801
|
Melatonin Attenuates Methotrexate-Induced Reduction of Antioxidant Activity Related to Decreases of Neurogenesis in Adult Rat Hippocampus and Prefrontal Cortex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1596362. [PMID: 35873801 PMCID: PMC9307408 DOI: 10.1155/2022/1596362] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/01/2022] [Indexed: 01/19/2023]
Abstract
Previous studies have revealed that the side effects of anticancer drugs induce a decrease of neurogenesis. Methotrexate (MTX), one of anticancer drugs, can induce lipid peroxidation as an indicator of oxidative stress in the brain. Melatonin has been presented as an antioxidant that can prevent oxidative stress-induced neuronal damage via the activation of antioxidant enzymes associated with the increase of neurogenesis. The aims of the present study are to examine the neuroprotective effect of melatonin on the neurotoxicity of MTX on neurogenesis and the changes of protein expression and antioxidant enzyme levels in adult rat hippocampus and prefrontal cortex (PFC). Male Sprague-Dawley rats were assigned into four groups: vehicle, MTX, melatonin, and melatonin+MTX groups. The vehicle group received saline solution and 10% ethanol solution, whereas the experimental groups received MTX (75 mg/kg, i.v.) and melatonin (8 mg/kg, i.p.) treatments. After the animal examination, the brains were removed for p21 immunofluorescence staining. The hippocampus and PFC were harvested for Western blot analysis and biochemical assessments of malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD). The immunofluorescence result showed that coadministration with melatonin diminished p21-positive cells in the hippocampal dentate gyrus, indicating a decrease of cell cycle arrest. Melatonin reduced the levels of MDA and prevented the decline of antioxidant enzyme activities in rats receiving MTX. In the melatonin+MTX group, the protein expression results showed that melatonin treatment significantly upregulated synaptic plasticity and an immature neuron marker through enhancing brain derived neurotrophic factor (BDNF) and doublecortin (DCX), respectively. Moreover, melatonin ameliorated the antioxidant defense system by improving the nuclear factor erythroid 2-related factor 2 (Nrf2) in rats receiving MTX. These findings suggested that the effects of melatonin can ameliorate MTX toxicity by several mechanisms, including an increase of endogenous antioxidants and neurogenesis in adult rat hippocampus and PFC.
Collapse
|
802
|
Virgana R, Atik N, Gunadi JW, Jonathan E, Ramadhani DE, Soetadji RS, Goenawan H, Lesmana R, Kartasasmita A. MitoTEMPOL Inhibits ROS-Induced Retinal Vascularization Pattern by Modulating Autophagy and Apoptosis in Rat-Injected Streptozotocin Model. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071061. [PMID: 35888150 PMCID: PMC9320075 DOI: 10.3390/life12071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022]
Abstract
Diabetic retinopathy leads to retinal malfunction, blindness, and reduced quality of life in adult diabetes patients. The involvement of reactive oxygen species (ROS) regulation stimulated by high blood glucose levels opens the opportunity for ROS modulator agents such as MitoTEMPOL. This study aims to explore the effect of MitoTEMPOL on ROS balance that may be correlated with retinal vascularization pattern, autophagy, and apoptosis in a streptozotocin-induced rat model. Four groups of male Wistar rats (i.e., control, TEMPOL (100 mg/kg body weight [BW]), diabetic (streptozotocin, 50 mg/kg BW single dose), and diabetic + TEMPOL; n = 5 for each group) were used in the study. MitoTEMPOL was given for 5 weeks, followed by funduscopy, and gene and protein expression were explored from the rat’s retina. Streptozotocin injection decreased bodyweight and increased food and water intake, as well as fasting blood glucose. The results showed that MitoTEMPOL reduced retinal vascularization pattern and decreased superoxide dismutase gene expression and protein carbonyl, caspase 3, and caspase 9 protein levels. A modulation of autophagy in diabetes that was reversed in the diabetic + TEMPOL group was found. In conclusion, MitoTEMPOL modulation on autophagy and apoptosis contributes to its role as a potent antioxidant to prevent diabetic retinopathy by inhibiting ROS-induced retinal vascularization patterns.
Collapse
Affiliation(s)
- Rova Virgana
- Department of Ophthalmology, Faculty of Medicine, Universitas Padjadjaran, Professor Eyckman 38, Bandung 40161, Indonesia;
- Cicendo National Eye Hospital, Cicendo 4, Bandung 40117, Indonesia
- Correspondence:
| | - Nur Atik
- Biology Cell Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Raya Bandung-Sumedang Km 21, Bandung 45363, Indonesia;
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Surya Sumantri 65, Bandung 40164, Indonesia;
| | - Evelyn Jonathan
- Faculty of Medicine, Maranatha Christian University, Surya Sumantri 65, Bandung 40164, Indonesia; (E.J.); (D.E.R.); (R.S.S.)
| | - Dona Erisa Ramadhani
- Faculty of Medicine, Maranatha Christian University, Surya Sumantri 65, Bandung 40164, Indonesia; (E.J.); (D.E.R.); (R.S.S.)
| | - Ray Sebastian Soetadji
- Faculty of Medicine, Maranatha Christian University, Surya Sumantri 65, Bandung 40164, Indonesia; (E.J.); (D.E.R.); (R.S.S.)
| | - Hanna Goenawan
- Physiology Cell Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Raya Bandung-Sumedang Km 21, Bandung 45363, Indonesia; (H.G.); (R.L.)
- Physiology Molecular Laboratory, Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Raya Bandung-Sumedang Km 21, Bandung 45363, Indonesia
| | - Ronny Lesmana
- Physiology Cell Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Raya Bandung-Sumedang Km 21, Bandung 45363, Indonesia; (H.G.); (R.L.)
- Physiology Molecular Laboratory, Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Raya Bandung-Sumedang Km 21, Bandung 45363, Indonesia
| | - Arief Kartasasmita
- Department of Ophthalmology, Faculty of Medicine, Universitas Padjadjaran, Professor Eyckman 38, Bandung 40161, Indonesia;
- Cicendo National Eye Hospital, Cicendo 4, Bandung 40117, Indonesia
| |
Collapse
|
803
|
Lin S, Zhang Q, Li S, Qin X, Cai X, Wang H. Tetrahedral framework nucleic acids-based delivery promotes intracellular transfer of healing peptides and accelerates diabetic would healing. Cell Prolif 2022; 55:e13279. [PMID: 35810322 PMCID: PMC9436915 DOI: 10.1111/cpr.13279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives Peptide‐based therapeutics are natural candidates to desirable wound healing. However, enzymatic surroundings largely limit its stability and bioavailability. Here, we developed a tetrahedral framework nucleic acids(tFNA)‐based peptide delivery system, that is, p@tFNAs, to address deficiencies of healing peptide stability and intracellular delivery in diabetic wound healing. Materials and Methods AGEs (advanced glycation end products) were used to treat endothelial cell to simulate cell injury in diabetic microenvironment. The effects and related mechanisms of p@tFNAs on endothelial cell proliferation, migration, angiogenesis and ROS (reactive oxygen species) production have been comprehensively studied. The wound healing model in diabetic mice was photographically and histologically investigated in vivo. Results Efficient delivery of healing peptide by the framework(tFNA) was verified. p@tFNAs helped overcome the angiogenic obstacles induced by AGEs via ERK1/2 phosphorylation. In the meantime, p@tFNA exhibited its antioxidative property to achieve ROS balance. As a result, p@tFNA improved angiogenesis and diabetic wound healing in vitro and in vivo. Conclusions Our findings demonstrate that p@tFNA could be a novel therapeutic strategy for diabetic wound healing. Moreover, a new method for intracellular delivery of peptides was also constructed.
Collapse
Affiliation(s)
- Shiyu Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
804
|
Gupta DN, Dalal V, Savita BK, Alam MS, Singh A, Gubyad M, Ghosh DK, Kumar P, Sharma AK. Biochemical characterization and structure-based in silico screening of potent inhibitor molecules against the 1 cys peroxiredoxin of bacterioferritin comigratory protein family from Candidatus Liberibacter asiaticus. J Biomol Struct Dyn 2022:1-13. [DOI: 10.1080/07391102.2022.2096118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vikram Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Md Shahid Alam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Anamika Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Kachimet, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Kachimet, Nagpur, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
805
|
Zhao Y, Wang H, Duah PA, Retyunskiy V, Liu Y, Chen G. Zinc pyrithione (ZPT) -induced embryonic toxicogenomic responses reveal involvement of oxidative damage, apoptosis, endoplasmic reticulum (ER) stress and autophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106195. [PMID: 35594629 DOI: 10.1016/j.aquatox.2022.106195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Zinc pyrithione (ZPT) is a frequently used organometallic biocide, carrying potentially adverse consequences to multiple species in the environment. Previously we have demonstrated its embryonic, organ developmental and liver metabolic toxicity of zebrafish. However, details of ZPT toxicity during embryogenesis are still limited. The present study was designed to evaluate the effects and possible mechanisms of ZPT-induced embryonic toxicogenomic responses by morphological investigations, transcriptome and gene quantitative analysis, as well as biochemical assays. The results revealed that treatment with ZPT caused embryogenesis toxicity, specifically in irregular cell division and rearrangement, delayed differentiations of eyes and notochords, the epiboly and germ ring formation and somite segmentation defects. In addition, ZPT exposure altered gene expression during early embryonic development, especially related with morphological abnormities and metabolic dysfunctions including reduction of oxidoreductase activity. Activities of antioxidants and caspases examinations showed inductions of oxidative stress and apoptosis by ZPT and quantitative analysis of marker genes further indicated that ZPT also triggered endoplasmic reticulum (ER) stress and autophagy. Thus, we deduce here that ZPT-induced embryonic toxicogenomic responses reveal involvement of oxidative damage, apoptosis, endoplasmic reticulum (ER) stress and autophagy.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China.
| | - Huiling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | | | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Yizheng Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China.
| |
Collapse
|
806
|
de Eguileor M, Grimaldi A, Pulze L, Acquati F, Morsiani C, Capri M. Amyloid fil rouge from invertebrate up to human ageing: a focus on Alzheimer Disease. Mech Ageing Dev 2022; 206:111705. [DOI: 10.1016/j.mad.2022.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
|
807
|
Alleviating Heavy Metal Toxicity in Milk and Water through a Synergistic Approach of Absorption Technique and High Voltage Atmospheric Cold Plasma and Probable Rheological Changes. Biomolecules 2022; 12:biom12070913. [PMID: 35883469 PMCID: PMC9312926 DOI: 10.3390/biom12070913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we combined atmospheric pressure cold plasma, a novel treatment technology, with an absorption technique with soybean husk to remove Pb and Cd from milk. Different combinations of treatment duration, voltage, and post treatment retention time were used to determine the effectiveness of cold plasma. Soybean husk was used for metal extraction, and it was observed that when the milk samples were plasma treated with a discharge voltage of 50 kV for 2 min and held for 24 h, the highest mean elimination of about 27.37% for Pb and 14.89% for Cd was obtained. Reactive oxygen and nitrogen species produced from plasma treatment were identified using Optical Emission Spectra analysis. A high voltage of 50 kV plasma for a 2 min duration could produce 500 ± 100 ppm of ozone concentration inside the treated package. The value of ΔE, which indicates overall color difference measurement, was significantly (p < 0.05) higher in all the treated samples than control samples. However, in the frequency range from 0.01 to 100 Hz, there was not much difference between the control and treated sample in the frequency sweep test. The identified functional groups at different wavenumbers (cm−1) in the treated samples were found to be similar compared to the control samples.
