci Rep 2015; 5:11789. [PMID: 26156437 PMCID: PMC4496725 DOI: 10.1038/srep11789] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
Semaphorin 3F (SEMA3F) provides neuronal guidance cues via its ability to bind neuropilin 2 (NRP2) and Plexin A family molecules. Recent studies indicate that SEMA3F has biological effects in other cell types, however its mechanism(s) of function is poorly understood. Here, we analyze SEMA3F-NRP2 signaling responses in human endothelial, T cell and tumor cells using phosphokinase arrays, immunoprecipitation and Western blot analyses. Consistently, SEMA3F inhibits PI-3K and Akt activity, and responses are associated with the disruption of mTOR/rictor assembly and mTOR-dependent activation of the RhoA GTPase. We also find that the expression of vascular endothelial growth factor, as well as mTOR-inducible cellular activation responses and cytoskeleton stability are inhibited by SEMA3F-NRP2 interactions in vitro. In vivo, local and systemic overproduction of SEMA3F reduces tumor growth in NRP2-expressing xenografts. Taken together, SEMA3F regulates mTOR signaling in diverse human cell types, suggesting that it has broad therapeutic implications.
Collapse
|
815
|
Abstract
Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia.
Collapse
|
816
|
Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:549412. [PMID: 26146622 PMCID: PMC4471260 DOI: 10.1155/2015/549412] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/10/2015] [Accepted: 04/17/2015] [Indexed: 02/07/2023]
Abstract
The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy.
Collapse
|
817
|
|
818
|
Kim BH, Lee Y, Yoo H, Cui M, Lee S, Kim SY, Cho JU, Lee H, Yang BS, Kwon YG, Choi S, Kim TY. Anti-angiogenic activity of thienopyridine derivative LCB03-0110 by targeting VEGFR-2 and JAK/STAT3 Signalling. Exp Dermatol 2015; 24:503-9. [PMID: 25808463 DOI: 10.1111/exd.12698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 01/23/2023]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) and Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signalling are important for tumor angiogenesis and metastasis. In this study, we identified (3-(2-(3-(morpholinomethyl)phenyl)thieno[3,2-b]pyridin-7-ylamino)phenol (LCB03-0110) as a potent angiogenesis inhibitor. LCB03-0110 inhibited VEGFR-2 and JAK/STAT3 signalling in primary cultured human endothelial cells and cancer cells. An in vitro kinase assay and molecular modelling revealed that LCB03-0110 inhibited VEGFR-2, c-SRC and TIE-2 kinase activity via preferential binding at the ATP-binding site of their kinases. LCB03-0110 successfully occupied the hydrophobic pocket of VEGFR-2, c-SRC and TIE-2. LCB03-0110 also inhibited hypoxia-induced HIF/STAT3 and EGF- or angiopoietin-induced signalling cascades. In addition, LCB03-0110 inhibited VEGF-induced proliferation, viability, migration and capillary-like tube formation. LCB03-0110 also suppressed the sprouting of endothelial cells in the rat aorta and the formation of new blood vessels in the mouse Matrigel plug assay, but also suppressed pulmonary metastasis and tumor xenograft in mice. Our results suggest that LCB03-0110 is a potential candidate small molecule for blocking angiogenesis mediated by aberrant activation of VEGFR-2 and JAK/STAT3 signalling.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoonji Lee
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul, Korea
| | - Hyun Yoo
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Minghua Cui
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul, Korea
| | - Sungwoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | - Beom-Seok Yang
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sun Choi
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul, Korea
| | - Tae-Yoon Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
819
|
Metelo AM, Noonan HR, Li X, Jin Y, Baker R, Kamentsky L, Zhang Y, van Rooijen E, Shin J, Carpenter AE, Yeh JR, Peterson RT, Iliopoulos O. Pharmacological HIF2α inhibition improves VHL disease-associated phenotypes in zebrafish model. J Clin Invest 2015; 125:1987-97. [PMID: 25866969 DOI: 10.1172/jci73665] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/12/2015] [Indexed: 12/22/2022] Open
Abstract
Patients with a germline mutation in von Hippel-Lindau (VHL) develop renal cell cancers and hypervascular tumors of the brain, adrenal glands, and pancreas as well as erythrocytosis. These phenotypes are driven by aberrant expression of HIF2α, which induces expression of genes involved in cell proliferation, angiogenesis, and red blood cell production. Currently, there are no effective treatments available for VHL disease. Here, using an animal model of VHL, we report a marked improvement of VHL-associated phenotypes following treatment with HIF2α inhibitors. Inactivation of vhl in zebrafish led to constitutive activation of HIF2α orthologs and modeled several aspects of the human disease, including erythrocytosis, pathologic angiogenesis in the brain and retina, and aberrant kidney and liver proliferation. Treatment of vhl(-/-) mutant embryos with HIF2α-specific inhibitors downregulated Hif target gene expression in a dose-dependent manner, improved abnormal hematopoiesis, and substantially suppressed erythrocytosis and angiogenic sprouting. Moreover, pharmacologic inhibition of HIF2α reversed the compromised cardiac contractility of vhl(-/-) embryos and partially rescued early lethality. This study demonstrates that small-molecule targeting of HIF2α improves VHL-related phenotypes in a vertebrate animal model and supports further exploration of this strategy for treating VHL disease.
