801
|
Khan OF, Kowalski PS, Doloff JC, Tsosie JK, Bakthavatchalu V, Winn CB, Haupt J, Jamiel M, Langer R, Anderson DG. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. SCIENCE ADVANCES 2018; 4:eaar8409. [PMID: 29963629 PMCID: PMC6021147 DOI: 10.1126/sciadv.aar8409] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/18/2018] [Indexed: 05/19/2023]
Abstract
Dysfunctional endothelial cells contribute to the pathophysiology of many diseases, including vascular disease, stroke, hypertension, atherosclerosis, organ failure, diabetes, retinopathy, and cancer. Toward the goal of creating a new RNA-based therapy to correct aberrant endothelial cell gene expression in humans, efficient gene silencing in the endothelium of nonhuman primates was achieved by delivering small interfering RNA (siRNA) with 7C1, a low-molecular weight, ionizable polymer that forms nanoparticles. After a single intravenous administration of 1 mg of siRNA per kilogram of animal, 7C1 nanoparticles delivering Tie2 siRNA caused Tie2 mRNA levels to decrease by approximately 80% in the endothelium of the lung. Significant decreases in Tie2 mRNA were also found in the heart, retina, kidney, pancreas, and bone. Blood chemistry and liver function analysis before and after treatment all showed protein and enzyme concentrations within the normal reference ranges. Furthermore, after controlling for siRNA-specific effects, no significant increases in inflammatory cytokine concentrations were found in the serum. Similarly, no gross lesions or significant underlying pathologies were observed after histological examination of nonhuman primate tissues. This study is the first demonstration of endothelial gene silencing in multiple nonhuman primate organs using systemically administered siRNA nanoparticles and highlights the potential of this approach for the treatment of disease in humans.
Collapse
Affiliation(s)
- Omar F. Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Piotr S. Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan K. Tsosie
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Caroline Bodi Winn
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Jennifer Haupt
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Morgan Jamiel
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
802
|
Schönfeld A, Constantinescu M, Peters K, Frenz M. Electrospinning of highly concentrated albumin patches by using auxiliary polymers for laser-assisted vascular anastomosis. ACTA ACUST UNITED AC 2018; 13:055001. [PMID: 29739918 DOI: 10.1088/1748-605x/aac332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Electrospun meshes have been extensively investigated for tissue engineering and drug delivery. The application of this technology is of interest for laser-assisted vascular anastomosis (LAVA) due to the possibility to bind and stabilize macromolecules in fibers. MATERIALS AND METHODS We prepared bovine serum albumin (BSA) blend microfibers from the auxiliary proteins polyethylene oxide (PEO), polycaprolactone (PCL), polyvinyl alcohol (PVA) and gelatin. The thickness and weight of the resulting patches were measured and the morphological characteristics were observed by scanning electron microscopy. Thereafter, layered patches were prepared by spinning the BSA/polymer layer on top of a light absorbing layer made of indocyanine green and PCL. The effect of the material composition of the electrospun patches on the behavior during LAVA, the bonding strength and the resulting thermal damage were investigated. RESULTS The bonding strength of the tissue fusion increased with higher BSA amounts in the patch. By using PEO, a ratio of 85/15 (w/w) of BSA/PEO was stable during electrospinning, leading to a shear strength that was similar to patches that were soaked in liquid BSA (20.7 ± 4.1 mN mm-2 and 20.3 ± 4.1 mN mm-2, respectively). The handling during LAVA was however drastically improved by using a layered patch made from BSA/PEO. Thermal damage was similar compared to previous solder materials. CONCLUSION This study investigated the maximum amount of BSA possible in electrospun polymer fibers made from PEO, PCL, PVA and gelatin. Both, the process of electrospinning and the performance during ex vivo LAVA, makes the BSA/PEO blend a promising material for LAVA.
Collapse
Affiliation(s)
- Annemarie Schönfeld
- University of Bern, Institute of Applied Physics, Department of Biomedical Photonics, Sidlerstrasse 5, Bern, 3012, Switzerland. University Medicine Rostock, Department of Cell Biology, Schillingallee 69, Rostock, D-18057, Germany
| | | | | | | |
Collapse
|
803
|
Abstract
The production of antibodies following blood transfusions is a complex process that involves many recipient and donor factors. Inflammation in the recipient is one important factor. As knowledge of the immune system, of oxygen, carbon dioxide, and nitric oxide pathways, and of hemostasis grows, more specific therapies will allow precise manipulation of the immune system and safer transfusions. Communication of patients' transfusion and immunotherapy histories with the laboratory, attention to detail in labeling pretransfusion specimens, checking patient and blood product identification before administration, and closely monitoring patients during transfusions remain critical to minimizing risks during transfusion therapy.
Collapse
|
804
|
Endothelium-dependent vasodilation in the cerebral arterioles of rats deteriorates during acute hyperglycemia and then is restored by reducing the glucose level. J Anesth 2018; 32:531-538. [DOI: 10.1007/s00540-018-2507-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
|
805
|
Goncharov NV, Terpilowski MA, Nadeev AD, Kudryavtsev IV, Serebriakova MK, Zinchenko VP, Avdonin PV. Cytotoxic Power of Hydrogen Peroxide Effect on Endothelial Cells in vitro. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s199074781802006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
806
|
Basic Coagulation Parameters among Human Immunodeficiency Virus-Infected Adults in Gondar, Northwest Ethiopia: A Comparative Cross-Sectional Study. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5320827. [PMID: 29888267 PMCID: PMC5977028 DOI: 10.1155/2018/5320827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/31/2018] [Accepted: 04/15/2018] [Indexed: 12/12/2022]
Abstract
Objective We aimed at assessing the basic coagulation parameters of HIV-infected adults at the University of Gondar Hospital antiretroviral therapy clinic. Methods A comparative cross-sectional study was conducted from February to May 2017. A total of 300 study participants, consisting of 100 HAART-naïve HIV-infected adults, 100 HIV-infected adults who were taking HAART, and 100 HIV-seronegative apparently healthy adults, were included. Basic coagulation functional assays such as PT, APTT, and INR were determined by coagulation analyzer. CD4 cells and platelet count were analyzed by FACS count and SYSMEX K-21N automated analyzer, respectively. The data were entered, cleaned, and edited using Epi Info version 7 and analyzed using SPSS version 20. Kruskal-Wallis H, Dunn-Bonferroni pairwise comparison test, and Spearman's rank-order correlation analysis were used for inferential statistics. The results were expressed by a median and presented in tables. P value < 0.05 was considered as statistically significant. Results PT, APTT, and INR were significantly higher, whereas platelet count was significantly lower in HIV-infected adults (both who were taking HAART and HAART-naïve) than HIV-seronegative adults (P < 0.001). PT and INR were significantly higher, and platelet count was significantly lower in HAART-naïve HIV-infected adults than HIV-infected adults who were taking HAART. In Spearman's rank-order correlation analysis, APTT has shown a significant negative correlation with a CD4 count in HAART-naïve HIV-infected adults. Conclusion HIV-infected adults are more likely to develop coagulation abnormality than HIV-seronegative subjects. Coagulation parameters need to be checked regularly to monitor coagulation disorders in HIV-infected adults.
Collapse
|
807
|
Gogulamudi VR, Cai J, Lesniewski LA. Reversing age-associated arterial dysfunction: insight from preclinical models. J Appl Physiol (1985) 2018; 125:1860-1870. [PMID: 29745797 DOI: 10.1152/japplphysiol.00086.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading causes of death in the United States, and advancing age is a primary risk factor. Impaired endothelium-dependent dilation and increased stiffening of the arteries with aging are independent predictors of CVD. Increased tissue and systemic oxidative stress and inflammation underlie this age-associated arterial dysfunction. Calorie restriction (CR) is the most powerful intervention known to increase life span and improve age-related phenotypes, including arterial dysfunction. However, the translatability of long-term CR to clinical populations is limited, stimulating interest in the pursuit of pharmacological CR mimetics to reproduce the beneficial effects of CR. The energy-sensing pathways, mammalian target of rapamycin, AMPK, and sirtuin-1 have all been implicated in the beneficial effects of CR on longevity and/or physiological function and, as such, have emerged as potential targets for therapeutic intervention as CR mimetics. Although manipulation of each of these pathways has CR-like benefits on arterial function, the magnitude and/or mechanisms can be disparate from that of CR. Nevertheless, targeting these pathways in older individuals may provide some benefits against arterial dysfunction and CVD. The goal of this review is to provide a brief discussion of the mechanisms and pathways underlying age-associated dysfunction in large arteries, explain how these are impacted by CR, and to present the available evidence, suggesting that targets for energy-sensing pathways may act as vascular CR mimetics.