Collapse
|
808
|
Bioremediation potential of hexavalent chromium-resistant Arthrobacter globiformis 151B: study of the uptake of cesium and other alkali ions. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:745-758. [PMID: 35768673 DOI: 10.1007/s10123-022-00258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/04/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Cesium (Cs+) enters environments largely because of global release into the environment from weapons testing and accidents such as Fukushima Daiichi and Chernobyl nuclear waste. Even at low concentrations, Cs+ is highly toxic to ecological receptors because of its physicochemical similarity to macronutrient potassium (K+). We investigated the uptake and accumulation of Cs+ by Arthrobacter globiformis strain 151B in reference to three similar alkali metal cations rubidium (Rb+), sodium (Na+), and potassium (K+). The impact of hexavalent chromium (Cr+6) as a co-contaminant was also evaluated. A. globiformis 151B accumulated Cs+ and Cr6+ in a time-dependent fashion. In contrast, the uptake and accumulation of Rb+ did not exhibit any trends. An exposure to Cs+, Rb+, and Cr+6 triggered a drastic increase in K+ and Na+ uptake by the bacterial cells. That was followed by the efflux of K+ and Na+, suggesting a Cs+ "substitution." Two-dimensional gel-electrophoresis of bacterial cell proteomes with the following mass-spectrometry of differentially expressed bands revealed that incubation of bacterial cells with Cs+ induced changes in the expression of proteins involved in the maintenance of cellular homeostasis and reactive oxygen species removal. The ability of A. globiformis 151B to mediate the uptake and accumulation of cesium and hexavalent chromium suggests that it possesses wide-range bioremediation potential.
Collapse
|
809
|
Photocatalytic Remediation of Harmful Alexandrium minutum Bloom Using Hybrid Chitosan-Modified TiO2 Films in Seawater: A Lab-Based Study. Catalysts 2022. [DOI: 10.3390/catal12070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The uncontrolled growth of harmful algal blooms (HABs) can negatively impact the environment and pose threats to human health and aquatic ecosystems. Titanium dioxide (TiO2) is known to be effective in killing harmful algae through flocculation and sedimentation. However, TiO2 in a dispersed form can harm other non-target marine organisms, which has raised concerns by environmentalists and scientists. This research seeks to explore the utility of immobilized titanium oxide as a photocatalyst for mitigation of HABs, where the Alexandrium minutum bloom was used as a model system herein. Chitosan was modified with 0.2 wt.% TiO2 (Chi/TiO2 (x mL; x = 1, 3 and 5 mL) and the corresponding films were prepared via solvent casting method. Scanning electron microscope (SEM) images of the films reveal a highly uneven surface. X-ray diffraction (XRD) analysis indicates the reduction in chitosan crystallinity, where the presence of TiO2 was negligible, in accordance with its dispersion within the chitosan matrix. The photocatalytic mitigation of A.minutum was carried out via a physical approach in a laboratory-scale setting. The negative surface charge of the films was observed to repel the negatively charged A.minutum causing fluctuation in the removal efficiency (RE). The highest RE (76.1 ± 13.8%) was obtained when Chi/TiO2 (1 mL) was used at 72 h, where the hydroxyl radicals generated were inferred to contribute to the deactivation of the algae cells by causing oxidative stress. An outcome of this study indicates that such hybrid films have the potential to replace the non-immobilized (dispersed) TiO2 for HAB mitigation. However, further investigation is required to deploy these films for field applications at a larger scale.
Collapse
|
810
|
The Bioactivities of Phycocyanobilin from Spirulina. J Immunol Res 2022; 2022:4008991. [PMID: 35726224 PMCID: PMC9206584 DOI: 10.1155/2022/4008991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Phycocyanobilin (PCB) is a linear open-chain tetrapyrrole chromophore that captures and senses light and a variety of biological activities, such as anti-oxidation, anti-cancer, and anti-inflammatory. In this paper, the biological activities of PCB are reviewed, and the related mechanism of PCB and its latest application in disease treatment are introduced. PCB can resist oxidation by scavenging free radicals, inhibiting the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and delaying the activity of antioxidant enzymes. In addition, PCB can also be used as an excellent anti-inflammatory agent to reduce the proinflammatory factors IL-6 and IFN-γ and to up-regulate the production of anti-inflammatory cytokine IL-10 by inhibiting the inflammatory signal pathways NF-κB and mitogen-activated protein kinase (MAPK). Due to the above biological activities of phycocyanobilin PCB, it is expected to become a new effective drug for treating various diseases, such as COVID-19 complications, atherosclerosis, multiple sclerosis (MS), and ischaemic stroke (IS).
Collapse
|
811
|
Staneviciene I, Sulinskiene J, Sadauskiene I, Liekis A, Ruzgaite A, Naginiene R, Baranauskiene D, Simakauskiene V, Krusnauskas R, Viezeliene D. Effect of Selenium on the Iron Homeostasis and Oxidative Damage in Brain and Liver of Mice. Antioxidants (Basel) 2022; 11:antiox11071216. [PMID: 35883707 PMCID: PMC9311717 DOI: 10.3390/antiox11071216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Selenium is an essential trace element that maintains normal brain function, mainly due its antioxidant properties. Although the amount of Se in the body is tightly regulated by the liver, both an excess of and deficiency in Se can modulate the cellular redox status and affect the homeostasis of other essential elements for both humans and animals. The aim of this study was to determine the effect of inorganic selenium excess on oxidative stress and iron homeostasis in brain and liver of laboratory BALB/c mice, which were supplemented with Na2SeO3 solution (0.2 mg and 0.4 mg Se/kg body weight) for 8 weeks. The content of the lipid peroxidation product malondialdehyde and antioxidant enzyme catalase activity/gene expression were used as markers of oxidative damage and were evaluated by spectrophotometric assays. Selenium and iron concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS). Catalase gene expression was analyzed by qRT-PCR and ΔΔCt methods. Our results showed that doses of 0.2 mg Se and 0.4 mg Se caused a relatively low accumulation of Se in the brain of mice; however, it induced a 10-fold increase in its accumulation in the liver and also increased iron accumulation in both tested organs. Both doses of Se increased the content of malondialdehyde as well as decreased catalase activity in the liver, while the 0.4 mg Se dose has also activated catalase gene expression. Brain of mice exposed to 0.2 mg Se showed reduced lipid peroxidation; however, the exposure to 0.4 mg of Se increased the catalase activity as well as gene expression. One may conclude that exposure to both doses of Se caused the accumulation of this micronutrient in mice brain and liver and have also provided a disrupting effect on the levels of iron. Both doses of Se have triggered oxidative liver damage. In the brain, the effect of Se was dose dependent, where −0.2 mg of Se provided antioxidant activity, which was observed through a decrease in lipid peroxidation. On the contrary, the 0.4 mg dose increased brain catalase activity as well as gene expression, which may have contributed to maintaining brain lipid peroxidation at the control level.
Collapse
Affiliation(s)
- Inga Staneviciene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
- Correspondence:
| | - Jurgita Sulinskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Ilona Sadauskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Ausrine Ruzgaite
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
| | - Rima Naginiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Dale Baranauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Vaida Simakauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Raulas Krusnauskas
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (A.L.); (R.N.); (D.B.); (V.S.); (R.K.)
| | - Dale Viezeliene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania; (J.S.); (I.S.); (A.R.); (D.V.)
| |
Collapse
|
812
|
Wang YZ, Cao CQ, Wang D. Physiological Responses of the Firefly Pyrocoelia analis (Coleoptera: Lampyridae) to an Environmental Residue From Chemical Pesticide Imidacloprid. Front Physiol 2022; 13:879216. [PMID: 35784886 PMCID: PMC9240607 DOI: 10.3389/fphys.2022.879216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Imidacloprid, a neonicotinoid insecticide, is widely applied to control insect pests across a broad spectrum. Though the impact of residues from this chemical pesticide on non-target organisms in the field has been reported, it was not well characterized across a wide range of ecosystems, especially for some species considered as environmental indicators that live in forests. The effects of sublethal dose of imidacloprid on firefly, Pyrocoelia analis, were analyzed physiologically and biochemically in this study to better understand the impact of chemical pesticide application on environmental indicators such as fireflies. After imidacloprid treatment, the midgut tissues of the larva presented an abnormal morphology featured as atrophy of fat body cells, shrinking cells, and the destruction of a midgut structure. The activities of antioxidant enzymes, superoxide dismutase, catalase, and peroxidase were noticeably increased during early exposure to sublethal imidacloprid and then decreased at later stages. The malondialdehyde content significantly increased after 12 h of exposure to imidacloprid compared with the control. Similarly, the enzyme activities of polyphenol oxidase and acetylcholinesterase were increased after the imidacloprid treatment and then decreased at the later stage. In summary, a sublethal dose of imidacloprid caused destructive change in the tissue structure, and this damage was followed by an excessive reactive oxygen species that could not be eliminated by antioxidant enzymes. Our results indicated that the residues of imidacloprid might cause severe toxicity to non-target insects in the environment even far away from the agro-ecosystem where the chemicals were applied.