Collapse
|
820
|
SCF, regulated by HIF-1α, promotes pancreatic ductal adenocarcinoma cell progression. PLoS One 2015; 10:e0121338. [PMID: 25799412 PMCID: PMC4370420 DOI: 10.1371/journal.pone.0121338] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Stem cell factor (SCF) and hypoxia-inducible factor-1α (HIF-1α) both have important functions in pancreatic ductal adenocarcinoma (PDAC). This study aims to analyze the expression and clinicopathological significance of SCF and HIF-1α in PDAC specimens and explore the molecular mechanism at PDAC cells in vitro and in vivo. We showed that the expression of SCF was significantly correlated with HIF-1α expression via Western blot, PCR, chromatin immunoprecipitation (ChIP) assay, and luciferase assay analysis. The SCF level was also correlated with lymph node metastasis and the pathological tumor node metastasis (pTNM) stage in PDAC samples. The SCF higher-expression group had significantly lower survival rates than the SCF lower-expression group (p<0.05). Hypoxia up-regulated the expression of SCF through the hypoxia-inducible factor (HIF)-1α in PDAC cells at the protein and RNA levels. When HIF-1α was knocked down by RNA interference, the SCF level decreased significantly. Additionally, ChIP and luciferase results demonstrated that HIF-1α can directly bind to the hypoxia response element (HRE) region of the SCF promoter and activate the SCF transcription under hypoxia. The results of colony formation, cell scratch, and transwell migration assay showed that SCF promoted the proliferation and invasion of PANC-1 cells under hypoxia. Furthermore, the down-regulated ability of cell proliferation and invasion following HIF-1α knockdown was rescued by adding exogenous SCF under hypoxia in vitro. Finally, when the HIF-1α expression was inhibited by digoxin, the tumor volume and the SCF level decreased, thereby proving the relationship between HIF-1α and SCF in vivo. In conclusion, SCF is an important factor for the growth of PDAC. In our experiments, we proved that SCF, a downstream gene of HIF-1α, can promote the development of PDAC under hypoxia. Thus, SCF might be a potential therapeutic target for PDAC.
Collapse
|
821
|
Abstract
The tumour microenvironment, long considered as determining cancer development, still offers research fields to define hallmarks of cancer. An early key-step, the “angiogenic switch”, allows tumour growth. Pathologic angiogenesis is a cancer hallmark as it features results of tumour-specific properties that can be summarised as a response to hypoxia. The hypoxic state occurs when the tumour mass reaches a volume sufficient not to permit oxygen diffusion inside the tumour centre. Thus tumour cells turn on adaptation mechanisms to the low pO2 level, inducing biochemical responses in terms of cytokines/chemokines/receptors and consequently recruitment of specific cell types, as well as cell-selection inside the tumour. Moreover, these changes are orchestrated by the microRNA balance strongly reflecting the hypoxic milieu and mediating the cross-talk between endothelial and tumour cells. MicroRNAs control of the endothelial precursor-vascular settings shapes the niche for selection of cancer stem cells.
Collapse
|
822
|
Pathania AS, Wani ZA, Guru SK, Kumar S, Bhushan S, Korkaya H, Seals DF, Kumar A, Mondhe DM, Ahmed Z, Chandan BK, Malik F. The anti-angiogenic and cytotoxic effects of the boswellic acid analog BA145 are potentiated by autophagy inhibitors. Mol Cancer 2015; 14:6. [PMID: 25608686 PMCID: PMC4509694 DOI: 10.1186/1476-4598-14-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 12/16/2014] [Indexed: 12/17/2022] Open
Abstract
Background While angiogenesis inhibitors represent a viable cancer therapy, there is preclinical and clinical data to suggest that many tumors develop resistance to such treatments. Moreover, previous studies have revealed a complex association between autophagy and angiogenesis, and their collective influence on tumorigenesis. Autophagy has been implicated in cytoprotection and tumor promotion, and as such may represent an alternative way of targeting apoptosis-resistant cancer cells. This study explored the anti-cancer agent and boswellic acid analog BA145 as an inducer of autophagy and angiogenesis-mediated cytoprotection of tumor cells. Methods Flow cytometry, western blotting, and confocal microscopy were used to investigate the role of BA145 mediated autophagy. ELISA, microvessel sprouting, capillary structure formation, aortic ring and wound healing assays were performed to determine the relationship between BA145 triggered autophagy and angiogenesis. Flow cytometery, western blotting, and microscopy were employed to examine the mechanism of BA145 induced cell death and apoptosis. Live imaging and tumor volume analysis were carried out to evaluate the effect of BA145 triggered autophagy on mouse tumor xenografts. Results BA145 induced autophagy in PC-3 cancer cells and HUVECs significantly impeded its negative regulation on cell proliferation, migration, invasion and tube formation. These effects of BA145 induced autophagy were observed under both normoxic and hypoxic conditions. However, inhibition of autophagy using either pharmacological inhibitors or RNA interference enhanced the BA145 mediated death of these cells. Similar observations were noticed with sunitinib, the anti-angiogenic properties of which were significantly enhanced during combination treatments with autophagy inhibitors. In mouse tumor xenografts, co-treatment with chloroquinone and BA145 led to a considerable reduction in tumor burden and angiogenesis compared to BA145 alone. Conclusion These studies reveal the essential role of BA145 triggered autophagy in the regulation of angiogenesis and cytoprotection. It also suggests that the combination of the autophagy inhibitors with chemotherapy or anti-angiogenic agents may be an effective therapeutic approach against cancer. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-14-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| | - Zahoor A Wani
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India.
| | - Santosh K Guru
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India.
| | - Suresh Kumar
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| | - Shashi Bhushan
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India.