Collapse
Affiliation(s)
| | - Jinjin Cai
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah
| | - Lisa A Lesniewski
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
808
|
Does dietary nitrate say NO to cardiovascular ageing? Current evidence and implications for research. Proc Nutr Soc 2018; 77:112-123. [DOI: 10.1017/s0029665118000058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CVD are characterised by a multi-factorial pathogenesis. Key pathogenetic steps in the development of CVD are the occurrence of endothelial dysfunction and formation of atherosclerotic lesions. Reduced nitric oxide (NO) bioavailability is a primary event in the initiation of the atherosclerotic cascade. NO is a free radical with multiple physiological functions including the regulation of vascular resistance, coagulation, immunity and oxidative metabolism. The synthesis of NO proceeds via two distinct pathways identified as enzymatic and non-enzymatic. The former involves the conversion of arginine into NO by the NO synthases, whilst the latter comprises a two-step reducing process converting inorganic nitrate $({\rm NO}_3^ - )$ into nitrite and subsequently NO.Inorganic ${\rm NO}_3^ - $ is present in water and food, particularly beetroot and green leafy vegetables. Several investigations have therefore used the non-enzymatic NO pathway as a target for nutritional supplementation (${\rm NO}_3^ - $ salts) or dietary interventions (high-${\rm NO}_3^ - $ foods) to increase NO bioavailability and impact on cardiovascular outcomes. Some studies have reported positive effects of dietary ${\rm NO}_3^ - $ on systolic blood pressure and endothelial function in patients with hypertension and chronic heart failure. Nevertheless, results have been inconsistent and the size of the effect appears to be declining in older individuals. Additionally, there is a paucity of studies for disorders such as diabetes, CHD and chronic kidney failure. Thus, whilst dietary ${\rm NO}_3^ - $ supplementation could represent an effective and viable strategy for the primary and secondary prevention of age-related cardiovascular and metabolic diseases, more large-scale, robust studies are awaited to confirm or refute this notion.
Collapse
|
809
|
Decellularized Diaphragmatic Muscle Drives a Constructive Angiogenic Response In Vivo. Int J Mol Sci 2018; 19:ijms19051319. [PMID: 29710813 PMCID: PMC5983670 DOI: 10.3390/ijms19051319] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle tissue engineering (TE) aims to efficiently repair large congenital and acquired defects. Biological acellular scaffolds are considered a good tool for TE, as decellularization allows structural preservation of tissue extracellular matrix (ECM) and conservation of its unique cytokine reservoir and the ability to support angiogenesis, cell viability, and proliferation. This represents a major advantage compared to synthetic scaffolds, which can acquire these features only after modification and show limited biocompatibility. In this work, we describe the ability of a skeletal muscle acellular scaffold to promote vascularization both ex vivo and in vivo. Specifically, chicken chorioallantoic membrane assay and protein array confirmed the presence of pro-angiogenic molecules in the decellularized tissue such as HGF, VEGF, and SDF-1α. The acellular muscle was implanted in BL6/J mice both subcutaneously and ortotopically. In the first condition, the ECM-derived scaffold appeared vascularized 7 days post-implantation. When the decellularized diaphragm was ortotopically applied, newly formed blood vessels containing CD31+, αSMA+, and vWF+ cells were visible inside the scaffold. Systemic injection of Evans Blue proved function and perfusion of the new vessels, underlying a tissue-regenerative activation. On the contrary, the implantation of a synthetic matrix made of polytetrafluoroethylene used as control was only surrounded by vWF+ cells, with no cell migration inside the scaffold and clear foreign body reaction (giant cells were visible). The molecular profile and the analysis of macrophages confirmed the tendency of the synthetic scaffold to enhance inflammation instead of regeneration. In conclusion, we identified the angiogenic potential of a skeletal muscle-derived acellular scaffold and the pro-regenerative environment activated in vivo, showing clear evidence that the decellularized diaphragm is a suitable candidate for skeletal muscle tissue engineering and regeneration.
Collapse
|
810
|
Nitric oxide donors for peripheral artery disease. Curr Opin Pharmacol 2018; 39:77-85. [PMID: 29587164 DOI: 10.1016/j.coph.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 01/02/2023]
|
811
|
Obach RS, Walker GS, Sharma R, Jenkinson S, Tran TP, Stepan AF. Lead Diversification at the Nanomole Scale Using Liver Microsomes and Quantitative Nuclear Magnetic Resonance Spectroscopy: Application to Phosphodiesterase 2 Inhibitors. J Med Chem 2018; 61:3626-3640. [DOI: 10.1021/acs.jmedchem.8b00116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- R. Scott Obach
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory S. Walker
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Raman Sharma
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Stephen Jenkinson
- Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Tuan P. Tran
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Antonia F. Stepan
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
812
|
Johnson RD, Camelliti P. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets? Int J Mol Sci 2018; 19:ijms19030866. [PMID: 29543751 PMCID: PMC5877727 DOI: 10.3390/ijms19030866] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.
Collapse
Affiliation(s)
- Robert D Johnson
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
813
|
Nyhan MM, Coull BA, Blomberg AJ, Vieira CLZ, Garshick E, Aba A, Vokonas P, Gold DR, Schwartz J, Koutrakis P. Associations Between Ambient Particle Radioactivity and Blood Pressure: The NAS (Normative Aging Study). J Am Heart Assoc 2018; 7:e008245. [PMID: 29545261 PMCID: PMC5907574 DOI: 10.1161/jaha.117.008245] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/13/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND The cardiovascular effects of low-level environmental radiation exposures are poorly understood. Although particulate matter (PM) has been linked to cardiovascular morbidity and mortality, and elevated blood pressure (BP), the properties promoting its toxicity remain uncertain. Addressing a knowledge gap, we evaluated whether BP increased with higher exposures to radioactive components of ambient PM, herein referred to as particle radioactivity (PR). METHODS AND RESULTS We performed a repeated-measures analysis of 852 men to examine associations between PR exposure and BP using mixed-effects regression models. As a surrogate for PR, we used gross β activity, measured by the US Environmental Protection Agency's radiation monitoring network. Higher PR exposure was associated with increases in both diastolic BP and systolic BP, for exposures from 1 to 28 days. An interquartile range increase in 28-day PR exposure was associated with a 2.95-mm Hg increase in diastolic BP (95% confidence interval, 2.25-3.66; P<0.001) and a 3.94-mm Hg increase in systolic BP (95% confidence interval, 2.62-5.27; P<0.001). For models including both PR and PM ≤2.5 µm, the PR-BP associations remained stable and significant. For models including PR and black carbon or PR and particle number, the PR-BP associations were attenuated; however, they remained significant for many exposure durations. CONCLUSIONS This is the first study to demonstrate the potential adverse effects of PR on both systolic and diastolic BPs. These were independent and similar in magnitude to those of PM ≤2.5 µm, black carbon, and particle number. Understanding the effects of particle-bound radionuclide exposures on BP may have important implications for environmental and public health policy.
Collapse
Affiliation(s)
- Marguerite M Nyhan
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
| | - Brent A Coull
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
| | | | - Carol L Z Vieira
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
| | - Eric Garshick
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, MA
| | - Abdulaziz Aba
- Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Pantel Vokonas
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, MA
| | - Diane R Gold
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - Joel Schwartz
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - Petros Koutrakis
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
| |
Collapse
|
814
|
Shukla K, Sonowal H, Saxena A, Ramana KV. Didymin prevents hyperglycemia-induced human umbilical endothelial cells dysfunction and death. Biochem Pharmacol 2018; 152:1-10. [PMID: 29548811 DOI: 10.1016/j.bcp.2018.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
Although didymin, a flavonoid-O-glycosides compound naturally found in the citrus fruits, has been reported to be a potent anticancer agent in the prevention of various cancers, its role in the prevention of cardiovascular complications is unclear. Most importantly, its effect in the prevention of endothelial dysfunction, a pathological process involved in the atherogenesis, is unknown. We have examined the efficacy of didymin in preventing the high glucose (HG; 25 mM)-induced human umbilical vein endothelial cells (HUVECs) dysfunction. Our results indicate that incubation of HUVECs with HG resulted in the loss of cell viability, and pre-incubation of didymin prevented it. Further, didymin prevented the HG-induced generation of reactive oxygen species (ROS) as well as lipid peroxidation product, malondialdehyde. Pretreatment of HUVECs with didymin also prevented the HG-induced decrease in eNOS and increase in iNOS expressions. Further, didymin prevented the HG-induced monocytes cell adhesion to endothelial cells, expressions of ICAM-1 and VCAM-1 and activation of NF-κB. Didymin also prevented the release of various inflammatory cytokines and chemokines in HG-treated HUVECs. In conclusion, our results demonstrate that didymin with its anti-oxidative and anti-inflammatory actions prevents hyperglycemia-induced endothelial dysfunction and death. Thus, it could be developed as a potential natural therapeutic agent for the prevention of cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
815
|
Muñoz-Vega M, Massó F, Páez A, Carreón-Torres E, Cabrera-Fuentes HA, Fragoso JM, Pérez-Hernández N, Martinez LO, Najib S, Vargas-Alarcón G, Pérez-Méndez Ó. Characterization of immortalized human dermal microvascular endothelial cells (HMEC-1) for the study of HDL functionality. Lipids Health Dis 2018; 17:44. [PMID: 29523150 PMCID: PMC5845210 DOI: 10.1186/s12944-018-0695-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/02/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Primary cultures endothelial cells have been used as models of endothelial related diseases such atherosclerosis. Biological behavior of primary cultures is donor-dependent and data could not be easily reproducible; endothelial cell lines are emerging options, particularly, human dermal microvascular endothelial cells (HMEC-1), that should be validated to substitute primary cultures for the study of HDL functions. METHODS Morphology, size and granularity of cells were assessed by phase contrast microscopy and flow cytometry of HMEC-1. The adhesion molecules, ICAM-1and VCAM-1 after TNF-α stimulation, and endothelial markers CD105 endoglin, as well as HDL receptor SR-BI were determined by flow cytometry. Internalization of HDL protein was demonstrated by confocal microscopy using HDL labeled with Alexa Fluor 488. HUVECs were used as reference to compared the characteristics with HMEC-1. RESULTS HMEC-1 and HUVEC had similar morphologies, size and granularity. HMEC-1 expressed endothelial markers as HUVECs, as well as functional SR-B1 receptor since the cell line was able to internalize HDL particles. HMEC-1 effectively increased ICAM-1 and VCAM-1 expression after TNF-α stimulation. HUVECs showed more sensibility to TNF-α stimulus but the range of ICAM-1 and VCAM-1 expression was less homogeneous than in HMEC-1, probably due to biological variation of the former. Finally, the expression of adhesion molecules in HMEC-1 was attenuated by co-incubation with HDL. CONCLUSION HMEC-1 possess characteristics of endothelial cells, similar to HUVECs, being a cell line suitable to evaluate the functionality of HDL vis-à-vis the endothelium.