Collapse
Affiliation(s)
- Yi-zhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Cheng-quan Cao
- College of Life Science, Leshan Normal University, Leshan, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- *Correspondence: Dun Wang, ,
| |
Collapse
|
813
|
Drehmer E, Navarro-Moreno MÁ, Carrera-Juliá S, Moreno ML. A comparative study between olive oil and corn oil on oxidative metabolism. Food Funct 2022; 13:7157-7167. [PMID: 35699154 DOI: 10.1039/d2fo00919f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fats are an important part of diet, but not all lipids have the same structure and chemical properties. Unsaturated fatty acids have one or more double bonds in their structure and can be monounsaturated or polyunsaturated, respectively. Most vegetable oils, such as olive oil and corn oil, contain significant amounts of these fatty acids. The presence of double bonds in the molecule of a fatty acid constitutes vulnerable sites for oxidation reactions generating lipid peroxides, potentially toxic compounds that can cause cellular damage. In response to this oxidative damage, aerobic organisms have intracellular enzymatic antioxidant defense mechanisms. The aim of the present investigation was to study comparatively the effects of control liquid diets, of a defined composition, containing olive oil or corn oil as a lipid source respectively of monounsaturated and polyunsaturated fatty acids, on the oxidative metabolism of rats. Rats were divided into three groups which received a control animal feed diet (A.F.), olive oil liquid diet (O.O) and corn oil liquid diet (C.O) for 30 days. It was observed that the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), increased in the liver and white fat tissue of rats fed with olive oil when compared to the corn oil group. However, in brown fat tissue and blood cells, the enzyme activities showed a tendency to decrease in the olive oil group. In addition, the effect of olive oil and corn oil on several glucose metabolism parameters (pyruvate, lactate, LDH, acetoacetate and beta-hydroxybutyrate) showed that corn oil impairs to a greater extent the cellular metabolism. All these results helped in concluding that some body tissues are more adversely affected than others by the administration of corn oil or olive oil, and their antioxidant defenses and cellular metabolism respond differently too.
Collapse
Affiliation(s)
- Eraci Drehmer
- Department of Health Sciences, Universidad Católica de Valencia "San Vicente Mártir", Valencia, Spain
| | | | - Sandra Carrera-Juliá
- Department of Nutrition and Dietetics, Universidad Católica de Valencia "San Vicente Mártir", Valencia, Spain
| | - Mari Luz Moreno
- Department of Human Physiology and Anatomy, Universidad Católica de Valencia "San Vicente Mártir", C/Ramiro de Maeztu, 14., 46900 Torrente, Valencia, Spain.
| |
Collapse
|
814
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
815
|
Iakovou E, Kourti M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci 2022; 14:827900. [PMID: 35769600 PMCID: PMC9234325 DOI: 10.3389/fnagi.2022.827900] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aging is a normal, inevitable, irreversible, and progressive process which is driven by internal and external factors. Oxidative stress, that is the imbalance between prooxidant and antioxidant molecules favoring the first, plays a key role in the pathophysiology of aging and comprises one of the molecular mechanisms underlying age-related diseases. However, the oxidative stress theory of aging has not been successfully proven in all animal models studying lifespan, meaning that altering oxidative stress/antioxidant defense systems did not always lead to a prolonged lifespan, as expected. On the other hand, animal models of age-related pathological phenotypes showed a well-correlated relationship with the levels of prooxidant molecules. Therefore, it seems that oxidative stress plays a more complicated role than the one once believed and this role might be affected by the environment of each organism. Environmental factors such as UV radiation, air pollution, and an unbalanced diet, have also been implicated in the pathophysiology of aging and seem to initiate this process more rapidly and even at younger ages. Aim The purpose of this review is to elucidate the role of oxidative stress in the physiology of aging and the effect of certain environmental factors in initiating and sustaining this process. Understanding the pathophysiology of aging will contribute to the development of strategies to postpone this phenomenon. In addition, recent studies investigating ways to alter the antioxidant defense mechanisms in order to prevent aging will be presented. Conclusions Careful exposure to harmful environmental factors and the use of antioxidant supplements could potentially affect the biological processes driving aging and slow down the development of age-related diseases. Maybe a prolonged lifespan could not be achieved by this strategy alone, but a longer healthspan could also be a favorable target.
Collapse
Affiliation(s)
- Evripides Iakovou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Malamati Kourti
| |
Collapse
|
816
|
Pérez de la Lastra JM, Anand U, González-Acosta S, López MR, Dey A, Bontempi E, Morales delaNuez A. Antimicrobial Resistance in the COVID-19 Landscape: Is There an Opportunity for Anti-Infective Antibodies and Antimicrobial Peptides? Front Immunol 2022; 13:921483. [PMID: 35720330 PMCID: PMC9205220 DOI: 10.3389/fimmu.2022.921483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Although COVID-19 has captured most of the public health attention, antimicrobial resistance (AMR) has not disappeared. To prevent the escape of resistant microorganisms in animals or environmental reservoirs a "one health approach" is desirable. In this context of COVID-19, AMR has probably been affected by the inappropriate or over-use of antibiotics. The increased use of antimicrobials and biocides for disinfection may have enhanced the prevalence of AMR. Antibiotics have been used empirically in patients with COVID-19 to avoid or prevent bacterial coinfection or superinfections. On the other hand, the measures to prevent the transmission of COVID-19 could have reduced the risk of the emergence of multidrug-resistant microorganisms. Since we do not currently have a sterilizing vaccine against SARS-CoV-2, the virus may still multiply in the organism and new mutations may occur. As a consequence, there is a risk of the appearance of new variants. Nature-derived anti-infective agents, such as antibodies and antimicrobial peptides (AMPs), are very promising in the fight against infectious diseases, because they are less likely to develop resistance, even though further investigation is still required.
Collapse
Affiliation(s)
- José M. Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Sergio González-Acosta
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| | - Manuel R. López
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Elza Bontempi
- National Interuniversity Consortium of Materials Science and Technology (INSTM) and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Antonio Morales delaNuez
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| |
Collapse
|
817
|
Shao XY, He T, Lai YL, Chen M, Tong ZH. Water-Soluble Polysaccharides Extracted from Pueraria lobata Delay Aging of Caenorhabditis elegans under Heat Stress. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:220-225. [PMID: 35482150 DOI: 10.1007/s11130-022-00964-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Pueraria lobata is a perennial legume, commonly used as a food source in China. The polysaccharides extracted from P. lobata have demonstrated various biological activities. However their anti-aging effects and the underline mechanisms are largely unknown. In this study, water-soluble polysaccharides (WSPS) from P. lobata were extracted and demonstrated antioxidant activity against DPPH radicals and hydroxyl radicals in vitro. Using nematode Caenorhabditis elegans as a model, we found that WSPS remarkably prolonged the survival, increased growth and locomotion under heat stress. To investigate the possible mechanism, the levels of reactive oxygen species (ROS) and lipid peroxidation product malondialdehyde (MDA) were determined. WSPS significantly decreased ROS and MDA levels which is consistent with increased activity of superoxide dismutase (SOD). Meanwhile, WSPS upregulated the expression of stress resistance genes sod-1, sod-5, hsf-1, hsp-12.6, hsp-16.2, skn-1 and gst-4. Together, these results suggest that the anti-aging activity of WSPS under heat stress was mediated most likely by activation of the target genes of heat-shock transcription factor (HSF)-1 and skinhead (SKN)-1, and thus inducing endogenous ROS scavenging response.
Collapse
Affiliation(s)
- Xin-Yue Shao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tong He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang-Li Lai
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Hua Tong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
818
|
Al-Joufi FA, Jan M, Zahoor M, Nazir N, Naz S, Talha M, Sadiq A, Nawaz A, Khan FA. Anabasis articulata (Forssk.) Moq: A Good Source of Phytochemicals with Antibacterial, Antioxidant, and Antidiabetic Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113526. [PMID: 35684464 PMCID: PMC9182432 DOI: 10.3390/molecules27113526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022]
Abstract
Anabasis articulata is medicinally used to treat various diseases. In this study, A. articulata was initially subjected to extraction, and the resultant extracts were then evaluated for their antimicrobial, antioxidant, and antidiabetic potentials. After obtaining the methanolic extract, it was subjected to a silica gel column for separation, and fractions were collected at equal intervals. Out of the obtained fractions (most rich in bioactive compounds confirmed through HPLC), designated as A, B, C, and D as well hexane fraction, were subjected to GC-MS analysis, and a number of valuable bioactive compounds were identified from the chromatograms. The preliminary phytochemical tests were positive for the extracts where fraction A exhibited the highest total phenolic and flavonoid contents. The hexane fraction as antimicrobial agent was the most potent, followed by the crude extract, fraction A, and fraction D. DPPH and ABTS assays were used to estimate the free radical scavenging potential of the extracts. Fraction C was found to contain potent inhibitors of both the tested radicals, followed by fraction D. The potential antidiabetic extracts were determined using α-glucosidase and amylase as probe enzymes. The former was inhibited by crude extract, hexane, and A, B, C and D fractions to the extent of 85.32 ± 0.20, 61.14 ± 0.49, 62.15 ± 0.84, 78.51 ± 0.45, 72.57 ± 0.92 and 70.61 ± 0.91%, respectively, at the highest tested concentration of 1000 µg/mL with their IC50 values 32, 180, 200, 60, 120 and 140 µg/mL correspondingly, whereas α-amylase was inhibited to the extent of 83.98 ± 0.21, 58.14 ± 0.75, 59.34 ± 0.89, 81.32 ± 0.09, 74.52 ± 0.13 and 72.51 ± 0.02% (IC50 values; 34, 220, 240, 58, 180, and 200 µg/mL, respectively). The observed biological potentials might be due to high phenolic and flavonoid content as detected in the extracts. The A. articulata might thus be considered an efficient therapeutic candidate and could further be investigated for other biological potentials along with the isolation of pure responsible ingredients.
Collapse
Affiliation(s)
- Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia;
| | - Marwa Jan
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower 18800, KPK, Pakistan; (M.J.); (N.N.); (S.N.); (M.T.)
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower 18800, KPK, Pakistan; (M.J.); (N.N.); (S.N.); (M.T.)
- Correspondence:
| | - Nausheen Nazir
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower 18800, KPK, Pakistan; (M.J.); (N.N.); (S.N.); (M.T.)
| | - Sumaira Naz
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower 18800, KPK, Pakistan; (M.J.); (N.N.); (S.N.); (M.T.)
| | - Muhammad Talha
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower 18800, KPK, Pakistan; (M.J.); (N.N.); (S.N.); (M.T.)