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Georgia Regents University Cancer Center, 1410 Laney Walker Boulevard CN2136, Augusta, GA, 30912, USA.
| | - Darren F Seals
- Department of Biology, Appalachian State University, 572 Rivers Street, Boone, NC, 28608, USA.
| | - Ajay Kumar
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India.
| | - Dilip M Mondhe
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India.
| | - Zabeer Ahmed
- Department of Inflammation Pharmacology, Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India.
| | - Bal K Chandan
- Department of Inflammation Pharmacology, Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India.
| | - Fayaz Malik
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, 180001, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| |
Collapse
|
823
|
Perrotta I, Moraca FM, Sciangula A, Aquila S, Mazzulla S. HIF-1α and VEGF: Immunohistochemical Profile and Possible Function in Human Aortic Valve Stenosis. Ultrastruct Pathol 2015; 39:198-206. [PMID: 25569379 DOI: 10.3109/01913123.2014.991884] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Calcific aortic stenosis (CAS) is the most common valvular disease in Western countries. Histological findings in patients with CAS extremely resemble those of atherosclerosis and include accumulation and modification of lipoproteins, inflammation, extracellular matrix remodeling, and calcification. Angiogenesis is another prominent feature of CAS; however, there is only a limited amount of data available regarding the mechanisms behind the pathological neovascularization of a structure that is originally avascular. The present study aims to identify the molecular basis that regulates blood vessel growth in stenotic aortic valves, focusing on the role of HIF-1α and VEGF pathway. A total of 19 native degenerating aortic valves obtained at valve replacement surgery have been processed for Western blot, immunohistochemical, morphometric, and ultrastructural analyses. First, we have demonstrated the adverse ECM remodeling and the significant thickening of the leaflet also showing that HIF-1α and VEGF are significantly upregulated in the stenotic valves, are locally produced and colocalize with angiogenesis and areas of calcification. Next, we have characterized, for the first time to the best of our knowledge, the morphological features of the neovasculature evidencing the presence of intact blood vessels in close proximity to the mineralized zones. These results suggest that the complex structural remodeling of the matrix might reduce oxygen availability in the valve cusp contributing to the stabilization of HIF-1α that in turn induces a metabolic adaptation through the upregulation of VEGF and the formation of new blood vessels not only to overcome the hypoxic state but also to sustain the calcification process.
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria , Rende , Italy
| | | | | | | | | |
Collapse
|
824
|
Shi J, Wei Y, Xia J, Wang S, Wu J, Chen F, Huang G, Chen J. CXCL12-CXCR4 contributes to the implication of bone marrow in cancer metastasis. Future Oncol 2014; 10:749-59. [PMID: 24799056 DOI: 10.2217/fon.13.193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CXCL12-CXCR4 axis is postulated to be a key pathway in the interaction between (cancer) stem cells and their surrounding supportive cells in the (cancer) stem cell niche. As the bone marrow constitutes a unique microenvironment for cancer cells, the CXCL12-CXCR4 axis assists the bone marrow in regulating cancer progression. This interaction can be disrupted by CXCR4 antagonists, and this concept is being used clinically to harvest hematopoietic stem/progenitor cells from the bone marrow. The functions of CXCL12-CXCR4 axis in cancer cell-tumor microenvironment interaction and angiogenesis have been recently studied. This review focuses on how CXCL12-CXCR4 helps the bone marrow in creating a tumor mircoenvironment that results in the cancer metastasis. It also discusses ongoing research regarding the clinical feasibility of CXCR4 inhibitors.
Collapse
Affiliation(s)
- Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | | | | | | | | | | | | | | |
Collapse
|
825
|
Filippi L, Dal Monte M, Casini G, Daniotti M, Sereni F, Bagnoli P. Infantile hemangiomas, retinopathy of prematurity and cancer: a common pathogenetic role of the β-adrenergic system. Med Res Rev 2014; 35:619-52. [PMID: 25523517 DOI: 10.1002/med.21336] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The serendipitous demonstration that the nonselective β-adrenergic receptor (β-AR) antagonist propranolol promotes the regression of infantile hemangiomas (IHs) aroused interest around the involvement of the β-adrenergic system in angiogenic processes. The efficacy of propranolol was related to the β2-AR blockade and the consequent inhibition of the production of vascular endothelial growth factor (VEGF), suggesting the hypothesis that propranolol could also be effective in treating retinopathy of prematurity (ROP), a retinal pathology characterized by VEGF-induced neoangiogenesis. Consequent to the encouraging animal studies, a pilot clinical trial showed that oral propranolol protects newborns from ROP progression, even though this treatment is not sufficiently safe. Further, animal studies clarified the role of β3-ARs in the development of ROP and, together with several preclinical studies demonstrating the key role of the β-adrenergic system in tumor progression, vascularization, and metastasis, prompted us to also investigate the participation of β3-ARs in tumor growth. The aim of this review is to gather the recent findings on the role of the β-adrenergic system in IHs, ROP, and cancer, highlighting the fact that these different pathologies, triggered by different pathogenic noxae, share common pathogenic mechanisms characterized by the presence of hypoxia-induced angiogenesis, which may be contrasted by targeting the β-adrenergic system. The mechanisms characterizing the pathogenesis of IHs, ROP, and cancer may also be active during the fetal-neonatal development, and a great contribution to the knowledge on the role of β-ARs in diseases characterized by chronic hypoxia may come from research focusing on the fetal and neonatal period.