Collapse
Affiliation(s)
- Mónica Muñoz-Vega
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Felipe Massó
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Araceli Páez
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - José Manuel Fragoso
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Laurent O Martinez
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR, 1048, Toulouse, France
| | - Souad Najib
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR, 1048, Toulouse, France
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Óscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
816
|
Ateyya H, Nader MA, El-Sherbeeny NA. Beneficial effects of rosiglitazone and losartan combination in diabetic rats. Can J Physiol Pharmacol 2018; 96:215-220. [PMID: 28892640 DOI: 10.1139/cjpp-2017-0332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Diabetes with vascular complication needs strict interventions to retard possible serious complications. This research estimated the possible interaction of rosiglitazone (RGN) with losartan (Los) in diabetic rats. Male Sprague-Dawley rats were randomly divided into nondiabetic rats, diabetic rats, and diabetic rats that received RGN, Los, or a combination of RGN and Los. Measurement of serum glucose, vascular adhesion molecule-1, interleukin-6, tumor necrosis factor-α, aortic lipid peroxide (malondialdehyde), glutathione, superoxide dismutase, and total nitrate/nitrite levels was done. Also, the effects of RGN on the relaxation created by acetylcholine and sodium nitroprusside, contraction of isolated aortic rings provoked by phenylephrine and angiotensin II were determined. Results revealed that RGN or Los had a vasodilating effect to variable degrees indicated by enhanced effects on both acetylcholine-induced relaxation and the antagonistic effect on angiotensin II and phenylephrine-stimulated contraction of diabetic aortas with significant amelioration in serum glucose, vascular adhesion molecule-1, interleukin-6, and tumor necrosis factor-α levels and aortic oxidant/antioxidant balance. Treatment of diabetic rats with a combination of RGN and Los produced a more pronounced effect on the measured parameters compared to the diabetic, RGN-, and Los-treated groups. These findings point out the beneficial effects of RGN and Los combination in diabetic rats.
Collapse
Affiliation(s)
- Hayam Ateyya
- a College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia
- b Department of Clinical Pharmacology, Faculty of Medicine, Cairo University, Egypt
| | - Manar A Nader
- a College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia
- c Faculty of Pharmacy, Mansoura University, Egypt
| | - Nagla A El-Sherbeeny
- a College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia
- d Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
817
|
Wang S, Dong X, Gao J, Wang Z. Targeting Inflammatory Vasculature by Extracellular Vesicles. AAPS JOURNAL 2018; 20:37. [PMID: 29484558 DOI: 10.1208/s12248-018-0200-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are cell membrane-derived compartments that regulate physiology and pathology in the body. Naturally secreted EVs have been well studied in their biogenesis and have been exploited in targeted drug delivery. Due to the limitations on production of EVs, nitrogen cavitation has been utilized to efficiently generate EV-like drug delivery systems used in treating inflammatory disorders. In this short review, we will discuss the production and purification of EVs, and we will summarize what technologies are needed to improve their production for translation. We describe the drug-loading processes in EVs and their applications as drug delivery systems for inflammatory therapies, focusing on a new type of EVs made from neutrophil membrane using nitrogen cavitation.
Collapse
Affiliation(s)
- Sihan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
818
|
Piao S, Lee JW, Nagar H, Jung SB, Choi S, Kim S, Lee I, Kim SM, Shin N, Lee YR, Lee SD, Park JB, Irani K, Won M, Hur GM, Jeon BH, Kim DW, Kim CS. CR6 interacting factor 1 deficiency promotes endothelial inflammation by SIRT1 downregulation. PLoS One 2018; 13:e0192693. [PMID: 29474366 PMCID: PMC5825004 DOI: 10.1371/journal.pone.0192693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022] Open
Abstract
Aims CR6 interacting factor 1 (CRIF1) deficiency impairs mitochondrial oxidative phosphorylation complexes, contributing to increased mitochondrial and cellular reactive oxygen species (ROS) production. CRIF1 downregulation has also been revealed to decrease sirtuin 1 (SIRT1) expression and impair vascular function. Inhibition of SIRT1 disturbs oxidative energy metabolism and stimulates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-induced inflammation. Therefore, we hypothesized that both CRIF1 deficiency-induced mitochondrial ROS production and SIRT1 reduction play stimulatory roles in vascular inflammation. Methods and results Plasma levels and mRNA expression of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6) were markedly elevated in endothelium-specific CRIF1-knockout mice and CRIF1-silenced endothelial cells, respectively. Moreover, CRIF1 deficiency-induced vascular adhesion molecule-1 (VCAM-1) expression was consistently attenuated by the antioxidant N-acetyl-cysteine and NF-κB inhibitor (BAY11). We next showed that siRNA-mediated CRIF1 downregulation markedly activated NF-κB. SIRT1 overexpression not only rescued CRIF1 deficiency-induced NF-κB activation but also decreased inflammatory cytokines (TNF-α, IL-1β, and IL-6) and VCAM-1 expression levels in endothelial cells. Conclusions These results strongly suggest that CRIF1 deficiency promotes endothelial cell inflammation by increasing VCAM-1 expression, elevating inflammatory cytokines levels, and activating the transcription factor NF-κB, all of which were inhibited by SIRT1 overexpression.
Collapse
Affiliation(s)
- Shuyu Piao
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jun Wan Lee
- Emergency ICU, Regional Emergency Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Harsha Nagar
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Saet-byel Jung
- Department of Endocrinology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sujeong Choi
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung-min Kim
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Anatomy & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yu Ran Lee
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Do Lee
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Bong Park
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA United States of America
| | - Minho Won
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
819
|
Cho JG, Lee A, Chang W, Lee MS, Kim J. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction. Front Immunol 2018. [PMID: 29515588 PMCID: PMC5826197 DOI: 10.3389/fimmu.2018.00294] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endothelial cells that line the inner walls of blood vessels are in direct contact with blood and display remarkable heterogeneity in their response to exogenous stimuli. These ECs have unique location-dependent properties determined by the corresponding vascular beds and play an important role in regulating the homeostasis of the vascular system. Evidence suggests that vascular endothelial cells exposed to various environments undergo dynamic phenotypic switching, a key biological program in the context of endothelial heterogeneity, but that might result in EC dysfunction and, in turn, cause a variety of human diseases. Emerging studies show the importance of endothelial to mesenchymal transition (EndMT) in endothelial dysfunction during inflammation. EndMT is a complex biological process in which ECs lose their endothelial characteristics, acquire mesenchymal phenotypes, and express mesenchymal cell markers, such as alpha smooth muscle actin and fibroblast-specific protein 1. EndMT is induced by inflammatory responses, leading to pathological states, including tissue fibrosis, pulmonary arterial hypertension, and atherosclerosis, via dysfunction of the vascular system. Although the mechanisms associated with inflammation-induced EndMT have been identified, unraveling the specific role of this phenotypic switching in vascular dysfunction remains a challenge. Here, we review the current understanding on the interactions between inflammatory processes, EndMT, and endothelial dysfunction, with a focus on the mechanisms that regulate essential signaling pathways. Identification of such mechanisms will guide future research and could provide novel therapeutic targets for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jin Gu Cho
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Myeong-Sok Lee
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
820
|
Stepan AF, Tran TP, Helal CJ, Brown MS, Chang C, O’Connor RE, De Vivo M, Doran SD, Fisher EL, Jenkinson S, Karanian D, Kormos BL, Sharma R, Walker GS, Wright AS, Yang EX, Brodney MA, Wager TT, Verhoest PR, Obach RS. Late-Stage Microsomal Oxidation Reduces Drug-Drug Interaction and Identifies Phosphodiesterase 2A Inhibitor PF-06815189. ACS Med Chem Lett 2018; 9:68-72. [PMID: 29456790 PMCID: PMC5807869 DOI: 10.1021/acsmedchemlett.7b00343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
![]()
Late-stage oxidation using liver
microsomes was applied to phosphodiesterase
2 inhibitor 1 to reduce its clearance by cytochrome P450
enzymes, introduce renal clearance, and minimize the risk for victim
drug–drug interactions. This approach yielded PF-06815189 (2) with improved physicochemical properties and a mixed metabolic
profile. This example highlights the importance of C–H diversification
methods to drug discovery.