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara Dir Lower 18800, KPK, Pakistan; (A.S.); (A.N.)
| | - Asif Nawaz
- Department of Pharmacy, University of Malakand, Chakdara Dir Lower 18800, KPK, Pakistan; (A.S.); (A.N.)
| | - Farhat Ali Khan
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18050, KPK, Pakistan;
| |
Collapse
|
819
|
Silonov SB, Kryvenko EO, Silonova NB, Shevchenko TM. The effect of vitamin E on the lipid environment of rat hepatocyte membranes. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tocopherol is one of the known beneficial natural antioxidants ensuring the optimal level of functioning of mammalian organisms. Numerous in vitro and in vivo experiments have shown that the biological role of vitamin E is to prevent the development of pathologies caused by oxidative stress. In particular, the role of enzymatic factors of lipid peroxidation and related inflammation as a result of eicosanoid synthesis was clearly shown. We studied changes in the structural and functional state of hepatocyte membranes in the classical model of E-hypovitaminosis caused by long-term (70 days) insufficient intake of vitamin E in the diet of rats. The test components were determined spectrophotometrically after appropriate chromatographic procedures. The amount of total and individual leukotrienes was determined by ELISA. Prolonged tocopherol deficiency in rats caused a 49.4% decrease in tocopherol, more than 27.0% – in cholesterol. Of the 8 individual phospholipids studied, 6 showed significant changes: a decrease in cardiolipin and phosphatidylserine, and an increase in phosphatidylethanolamine by 3.24 times, an increse in lysophosphatidylcholine by 86.9%, in phosphatidylcholine by 52.8%, and in sphingomyelin by 30.6%, relative to control. There were changes in the levels of unsaturated fatty acids playing a significant role in the development of functional disorders in cells and affecting the metabolism of ecosanoids derived from arachidonic acid by the 5-lipoxygenase oxidation pathway. Changes in the levels of total and individual cysteinyl leukotrienes in the state of E-hypovitaminosis were revealed. Restoration of vitamin E intake returns most of the studied indicators such as tocopherol, cholesterol, polyunsaturated fatty acids to the control levels and activates the processes of sequential conversion of leukotrienes in the body of rats. The obtained results indicate the potentiating effect of vitamin E on metabolic processes in the body as a whole and in hepatocytes and eicosanoid metabolism. The degree of tocopherol intake allows one to influence the course of inflammatory processes associated with eicosanoids, not only through the impact on precursors, but also on the utilization of metabolites, including leukotrienes.
Collapse
|
820
|
Binsaleh NK, Eltayeb R, Qanash H, Aziz MA, Albaradie R, Khan MWA. Presence of Circulatory Autoantibodies Against ROS-Modified Histone H1 Protein in Lymphoma Patients. Front Genet 2022; 13:909903. [PMID: 35692834 PMCID: PMC9174583 DOI: 10.3389/fgene.2022.909903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphoma is a chronic inflammatory disease in which the immune system is highly affected. Increased oxidative stress is one of the common conditions of cancer and affects macromolecules. Histone modifications affect the chromatin structure and functions. In this study, histone H1 (His-H1) protein was modified by reactive oxygen species (ROS), and structural and chemical changes were studied. Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) patients were selected, and oxidative stress markers, inflammatory cytokines, and serum autoantibodies were analyzed using biochemical and immunological assays. Furthermore, the formation of antigen-antibody immune complexes was assessed by the Langmuir plot. ROS-modified His-H1 (ROS-His-H1) showed substantial structural perturbation in protein (UV-hyperchromicity and increased intrinsic fluorescence) compared to the native His-H1 protein. A possible explanation for the changes is suggested by the exposure of the aromatic chromophore to the solvent. In-depth structural analysis by circular dichroism (CD) exhibited major changes in α-helix (−21.43%) and turns (+33%), reflecting changes in the secondary structure of histone H1 protein after ROS exposure. ELISA and competitive ELISA findings revealed high recognitions of serum autoantibodies to ROS-His-H1 from NHL, followed by HL subjects. Healthy controls showed negligible binding. Non-modified His-H1 did not show any binding with serum samples from either cohort. High apparent association constants (ACCs) were calculated for ROS-His-H1 using purified IgGs from NHL (1.46 × 10–6 M) compared to HL (1.33 × 10–6 M) patients. Non-modified His-H1 exhibited a hundred times less ACC for NHL (2.38 × 10–8 M) and HL (2.46 × 10–8 M) patients. Thus, ROS modifications of histone H1 cause structural changes and expose cryptic neo-epitopes on the protein against which autoantibodies were generated. These perturbations might affect the histone DNA interaction dynamics and potentially be correlated with gene dysregulation. These subtle molecular changes with an immune imbalance might further aggravate the disease.
Collapse
Affiliation(s)
- Naif K. Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Reem Eltayeb
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohammad Azhar Aziz
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, India
| | - Raid Albaradie
- Applied Medical Sciences College, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
- *Correspondence: Mohd Wajid Ali Khan,
| |
Collapse
|
821
|
Efficiency of Multiple Extraction Solvents on Antioxidant, Cytotoxic, and Phytotoxic Potential of Taraxacum officinale (L.) Weber ex F.H. Wigg. from Poonch Valley, Azad Kashmir, Pakistan. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5118553. [PMID: 35698643 PMCID: PMC9188473 DOI: 10.1155/2022/5118553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 04/16/2022] [Indexed: 11/18/2022]
Abstract
Background Different parts of Taraxacum officinale (L.) were used in traditional medicine in various parts of the world for the treatment of health problems, and they possess significant biological activities. The present study aimed to estimate phytochemical and biological activities of T. officinale using different extraction solvents. Methods Methanolic, acetone, and n-hexane extracts of selected species were prepared, and ten secondary metabolites were examined using standard protocols. The antioxidant activity was performed using three in vitro methods, namely, DPPH assay, total reducing power (TRP) assay, and total antioxidant capacity (TAC). Toxicological analysis was done using the brine shrimp cytotoxic assay and radish seed phytotoxic assay. Results The T. officinale methanolic extract showed the highest phenolic (178.27 ± 17.17 mg/GAE/g) and flavonoid (18.50 ± 1.64 mg QE/g) contents. Similarly, the methanolic extract also revealed the highest DPPH activity (32.80 ± 9.66 IC50), reducing potential (0.53 ± 0.02 mg/g), and TAC (19.42 ± 0.97 mg/g) as compared to the acetone and n-hexane extracts. The Pearson correlation analysis confirmed a strong positive correlation (r > 0.9) between total phenolic content (TPC), total flavonoid content (TFC), and all antioxidant assays. Furthermore, a heat map displayed the methanolic extract (red color) as a valuable source of phytochemicals and antioxidant agents. Moreover, the T. officinale methanolic extract also showed the highest (7.12 ppm) cytotoxic potential whereas both methanolic and acetone extracts were revealed as moderate phytotoxic agents when compared with the standard. Conclusion The T. officinale methanolic extract exhibited comparatively notable phytochemicals that are actively involved in antioxidant activities and possess toxicological properties. This upholds the folkloric use of T. officinale as a possible source to develop natural plant-based drugs. Further investigations to isolate bioactive compounds and elements and on their safety need to be conducted.
Collapse
|
822
|
Zhao X, He Y, Zhang Y, Wan H, Wan H, Yang J. Inhibition of Oxidative Stress: An Important Molecular Mechanism of Chinese Herbal Medicine (Astragalus membranaceus, Carthamus tinctorius L., Radix Salvia Miltiorrhizae, etc.) in the Treatment of Ischemic Stroke by Regulating the Antioxidant System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1425369. [PMID: 35651725 PMCID: PMC9151006 DOI: 10.1155/2022/1425369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023]
Abstract
Ischemic stroke is a severe cerebrovascular disease with high mortality and morbidity. Traditional Chinese medicine (TCM) has been utilized for thousands of years in China and is becoming increasingly popular all over the world, especially for the treatments of ischemic stroke. More and more evidences have implicated that oxidative stress has been closely related with ischemic stroke. This review will concentrate on the evidence of the action mechanism of Chinese herbal medicine and its active ingredient in preventing ischemic stroke by modulating redox signaling and oxidative stress pathways and providing references for clinical treatment and scientific research applications.
Collapse
Affiliation(s)
- Xixi Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yangyang Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
823
|
Karimpour Malekshah A, Rahmani Z, Zargari M, Mirzaei M, Rezaei Talarposhti M, Talebpour Amiri F. Hepatotoxicity in young adult mouse offspring after prenatal exposure to benzo(a)pyrene, and protective effect of atorvastatin. Birth Defects Res 2022; 114:551-558. [PMID: 35593456 DOI: 10.1002/bdr2.2043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Benzo[a]pyrene (BaP) is an environmental contaminant that interrupts the antioxidant defense and thus leads to oxidative stress and DNA damage in the liver. Atorvastatin (ATV) for reducing cholesterol has antioxidant and anti-apoptotic activities. This study investigated the effects of prenatal exposure of BaP on liver toxicity and the protective role of ATV in reducing liver toxicity. MATERIALS AND METHODS In this study, rats were distributed randomly to seven groups: I. Saline control; II. ATV (10 mg/kg); III. Corn oil; IV and V. BaP (10 and 20 mg/kg); VI and VII. ATV + BaP (10 and 20 mg/kg). BaP and ATV were administrated from gestation day 7-16 (GD7-GD16), orally. Ten weeks after the birth, female offspring were examined for oxidative stress markers, liver enzymes, and histology. RESULTS Data revealed that BaP significantly induced oxidative stress (decreased glutathione and increased malondialdehyde level), and disrupted the tissue structure of the liver. Moreover, alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase increased in the offspring. ATV treatment along with BaP during gestation was able to bring the antioxidant status and serum liver enzymes levels relatively close to normal. As well as, histological findings showed that ATV was able to improve liver tissue structure caused by BaP. CONCLUSION Based on the above studies we concluded that ATV at a low dose during gestation was able to reduce liver damage caused by BaP with antioxidant properties.