Collapse
Affiliation(s)
- Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, "A. Meyer" University Children's Hospital, Florence, Italy
| | | | | | | | | | | |
Collapse
|
826
|
de Theije CC, Langen RCJ, Lamers WH, Gosker HR, Schols AMWJ, Köhler SE. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. J Appl Physiol (1985) 2014; 118:200-11. [PMID: 25429096 DOI: 10.1152/japplphysiol.00624.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers.
Collapse
Affiliation(s)
- C C de Theije
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands; Department of Anatomy and Embryology, Maastricht University Medical Center+, Maastricht, The Netherlands; and
| | - R C J Langen
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands; Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - W H Lamers
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands; Department of Anatomy and Embryology, Maastricht University Medical Center+, Maastricht, The Netherlands; and
| | - H R Gosker
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands; Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - A M W J Schols
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands; Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - S E Köhler
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands; Department of Anatomy and Embryology, Maastricht University Medical Center+, Maastricht, The Netherlands; and
| |
Collapse
|
827
|
Biswal MR, Prentice HM, Dorey CK, Blanks JC. A hypoxia-responsive glial cell-specific gene therapy vector for targeting retinal neovascularization. Invest Ophthalmol Vis Sci 2014; 55:8044-53. [PMID: 25377223 DOI: 10.1167/iovs.14-13932] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Müller cells, the major glial cell in the retina, play a significant role in retinal neovascularization in response to tissue hypoxia. We previously designed and tested a vector using a hypoxia-responsive domain and a glial fibrillary acidic protein (GFAP) promoter to drive green fluorescent protein (GFP) expression in Müller cells in the murine model of oxygen-induced retinopathy (OIR). This study compares the efficacy of regulated and unregulated Müller cell delivery of endostatin in preventing neovascularization in the OIR model. METHODS Endostatin cDNA was cloned into plasmids with hypoxia-regulated GFAP or unregulated GFAP promoters, and packaged into self-complementary adeno-associated virus serotype 2 vectors (scAAV2). Before placement in hyperoxia on postnatal day (P)7, mice were given intravitreal injections of regulated or unregulated scAAV2, capsid, or PBS. Five days after return to room air, on P17, neovascular and avascular areas, as well as expression of the transgene and vascular endothelial growth factor (VEGF), were compared in OIR animals treated with a vector, capsid, or PBS. RESULTS The hypoxia-regulated, glial-specific, vector-expressing endostatin reduced neovascularization by 93% and reduced the central vaso-obliteration area by 90%, matching the results with the unregulated GFAP-Endo vector. Retinas treated with the regulated endostatin vector expressed substantial amounts of endostatin protein, and significantly reduced VEGF protein. Endostatin production from the regulated vector was undetectable in retinas with undamaged vasculature. CONCLUSIONS These findings suggest that the hypoxia-regulated, glial cell-specific vector expressing endostatin may be useful for treatment of neovascularization in proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Manas R Biswal
- Integrative Biology PhD Program, Florida Atlantic University, Boca Raton, Florida, United States
| | - Howard M Prentice
- Center for Complex Systems and Brain Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, Florida, United States Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| | - C Kathleen Dorey
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States
| | - Janet C Blanks
- Center for Complex Systems and Brain Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, Florida, United States
| |
Collapse
|
828
|
Hypoxic signaling during tissue repair and regenerative medicine. Int J Mol Sci 2014; 15:19791-815. [PMID: 25365172 PMCID: PMC4264139 DOI: 10.3390/ijms151119791] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/12/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
In patients with chronic wounds, autologous tissue repair is often not sufficient to heal the wound. These patients might benefit from regenerative medicine or the implantation of a tissue-engineered scaffold. Both wound healing and tissue engineering is dependent on the formation of a microvascular network. This process is highly regulated by hypoxia and the transcription factors hypoxia-inducible factors-1α (HIF-1α) and -2α (HIF-2α). Even though much is known about the function of HIF-1α in wound healing, knowledge about the function of HIF-2α in wound healing is lacking. This review focuses on the function of HIF-1α and HIF-2α in microvascular network formation, wound healing, and therapy strategies.