Collapse
Affiliation(s)
- Antonia F. Stepan
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Tuan P. Tran
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J. Helal
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Maria S. Brown
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cheng Chang
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Rebecca E. O’Connor
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael De Vivo
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Shawn D. Doran
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ethan L. Fisher
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Stephen Jenkinson
- Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - David Karanian
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bethany L. Kormos
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Raman Sharma
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory S. Walker
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ann S. Wright
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Edward X. Yang
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael A. Brodney
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Travis T. Wager
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Patrick R. Verhoest
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - R. Scott Obach
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
821
|
Sasaki N, Itakura Y, Toyoda M. Ganglioside GM1 contributes to extracellular/intracellular regulation of insulin resistance, impairment of insulin signaling and down-stream eNOS activation, in human aortic endothelial cells after short- or long-term exposure to TNFα. Oncotarget 2018; 9:5562-5577. [PMID: 29464018 PMCID: PMC5814158 DOI: 10.18632/oncotarget.23726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/15/2017] [Indexed: 12/16/2022] Open
Abstract
Vascular insulin resistance induced by inflammatory cytokines leads to the initiation and development of vascular diseases. In humans, circulating TNFα levels are increased during aging, suggesting a correlation between vascular insulin resistance and plasma TNFα levels. Currently, the precise molecular mechanisms of vascular insulin resistance mediated by TNFα are not well characterized. We aimed at clarifying whether glycosphingolipids contribute to vascular insulin resistance after inflammatory stimulation. In this study, we examined vascular insulin resistance using human aortic endothelial cells after treatment with different concentrations of TNFα for different time intervals for mimicking in vivo acute or chronic inflammatory situations. We show that ganglioside GM1 levels on cell membranes change depending on time of exposure to TNFα and its concentration and that the GM1 expression is associated with specific extracellular/intracellular regulation of the insulin signaling cascade. Furthermore, we provide evidence that factors such as aging and senescence affect the regulation of insulin resistance. Our data suggest that GM1 is a key player in the induction of vascular insulin resistance after short- or long-term exposure to TNFα and is a good extracellular target for prevention and cure of vascular diseases.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine, Vascular Medicine, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine, Vascular Medicine, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine, Vascular Medicine, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-Ku, Tokyo 173-0015, Japan
| |
Collapse
|
822
|
Pechlivani N, Ajjan RA. Thrombosis and Vascular Inflammation in Diabetes: Mechanisms and Potential Therapeutic Targets. Front Cardiovasc Med 2018; 5:1. [PMID: 29404341 PMCID: PMC5780411 DOI: 10.3389/fcvm.2018.00001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease remains the main cause of morbidity and mortality in patients with diabetes. The risk of vascular ischemia is increased in this population and outcome following an event is inferior compared to individuals with normal glucose metabolism. The reasons for the adverse vascular profile in diabetes are related to a combination of more extensive atherosclerotic disease coupled with an enhanced thrombotic environment. Long-term measures to halt the accelerated atherosclerotic process in diabetes have only partially addressed vascular pathology, while long-term antithrombotic management remains largely similar to individuals without diabetes. We address in this review the pathophysiological mechanisms responsible for atherosclerosis with special emphasis on diabetes-related pathways. We also cover the enhanced thrombotic milieu, characterized by increased platelet activation, raised activity of procoagulant proteins together with compromised function of the fibrinolytic system. Potential new therapeutic targets to reduce the risk of atherothrombosis in diabetes are explored, including alternative use of existing therapies. Special emphasis is placed on diabetes-specific therapeutic targets that have the potential to reduce vascular risk while keeping an acceptable clinical side effect profile. It is now generally acknowledged that diabetes is not a single clinical entity but a continuum of various stages of the condition with each having a different vascular risk. Therefore, we propose that future therapies aiming to reduce vascular risk in diabetes require a stratified approach with each group having a "stage-specific" vascular management strategy. This "individualized care" in diabetes may prove to be essential to improve vascular outcome in this high risk population.
Collapse
Affiliation(s)
- Nikoletta Pechlivani
- School of Medicine, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Ramzi A Ajjan
- School of Medicine, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
823
|
Liu X, Wang Y, Yan X, Zhang M, Zhang Y, Cheng J, Lu F, Qu H, Wang Q, Zhao Y. Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect. Nanomedicine (Lond) 2018; 13:391-405. [PMID: 29338619 DOI: 10.2217/nnm-2017-0297] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To explore the hemostatic effect of Phellodendri Cortex-derived carbon dots. MATERIALS & METHODS Transmission electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, fluorescence spectroscopy, x-ray photoelectron spectroscopy and a cell counting kit-8 assay were studied. Hemostatic effect of Phellodendri Cortex Carbonisatus-carbon dots (PCC-CDs) was studied in mouse bleeding models. To explore their related hemostatic mechanism, coagulation parameters and platelets were measured. RESULTS The PCC-CDs ranged in diameter from 1.2 to 4.8 nm and had a quantum yield of 9.62%. They exhibited no toxicity up to concentrations of 1000 μg/ml. After administration, mice had a significantly shortened bleeding time and coagulation parameters and platelets significantly increased. CONCLUSION These results showed the definite hemostatic effect of PCC-CDs.
Collapse
Affiliation(s)
- Xiaoman Liu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yongzhi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
824
|
Pisarsky L, Ghajar CM. Anti-angiogenic Therapy-Mediated Endothelial Damage: A Driver of Breast Cancer Recurrence? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:19-45. [DOI: 10.1007/978-3-319-97746-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
825
|
Mathew John C, Khaddaj Mallat R, George G, Kim T, Mishra RC, Braun AP. Pharmacologic targeting of endothelial Ca 2+-activated K + channels: A strategy to improve cardiovascular function. Channels (Austin) 2018; 12:126-136. [PMID: 29577810 PMCID: PMC5972810 DOI: 10.1080/19336950.2018.1454814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelial small and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) play an important role in the regulation of vascular function and systemic blood pressure. Growing evidence indicates that they are intimately involved in agonist-evoked vasodilation of small resistance arteries throughout the circulation. Small molecule activators of KCa2.x and 3.1 channels, such as SKA-31, can acutely inhibit myogenic tone in isolated resistance arteries, induce effective vasodilation in intact vascular beds, such as the coronary circulation, and acutely decrease systemic blood pressure in vivo. The blood pressure-lowering effect of SKA-31, and early indications of improvement in endothelial dysfunction suggest that endothelial KCa channel activators could eventually be developed into a new class of endothelial targeted agents to combat hypertension or atherosclerosis. This review summarises recent insights into the activation of endothelial Ca2+ activated K+ channels in various vascular beds, and how tools, such as SKA-31, may be beneficial in disease-related conditions.
Collapse
Affiliation(s)
- Cini Mathew John
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rayan Khaddaj Mallat
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Grace George
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taeyeob Kim
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ramesh C. Mishra
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew P. Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
826
|
Szafraniec E, Wiercigroch E, Czamara K, Majzner K, Staniszewska-Slezak E, Marzec KM, Malek K, Kaczor A, Baranska M. Diversity among endothelial cell lines revealed by Raman and Fourier-transform infrared spectroscopic imaging. Analyst 2018; 143:4323-4334. [DOI: 10.1039/c8an00239h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A methodology of examination and characterization of popular human endothelial cells lines.
Collapse
Affiliation(s)
| | | | - Krzysztof Czamara
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Katarzyna Majzner
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Emilia Staniszewska-Slezak
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Katarzyna M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
| | - Kamilla Malek
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Agnieszka Kaczor
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Malgorzata Baranska
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| |
Collapse
|
827
|
Wattanathorn J, Thukham-mee W, Muchimapura S, Wannanon P, Tong-un T, Tiamkao S. Preventive Effect of Cashew-Derived Protein Hydrolysate with High Fiber on Cerebral Ischemia. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6135023. [PMID: 29457029 PMCID: PMC5804322 DOI: 10.1155/2017/6135023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
This study aimed to determine the protective effect of cashew nut-derived protein hydrolysate with high dietary fiber (AO) in cerebral ischemic rats induced by the occlusion of right middle cerebral artery (Rt.MCAO). Acute toxicity was determined and data showed that LD50 of AO > 5000 mg/kg BW. To determine the cerebroprotective effect of AO, male Wistar rats were orally given AO at doses of 2, 10, and 50 mg/kg for 14 days and subjected to Rt.MCAO. Brain infarction volume, neurological score, spatial memory, serum lipid profiles, and C-reactive protein together with the brain oxidative stress status were assessed. All doses of AO significantly decreased brain infarction in cortex, hippocampus, and striatum together with the decreased oxidative stress status. The improvement of spatial memory and serum C-reactive protein were also observed in MCAO rats which received AO at all doses. In addition, the decreased serum cholesterol, TG, and LDL but increased HDL were observed in MCAO rats which received high dose of AO. Taken all together, AO is the potential protectant against cerebral ischemia. The improvement of oxidative stress, inflammation, and dyslipidemia might play roles in the actions. However, further researches are required to understand the precise underlying mechanism.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- Integrative Complementary Alternative Medicine Research and Development Center and Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Integrative Complementary Alternative Medicine Research and Development Center and Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supaporn Muchimapura
- Integrative Complementary Alternative Medicine Research and Development Center and Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panakaporn Wannanon
- Integrative Complementary Alternative Medicine Research and Development Center and Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Terdthai Tong-un
- Integrative Complementary Alternative Medicine Research and Development Center and Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsak Tiamkao
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
828
|
Bondonno NP, Bondonno CP, Blekkenhorst LC, Considine MJ, Maghzal G, Stocker R, Woodman RJ, Ward NC, Hodgson JM, Croft KD. Flavonoid-Rich Apple Improves Endothelial Function in Individuals at Risk for Cardiovascular Disease: A Randomized Controlled Clinical Trial. Mol Nutr Food Res 2017; 62. [PMID: 29086478 DOI: 10.1002/mnfr.201700674] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/22/2017] [Indexed: 12/25/2022]
Abstract
SCOPE The cardioprotective effects of apples are primarily attributed to flavonoids, found predominantly in the skin. This study aimed to determine if acute and/or chronic (4 weeks) ingestion of flavonoid-rich apples improves endothelial function, blood pressure (BP), and arterial stiffness in individuals at risk for cardiovascular diseases (CVD). METHODS AND RESULTS In this randomized, controlled cross-over trial, acute and 4 week intake of apple with skin (high flavonoid apple, HFA) is compared to intake of apple flesh only (low flavonoid apple, LFA) in 30 participants. The primary outcome is endothelial function assessed using flow-mediated dilation (FMD) of the brachial artery, while main secondary outcomes are 24 h ambulatory BP and arterial stiffness. Other outcomes include fasting serum glucose and lipoprotein profile, plasma heme oxygenase-1 (Hmox-1), F2 -isoprostanes, flavonoid metabolites, and plasma and salivary nitrate (NO3- ) and nitrite (NO2- ) concentrations. Compared to LFA control, the HFA results in a significant increase in FMD acutely (0.8%, p < 0.001) and after 4 weeks chronic intake (0.5%, p < 0.001), and in plasma flavonoid metabolites (p < 0.0001). Other outcomes are not altered significantly. CONCLUSION A lower risk of CVD with higher apple consumption could be mediated by the beneficial effect of apple skin on endothelial function, both acutely and chronically.