Collapse
Affiliation(s)
- Abbasali Karimpour Malekshah
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Rahmani
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mansoureh Mirzaei
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoumeh Rezaei Talarposhti
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
824
|
Bumbasirevic U, Bojanic N, Simic T, Milojevic B, Zivkovic M, Kosanovic T, Kajmakovic B, Janicic A, Durutovic O, Radovanovic M, Santric V, Zekovic M, Coric V. Interplay between Comprehensive Inflammation Indices and Redox Biomarkers in Testicular Germ-Cell Tumors. J Pers Med 2022; 12:833. [PMID: 35629255 PMCID: PMC9143453 DOI: 10.3390/jpm12050833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Sustained and dysregulated inflammation, concurrent tumor-induced immune suppression, and oxidative stress are profoundly involved in cancer initiation, presentation, and perpetuation. Within this prospective study, we simultaneously analyzed the preoperative indices of systemic inflammatory response and the representative byproducts of oxidative DNA, protein, and lipid damage with the aim of evaluating their clinical relevance among patients diagnosed with testicular germ-cell tumors (GCT). In the analytical cohort (n = 88, median age 34 years), neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), and C-reactive protein (CRP) were significantly altered in patients with a higher tumor stage (p < 0.05). Highly suggestive correlations were found between NLR, dNLR, and SII and modified nucleoside 8-OHdG. CRP and albumin-to-globulin ratio (AGR) significantly correlated with thiols group level and maximal tumor dimension (p < 0.05). Based on receiver operating characteristic (ROC) curve analyses, all the evaluated pre-orchiectomy inflammation markers demonstrated strong performance in predicting metastatic disease; optimal cut-off points were determined for each indicator. Although further large-scale studies are warranted, inflammatory and redox indices may both complement the established tumor markers and standard clinicopathological prognostic variables and contribute to enhanced personalized risk-assessment among testicular GCT patients.
Collapse
Affiliation(s)
- Uros Bumbasirevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nebojsa Bojanic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Bogomir Milojevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Marko Zivkovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
| | - Tijana Kosanovic
- Radiology Department, The University Hospital ‘Dr. Dragisa Misovic-Dedinje’, 11000 Belgrade, Serbia;
| | - Boris Kajmakovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Aleksandar Janicic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Otas Durutovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Radovanovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Veljko Santric
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Zekovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Coric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
825
|
Ismail NAS, Lee JX, Yusof F. Platinum Nanoparticles: The Potential Antioxidant in the Human Lung Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11050986. [PMID: 35624849 PMCID: PMC9137660 DOI: 10.3390/antiox11050986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress-related conditions associated with lung cells, specifically lung cancer, often lead to a poor prognosis. We hypothesized that platinum nanoparticles (PtNPs) can play a role in reversing oxidative stress in human lung adenocarcinoma A549 epithelial lung cell lines. Hydrogen peroxide (H2O2) was used to induce oxidative stress in cells, and the ability of PtNPs to lower the oxidative stress in the H2O2 treated epithelial lung cell line was determined. The differential capacity of PtNPs to remove H2O2 was studied through cell viability, nanoparticle uptake, DNA damage, ROS production, and antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Results indicated that a higher concentration of PtNPs exhibited a higher antioxidant capacity and was able to reduce DNA damage and quench ROS production in the presence of 350 µM H2O2. All antioxidant enzymes’ activities also increased in the PtNPs treatment. Our data suggested that PtNPs could be a promising antioxidant in the treatment of lung cancer.
Collapse
|
826
|
Antioxidant Activity, Phenolic Composition, and Hormone Content of Wild Edible Vegetables. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wild edible plants have been used since antiquity as folk medicine and as preservatives in foods. This study aimed to determine the antioxidant activities, phenolic compounds, and hormone contents of 12 species of edible wild plants belonging to 9 families, which are consumed as vegetables by the local people at Ergan Mountain in Erzincan in Turkey. Polygonum cognatum and Malva neglecta were determined to have more antioxidant enzyme activity, more phenolic compounds, and higher hormone content than the other species. The highest catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione-s-transferase (GST) values for P. cognatum were determined as 45.12, 94.83, 36.76, and 1218.35 EU g−1, respectively. The highest superoxide dismutase (SOD) and ascorbate peroxidase (AxPOD) content for M. neglecta were determined as 97.53 EU g−1 and 81.93 EU g−1, respectively. P. cognatum is the species in which the highest levels of the hormones indolacetic acid (IAA), gibberellic acid (GA), salicylic acid (SA), cytokinin, zeatin and jasmonic acid were detected. The highest levels of caftaric acid (CA), catechin (CAE), ferulic acid (FA), malvidin-3-o-glucoside (MG), myricetin (MYR), rutin (RT), trans-coumaric acid (TPCA), tyrosol (TY), and vanilic acid (VA) compounds were found in M. neglecta. It was determined that Falcaria vulgaris species had the highest levels of ferulic acid (FA) and quercetin (QUE) phenolics. The results show that edible wild vegetables consumed and studied by the people of the region are an important source of natural antioxidants. The possibilities of using these wild plants as functional foods should be investigated.
Collapse
|
827
|
Nitration of Flavonoids and Tocopherols as Potential Modulators of Nitrosative Stress—A Study Based on Their Conformational Structures and Energy Content. Stress 2022. [DOI: 10.3390/stresses2020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vitamin E and dietary flavonoids are natural substances with antioxidant and anti-inflammatory activities, showing little or no side effects. Fruit and vegetable diets based on flavonoids and vitamin E provide a benefit to hypertensive subjects by regulating blood pressure. However, the exact mechanism of their anti-inflammatory properties has not been chemically explained. It has been proposed that their anti-oxidant and anti-inflammatory properties may be related to their ability to scavenge free radicals. We here describe the chemical considerations that flavonoids and tocopherols required to act as potential scavengers of the •NO2 radical, a key radical in the cellular oxidative process. Moreover, we provide a theoretical study of the energy content of the nitrated compounds in the different possible positions. With this analysis, it was predicted that five flavonoids from different families (quercetin (flavanol), naringenin (flavanone), luteolin (flavone), catechin (flavanol) and aurantinidin (anthocyanin)) and three tocopherols (β-, γ-, and δ-tocopherol, but not α-tocopherol) could act as potential scavengers of the harmful •NO2 radical. These results may help to explain their beneficial effect on cardiovascular health through its antioxidant role. To validate our theoretical considerations, we also examined uric acid, a well-known •NO2-scavenger. We hope this study could help to elucidate the potential scavenging activity of other dietary antioxidants.
Collapse
|
828
|
Peruzzi M, Ramazzotti M, Damiano R, Vasarri M, la Marca G, Arzilli C, Piumelli R, Nassi N, Degl'Innocenti D. Urinary Biomarkers as a Proxy for Congenital Central Hypoventilation Syndrome Patient Follow-Up. Antioxidants (Basel) 2022; 11:antiox11050929. [PMID: 35624794 PMCID: PMC9138029 DOI: 10.3390/antiox11050929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Congenital Central Hypoventilation Syndrome (CCHS) is a rare genetic disorder of the autonomic nervous system and in particular of the respiratory control during sleep. No drug therapy is, to date, available; therefore, the survival of these patients depends on lifelong ventilatory support during sleep. Reactive oxygen species (ROS)-induced oxidative stress is a recognized risk factor involved in the pathogenesis of several chronic diseases. Therefore, monitoring systemic oxidative stress could provide important insights into CCHS outcomes. Because ROS-induced oxidative products are excreted as stable metabolites in urine, we performed an HPLC-MS/MS analysis for the quantitative determination of the three main representative oxidative biomarkers (i.e., diY, MDA, and 8-OHdG) in the urine of CCHS patients. Higher levels of urinary MDA were found in CCHS patients compared with age-matched control subjects. The noteworthy finding is the identification of urinary MDA as relevant biomarker of systemic oxidative status in CCHS patients. This study is a concise and smart communication about the impact that oxidative stress has in CCHS, and suggests the monitoring of urinary MDA levels as a useful tool for the management of these patients.
Collapse
Affiliation(s)
- Marta Peruzzi
- Sleep Breathing Disorders and SIDS Centre, A. Meyer Children’s Hospital, 50134 Florence, Italy; (M.P.); (C.A.); (R.P.); (N.N.)
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (M.R.); (R.D.); (M.V.); (G.l.M.)
| | - Roberta Damiano
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (M.R.); (R.D.); (M.V.); (G.l.M.)
- Newborn Screening, Biochemistry and Pharmacology Laboratory, A. Meyer Children’s Hospital, 50134 Florence, Italy
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (M.R.); (R.D.); (M.V.); (G.l.M.)
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (M.R.); (R.D.); (M.V.); (G.l.M.)
- Newborn Screening, Biochemistry and Pharmacology Laboratory, A. Meyer Children’s Hospital, 50134 Florence, Italy
| | - Cinzia Arzilli
- Sleep Breathing Disorders and SIDS Centre, A. Meyer Children’s Hospital, 50134 Florence, Italy; (M.P.); (C.A.); (R.P.); (N.N.)
| | - Raffaele Piumelli
- Sleep Breathing Disorders and SIDS Centre, A. Meyer Children’s Hospital, 50134 Florence, Italy; (M.P.); (C.A.); (R.P.); (N.N.)
| | - Niccolò Nassi
- Sleep Breathing Disorders and SIDS Centre, A. Meyer Children’s Hospital, 50134 Florence, Italy; (M.P.); (C.A.); (R.P.); (N.N.)
| | - Donatella Degl'Innocenti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (M.R.); (R.D.); (M.V.); (G.l.M.)
- Correspondence:
| |
Collapse
|
829
|
Liu Y, Sui X, Zhao X, Wang S, Yang Q. Antioxidative Activity Evaluation of High Purity and Micronized Tartary Buckwheat Flavonoids Prepared by Antisolvent Recrystallization. Foods 2022; 11:foods11091346. [PMID: 35564069 PMCID: PMC9102898 DOI: 10.3390/foods11091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Tartary buckwheat, a healthy food, is associated with a reduced risk of certain human chronic diseases. However, the bioactive component flavonoids in Tartary buckwheat have poor solubility and low absorption in vivo. To improve these points, 60.00% Tartary buckwheat total flavonoids (TFs) were obtained by ethanol refluxing method, which were purified and micronized by antisolvent recrystallization (ASR) using methanol as a solvent and deionized water as an antisolvent. By using High Performance Liquid Chromatography (HPLC) and electrospray ionized mass spectrometry (ESI-MS), the main flavonoid in pure flavonoids (PF) were rutin (RU), kaempferol-3-O-rutinoside (KA) and quercetin (QU); the content of TF is 99.81% after purification. It is more worthy of our attention that micronized flavonoids contribute more to antioxidant activity because of good solubility. These results provide a theoretical reference for the micronization of other flavonoids.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
- Correspondence: (X.S.); (X.Z.)