Collapse
|
829
|
Novel benzoxazines as inhibitors of angiogenesis. Invest New Drugs 2014; 33:45-52. [DOI: 10.1007/s10637-014-0172-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022]
|
830
|
Abstract
Proliferative thyroid diseases are more prevalent in females than in males. Upon the onset of puberty, the incidence of thyroid cancer increases in females only and declines again after menopause. Estrogen is a potent growth factor both for benign and malignant thyroid cells that may explain the sex difference in the prevalence of thyroid nodules and thyroid cancer. It exerts its growth-promoting effect through a classical genomic and a non-genomic pathway, mediated via a membrane-bound estrogen receptor. This receptor is linked to the tyrosine kinase signaling pathways MAPK and PI3K. In papillary thyroid carcinomas, these pathways may be activated either by a chromosomal rearrangement of the tyrosine receptor kinase TRKA, by RET/PTC genes, or by a BRAF mutation and, in addition, in females they may be stimulated by high levels of estrogen. Furthermore, estrogen is involved in the regulation of angiogenesis and metastasis that are critical for the outcome of thyroid cancer. In contrast to other carcinomas, however, detailed knowledge on this regulation is still missing for thyroid cancer.
Collapse
Affiliation(s)
- Michael Derwahl
- Department of MedicineSt Hedwig Hospital and Charite, University Medicine Berlin, Grosse Hamburger Straße 5-11, 10115 Berlin, Germany
| | - Diana Nicula
- Department of MedicineSt Hedwig Hospital and Charite, University Medicine Berlin, Grosse Hamburger Straße 5-11, 10115 Berlin, Germany
| |
Collapse
|
831
|
Muz B, de la Puente P, Azab F, Luderer M, Azab AK. The role of hypoxia and exploitation of the hypoxic environment in hematologic malignancies. Mol Cancer Res 2014; 12:1347-54. [PMID: 25158954 DOI: 10.1158/1541-7786.mcr-14-0028] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor hypoxia is a well-described phenomenon during the progression of solid tumors affecting cell signaling pathways and cell metabolism; however, its role in hematologic malignancies has not been given the same attention in the literature. Therefore, this review focuses on the comparative differences between solid and hematologic malignancies with emphasis on the role of hypoxia during tumorigenesis and progression. In addition, contribution of the bone marrow and angiogenic environment are also discussed. Insight is provided into the role of hypoxia in metastatic spread, stemness, and drug resistance in hematologic conditions. Finally, emerging therapeutic strategies such as small-molecule prodrugs and hypoxia-inducible factor (HIF) targeting approaches are outlined to combat hypoxic cells and/or adaptive mechanisms in the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Micah Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
832
|
Talekar M, Boreddy SR, Singh A, Amiji M. Tumor aerobic glycolysis: new insights into therapeutic strategies with targeted delivery. Expert Opin Biol Ther 2014; 14:1145-59. [PMID: 24762115 DOI: 10.1517/14712598.2014.912270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Cancer cells acclimatize to the harsh tumor microenvironment by altering cellular metabolism in favor of aerobic glycolysis. This process provides a source of energy and also generates essential components for macromolecular biosynthesis, which enables cellular survival. As the dependence of cancer cells on glycolysis affects tumorigenesis, it has become an attractive target for therapeutic intervention. Several preclinical studies have shown the effectiveness of using biological targets from the glycolytic pathway for anticancer therapy. AREAS COVERED This review provides an insight into the glycolytic pathway, highlighting potential targets for glycolytic inhibition. We then discuss recent advancement in delivery strategies that have the potential to circumvent some of the problems posed by current glycolytic inhibitors, enabling resurrection of abandoned therapeutic agents. EXPERT OPINION Targeting the glycolysis pathway is a tactical approach for cancer therapy. However, the current nonspecific therapeutic strategies have several drawbacks such as poor bioavailability, unfavorable pharmacokinetic profile and associated nonspecific toxicity, thereby limiting preclinical investigation. In recent years, nanoparticle systems have received recognition for the delivery of therapeutic agents directly to the tumor tissue. Thus, it is envisaged that this strategy can be expanded for the delivery of current glycolytic inhibitors specifically to tumor tissues providing improved anticancer activity.
Collapse
Affiliation(s)
- Meghna Talekar
- Northeastern University, Pharmaceutical Sciences , 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115 , USA
| | | | | | | |
Collapse
|
833
|
Weavers H, Skaer H. Tip cells: master regulators of tubulogenesis? Semin Cell Dev Biol 2014; 31:91-9. [PMID: 24721475 PMCID: PMC4071413 DOI: 10.1016/j.semcdb.2014.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022]
Abstract
Single tip cells or groups of leading cells develop at the forefront of growing tissues. Tip cells regulate tubule growth and morphogenesis. Tip cells develop distinctive patterns of gene expression and specialised characteristics. Tip cells are required for health and may be involved in the progression of cancer.
The normal development of an organ depends on the coordinated regulation of multiple cell activities. Focusing on tubulogenesis, we review the role of specialised cells or groups of cells that are selected from within tissue primordia and differentiate at the outgrowing tips or leading edge of developing tubules. Tip or leading cells develop distinctive patterns of gene expression that enable them to act both as sensors and transmitters of intercellular signalling. This enables them to explore the environment, respond to both tissue intrinsic signals and extrinsic cues from surrounding tissues and to regulate the behaviour of their neighbours, including the setting of cell fate, patterning cell division, inducing polarity and promoting cell movement and cell rearrangements by neighbour exchange. Tip cells are also able to transmit mechanical tension to promote tissue remodelling and, by interacting with the extracellular matrix, they can dictate migratory pathways and organ shape. Where separate tubular structures fuse to form networks, as in the airways of insects or the vascular system of vertebrates, specialised fusion tip cells act to interconnect disparate elements of the developing network. Finally, we consider their importance in the maturation of mature physiological function and in the development of disease.