Collapse
Affiliation(s)
- Nicola P Bondonno
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Lauren C Blekkenhorst
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Michael J Considine
- School of Molecular Sciences, and the School of Agriculture and Environment, University of Western Australia, Perth, Australia.,The UWA Institute of Agriculture, University of Western Australia, Perth, Australia.,Irrigated Agriculture Division, Department of Primary Industries and Regional Development, South Perth, Australia
| | - Ghassan Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW, Australia
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW, Australia
| | - Richard J Woodman
- Centre for Epidemiology and Biostatistics, School of Public Health, Flinders University of South Australia, Adelaide, South Australia, Australia
| | - Natalie C Ward
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia.,School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Kevin D Croft
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
829
|
Rahimi N. Defenders and Challengers of Endothelial Barrier Function. Front Immunol 2017; 8:1847. [PMID: 29326721 PMCID: PMC5741615 DOI: 10.3389/fimmu.2017.01847] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022] Open
Abstract
Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflammation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell-cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein interacting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function is moderated by the function of transmembrane receptors and signaling events that act to defend or destabilize it. Here, I highlight recent advances that have provided new insights into endothelial barrier function and mechanisms involved. Further investigation of these mechanisms could lead to the discovery of novel therapeutic targets for human diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
830
|
Patel J, Baz B, Wong HY, Lee JS, Khosrotehrani K. Accelerated Endothelial to Mesenchymal Transition Increased Fibrosis via Deleting Notch Signaling in Wound Vasculature. J Invest Dermatol 2017; 138:1166-1175. [PMID: 29248546 DOI: 10.1016/j.jid.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022]
Abstract
Skin wound healing in adults is characterized by a peak of angiogenesis followed by regression of the excessive vasculature in parallel with collagen deposition and fibrosis in the wound. We hypothesized that regressing vessels in healing wounds were in fact entering an endothelial to mesenchymal transition contributing to scarring. Using vascular-specific fate tracking (Cdh5-creERt2/ROSA-YFP mice), full-thickness excisional wounds were analyzed to reveal a time-dependent transition from endothelial phenotype characterized by vascular endothelial-cadherin, CD31, and CD34 toward a mesenchymal phenotype characterized by alpha-smooth muscle actin and fibroblast-specific protein 1 expression. We next conditionally ablated RBPJ in the vasculature (Rbpjfl/fl/Cdh5-creERt2ROSA-YFP) to evaluate the role of canonical Notch signaling in this process. Endothelial to mesenchymal transition was clearly accelerated after the loss of Notch signaling within the vasculature. The acceleration of endothelial to mesenchymal transition resulted in delayed wound healing, increased fibrosis, and extensive scar tissue formation, with the rapid loss of key endothelial genes and proteins and upregulation of mesenchymal protein expression (alpha-smooth muscle actin and fibroblast-specific protein 1) in vessels. Our findings here uncover a cellular contributor to skin wound scarring through the process of endothelial to mesenchymal transition in skin wounds and demonstrate the importance of Notch signaling in regulating this critical process during healing.
Collapse
Affiliation(s)
- Jatin Patel
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Betoul Baz
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Ho Yi Wong
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James S Lee
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Kiarash Khosrotehrani
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
831
|
Zhaorigetu S, Bair H, Lu J, Jin D, Olson SD, Harting MT. Perturbations in Endothelial Dysfunction-Associated Pathways in the Nitrofen-Induced Congenital Diaphragmatic Hernia Model. J Vasc Res 2017; 55:26-34. [DOI: 10.1159/000484087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/07/2017] [Indexed: 01/26/2023] Open
|
832
|
Hauck M, Noronha Martins C, Borges Moraes M, Aikawa P, da Silva Paulitsch F, Méa Plentz RD, Teixeira da Costa S, Vargas da Silva AM, Signori LU. Comparison of the effects of 1MHz and 3MHz therapeutic ultrasound on endothelium-dependent vasodilation of humans: a randomised clinical trial. Physiotherapy 2017; 105:120-125. [PMID: 29373113 DOI: 10.1016/j.physio.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/17/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To compare the effects of different waveforms of 1MHz and 3MHz therapeutic ultrasound on endothelial function in healthy subjects. DESIGN Randomised placebo-controlled, crossover study with concealed allocation and assessor blinding. SETTING Imaging Centre of the University Hospital. PARTICIPANTS Thirty volunteers aged between 18 and 35 years were divided into two homogeneous groups (1MHz and 3MHz). INTERVENTIONS Continuous (CUT; 0.4W/cm2SATA), pulsed (PUT; 20% duty cycle, 0.08W/cm2SATA) and placebo waveforms (equipment off) of ultrasound (1MHz and 3MHz) were randomized and applied over the brachial artery for 5minutes. MAIN OUTCOME MEASURES Endothelial function was evaluated using the flow-mediated dilation (FMD) technique. RESULTS Both 1MHz [CUT: mean difference 4%, 95% confidence interval (CI) 2 to 6%, P<0.001; PUT: mean difference 4%, 95% CI 2 to 6%, P<0.001] and 3MHz (CUT: mean difference 4%, 95% CI 2 to 6%, P<0.001; PUT: mean difference 4%, 95% CI 2 to 6%, P<0.001) of therapeutic ultrasound increased %FMD by approximately 4% compared with the placebo waveforms. The endothelium-dependent vasodilator responses were the same for both types of waves and frequencies. No differences in baseline diameter, hyperaemic flow, and nitroglycerin-mediated diameter and vasodilation were observed between groups. CONCLUSION Both CUT and PUT ultrasound waveforms improved endothelial function. The 1MHz and 3MHz frequencies of therapeutic ultrasound led to similar improvement in endothelial function in healthy volunteers. Clinical trial registration number RBR-4z5z3t.
Collapse
Affiliation(s)
- M Hauck
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil
| | - C Noronha Martins
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil
| | - M Borges Moraes
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil
| | - P Aikawa
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil
| | | | - R Della Méa Plentz
- Graduate Programme in Healthy Sciences, Federal University of Health Sciences of Porto Alegre, RS, Brazil
| | - S Teixeira da Costa
- Graduate Programme in Physiotherapy and Rehabilitation, Federal University of Santa Maria, RS, Brazil
| | - A M Vargas da Silva
- Graduate Programme in Physiotherapy and Rehabilitation, Federal University of Santa Maria, RS, Brazil
| | - L U Signori
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil; Graduate Programme in Physiotherapy and Rehabilitation, Federal University of Santa Maria, RS, Brazil.