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
- Correspondence: (X.S.); (X.Z.)
| | - Siying Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Qilei Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
830
|
Lian D, Takano Y, Shigeta Y. Evaluation of an Appropriate Standard Hydrogen Electrode Potential for Computing Redox Potentials of Catechins with Density Functional Theory. CHEM LETT 2022. [DOI: 10.1246/cl.220165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Duan Lian
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi, Asaminami-ku, Hiroshima 731-3194 Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi, Asaminami-ku, Hiroshima 731-3194 Japan
| | - Yasuteru Shigeta
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| |
Collapse
|
831
|
A “notch” in the cellular communication network in response to anoxia by wood frog (Rana sylvatica). Cell Signal 2022; 93:110305. [DOI: 10.1016/j.cellsig.2022.110305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
832
|
In vivo study of dose-dependent antioxidant efficacy of functionalized core-shell yttrium oxide nanoparticles. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:593-606. [PMID: 35201389 PMCID: PMC8989852 DOI: 10.1007/s00210-022-02219-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Abstract Herein, we assess the dose-dependent antioxidant efficacy of ultrafine spherical functionalized core–shell yttrium oxide nanoparticles (YNPs) with a mean size of 7–8 nm and modified with poly EGMP (ethylene glycol methacrylate phosphate) and N-Fluorescein Acrylamide. The antioxidant properties of these nanoparticles were investigated in three groups of Sprague–Dawley rats (10 per group) exposed to environmental stress daily for 1 week and one control group. Groups 2 and 3 were intravenously injected twice a week with YNPs at 0.3 and 0.5 mg at 2nd and 5th day of environmental stress exposure respectively. Different samples of blood and serum were collected from all experimental groups at end of the experiment to measure oxidative biomarkers such as total antioxidant capacity (TAC), hydroxyl radical antioxidant capacity (HORAC), oxygen radical antioxidant capacity (ORAC), malondialdehyde (MDA), and oxidants concentration as hydrogen peroxide (H2O2). The liver, brain, and spleen tissues were collected for fluorescence imaging and histopathological examination in addition to brain tissue examination by transmission electron microscope (TEM). Inductively coupled plasma-mass spectrometry (ICP-MS) was used to estimate YNPs translocation and concentration in tissues which is consecutively dependent on the dose of administration. Depending on all results, poly EGMP YNPs (poly EGMP yttrium oxide nanoparticles) can act as a potent direct antioxidant in a dose-dependent manner with good permeability through blood–brain barrier (BBB). Also, the neuroprotective effect of YNPs opening the door to a new therapeutic approach for modulating oxidative stress–related neural disorders. Highlights • The dose-dependent antioxidant efficacy of ultrafine spherical functionalized core–shell yttrium oxide nanoparticles (YNPs) with a mean size of 7–8 nm and modified with poly EGMP (ethylene glycol methacrylate phosphate) and N-Fluorescein Acrylamide was assessed. • The dose of administration directly affecting the brain, liver, and spleen tissues distribution, retention, and uptake of YNPs and direct correlation between the absorbed amount and higher dose administered. • YNPs can act as a potent direct antioxidant in a dose-dependent manner with good permeability through blood–brain barrier (BBB). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00210-022-02219-1.
Collapse
|
833
|
Neves B, Pérez-Sala D, Ferreira HB, Guerra IM, Moreira AS, Domingues P, Domingues MR, Melo T. Understanding the nitrolipidome: From chemistry to mass spectrometry and biological significance of modified complex lipids. Prog Lipid Res 2022; 87:101176. [DOI: 10.1016/j.plipres.2022.101176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
|
834
|
Remigante A, Spinelli S, Pusch M, Sarikas A, Morabito R, Marino A, Dossena S. Role of SLC4 and SLC26 solute carriers during oxidative stress. Acta Physiol (Oxf) 2022; 235:e13796. [PMID: 35143116 PMCID: PMC9542443 DOI: 10.1111/apha.13796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
Bicarbonate is one of the major anions in mammalian tissues and fluids, is utilized by various exchangers to transport other ions and organic substrates across cell membranes and plays a critical role in cell and systemic pH homoeostasis. Chloride/bicarbonate (Cl−/HCO3−) exchangers are abundantly expressed in erythrocytes and epithelial cells and, as a consequence, are particularly exposed to oxidants in the systemic circulation and at the interface with the external environment. Here, we review the physiological functions and pathophysiological alterations of Cl−/HCO3− exchangers belonging to the solute carriers SLC4 and SLC26 superfamilies in relation to oxidative stress. Particularly well studied is the impact of oxidative stress on the red blood cell SLC4A1/AE1 (Band 3 protein), of which the function seems to be directly affected by oxidative stress and possibly involves oxidation of the transporter itself or its interacting proteins, with detrimental consequences in oxidative stress‐related diseases including inflammation, metabolic dysfunctions and ageing. The effect of oxidative stress on SLC26 members was less extensively explored. Indirect evidence suggests that SLC26 transporters can be target as well as determinants of oxidative stress, especially when their expression is abolished or dysregulated.
Collapse
Affiliation(s)
- Alessia Remigante
- Biophysics Institute National Research Council Genova Italy
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Michael Pusch
- Biophysics Institute National Research Council Genova Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| |
Collapse
|
835
|
Lin JN, Wang JS, Lin CC, Lin HY, Yu SH, Wen YH, Tseng GF, Hsu CJ, Wu HP. Ameliorative effect of taxifolin on gentamicin-induced ototoxicity via down-regulation of apoptotic pathways in mouse cochlear UB/OC-2 cells. J Chin Med Assoc 2022; 85:617-626. [PMID: 35286283 DOI: 10.1097/jcma.0000000000000708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Taxifolin is a flavanonol with efficacious cytoprotective properties, such as anti-inflammatory, antioxidant, anticancer, hepatoprotective, and nephroprotective effects. However, the potential protective effects of taxifolin against gentamicin-induced ototoxicity have not been confirmed. In this study, the possible mechanisms underlying the effects of taxifolin on gentamicin-induced death of UB/OC-2 cochlear cells were investigated. METHODS Mouse cochlear UB/OC-2 cells with or without taxifolin pretreatment were exposed to gentamicin, and the effects on cytotoxicity, reactive oxygen species (ROS) production, mitochondrial permeability transition, and apoptotic marker expression were examined using biochemical techniques, flow cytometry, western blotting, and fluorescent staining. RESULTS Little or no apparent effect of taxifolin on cell viability was observed at concentrations less than 40 μM. Further investigations showed that gentamicin significantly inhibited cell viability in a concentration-dependent manner. Pretreatment with taxifolin attenuated gentamicin-induced lactate dehydrogenase release, as well as cellular cytotoxicity. In addition, taxifolin significantly prevented gentamicin-induced cell damage by decreasing ROS production, stabilizing mitochondrial membrane potential, and downregulating the mitochondrial pathway of apoptosis. CONCLUSION In summary, pretreatment with taxifolin is effective for mitigating gentamicin-induced apoptotic cell death mediated by the mitochondrial pathway. Our data suggest that taxifolin provides a new approach to combat gentamicin-induced ototoxicity.
Collapse
Affiliation(s)
- Jia-Ni Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Jen-Shu Wang
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chung-Ching Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Hui-Yi Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan, ROC
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan, Taiwan, ROC
| | - Yu-Hsuan Wen
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Otolaryngology, Head and Neck Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Guo-Fang Tseng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
836
|
Effects of Prolonged Exposure to Hypobaric Hypoxia on Oxidative Stress: Overwintering in Antarctic Concordia Station. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4430032. [PMID: 35535360 PMCID: PMC9078816 DOI: 10.1155/2022/4430032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Concordia Station is the permanent, research station on the Antarctic Plateau at 3230 m. During the eleventh winter-over campaign (DC11-2015; February 2015 to November 2015) at Antarctic Concordia Station, 13 healthy team members were studied and blood samples were collected at six different time points: baseline measurements (T0), performed at sea level before the departure, and during the campaign at 3, 7, 20, 90, and 300 days after arrival at Concordia Station. Reducing the partial pressure of O2 as barometric pressure falls, hypobaric hypoxia (HH) triggers several physiological adaptations. Among the others, increased oxidative stress and enhanced generation of reactive oxygen/nitrogen species (ROS/RNS), resulting in severe oxidative damage, were observed, which can share potential physiopathological mechanisms associated with many diseases. This study characterized the extent and time-course changes after acute and chronic HH exposure, elucidating possible fundamental mechanisms of adaptation. ROS, oxidative stress biomarkers, nitric oxide, and proinflammatory cytokines significantly increased (range 24-135%) during acute and chronic hypoxia exposure (peak 20th day) with a decrease in antioxidant capacity (peak 90th day: -52%). Results suggest that the adaptive response of oxidative stress balance to HH requires a relatively long time, more than 300th days, as all the observed variables do not return to the preexposition level. These findings may also be relevant to patients in whom oxygen availability is limited through disease (i.e., chronic heart and lung and/or kidney disease) and/or during long-duration space missions.
Collapse
|
837
|
Postnikova LA, Patkin EL. The possible effect of lactoferrin on the epigenetic characteristics of early mammalian embryos exposed to bisphenol A. Birth Defects Res 2022; 114:1199-1209. [PMID: 35451577 DOI: 10.1002/bdr2.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The main objective of this review was to state a hypothetical mechanism of the antitoxic effect of lactoferrin (Lf) on embryos exposed to bisphenol A (BPA). On this basis, it is possible to suggest Lf as a potential protective health component before conception upon toxic effects and viral infections. METHODS The narrative review was performed using systematic review methods to identify relevant literature. The resources required for this study were obtained by searching the electronic database PubMed (MEDLINE). Articles were searched using the keywords "BPA," "lactoferrin," "DNA-methylation," "epigenetic," "mammals," "human," and "mouse." The inclusion criteria were as follows: (a) primary or original research; (b) study of epigenetic modification; and (c) study focuses on early mammalian development. RESULTS Presented data demonstrate that Lf can modulate epigenetical characteristic, such as DNA methylation and reactive oxygen species (ROS), and, thereby, may serve as a potential readily available pharmaceutical product. CONCLUSION Suggested hypothesis is based on the important interrelated role of changes in epigenetic modifications and oxidative stress in early embryogenesis under the influence of BPA and virus infection as a cause of the development of pathologies in the adult organism.