Collapse
Affiliation(s)
- Helen Weavers
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | - Helen Skaer
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
834
|
Colton CK. Oxygen supply to encapsulated therapeutic cells. Adv Drug Deliv Rev 2014; 67-68:93-110. [PMID: 24582600 DOI: 10.1016/j.addr.2014.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
Therapeutic cells encapsulated in immunobarrier devices have promise for treatment of a variety of human diseases without immunosuppression. The absence of sufficient oxygen supply to maintain viability and function of encapsulated tissue has been the most critical impediment to progress. Within the framework of oxygen supply limitations, we review the major issues related to development of these devices, primarily in the context of encapsulated islets of Langerhans for treating diabetes, including device designs and materials, supply of tissue, protection from immune rejection, and maintenance of cell viability and function. We describe various defensive measures investigated to enhance survival of transplanted tissue, and we review the diverse approaches to enhancement of oxygen transport to encapsulated tissue, including manipulation of diffusion distances and oxygen permeability of materials, induction of neovascularization with angiogenic factors and vascularizing membranes, and methods for increasing the oxygen concentration adjacent to encapsulated tissue so as to exceed that in the microvasculature. Recent developments, particularly in this latter area, suggest that the field is ready for clinical trials of encapsulated therapeutic cells to treat diabetes.
Collapse
|
835
|
Int6/eIF3e is essential for proliferation and survival of human glioblastoma cells. Int J Mol Sci 2014; 15:2172-90. [PMID: 24481065 PMCID: PMC3958844 DOI: 10.3390/ijms15022172] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/25/2013] [Accepted: 01/23/2014] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas (GBM) are very aggressive and malignant brain tumors, with frequent relapses despite an appropriate treatment combining surgery, chemotherapy and radiotherapy. In GBM, hypoxia is a characteristic feature and activation of Hypoxia Inducible Factors (HIF-1α and HIF-2α) has been associated with resistance to anti-cancer therapeutics. Int6, also named eIF3e, is the “e” subunit of the translation initiation factor eIF3, and was identified as novel regulator of HIF-2α. Eukaryotic initiation factors (eIFs) are key factors regulating total protein synthesis, which controls cell growth, size and proliferation. The functional significance of Int6 and the effect of Int6/EIF3E gene silencing on human brain GBM has not yet been described and its role on the HIFs is unknown in glioma cells. In the present study, we show that Int6/eIF3e suppression affects cell proliferation, cell cycle and apoptosis of various GBM cells. We highlight that Int6 inhibition induces a diminution of proliferation through cell cycle arrest and increased apoptosis. Surprisingly, these phenotypes are independent of global cell translation inhibition and are accompanied by decreased HIF expression when Int6 is silenced. In conclusion, we demonstrate here that Int6/eIF3e is essential for proliferation and survival of GBM cells, presumably through modulation of the HIFs.
Collapse
|
836
|
miR-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma. Proc Natl Acad Sci U S A 2013; 111:291-6. [PMID: 24368849 DOI: 10.1073/pnas.1314341111] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) and the mesenchymal GBM subtype in particular are highly malignant tumors that frequently exhibit regions of severe hypoxia and necrosis. Because these features correlate with poor prognosis, we investigated microRNAs whose expression might regulate hypoxic GBM cell survival and growth. We determined that the expression of microRNA-218 (miR-218) is decreased significantly in highly necrotic mesenchymal GBM, and orthotopic tumor studies revealed that reduced miR-218 levels confer GBM resistance to chemotherapy. Importantly, miR-218 targets multiple components of receptor tyrosine kinase (RTK) signaling pathways, and miR-218 repression increases the abundance and activity of multiple RTK effectors. This elevated RTK signaling also promotes the activation of hypoxia-inducible factor (HIF), most notably HIF2α. We further show that RTK-mediated HIF2α regulation is JNK dependent, via jun proto-oncogene. Collectively, our results identify an miR-218-RTK-HIF2α signaling axis that promotes GBM cell survival and tumor angiogenesis, particularly in necrotic mesenchymal tumors.
Collapse
|
837
|
Abstract
Thyroid cancer incidence is rising annually largely related to enhanced detection and early stage well-differentiated primary tumors. The prognosis for patients with early stage thyroid cancer is outstanding with most patients being cured with surgery. In selected cases, I-131 is administered to treat known or suspected residual or metastatic disease. Even patients with loco-regional metastases typically have an outstanding long-term prognosis, albeit with monitoring and occasional intervention for residual or recurrent disease. By contrast, individuals with distant metastases from thyroid cancer, particularly older patients with larger metastatic burdens and those with poorly differentiated tumors, have a poor prognosis. Patients with metastatic anaplastic thyroid cancer have a particularly poor prognosis. Published clinical trials indicate that transient disease control and partial remissions can be achieved with kinase inhibitor therapy directed toward angiogenic targets and that in some cases I-131 uptake can be enhanced. However, the direct targets of activity in metastatic lesions are incompletely defined and clear evidence that these treatments increase the duration or quality of life of patients is lacking, underscoring the need for improved knowledge regarding the metastatic process to inform the development of new therapies. In this review, we will focus on current data and hypotheses regarding key regulators of metastatic dormancy, metastatic progression, and the role of putative cancer stem cells.