| |
Collapse
|
833
|
Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9759735. [PMID: 29333215 PMCID: PMC5733214 DOI: 10.1155/2017/9759735] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Endothelium is a community of endothelial cells (ECs), which line the blood and lymphatic vessels, thus forming an interface between the tissues and the blood or lympha. This strategic position of endothelium infers its indispensable functional role in controlling vasoregulation, haemostasis, and inflammation. The state of endothelium is simultaneously the cause and effect of many diseases, and this is coupled with modifications of endothelial phenotype represented by markers and with biochemical profile of blood represented by biomarkers. In this paper, we briefly review data on the functional role of endothelium, give definitions of endothelial markers and biomarkers, touch on the methodological approaches for revealing biomarkers, present an implicit role of endothelium in some toxicological mechanistic studies, and survey the role of reactive oxygen species (ROS) in modulation of endothelial status.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Alexander D. Nadeev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- Institute of Cell Biophysics RAS, Pushchino, Russia
| | - Richard O. Jenkins
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | | |
Collapse
|
834
|
Stawski L, Marden G, Trojanowska M. The Activation of Human Dermal Microvascular Cells by Poly(I:C), Lipopolysaccharide, Imiquimod, and ODN2395 Is Mediated by the Fli1/FOXO3A Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 200:248-259. [PMID: 29141862 DOI: 10.4049/jimmunol.1601968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
Abstract
Endothelial cell (EC) dysfunction has been associated with inflammatory and autoimmune diseases; however, the factors contributing to this dysfunction have not been fully explored. Because activation of TLRs has been implicated in autoimmune diseases, the goal of this study was to determine the effects of TLR ligands on EC function. Human dermal microvascular ECs (HDMECs) treated with TLR3 [Poly(I:C)], TLR4 (LPS), and TLR7 (imiquimod) agonists showed decreased proliferation and a reduced total number of branching tubules in three-dimensional human dermal organoid ex vivo culture. In contrast, the TLR9 ligand class C, ODN2395, increased angiogenesis. The antiproliferative effects of TLR3, TLR4, and TLR7 ligands correlated with significant downregulation of a key regulator of vascular homeostasis, Fli1, whereas TLR9 increased Fli1 levels. Furthermore, Poly(I:C) and LPS induced endothelial to mesenchymal transition that was reversed by the pretreatment with TGF-β neutralizing Ab or re-expression of Fli1. We showed that Fli1 was required for the HDMEC proliferation by transcriptionally repressing FOXO3A. In contrast to TLR9, which suppressed activation of the FOXO3A pathway, TLR3, TLR4, and TLR7 ligands activated FOXO3A as indicated by decreased phosphorylation and increased nuclear accumulation. The inverse correlation between Fli1 and FOXO3A was also observed in the vasculature of scleroderma patients. This work revealed opposing effects of TLR9 and TLR3, TLR4, and TLR7 on the key angiogenic pathways, Fli1 and FOXO3A. Our results provide a mechanistic insight into the regulation of angiogenesis by TLRs and confirm a central role of Fli1 in regulating vascular homeostasis.
Collapse
Affiliation(s)
- Lukasz Stawski
- Section of Rheumatology, School of Medicine, Boston University, Boston, MA 02118
| | - Grace Marden
- Section of Rheumatology, School of Medicine, Boston University, Boston, MA 02118
| | - Maria Trojanowska
- Section of Rheumatology, School of Medicine, Boston University, Boston, MA 02118
| |
Collapse
|
835
|
Boratkó A, Csortos C. TIMAP, the versatile protein phosphatase 1 regulator in endothelial cells. IUBMB Life 2017; 69:918-928. [DOI: 10.1002/iub.1695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/26/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Anita Boratkó
- Department of Medical Chemistry; Faculty of Medicine, University of Debrecen, Egyetem tér 1; Debrecen Hungary
| | - Csilla Csortos
- Department of Medical Chemistry; Faculty of Medicine, University of Debrecen, Egyetem tér 1; Debrecen Hungary
| |
Collapse
|
836
|
Irace C, Messiniti V, Tassone B, Cortese C, Barrett EJ, Gnasso A. Evidence for congruent impairment in micro and macrovascular function in type 1 diabetes. PLoS One 2017; 12:e0187525. [PMID: 29131837 PMCID: PMC5683560 DOI: 10.1371/journal.pone.0187525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/21/2017] [Indexed: 01/22/2023] Open
Abstract
Diabetes affects large and small vessels through mechanisms only partially known. In the present study, we evaluated the function of capillaries and large arteries in subjects with type 1 diabetes mellitus (T1DM) to study the effect of chronic hyperglycemia in the absence of other cardiovascular risk factors. Twenty-five subjects with T1DM and 12 healthy age-matched controls were enrolled. Nine patients had mild or moderate retinopathy. Contrast enhanced ultrasound was used to measure perfusion of the deep forearm flexor muscle of the non-dominant arm at rest (baseline) and after an ischemic stimulus (reactive hyperemia). Perfusion was expressed as Video Intensity (VI) in arbitrary unit (a.u.)/mm2. The time to reach peak VI after ischemia was also recorded. The function of large arteries was evaluated using flow-mediated vasodilation (FMD). VI was significantly lower in T1DM compared to control subjects both at baseline (0.22±0.16 vs 0.44±0.35 a.u./mm2, p<0.05), and after ischemia (0.33±0.24 vs 0.68±0.46 a.u./mm2, p<0.05). The time to reach peak VI after ischemia was markedly longer in T1DM (5.6±2.2 vs 4.0±1.7 seconds, p<0.02). These differences were more marked in T1DM subjects with retinopathy. FMD was lower in TIDM patients compared to controls (5.4±6.4 vs 10.7±4.5%, p<0.01). The present findings demonstrate that T1DM patients have defective peripheral skeletal muscle perfusion both at rest and after ischemia compared with control subjects. Low muscle perfusion associates with low FMD of the brachial artery. Furthermore, T1DM subjects with retinopathy have the least muscle perfusion and blunted response to hyperemia compared to T1DM without retinopathy.
Collapse
Affiliation(s)
- Concetta Irace
- Department of Health Science, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Valentina Messiniti
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Bruno Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Claudio Cortese
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Agostino Gnasso
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- * E-mail:
| |
Collapse
|
837
|
Mitra R, O'Neil GL, Harding IC, Cheng MJ, Mensah SA, Ebong EE. Glycocalyx in Atherosclerosis-Relevant Endothelium Function and as a Therapeutic Target. Curr Atheroscler Rep 2017; 19:63. [PMID: 29127504 PMCID: PMC5681608 DOI: 10.1007/s11883-017-0691-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review The cell surface-attached extracellular glycocalyx (GCX) layer is a major contributor to endothelial cell (EC) function and EC-dependent vascular health and is a first line of defense against vascular diseases including atherosclerosis. Here, we highlight our findings regarding three GCX-dependent EC functions, which are altered when GCX is shed and in atherosclerosis. We discuss why the GCX is a viable option for the prevention and treatment of atherosclerosis. Recent Findings GCX regulated EC activities such as barrier and filtration function, active cell-to-cell communication, and vascular tone mediation contribute to function of the entire vascular wall. Atheroprone vessel regions, including bifurcation sites, exhibit breakdown in GCX. This GCX degradation allows increased lipid flux and thereby promotes lipid deposition in the vessel walls, a hallmark of atherosclerosis. GCX degradation also alters EC-to-EC communication while increasing EC-to-inflammatory cell interactions that enable inflammatory cells to migrate into the vessel wall. Inflammatory macrophages and foam cells, to be specific, appear in early stages of atherosclerosis. Furthermore, GCX degradation deregulates vascular tone, by causing ECs to reduce their expression of endothelial nitric oxide synthase (eNOS) which produces the vasodilator, nitric oxide. Loss of vasodilation supports vasoconstriction, which promotes the progression of atherosclerosis. Summary Common medicinal atherosclerosis therapies include lipid lowering and anti-platelet therapies. None of these treatments specifically target the endothelial GCX, although the GCX is at the front-line in atherosclerosis combat. This review demonstrates the viability of targeting the GCX therapeutically, to support proper EC functionality and prevent and/or treat atherosclerosis.
Collapse
Affiliation(s)
- Ronodeep Mitra
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | | | - Ming Jie Cheng
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue 313 Snell Engineering Building, Boston, MA, 02115, USA
| | | | - Eno Essien Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, USA. .,Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue 313 Snell Engineering Building, Boston, MA, 02115, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
838
|
Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction. Cell Physiol Biochem 2017; 44:152-162. [PMID: 29130962 DOI: 10.1159/000484623] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Plasma trimethylamine-N-oxide (TMAO), a product of intestinal microbial metabolism of dietary phosphatidylcholine has been recently associated with atherosclerosis and increased risk of cardiovascular diseases (CVD) in rodents and humans. However, the molecular mechanisms of how TMAO induces atherosclerosis and CVD progression are still unclear. The present study tested whether TMAO induces NLRP3 inflammasome formation and activation and thereby contributes to endothelial injury initiating atherogenesis. METHODS Inflammasome formation and activation was determined by confocal microscopy, caspase-1 activity was measured by colorimetric assay, IL-1β production was measured using ELISA, cell permeability was determined by microplate reader and ZO-1 expression was determined by western blot analysis and confocal microscopy. In in vivo experiments, TMAO was infused by osmotic pump implantation. RESULTS TMAO treatment significantly increased the colocalization of NLRP3 with Asc or NLRP3 with caspase-1, caspase-1 activity, IL-1β production, cell permeability in carotid artery endothelial cells (CAECs) compared to control cells. Pretreatment with caspase-1 inhibitor, WEHD or Nlrp3 siRNA abolished the TMAO-induced inflammasome formation, activation and cell permeability in these cells. In addition, we explored the mechanisms by which TMAO activates NLRP3 inflammasomes. TMAO-induced the activation of NLRP3 inflammasomes was associated with both redox regulation and lysosomal dysfunction. In animal experiments, direct infusion of TMAO in mice with partially ligated carotid artery were found to have increased NLRP3 inflammasome formation and IL-1β production in the intima of wild type mice. CONCLUSION The formation and activation of NLRP3 inflammasomes by TMAO may be an important initiating mechanism to turn on the endothelial inflammatory response leading to endothelial dysfunction.