Collapse
Affiliation(s)
- Liubov A Postnikova
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Eugene L Patkin
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
838
|
Ionizing Radiation Induces Disc Annulus Fibrosus Senescence and Matrix Catabolism via MMP-Mediated Pathways. Int J Mol Sci 2022; 23:ijms23074014. [PMID: 35409374 PMCID: PMC8999232 DOI: 10.3390/ijms23074014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/01/2023] Open
Abstract
Previous research has identified an association between external radiation and disc degeneration, but the mechanism was poorly understood. This study explores the effects of ionizing radiation (IR) on inducing cellular senescence of annulus fibrosus (AF) in cell culture and in an in vivo mouse model. Exposure of AF cell culture to 10–15 Gy IR for 5 min followed by 5 days of culture incubation resulted in almost complete senescence induction as evidenced by SA-βgal positive staining of cells and elevated mRNA expression of the p16 and p21 senescent markers. IR-induced senescent AF cells exhibited increased matrix catabolism, including elevated matrix metalloproteinase (MMP)-1 and -3 protein expression and aggrecanolysis. Analogous results were seen with whole body IR-exposed mice, demonstrating that genotoxic stress also drives disc cellular senescence and matrix catabolism in vivo. These results have important clinical implications in the potential adverse effects of ionizing radiation on spinal health.
Collapse
|
839
|
Maize Silk Biogenic Nanoceria (CeO2NPs) Enhanced Sequential Injection-Chemiluminescence Detection of Ferulic, Sinapic and p-Coumaric in Yellow Maize Kernels. PLANTS 2022; 11:plants11070885. [PMID: 35406865 PMCID: PMC9003254 DOI: 10.3390/plants11070885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
The current study demonstrated the capability of using maize silk as a green, simple, clean, safe, and cost-effective platform for the biosynthesis of cerium oxide (CeO2NPs). Several spectroscopic and microscopic analyses were employed to characterize the resulted biogenic nanoceria. When the concentration of the CeO2NPs was elevated from 25 to 100 ug mL−1, the CeO2NPs exhibited strong scavenging potential ranging from 60.21 to 75.11% and 56 to 77% for 1,1-diphenyl-2- picrylhydrazyl (DPPH•) and 2-2′-azino-bis(3-ethyl benzothiazoline-6-sulphonic acid) (ABTS) tests, respectively. The quantitative determination of ferulic, sinapic, and p-coumaric acids was carried out using an eco-friendly, cost-effective, and optimized ultrasensitive nanoceria enhanced sequential injection-chemiluminescence (SIA-CL) system. The highest amount was presented by the ferulic acid (1636 ± 2.61 ug/gdw), followed by p-coumaric acid (206 ± 1.12 ug/gdw) and sinapic acid (123 ± 2.15 ug/gdw). The intrinsic capabilities of the biogenic CeO2NPs in enhancing the developed system reveal its potential role in detecting phenolic compounds with great sensitivity.
Collapse
|
840
|
Abstract
Copper ions bind to biomolecules (e.g., peptides and proteins) playing an essential role in many biological and physiological pathways in the human body. The resulting complexes may contribute to the initiation of neurodegenerative diseases, cancer, and bacterial and viral diseases, or act as therapeutics. Some compounds can chemically damage biological macromolecules and initiate the development of pathogenic states. Conversely, a number of these compounds may have antibacterial, antiviral, and even anticancer properties. One of the most significant current discussions in Cu biochemistry relates to the mechanisms of the positive and negative actions of Cu ions based on the generation of reactive oxygen species, including radicals that can interact with DNA molecules. This review aims to analyze various peptide–copper complexes and the mechanism of their action.
Collapse
|
841
|
Thonusin C, Pantiya P, Sumneang N, Chunchai T, Nawara W, Arunsak B, Siri-Angkul N, Sriwichaiin S, Chattipakorn SC, Chattipakorn N. Effectiveness of high cardiorespiratory fitness in cardiometabolic protection in prediabetic rats. Mol Med 2022; 28:31. [PMID: 35272616 PMCID: PMC8908596 DOI: 10.1186/s10020-022-00458-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Caloric restriction and exercise are lifestyle interventions that effectively attenuate cardiometabolic impairment. However, cardioprotective effects of long-term lifestyle interventions and short-term lifestyle interventions followed by weight maintenance in prediabetes have never been compared. High cardiorespiratory fitness (CRF) has been shown to provide protection against prediabetes and cardiovascular diseases, however, the interactions between CRF, prediabetes, caloric restriction, and exercise on cardiometabolic health has never been investigated. Methods Seven-week-old male Wistar rats were fed with either a normal diet (ND; n = 6) or a high-fat diet (HFD; n = 30) to induce prediabetes for 12 weeks. Baseline CRF and cardiometabolic parameters were determined at this timepoint. The ND-fed rats were fed continuously with a ND for 16 more weeks. The HFD-fed rats were divided into 5 groups (n = 6/group) to receive one of the following: (1) a HFD without any intervention for 16 weeks, (2) 40% caloric restriction for 6 weeks followed by an ad libitum ND for 10 weeks, (3) 40% caloric restriction for 16 weeks, (4) a HFD plus an exercise training program for 6 weeks followed by a ND without exercise for 10 weeks, or (5) a HFD plus an exercise training program for 16 weeks. At the end of the interventions, CRF and cardiometabolic parameters were re-assessed. Then, all rats were euthanized and heart tissues were collected. Results Either short-term caloric restriction or exercise followed by weight maintenance ameliorated cardiometabolic impairment in prediabetes, as indicated by increased insulin sensitivity, improved blood lipid profile, improved mitochondrial function and oxidative phosphorylation, reduced oxidative stress and inflammation, and improved cardiac function. However, these benefits were not as effective as those of either long-term caloric restriction or exercise. Interestingly, high-level baseline CRF was correlated with favorable cardiac and metabolic profiles at follow-up in prediabetic rats, both with and without lifestyle interventions. Conclusions Short-term lifestyle modification followed by weight maintenance improves cardiometabolic health in prediabetes. High CRF exerted protection against cardiometabolic impairment in prediabetes, both with and without lifestyle modification. These findings suggest that targeting the enhancement of CRF may contribute to the more effective treatment of prediabetes-induced cardiometabolic impairment. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00458-9.
Collapse
Affiliation(s)
- Chanisa Thonusin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharapong Pantiya
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Natticha Sumneang
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
842
|
Acri G, Micali A, D’Angelo R, Puzzolo D, Aragona P, Testagrossa B, Aragona E, Wylegala E, Nowinska A. Raman Spectroscopic Study of Amyloid Deposits in Gelatinous Drop-like Corneal Dystrophy. J Clin Med 2022; 11:jcm11051403. [PMID: 35268494 PMCID: PMC8911144 DOI: 10.3390/jcm11051403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
The genetic and histopathological features of the cornea of a Polish patient with Gelatinous Drop-like Corneal Dystrophy (GDCD) and the molecular composition with Raman spectroscopy of corneal deposits were examined. A 62 year-old Polish woman was diagnosed with GDCD and underwent penetrating corneal transplant. A blood sample was collected, and genetic analysis was performed. The cornea was processed for light microscopy and Raman analysis. The genetic exam revealed a previously undescribed homozygous 1-base pair deletion in exon 1 of TACSTD2 gene (c.185delT), resulting in a frame shift causing a premature stop codon. When compared with a control cornea, in GDCD cornea stained with PAS evident deposits were present over the anterior stroma, with apple green birefringence under polarized light. Raman spectroscopy showed peculiar differences between normal and GDCD cornea, consisting in peaks either of different height or undetectable in the normal cornea and related to amyloid. The possible causative role of the novel mutation was discussed and Raman spectroscopy as a further morphological tool in the evaluation of corneal dystrophies, characterized by the deposition of abnormal materials, was suggested.
Collapse
Affiliation(s)
- Giuseppe Acri
- Department of Biomedical Sciences, Section of Physics, University of Messina, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Antonio Micali
- Department of Adult and Pediatric Pathology, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-90-2213630
| | - Rosalia D’Angelo
- Department of Biomedical Sciences, Section of Biology and Genetics, University of Messina, 98125 Messina, Italy;
| | - Domenico Puzzolo
- Department of Biomedical Sciences, Section of Histology and Embryology, University of Messina, 98125 Messina, Italy;
| | - Pasquale Aragona
- Department of Biomedical Sciences, Eye Clinic, Regional Referral Center for the Ocular Surface Diseases, University of Messina, 98125 Messina, Italy;
| | - Barbara Testagrossa
- Department of Biomedical Sciences, Section of Physics, University of Messina, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele, Vita-Salute University, 20132 Milan, Italy;
| | - Edward Wylegala
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-555 Katowice, Poland; (E.W.); (A.N.)
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
| | - Anna Nowinska
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-555 Katowice, Poland; (E.W.); (A.N.)
| |
Collapse
|
843
|
Mayer-Santos E, Maravic T, Comba A, Freitas PM, Marinho GB, Mazzitelli C, Mancuso E, Scotti N, Florenzano F, Breschi L, Mazzoni A. The Influence of Different Bleaching Protocols on Dentinal Enzymatic Activity: An In Vitro Study. Molecules 2022; 27:1684. [PMID: 35268785 PMCID: PMC8911605 DOI: 10.3390/molecules27051684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate matrix metalloproteinase (MMP) activity in human dentin using in-situ and gelatin zymography, after at-home and in-office bleaching, related to their clinical exposure times. Dentin specimens (n = 5) were treated with 35% hydrogen peroxide (50 min per session/4 sessions), 10% carbamide peroxide (180 min/21 sessions), or no treatment. All were subjected to in-situ zymography. Dentin slices were, subsequently, obtained, covered with fluorescein-conjugated gelatin, and examined with confocal laser-scanning microscopy. The fluorescence intensity was quantified and statistically analyzed using one-way ANOVA and Bonferroni tests (α = 0.05). Furthermore, gelatin zymography was performed on protein extracts obtained from dentin powder (N = 8 teeth), treated with hydrogen peroxide or carbamide peroxide, with different exposure times (10/50 min for hydrogen peroxide; 252/1260 min for carbamide peroxide). The results of the in-situ zymography showed no statistical differences between the bleached specimens and the control group, with a medium level of gelatinolytic activity expressed in the dentin tubules. The results of gelatin zymography showed an increased expression of pro-MMP-9 in carbamide peroxide groups. The expression of pro-MMP-2 decreased in all the experimental groups. The bleaching treatments performed on the enamel of sound teeth do not influence dentinal enzymatic activity. However, when unprotected dentin tissue is bleached, matrix metalloproteinases are more expressed, particularly when carbamide peroxide is used, proportional to the exposure time.