Collapse
Affiliation(s)
- John E. Phay
- Division of Surgical Oncology, Department of Surgery, The Ohio State University College of Medicine; Arthur G. James Comprehensive Cancer Center and Richard G. Solove Research Institute, Columbus, OH 43210
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine; Arthur G. James Comprehensive Cancer Center and Richard G. Solove Research Institute, Columbus, OH 43210
| |
Collapse
|
838
|
England CG, Priest T, Zhang G, Sun X, Patel DN, McNally LR, van Berkel V, Gobin AM, Frieboes HB. Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles. Int J Nanomedicine 2013; 8:3603-17. [PMID: 24124360 PMCID: PMC3794839 DOI: 10.2147/ijn.s51668] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nano-scale particles sized 10–400 nm administered systemically preferentially extravasate from tumor vasculature due to the enhanced permeability and retention effect. Therapeutic success remains elusive, however, because of inhomogeneous particle distribution within tumor tissue. Insufficient tumor vascularization limits particle transport and also results in avascular hypoxic regions with non-proliferating cells, which can regenerate tissue after nanoparticle-delivered cytotoxicity or thermal ablation. Nanoparticle surface modifications provide for increasing tumor targeting and uptake while decreasing immunogenicity and toxicity. Herein, we created novel two layer gold-nanoshell particles coated with alkanethiol and phosphatidylcholine, and three layer nanoshells additionally coated with high-density-lipoprotein. We hypothesize that these particles have enhanced penetration into 3-dimensional cell cultures modeling avascular tissue when compared to standard poly(ethylene glycol) (PEG)-coated nanoshells. Particle uptake and distribution in liver, lung, and pancreatic tumor cell cultures were evaluated using silver-enhancement staining and hyperspectral imaging with dark field microscopy. Two layer nanoshells exhibited significantly higher uptake compared to PEGylated nanoshells. This multilayer formulation may help overcome transport barriers presented by tumor vasculature, and could be further investigated in vivo as a platform for targeted cancer therapies.
Collapse
|
839
|
Pedron S, Becka E, Harley BAC. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials 2013; 34:7408-17. [PMID: 23827186 DOI: 10.1016/j.biomaterials.2013.06.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
Human glioblastoma multiforme (hGBM) is the most common, aggressive, and deadly form of brain cancer. A major obstacle to understanding the impact of extracellular cues on glioblastoma invasion is the absence of model matrix systems able to replicate compositional and structural elements of the glioma mass as well as the surrounding brain tissue. Contact with a primary extracellular matrix component in the brain, hyaluronan, is believed to play a pivotal role in glioma cell invasion and malignancy. In this study we report use of gelatin and poly(ethylene glycol) (PEG) based hydrogel platforms to evaluate the effect of extracellular (composition, mechanics, HA incorporation) and intracellular (epidermal growth factor receptor overexpression) factors on the malignant transformation of U87MG glioma cells. Three-dimensional culture platforms elicit significantly different responses of U87MG glioma cells versus standard 2D culture. Critically, grafting brain-mimetic hyaluronic acid (HA) into the hydrogel network was found to induce significant, dose-dependent alterations of markers of glioma malignancy versus non-grafted 3D gelatin or PEG hydrogels. Clustering of glioma cells was observed exclusively in HA containing gels and expression profiles of malignancy-associated genes were found to vary biphasically with incorporated HA content. We also found HA-induced expression of MMP-2 is blocked by +EGFR signaling, suggesting a connection between CD44 and EGFR in glioma malignancy. Together, this work describes an adaptable platform for manipulating the local extracellular microenvironment surrounding glioma cells and highlights the importance of developing such systems for investigating the etiology and early growth of glioblastoma multiforme tumors.
Collapse
Affiliation(s)
- Sara Pedron
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
840
|
Molina F, Rus A, Peinado MA, del Moral ML. Short-term hypoxia/reoxygenation activates the angiogenic pathway in rat caudate putamen. J Biosci 2013; 38:363-71. [DOI: 10.1007/s12038-013-9327-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
841
|
Krasnov GS, Dmitriev AA, Snezhkina AV, Kudryavtseva AV. Deregulation of glycolysis in cancer: glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Expert Opin Ther Targets 2013; 17:681-93. [DOI: 10.1517/14728222.2013.775253] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
842
|
Curran CS, Keely PJ. Breast tumor and stromal cell responses to TGF-β and hypoxia in matrix deposition. Matrix Biol 2012; 32:95-105. [PMID: 23262216 DOI: 10.1016/j.matbio.2012.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 02/07/2023]
Abstract
The components that comprise the extracellular matrix (ECM) are integral to normal tissue homeostasis as well as the development and progression of breast tumors. The secretion, construction, and remodeling of the ECM are each regulated by a complex interplay between tumor cells, fibroblasts and macrophages. Transforming growth factor-β (TGF-β) is an essential molecule in regulating the cellular production of ECM molecules and the adhesive interactions of cells with the ECM. Additionally, hypoxic cell signals, initiated by oxygen deprivation, additional metabolic factors or receptor activation, are associated with ECM formation and the progression of breast cancer. Both TGF-β and hypoxic cell signals are implicated in the functional and morphological changes of cancer-associated-fibroblasts and tumor-associated-macrophages. Moreover, the enhanced recruitment of tumor and stromal cells in response to hypoxia-induced chemokines leads to increased ECM deposition and remodeling, increased blood vessel formation, and enhanced tumor migration. Thus, elucidation of the collaborative networks between tumor and stromal cells in response to the combined signals of TGF-β and hypoxia may yield insight into treatment parameters that target both tumor and stromal cells.