Collapse
Affiliation(s)
- Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sai Koka
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
839
|
Dymkowska D, Kawalec M, Wyszomirski T, Zabłocki K. Mild palmitate treatment increases mitochondrial mass but does not affect EA.hy926 endothelial cells viability. Arch Biochem Biophys 2017; 634:88-95. [DOI: 10.1016/j.abb.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
|
840
|
Zheng Y, Li Y, Liu G, Qi X, Cao X. MicroRNA-24 inhibits the proliferation and migration of endothelial cells in patients with atherosclerosis by targeting importin-α3 and regulating inflammatory responses. Exp Ther Med 2017; 15:338-344. [PMID: 29250154 DOI: 10.3892/etm.2017.5355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 05/19/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to measure the level of microRNA (miRNA or miR)-24 in the serum of patients with atherosclerosis and to investigate the effect of miR-24 on the expression of importin-α3 and tumor necrosis factor (TNF)-α, as well as the proliferation and migration of vascular endothelial cells. A total of 30 patients with atherosclerosis admitted to hospital between January and June 2016 were enrolled in the present study; 30 healthy subjects with a similar age range were enrolled as controls. Peripheral blood (10 ml) was collected from all participants. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-24 mimic using Lipofectamine 2000. TargetScan was used to elucidate whether importin-α3 (KPNA4) was a target gene of miR-24. Expression levels of miR-24 and mRNAs were measured using reverse transcription-quantitative polymerase chain reaction, and protein expression was determined using western blotting. Cell Counting Kit 8 assay was used to assess the proliferation of HUVECs, and a Transwell assay was performed to detect the migration of HUVECs. Expression of miR-24 in peripheral blood from patients with atherosclerosis was significantly lower when compared with healthy subjects (P<0.05). Overexpression of miR-24 was demonstrated to significantly inhibit the transcription and translation of the importin-α3 gene (P<0.05) and negatively regulate the expression of endothelial inflammatory factor TNF-α (P<0.05). Furthermore, overexpression of miR-24 significantly inhibited the proliferation and migration of HUVECs (P<0.05), and miR-24 knockdown significantly promoted these processes (P<0.05). The results of the present study suggest that miR-24 exerts its effect in atherosclerosis by blocking the nuclear factor-κB signaling pathway, regulating inflammation in endothelial cells, and inhibiting the proliferation and migration of vascular endothelial cells.
Collapse
Affiliation(s)
- Ye Zheng
- Graduate School of Tianjin Medical University, Tianjin 300070, P.R. China.,Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yongxing Li
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Gang Liu
- Department of Cardiovascular Medicine, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiangqian Qi
- Department of Cardiovascular Medicine, Tianjin TEDA International Cardiovascular Hospital, Tianjin 300000, P.R. China
| | - Xufen Cao
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
841
|
van Poelgeest EP, Dillingh MR, de Kam M, Malone KE, Kemper M, Stroes ESG, Burggraaf J, Moerland M. Characterization of immune cell, endothelial, and renal responses upon experimental human endotoxemia. J Pharmacol Toxicol Methods 2017; 89:39-46. [PMID: 29056520 DOI: 10.1016/j.vascn.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Although the effects of relatively high concentrations of endotoxin on endothelial activation/dysfunction and kidney markers has been described in literature, detailed insight in the LPS concentration-effect relationship, the magnitude, variability and timing of the response, and potential effects of endotoxemia on the kidneys is lacking. A study was performed to assess the effects of low- to moderate dose (0.5, 1 or 2ng/kg) endotoxemia on the endothelium and kidneys as measured by a panel of novel highly sensitive kidney injury markers. METHODS This was a randomized, double-blind, placebo-controlled study with single ascending doses of LPS (0.5, 1 or 2ng/kg) administered to healthy male volunteers (3 cohorts of 8 subjects, LPS:placebo 6:2). Endothelial measures included selectins, cell adhesion molecules, and thrombomodulin. Renal measures included novel, sensitive and specific biomarkers of acute kidney injury. RESULTS Endotoxin exposure resulted in consistent LPS dose-dependent responses in inflammatory markers, E- and P- Selectin, VCAM1, ICAM1, and thrombomodulin. The observed biological responses were transient, reaching a level of significance of at least <0.01 in the highest dose group and with an effect size which was dependent on the administered LPS dose. LPS-induced inflammatory and endothelial effects did not translate into a change in renal damage biomarkers, although at 2ng/kg LPS, subtle and transient biomarker changes were observed that may relate to (subclinical) tubular damage. DISCUSSION We demonstrated that administration of a single LPS dose of 2ng/kg to healthy volunteers results in significant inflammatory and endothelial responses, without inducing clinically relevant signs of kidney injury. These findings support the application of the human endotoxemia model in future clinical pharmacology studies.
Collapse
Affiliation(s)
| | - Marlous R Dillingh
- Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| | - Marieke de Kam
- Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| | - Karen E Malone
- Good Biomarker Sciences, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| | - Marleen Kemper
- Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Erik S G Stroes
- Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| | - Matthijs Moerland
- Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| |
Collapse
|
842
|
Xanthine Oxidase Activation Modulates the Endothelial (Vascular) Dysfunction Related to HgCl2 Exposure Plus Myocardial Infarction in Rats. Cardiovasc Toxicol 2017; 18:161-174. [DOI: 10.1007/s12012-017-9427-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
843
|
Abstract
Insulin resistance often refers to a pathological condition in which cells fail to respond to the normal actions of insulin. Increasing literature has noted a critical role of insulin resistance in the pathogenesis of ischemic stroke. Insulin resistance plays an important role in the pathogenesis of ischemic stroke via enhancing advanced changes of atherosclerosis. A variety of literature indicates that insulin resistance enhances platelet adhesion, activation and aggregation which are conducive to the occurrence of ischemic stroke. Insulin resistance also induces hemodynamic disturbances and contributes to the onset of ischemic stroke. In addition, insulin resistance may augment the role of the modifiable risk factors in ischemic stroke and induce the occurrence of ischemic stroke. Preclinical and clinical studies have supported that improving insulin resistance may be an effective measure to prevent or delay ischemic stroke.
Collapse
Affiliation(s)
- Xiao-Ling Deng
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Zhou Liu
- Department of Neurology, The Affiliated Hospital of Guangdong Medical University, and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Chuanling Wang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yanfeng Li
- Department of Neurology, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, People's Republic of China.
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, No. 312 Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China.
| |
Collapse
|
844
|
Mei L, He Y, Wang H, Jin Y, Wang S, Jin C. Human hepatocyte growth factor inhibits early neointima formation in rabbit abdominal aortae following ultrasound-guided balloon injury. Mol Med Rep 2017; 16:5203-5210. [PMID: 28849185 PMCID: PMC5647058 DOI: 10.3892/mmr.2017.7229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the effects of in vivo gene transfer of human hepatocyte growth factor (hHGF) on neointima formation in rabbit abdominal aortae following ultrasound‑guided balloon injury. New Zealand white rabbits were randomly divided into four groups: endothelium injury alone (EI), endothelium injury with control vector transfection (EI‑V), endothelium injury with hHGF transfection (EI‑HGF), and hHGF transfection alone without endothelium injury (HGF). Endothelial injury was established by scraping the abdominal aortic wall using a balloon catheter under the guidance of a transabdominal ultrasound. hHGF gene transfer was performed 7 days following injury. hHGF mRNA and protein expression levels were determined at 3, 7, 14 and 21 days following transfection. Neointima formation was assessed by histopathological analysis at 14 and 28 days following injury. hHGF mRNA and protein expression levels were detected in the target abdominal aortae in EI‑HGF and HGF groups with the greatest levels observed 3 days following transfection, and their levels dropped below detection limits at 21 days following transfection. hHGF was not detectable in the EI and EI‑V groups throughout the experiment. The neointimal area and the neointima to media ratio in the EI‑HGF group were significantly decreased compared with those in the EI or EI‑V group at 14 days following injury. However, no differences were observed at 28 days following injury. The present study demonstrated that in vivo hHGF gene transfer inhibits the early formation of neointima in balloon‑injured rabbit abdominal aortae.
Collapse
Affiliation(s)
- Li Mei
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu He
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Jin
- Department of Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuai Wang
- Department of Pathology, Cancer Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
- Correspondence to: Professor Chunxiang Jin, Department of Ultrasound, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P.R. China, E-mail:
| |
Collapse
|
845
|
Resistin as a Prooxidant Factor and Predictor of Endothelium Damage in Patients with Mild Acute Pancreatitis Exposed to Tobacco Smoke Xenobiotics. Mediators Inflamm 2017; 2017:3039765. [PMID: 29081601 PMCID: PMC5634610 DOI: 10.1155/2017/3039765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
Objectives The study was aimed to assess the influence of tobacco smoke exposure on the intensity of inflammation measured by IL-6, α1-antitripsin (AAT) and α1-acid glycoprotein (AGP) concentrations, and Cd level and oxidative stress intensity measured by advanced oxidation protein product (AOPP) concentration in the blood of healthy subjects and AP patients during hospitalization. Endothelin-1 (ET-1) and resistin concentrations, markers of endothelium injury, were determined. Results An increased IL-6 concentration in healthy smokers compared to nonsmokers and AP patients compared to controls was shown. An increased AAT and AGP concentrations during hospitalization of AP patients were noted, in both smokers (AAT, AGP) and nonsmokers (AAT). In comparison to control groups, in AP patients, a 2-fold increased resistin concentration correlating with ET-1 concentration and decreased albumin concentration accompanied by increased AOPP concentration were demonstrated. AOPP concentration was higher in smokers with AP compared to nonsmokers and gradually enhanced during their hospitalization. Conclusions Tobacco smoke exposure can have a proinflammatory effect in both healthy subjects and AP patients. Increased resistin concentration in AP patients negatively correlating with albumin concentration has prooxidative effect on this protein resulting in enhanced AOPP level. Increased resistin concentration can intensify AAT and AGP production during AP.