Collapse
Affiliation(s)
- Eric Mayer-Santos
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Allegra Comba
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (A.C.); (N.S.)
| | - Patricia Moreira Freitas
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Giovanna Bueno Marinho
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Nicola Scotti
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (A.C.); (N.S.)
| | - Federica Florenzano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| |
Collapse
|
844
|
Meng M, Jia R, Wei M, Meng X, Zhang X, Du R, Sun W, Wang L, Song L. Oxidative stress activates Ryr2-Ca 2+ and apoptosis to promote PM 2.5-induced heart injury of hyperlipidemia mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113228. [PMID: 35091300 DOI: 10.1016/j.ecoenv.2022.113228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The increased cases of hyperlipemia in China and the crucial role of PM2.5 in inducing and promoting cardiovascular diseases have attracting more and more researchers' attention. However, the effects and mechanisms of PM2.5 on cardiovascular system of hyperlipidemia people are still unclear. In this study, hyperlipidemia mice model was established by high-fat diet. Then we exposed these mice to PM2.5 or saline to explore the underling mechanism of cardiac injury in hyperlipidemia mice. The hyperlipemia mice are more susceptible to heart damage caused by PM2.5 exposure. The participation of oxidative stress, cell apoptosis and Ca2+ related mechanism could be observed in this model. After NAC (N-acetyl-L-cysteine) treatment, the oxidative stress level induced by PM2.5 exposure significantly decreased in hyperlipemia mice. NAC effectively alleviated cardiac injury, improved the imbalance of calcium and attenuated apoptosis induced by PM2.5 exposure in hyperlipemia mice. The strong oxidative stress in hyperlipemia mice could lead to calcium homeostasis imbalance and activation of apoptosis-related pathways. This mechanism of PM2.5-induced myocardial injury was also verified in vitro. In our present study, we demonstrated the contribution of the PM2.5-ROS-Ryr2-Ca2+ axis in PM2.5-induced heart injury of hyperlipidemia mice, offering a potential therapeutical target for related pathology.
Collapse
Affiliation(s)
- Meiling Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China; Tai 'an city central hospital, Tai 'an City, Shandong Province 271000, China
| | - Ruxue Jia
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Min Wei
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Xianzong Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China; Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Xiao Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Rui Du
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Wenping Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Lili Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China.
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China.
| |
Collapse
|
845
|
Zhang H, Li L, Li H, Qu P, Xiao M, Zhang G, Wu S, Zhu G, Lu X. Corn Embryo Ameliorates Cognitive Dysfunction and Anxiety-like Behaviors in D-galactose-induced Aging Rats via Attenuating Oxidative Stress, Apoptosis and Up-regulating Neurotrophic Factors. J Chem Neuroanat 2022; 121:102088. [DOI: 10.1016/j.jchemneu.2022.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
846
|
Atherosclerosis in HIV Patients: What Do We Know so Far? Int J Mol Sci 2022; 23:ijms23052504. [PMID: 35269645 PMCID: PMC8910073 DOI: 10.3390/ijms23052504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
For the past several decades, humanity has been dealing with HIV. This disease is one of the biggest global health problems. Fortunately, modern antiretroviral therapy allows patients to manage the disease, improving their quality of life and their life expectancy. In addition, the use of these drugs makes it possible to reduce the risk of transmission of the virus to almost zero. Atherosclerosis is another serious pathology that leads to severe health problems, including disability and, often, the death of the patient. An effective treatment for atherosclerosis has not yet been developed. Both types of immune response, innate and adaptive, are important components of the pathogenesis of this disease. In this regard, the peculiarities of the development of atherosclerosis in HIV carriers are of particular scientific interest. In this review, we have tried to summarize the data on atherosclerosis and its development in HIV carriers. We also looked at the classic therapeutic methods and their features concerning the concomitant diagnosis.
Collapse
|
847
|
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11020408. [PMID: 35204290 PMCID: PMC8869281 DOI: 10.3390/antiox11020408] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Free radicals are formed as a part of normal metabolic activities but are neutralized by the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This redox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress, which is implicated in several progressive neurodegenerative diseases. Following neuronal injury, secondary injury progression is also caused by excessive production of free radicals. Highly reactive free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise to alleviate oxidative stress to regain the redox balance. In this regard, natural and synthetic antioxidants have been evaluated. Despite promising results in preclinical studies, clinical translation of antioxidants as a therapy to treat neurodegenerative diseases remains elusive. The issues could be their low bioavailability, instability, limited transport to the target tissue, and/or poor antioxidant capacity, requiring repeated and high dosing, which cannot be administered to humans because of dose-limiting toxicity. Our laboratory is investigating nanoparticle-mediated delivery of antioxidant enzymes to address some of the above issues. Apart from being endogenous, the main advantage of antioxidant enzymes is their catalytic mechanism of action; hence, they are significantly more effective at lower doses in detoxifying the deleterious effects of free radicals than nonenzymatic antioxidants. This review provides a comprehensive analysis of the potential of antioxidant therapy, challenges in their clinical translation, and the role nanoparticles/drug delivery systems could play in addressing these challenges.
Collapse
Affiliation(s)
- Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Syed Suhail Andrabi
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Saffar Mansoor
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Youzhi Kuang
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
- Correspondence:
| |
Collapse
|
848
|
Ali YA, Ahmed AAE, Abd El-Raouf OM, Elkhoely A, Gad AM. Polydatin combats methotrexate-induced pulmonary fibrosis in rats: Involvement of biochemical and histopathological assessment. J Biochem Mol Toxicol 2022; 36:e23019. [PMID: 35174937 DOI: 10.1002/jbt.23019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
Polydatin (PD) is a polyphenolic compound found naturally in many fruits such as grapes. It has anti-oxidant and anti-inflammatory activities that are of paramount importance for its pharmacological actions. This study aimed to explore possible protective effects of PD against methotrexate (MTX)-induced pulmonary fibrosis in rats. A single oral dose of MTX (14 mg/kg) per week for 2 weeks caused a significant decrease in glutathione (GSH) content with a marked increase in transforming growth factor-beta (TGF-β), alpha-smooth muscle actin (α-SMA), pulmonary content of malondialdehyde (MDA), interleukin-1β (IL-1β), Hydroxyproline, tumor necrosis factor-alpha (TNF-α), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as compared with the control group. Contrarily, daily administration of PD (25, 50, and 100 mg/kg, p.o.) for 14 days concomitantly with MTX ameliorated MTX-induced pulmonary fibrosis as indicated by mitigation of the previously mentioned biochemical parameters and histopathological changes in a dose-dependent manner. In conclusion, the protective effect of PD against pulmonary fibrosis induced by MTX in rats might be attributed to its anti-oxidant, anti-inflammatory as well as anti-fibrotic effects.
Collapse
Affiliation(s)
- Yomna A Ali
- Department of Pharmacology, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research, Cairo, Egypt
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ola M Abd El-Raouf
- Department of Pharmacology, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research, Cairo, Egypt
| | - Abeer Elkhoely
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University (East Kantara Branch), New City, Egypt
| |
Collapse
|
849
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Lee SH, Hromas R. Metnase and EEPD1: DNA Repair Functions and Potential Targets in Cancer Therapy. Front Oncol 2022; 12:808757. [PMID: 35155245 PMCID: PMC8831698 DOI: 10.3389/fonc.2022.808757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Cells respond to DNA damage by activating signaling and DNA repair systems, described as the DNA damage response (DDR). Clarifying DDR pathways and their dysregulation in cancer are important for understanding cancer etiology, how cancer cells exploit the DDR to survive endogenous and treatment-related stress, and to identify DDR targets as therapeutic targets. Cancer is often treated with genotoxic chemicals and/or ionizing radiation. These agents are cytotoxic because they induce DNA double-strand breaks (DSBs) directly, or indirectly by inducing replication stress which causes replication fork collapse to DSBs. EEPD1 and Metnase are structure-specific nucleases, and Metnase is also a protein methyl transferase that methylates histone H3 and itself. EEPD1 and Metnase promote repair of frank, two-ended DSBs, and both promote the timely and accurate restart of replication forks that have collapsed to single-ended DSBs. In addition to its roles in HR, Metnase also promotes DSB repair by classical non-homologous recombination, and chromosome decatenation mediated by TopoIIα. Although mutations in Metnase and EEPD1 are not common in cancer, both proteins are frequently overexpressed, which may help tumor cells manage oncogenic stress or confer resistance to therapeutics. Here we focus on Metnase and EEPD1 DNA repair pathways, and discuss opportunities for targeting these pathways to enhance cancer therapy.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage J Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
850
|
Altered Mitochondrial Quality Control in Rats with Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) Induced by High-Fat Feeding. Genes (Basel) 2022; 13:genes13020315. [PMID: 35205361 PMCID: PMC8871726 DOI: 10.3390/genes13020315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined as the presence of hepatic steatosis in addition to one of three metabolic conditions: overweight/obesity, type 2 diabetes mellitus, or metabolic dysregulation. Chronic exposure to excess dietary fatty acids may cause hepatic steatosis and metabolic disturbances. The alteration of the quality of mitochondria is one of the factors that could contribute to the metabolic dysregulation of MAFDL. This study was designed to determine, in a rodent model of MAFLD, the effects of a long-term high-fat diet (HFD) on some hepatic processes that characterize mitochondrial quality control, such as biogenesis, dynamics, and mitophagy. To mimic the human manifestation of MAFLD, the rats were exposed to both an HFD and a housing temperature within the rat thermoneutral zone (28–30 °C). After 14 weeks of the HFD, the rats showed significant fat deposition and liver steatosis. Concomitantly, some important factors related to the hepatic mitochondrial quality were markedly affected, such as increased mitochondrial reactive oxygen species (ROS) production and mitochondrial DNA (mtDNA) damage; reduced mitochondrial biogenesis, mtDNA copy numbers, mtDNA repair, and mitochondrial fusion. HFD-fed rats also showed an impaired mitophagy. Overall, the obtained data shed new light on the network of different processes contributing to the failure of mitochondrial quality control as a central event for mitochondrial dysregulation in MAFLD.
Collapse
|