Collapse
Affiliation(s)
- Colleen S Curran
- Laboratory of Cell and Molecular Biology, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States.
| | | |
Collapse
|
843
|
Skuli N, Majmundar AJ, Krock BL, Mesquita RC, Mathew LK, Quinn ZL, Runge A, Liu L, Kim MN, Liang J, Schenkel S, Yodh AG, Keith B, Simon MC. Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes. J Clin Invest 2012; 122:1427-43. [PMID: 22426208 PMCID: PMC3314446 DOI: 10.1172/jci57322] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/03/2012] [Indexed: 12/12/2022] Open
Abstract
Localized tissue hypoxia is a consequence of vascular compromise or rapid cellular proliferation and is a potent inducer of compensatory angiogenesis. The oxygen-responsive transcriptional regulator hypoxia-inducible factor 2α (HIF-2α) is highly expressed in vascular ECs and, along with HIF-1α, activates expression of target genes whose products modulate vascular functions and angiogenesis. However, the mechanisms by which HIF-2α regulates EC function and tissue perfusion under physiological and pathological conditions are poorly understood. Using mice in which Hif2a was specifically deleted in ECs, we demonstrate here that HIF-2α expression is required for angiogenic responses during hindlimb ischemia and for the growth of autochthonous skin tumors. EC-specific Hif2a deletion resulted in increased vessel formation in both models; however, these vessels failed to undergo proper arteriogenesis, resulting in poor perfusion. Analysis of cultured HIF-2α-deficient ECs revealed cell-autonomous increases in migration, invasion, and morphogenetic activity, which correlated with HIF-2α-dependent expression of specific angiogenic factors, including delta-like ligand 4 (Dll4), a Notch ligand, and angiopoietin 2. By stimulating Dll4 signaling in cultured ECs or restoring Dll4 expression in ischemic muscle tissue, we rescued most of the HIF-2α-dependent EC phenotypes in vitro and in vivo, emphasizing the critical role of Dll4/Notch signaling as a downstream target of HIF-2α in ECs. These results indicate that HIF-1α and HIF-2α fulfill complementary, but largely nonoverlapping, essential functions in pathophysiological angiogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Angiopoietin-2/genetics
- Angiopoietin-2/physiology
- Animals
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Calcium-Binding Proteins
- Cell Hypoxia
- Cell Movement
- Cells, Cultured/cytology
- Collateral Circulation/physiology
- Endothelial Cells/metabolism
- Hindlimb/blood supply
- Hypoxia-Inducible Factor 1, alpha Subunit/deficiency
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/physiology
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Ischemia/physiopathology
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/physiology
- Receptors, Notch/physiology
- Recombinant Fusion Proteins/physiology
- Recovery of Function
- Skin Neoplasms/blood supply
- Skin Neoplasms/chemically induced
- Wound Healing/physiology
Collapse
Affiliation(s)
- Nicolas Skuli
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amar J. Majmundar
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bryan L. Krock
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rickson C. Mesquita
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lijoy K. Mathew
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary L. Quinn
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anja Runge
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liping Liu
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meeri N. Kim
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiaming Liang
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Schenkel
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arjun G. Yodh
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian Keith
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Celeste Simon
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
844
|
Maishi N, Annan DA, Kikuchi H, Hida Y, Hida K. An antiestrogen-binding protein in human tissues. Cancers (Basel) 1983; 11:cancers11101511. [PMID: 31600937 PMCID: PMC6826555 DOI: 10.3390/cancers11101511] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Although nonsteroidal antiestrogens of the triphenylethylene type are generally considered to act through the estrogen receptor, some observations suggest that estrogen target tissues may also contain a binding protein specific for these compounds. The data so far reported, however, are also consistent with ligand-induced changes in conformation or in the state of aggregation of the estrogen receptor. The studies reported here demonstrate the existence of a protein in human myometrial cytosol which binds 1-[4-(2-dimethylaminoethoxy)phenyl]1,2-diphenylbut-1(Z)-ene ([3H]tamoxifen) with high affinity (Kd = 2.3 X 10(-9) M). This protein exhibits striking specificity for nonsteroidal antiestrogens. Estradiol competes weakly for bound [3H]tamoxifen, while other estrogens and nonestrogenic steroid hormones do not compete at all. Sedimentation analysis and molecular sieve chromatography indicate that the antiestrogen-binding protein is a larger species than the estrogen receptor and elutes from DEAE-Sephacel at a lower KCl concentration (0.03 M) than the estrogen receptor (0.15 M). Differential thermal stability of the estrogen receptor and the antiestrogen-binding protein was demonstrable in the absence of added ligand. The antiestrogen-binding protein was ubiquitous, being present in many tissues where estrogen receptor was undetectable. These findings support the separate existence of an antiestrogen-binding protein.
Collapse
Affiliation(s)
- Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Dorcas A Annan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8636, Japan.
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan.
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|