Collapse
|
846
|
SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions. PLoS One 2017; 12:e0184154. [PMID: 28880927 PMCID: PMC5589172 DOI: 10.1371/journal.pone.0184154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/19/2017] [Indexed: 01/11/2023] Open
Abstract
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.
Collapse
|
847
|
Sfriso R, Bongoni A, Banz Y, Klymiuk N, Wolf E, Rieben R. Assessment of the Anticoagulant and Anti-inflammatory Properties of Endothelial Cells Using 3D Cell Culture and Non-anticoagulated Whole Blood. J Vis Exp 2017. [PMID: 28930996 DOI: 10.3791/56227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In vivo, endothelial cells are crucial for the natural anticoagulation of circulating blood. Consequently, endothelial cell activation leads to blood coagulation. This phenomenon is observed in many clinical situations, like organ transplantation in the presence of pre-formed anti-donor antibodies, including xenotransplantation, as well as in ischemia/reperfusion injury. In order to reduce animal experimentation according to the 3R standards (reduction, replacement and refinement), in vitro models to study the effect of endothelial cell activation on blood coagulation would be highly desirable. However, common flatbed systems of endothelial cell culture provide a surface-to-volume ratio of 1 - 5 cm2 of endothelium per mL of blood, which is not sufficient for natural, endothelial-mediated anticoagulation. Culturing endothelial cells on microcarrier beads may increase the surface-to-volume ratio to 40 - 160 cm2/mL. This increased ratio is sufficient to ensure the "natural" anticoagulation of whole blood, so that the use of anticoagulants can be avoided. Here an in vitro microcarrier-based system is described to study the effects of genetic modification of porcine endothelial cells on coagulation of whole, non-anticoagulated human blood. In the described assay, primary porcine aortic endothelial cells, either wild type (WT) or transgenic for human CD46 and thrombomodulin, were grown on microcarrier beads and then exposed to freshly drawn non-anticoagulated human blood. This model allows for the measurement and quantification of cytokine release as well as activation markers of complement and coagulation in the blood plasma. In addition, imaging of activated endothelial cell and deposition of immunoglobulins, complement- and coagulation proteins on the endothelialized beads were performed by confocal microscopy. This assay can also be used to test drugs which are supposed to prevent endothelial cell activation and, thus, coagulation. On top of its potential to reduce the number of animals used for such investigations, the described assay is easy to perform and consistently reproducible.
Collapse
Affiliation(s)
- Riccardo Sfriso
- Department of Clinical Research, University of Bern; Graduate School for Cellular and Biomedical Sciences, University of Bern
| | - Anjan Bongoni
- Immunology Research Centre, St. Vincent's Hospital Melbourne
| | - Yara Banz
- Institute of Pathology, University of Bern
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University
| | - Robert Rieben
- Department of Clinical Research, University of Bern;
| |
Collapse
|
848
|
Zhuo L, Peng J, Zhao Y, Li D, Xie X, Tong L, Yu Z. Screening bioactive quality control markers of QiShenYiQi dripping pills based on the relationship between the ultra-high performance liquid chromatography fingerprint and vascular protective activity. J Sep Sci 2017; 40:4076-4084. [PMID: 28802088 DOI: 10.1002/jssc.201700514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/14/2017] [Accepted: 08/05/2017] [Indexed: 11/08/2022]
Abstract
Traditional Chinese medicine consists of complex phytochemical constituents. Selecting appropriate analytical markers of traditional Chinese medicine is a critical step in quality control. Currently, the combination of fingerprinting and efficacy evaluation is considered as a useful method for screening active ingredients in complex mixtures. This study was designed to develop an orthogonal partial least squares model for screening bioactive quality control markers of QishenYiqi dripping pills based on the fingerprint-efficacy relationship. First, the chemical fingerprints of 49 batches of QishenYiqi dripping pill samples were established by ultra-high performance liquid chromatography coupled with a photodiode array detector. Second, ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was exploited to systematically investigate the 36 copossessing fingerprint components in QishenYiqi dripping pills. The vascular protective activity of QishenYiqi dripping pills was determined by using a cell counting kit-8 assay. Finally, fingerprint-efficacy relationship was established by orthogonal partial least squares model. The results indicated that ten components exhibited strong correlation with vascular protective activity, and these were preliminarily screened as quality control markers. The present study provided a novel idea for the study of the pharmacodynamic material basis and quality evaluation of QishenYiqi dripping pills.
Collapse
Affiliation(s)
- Limeng Zhuo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Jingjing Peng
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| | - Yunli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Dongxiang Li
- Tasly Academy, State Key laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Analysis Institute, Tianjin, P. R. China
| | - Xiuman Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ling Tong
- Tasly Academy, State Key laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Analysis Institute, Tianjin, P. R. China
| | - Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
849
|
Zhong Q, Li X, Nong Q, Mao B, Pan X. Metabolic Profiling in Association with Vascular Endothelial Cell Dysfunction Following Non-Toxic Cadmium Exposure. Int J Mol Sci 2017; 18:ijms18091905. [PMID: 28872622 PMCID: PMC5618554 DOI: 10.3390/ijms18091905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 01/04/2023] Open
Abstract
This study aimed to determine the metabolic profile of non-toxic cadmium (Cd)-induced dysfunctional endothelial cells using human umbilical vein endothelial cells (HUVECs). HUVECs (n = 6 per group) were treated with 0, 1, 5, or 10 μM cadmium chloride (CdCl2) for 48 h. Cell phenotypes, including nitric oxide (NO) production, the inflammatory response, and oxidative stress, were evaluated in Cd-exposed and control HUVECs. Cd-exposed and control HUVECs were analysed using gas chromatography time-of-flight/mass spectrometry. Compared to control HUVECs, Cd-exposed HUVECs were dysfunctional, exhibiting decreased NO production, a proinflammatory state, and non-significant oxidative stress. Further metabolic profiling revealed 24 significantly-altered metabolites in the dysfunctional endothelial cells. The significantly-altered metabolites were involved in the impaired tricarboxylic acid (TCA) cycle, activated pyruvate metabolism, up-regulated glucogenic amino acid metabolism, and increased pyrimidine metabolism. The current metabolic findings further suggest that the metabolic changes linked to TCA cycle dysfunction, glycosylation of the hexosamine biosynthesis pathway (HBP), and compensatory responses to genomic instability and energy deficiency may be generally associated with dysfunctional phenotypes, characterized by decreased NO production, a proinflammatory state, and non-significant oxidative stress, in endothelial cells following non-toxic Cd exposure.
Collapse
Affiliation(s)
- Qiuan Zhong
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University School of Public Health, Nanning 530021, China.
- Department of Epidemiology, Guangxi Medical University School of Public Health, Nanning 530021, China.
| | - Xiaofei Li
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University School of Public Health, Nanning 530021, China.
| | - Qingjiao Nong
- Department of Epidemiology, Guangxi Medical University School of Public Health, Nanning 530021, China.
| | - Baoyu Mao
- Department of Epidemiology, Guangxi Medical University School of Public Health, Nanning 530021, China.
| | - Xue Pan
- Department of Epidemiology, Guangxi Medical University School of Public Health, Nanning 530021, China.
| |
Collapse
|
850
|
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017; 91:2967-3010. [PMID: 28573455 PMCID: PMC5562771 DOI: 10.1007/s00204-017-1993-y] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Large-scale production and use of amorphous silica nanoparticles (SiNPs) have increased the risk of human exposure to SiNPs, while their health effects remain unclear. In this review, scientific papers from 2010 to 2016 were systematically selected and sorted based on in vitro and in vivo studies: to provide an update on SiNPs toxicity and to address the knowledge gaps indicated in the review of Napierska (Part Fibre Toxicol 7:39, 2010). Toxicity of SiNPs in vitro is size, dose, and cell type dependent. SiNPs synthesized by wet route exhibited noticeably different biological effects compared to thermal route-based SiNPs. Amorphous SiNPs (particularly colloidal and stöber) induced toxicity via mechanisms similar to crystalline silica. In vivo, route of administration and physico-chemical properties of SiNPs influences the toxicokinetics. Adverse effects were mainly observed in acutely exposed animals, while no significant signs of toxicity were noted in chronically dosed animals. The correlation between in vitro and in vivo toxicity remains less well established mainly due to improper-unrealistic-dosing both in vitro and in vivo. In conclusion, notwithstanding the multiple studies published in recent years, unambiguous linking of physico-chemical properties of SiNPs types to toxicity, bioavailability, or human health effects is not yet possible.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Lode Godderis
- Department of Occupational, Environmental and Insurance Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 35 block d, box 7001, 3000 Louvain, Belgium
| | - Sybille Van Den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Jan Mast
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Frederic Brassinne
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Noham Sebaihi
- General Quality and Safety, Metrology Department, National Standards, North Gate-Office 2A29, Bd du Roi Albert II, 16, 1000 Brussels, Belgium
| | - Peter H. Hoet
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| |
Collapse
|